1
|
Mishra AK, Dixit S, Singh A, Shukla T, Rizvi SI. Molecular Determinants of A9 Dopaminergic Neurons. Neuromolecular Med 2025; 27:43. [PMID: 40397062 DOI: 10.1007/s12017-025-08861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
In the human brain, the nigrostriatal pathway regulates motor functions, and its selective deterioration leads to the onset of Parkinson's disease (PD), a neurodegenerative disorder characterized by motor dysfunction and significant disability. The A9 neurons, a subgroup of ventral mesencephalic dopaminergic (DA) neurons, form the nigrostriatal pathway that emerges from the nigral region and innervates into the striatum. These DA neurons exhibit extensive and arborized axonal terminals projecting into the dorsal striatum. This review examines the distinct molecular determinants underlying the development, projection pattern, survival, maintenance, and vulnerability of A9 neurons, distinguishing them from other ventral midbrain DA subgroups such as A8 and A10. Key transcription factors (e.g., Lmx1a/b, FoxA2, Pitx3), signaling cascade pathways (e.g., Sonic Hedgehog, Wnt/β-catenin), and molecular markers (e.g., Aldh1a1, GIRK2, ANT2) are discussed in detail. A comparative assessment of the electrophysiology, cytoarchitecture, energy demand, and antioxidant reserves of A9 DA neurons versus the neighboring ventral mesencephalic DA subgroups elucidates the role of intrinsic determinants in susceptibility and selective degeneration in PD. The unique susceptibility of A9 cells to redox imbalance, neuronal inflammation, and mitochondrial dysfunction is also explored. Furthermore, recent advancements in stem cell-based approaches for generating A9-like neurons and their application in cell transplantation therapies for PD are discussed. Current challenges, including integration and long-term survival of transplanted neurons, are highlighted alongside prospects of cell replacement therapy. By evaluating the molecular biology of A9 neurons, this review aims to understand PD pathology and develop strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, Chhattisgarh, 494 337, India.
| | - Shreya Dixit
- Department of Neurology, University of California, Irvine, USA
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Toyaj Shukla
- Government Rani Durgawati College, Wadrafnagar, Balrampur, Chhattisgarh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Yan M, Wu H, Wu T, Wang Y, Su C, Li D, Han X. Microcystin-LR Exposure Damages Neurons by Inducing α-Syn Aggregation via MAPK4/GATA2/SNCA and PP2A/GRKs Pathways. Mol Neurobiol 2025; 62:6195-6211. [PMID: 39738876 DOI: 10.1007/s12035-024-04683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Microcystin-LR (MC-LR) is a natural neurotoxin with strong toxicity, and studies have demonstrated that chronic MC-LR exposure generated Parkinson-like dyskinesia in mice. Parkinson's disease (PD) is a neurologic degenerative disease mostly occurring in elderly people, and the progressive loss of dopaminergic neurons and the formation of Lewy bodies are the hallmark pathological features. The main component of Lewy bodies is α-synuclein (α-syn) encoded by the SNCA gene, and the copy number mutation of SNCA gene can promote the overexpression of α-syn. A mouse model of MC-LR exposure for 15 months was established to confirm the deposition of Lewy bodies. SH-SY5Y cells exposed to MC-LR were constructed as an in vitro model of PD, and the transcription factor that regulated the SNCA gene (the encoding gene of α-syn) was identified through the database. MC-LR enhanced the transcription level of SNCA gene and upregulated α-syn protein expression by promoting MAPK4 into the nucleus and binding to GATA2 295-480 fragment. In addition, MC-LR inhibited PP2A activity and activated GRKs kinase to promote α-syn phosphorylation at Ser129. These results suggest that MC-LR is involved in α-syn aggregate formation and PD pathogenesis by enhancing SNCA transcriptional activity to promote α-syn elevation via the MAPK4/GATA2 pathway and inducing α-syn phosphorylation via the PP2A/GRKs pathway.
Collapse
Affiliation(s)
- Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuhan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Chengxiang Su
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
3
|
Song P, Franchini R, Chen C, Duong B, Wang YZ, Savas J, Parisiadou L, Krainc D. N-acetyl-l-leucine lowers pS129-synuclein and improves synaptic function in models of Parkinson's disease. RESEARCH SQUARE 2025:rs.3.rs-6298077. [PMID: 40297686 PMCID: PMC12036458 DOI: 10.21203/rs.3.rs-6298077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
N-acetyl-L-leucine (NALL), a derivative of the branched-chain amino acid leucine, has shown therapeutic potential in neurodegenerative diseases, including in prodromal stages of Parkinson's disease (PD). However, the mechanism of its protective effects has been largely unknown. Using discovery-based proteomics, we found that treatment with NALL led to upregulation of lysosomal, mitochondrial, and synaptic proteins in PD patient-derived dopaminergic neurons. NALL reduced levels of pathological pS129-alpha-synuclein in dopaminergic neurons from patients harboring GBA1 or LRRK2 mutations. This decrease in pS129-syn was dependent on serine protease HTRA1 that was induced by NALL treatment of dopaminergic neurons. NALL also upregulated expression of wild-type parkin in both GBA1 and LRRK2 mutant neurons, leading to an increase in functional dopamine transporter and synaptic membrane-associated synaptojanin-1, suggesting improved synaptic function. Furthermore, NALL treatment of mutant LRRK2R1441C knock-in mice led to decreased pS129-alpha-synuclein, increased parkin and improved dopamine-dependent motor learning deficits. These findings highlight the therapeutic potential of NALL in PD by its protective effects on α-synuclein pathology and synaptic function in vulnerable dopaminergic neurons.
Collapse
Affiliation(s)
| | - Rossella Franchini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona
| | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University
| | - Bryan Duong
- Northwestern University Feinberg School of Medicine
| | | | - Jeffrey Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Dimitri Krainc
- Department of Neurology Northwestern University Feinberg School of Medicine
| |
Collapse
|
4
|
Marcu AD, Bica AM, Jercan CG, Radu LE, Serbanica AN, Jardan D, Colita A, Dima SO, Tomuleasa C, Tanase AD, Colita A. Insights into Pediatric GATA2-Related MDS: Unveiling Challenges in Clinical Practice. Biomedicines 2025; 13:827. [PMID: 40299403 PMCID: PMC12024526 DOI: 10.3390/biomedicines13040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Background:GATA2-related myelodysplastic syndrome (GATA2-MDS) is a unique predisposition syndrome with a high risk of leukemic transformation. This systematic review synthesizes current literature and presents two illustrative pediatric GATA2-MDS cases. Methods: Data retrieval from eight cohort and case-control studies provides comprehensive analysis on disease features, diagnostic complexities, management, and outcomes related to hematopoietic stem cell transplantation (HSCT) in GATA2-related myeloid malignancies. Additionally, two pediatric cases are included to exemplify clinical and therapeutic challenges in real-world setting. Results: The literature data demonstrates high incidence of monosomy 7, and recurrent infections as the most common clinical feature, followed by immunodeficiency and lymphedema. Prognosis clearly worsens with age and HSCT remains the only curative treatment. GATA2 patients undergoing HSCT experience high rates of graft versus host disease (GvHD) as well as unique neurological, thrombotic, and infectious complications. Transplant-related mortality (TRM) is linked to GvHD and infections. Post-transplant cyclophosphamide (PT/Cy) strategies seem to improve survival by reducing GvHD incidence. Overall survival (OS) remains variable across groups. The first case presents rapid disease progression to pulmonary alveolar proteinosis (PAP) and leukemic transformation, further developing severe HSCT complications. The second case addresses novel GATA2 mutation and raises concerns regarding alternative prophylactic and therapeutic strategies in transplant setting. Conclusions: Collaborative efforts aim to enhance understandings of GATA2-related myeloid malignancies and guide towards more effective management approaches.
Collapse
Affiliation(s)
- Andra Daniela Marcu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Pediatric Bone Marrow Transplantation Unit, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ana Maria Bica
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Pediatric Bone Marrow Transplantation Unit, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Cristina Georgiana Jercan
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Pediatric Bone Marrow Transplantation Unit, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Letitia Elena Radu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Pediatric Bone Marrow Transplantation Unit, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Andreea Nicoleta Serbanica
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Pediatric Bone Marrow Transplantation Unit, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Dumitru Jardan
- Molecular Biology Laboratory, MedLife, 010719 Bucharest, Romania
| | - Andrei Colita
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Department of Hematology, Coltea Hospital, 030167 Bucharest, Romania
| | - Simona Olimpia Dima
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ciprian Tomuleasa
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Alina Daniela Tanase
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Department of Bone Marrow Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Anca Colita
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania
- Pediatric Bone Marrow Transplantation Unit, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
5
|
Xu QH, Wang YL, Wang C, Jiang SS, Zhang BR, Tian J. Exploring the active ingredients and potential mechanisms of Pingchan granules in Parkinson's disease treatment through network pharmacology and transcriptomics. Sci Rep 2025; 15:7847. [PMID: 40050654 PMCID: PMC11885611 DOI: 10.1038/s41598-025-91344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, poses significant challenges to single-target therapeutic strategies due to its complex etiology. This has driven interest in multi-target approaches, particularly those leveraging natural compounds. Pingchan granules (PCG), a traditional Chinese medicine composed of plant- and animal-derived compounds, have shown efficacy in alleviating PD symptoms. Here, we identify 96 PCG-associated anti-PD targets, enriched in neuronal synaptic signaling and G protein-coupled receptor pathways. Through protein-protein interaction network analysis of anti-PD targets and random forest modeling of substantia nigra transcriptomic data from PD patients, SLC6A3 and SRC emerged as central hub targets, with Mendelian randomization further validating SRC as a potential therapeutic target. Molecular docking and single-cell sequencing reveal that dauricine, PCG's principal active compound, binds strongly to SLC6A3 and SRC, modulating glucose metabolism pathways in dopaminergic neurons. These findings illuminate the molecular basis of PCG's therapeutic effects, offer a foundation for future drug development, and underscore the potential of dauricine as a targeted treatment for PD.
Collapse
Affiliation(s)
- Qiu-Han Xu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ling Wang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Cheng Wang
- Department of Neurosurgey, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Si Jiang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| | - Jun Tian
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
6
|
Shen J, Yao E, Tian W, He J, Gu Y, Zhao D. Glycolytic pathways: The hidden regulators in Parkinson's disease. Heliyon 2025; 11:e41831. [PMID: 39959499 PMCID: PMC11830313 DOI: 10.1016/j.heliyon.2025.e41831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative condition [1]; however, its association with glycolysis, specifically the activity of genes related to glycolysis, has not yet been explored. We downloaded 3 datasets related to PD from the GEO database and identified the glycolytic genes related to PD. Subsequently, GO and KEGG enrichment analyses were conducted. We constructed a PD diagnosis model using the SVM algorithm for differentially expressed glycolysis-related genes and verified the model with LASSO regression analysis. Next, we constructed a regulatory network of genes that were differentially expressed with respect to glycolysis. Finally, the amount of immune cell infiltration was analyzed in PD samples, and the correlation between differential genes and immune cells was calculated. A total of 64 differentially expressed glycolytic genes associated with PD were screened. Then, a GO analysis was conducted, followed by KEGG and GASE enrichment analyses. Within the established PD diagnostic model, 26 genes that were differentially expressed and linked to glycolysis showed strong statistical significance. After further screening, a diagnostic model for PD including seven key genes was established. Further analysis showed that ABHD5 most strongly correlated with neutrophils (r = 0.507). The key gene SMAD3 was strongly negatively associated with gamma delta T cells (r = -0.488). This research offered a theoretical foundation for the association between glycolysis and PD. Seven glycolytic genes were identified as significantly linked to PD and warrant additional research.
Collapse
Affiliation(s)
- Jing Shen
- Department of Neurology, the First Affiliated Hospital of Shihezi University, China
| | - Ensheng Yao
- Department of Neurology, the First Affiliated Hospital of Shihezi University, China
| | - Weidong Tian
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, China
| | - Jia He
- Department of Preventive Medicine, School of Medical, Shihezi University, China
| | - Yukai Gu
- Department of Preventive Medicine, School of Medical, Shihezi University, China
| | - Dong Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, China
| |
Collapse
|
7
|
He X, Geng Z, Zou G, Cui Z, Wang Y, Song J, Zhang J, Shao Y, Feng J, Wu Y, Liu T, Zhu X. Alpha-Synuclein Inhibition Promotes Erythropoiesis by Affecting Methylation Modifications of Fructose and Mannose Metabolism. Stem Cells Dev 2025; 34:85-98. [PMID: 39704132 DOI: 10.1089/scd.2024.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Ninety-nine percent of alpha-synuclein (α-syn) in the human body is distributed in erythrocytes. However, the role that α-syn plays in erythropoiesis remains unclear. To determine the effect of α-syn on erythroid differentiation, the erythroid cells, derived from human CD34+ progenitors in the umbilical cord, were cultured in a system composed of a series of cytokines and harvested after 6 days. Our work showed α-syn inhibition-promoted erythropoiesis as characterized by altered activity of surface markers of erythroid development such as CD49d, CD36, and CD71; and different methylation status of GDP-D-mannose dehydratase, aldolase fructose-bisphosphate A, and sorbitol dehydrogenase, key enzymes involved in fructose and mannose metabolism. Reduced adenosine triphosphate and elevated lactic acid also suggested a shift in cellular metabolism from mitochondrial respiration to glycolysis. Our study revealed a previously unknown role for α-syn as a methylation regulator that alters the activity of key enzymes of the fructose and mannose metabolism, thus contributing to erythropoiesis.
Collapse
Affiliation(s)
- Xinrong He
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixiang Geng
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Cui
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingtao Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Zhu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Basova LV, Riley T, Franklin D, Delorme-Walker V, Lim WL, Grant I, Letendre SL, Iudicello JE, Cherner M, Ellis RJ, Marcondes MCG. Identifying methamphetamine use predictors in HIV infection: Immune-dopaminergic signatures in peripheral leukocytes and the role of COMT genotype. Brain Behav Immun Health 2024; 42:100873. [PMID: 39430881 PMCID: PMC11490913 DOI: 10.1016/j.bbih.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
The pursuit of translational biomarkers is complex due to the heterogeneous human pathophysiology, but critical for disease diagnosis, prognosis, monitoring therapeutic efficacy, and for patient stratification. In HIV-associated neurocognitive impairment (NCI), biomarkers that delineate the trajectory of neuropathogenesis and neurocognitive sequelae are critical, particularly considering confounders such as substance use, including Methamphetamine (METH). METH use is a significant health concern among persons living with HIV (PWH), aggravating cognitive deficits and neuroinflammation despite of antiretrovirals, introducing elements in the microenvironment that are fundamentally differerent in relation to non-METH users, such as high levels of dopamine (DA) affecting HIV-innate immune targets. Yet, current biomarkers do not detect these differences. We hypothesized that predefined DA-induced signatures detectable in peripheral blood leukocytes, can distinguish HIV+ METH users compared to HIV-negative or PWH that are non METH users. The elevated expression of CD8A, CREBBP, CCL5, and combinations of dopaminergic pathway transcripts clustered METH users with detectable CSF viral load and major depressive disorder (MDD), indicating neuroimmune-mechanistic links. Cathecol-o-methyltransferase (COMT) gene polymorphisms affecting DA metabolism improved the identification of PWH using METH with biomarkers. The results indicate that underlying immunedopaminergic mechanisms provide signatures and genotypes that can identify PWH that are METH users and their attributes.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Tera Riley
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
- National Institute for Drug Abuse, Summer Internship, 2023, USA
| | - Donald Franklin
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | | - Wei Ling Lim
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Igor Grant
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Scott L. Letendre
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Jennifer E. Iudicello
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Mariana Cherner
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Ronald J. Ellis
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | |
Collapse
|
9
|
Schmitt I, Evert BO, Sharma A, Khazneh H, Murgatroyd C, Wüllner U. The Alpha-Synuclein Gene (SNCA) is a Genomic Target of Methyl-CpG Binding Protein 2 (MeCP2)-Implications for Parkinson's Disease and Rett Syndrome. Mol Neurobiol 2024; 61:7830-7844. [PMID: 38429622 DOI: 10.1007/s12035-024-03974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson's disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, University of Bonn, Bonn, Germany
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Hassan Khazneh
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany.
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Yang Y, Nie X, Wang Y, Sun J, Gao X, Zhang J. Evolving insights into erythrocytes in synucleinopathies. Trends Neurosci 2024; 47:693-707. [PMID: 39043489 DOI: 10.1016/j.tins.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), are characterized by neuronal loss accompanied by α-synuclein (α-syn) accumulation in the brain. While research conventionally focused on brain pathology, there is growing interest in peripheral alterations. Erythrocytes, which are rich in α-syn, have emerged as a compelling site for synucleinopathies-related alterations. Erythrocyte-derived extracellular vesicles (EVs), containing pathological α-syn species, can traverse the blood-brain barrier (BBB) under certain conditions and the gastrointestinal tract, where α-syn and gut microbiota interact extensively. This review explores the accumulating evidence of erythrocyte involvement in synucleinopathies, as well as their potential in disease pathogenesis and diagnosis. Given their unique properties, erythrocytes and erythrocyte-derived EVs may also serve as an ideal therapeutic platform for treating synucleinopathies and beyond.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Nie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China
| | - Yajie Wang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Su C, Hou Y, Xu J, Xu Z, Zhou M, Ke A, Li H, Xu J, Brendel M, Maasch JRMA, Bai Z, Zhang H, Zhu Y, Cincotta MC, Shi X, Henchcliffe C, Leverenz JB, Cummings J, Okun MS, Bian J, Cheng F, Wang F. Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data. NPJ Digit Med 2024; 7:184. [PMID: 38982243 PMCID: PMC11233682 DOI: 10.1038/s41746-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (≥5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/α-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
Collapse
Grants
- R21 AG083003 NIA NIH HHS
- R01 AG082118 NIA NIH HHS
- R56 AG074001 NIA NIH HHS
- R01AG076448 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1AG072449 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- MJFF-023081 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01AG080991 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P30 AG072959 NIA NIH HHS
- 3R01AG066707-01S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R21AG083003 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG066707 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35 AG071476 NIA NIH HHS
- RF1 AG082211 NIA NIH HHS
- R56AG074001 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG082118 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R25 AG083721 NIA NIH HHS
- RF1AG082211 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 NS093334 NINDS NIH HHS
- AG083721-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1NS133812 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20GM109025 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 NS133812 NINDS NIH HHS
- R35AG71476 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AG073323 NIA NIH HHS
- R01 AG066707 NIA NIH HHS
- R01AG053798 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG076234 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 AG076448 NIA NIH HHS
- R01 AG080991 NIA NIH HHS
- R01 AG076234 NIA NIH HHS
- U01NS093334 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20 GM109025 NIGMS NIH HHS
- P30AG072959 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 AG072449 NIA NIH HHS
- R01 AG053798 NIA NIH HHS
- 3R01AG066707-02S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AG073323 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- ALZDISCOVERY-1051936 Alzheimer's Association
Collapse
Affiliation(s)
- Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yu Hou
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Manqi Zhou
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Alison Ke
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Haoyang Li
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Matthew Brendel
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline R M A Maasch
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computer Science, Cornell Tech, Cornell University, New York, NY, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Haotan Zhang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Zhu
- Department of Computer Science, University of Texas at Arlington, Arlington, TX, USA
| | - Molly C Cincotta
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Claire Henchcliffe
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
13
|
Hu R, Wang R, Yuan J, Lin Z, Hutchins E, Landin B, Liao Z, Liu G, Scherzer CR, Dong X. Transcriptional pathobiology and multi-omics predictors for Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599639. [PMID: 38948706 PMCID: PMC11212969 DOI: 10.1101/2024.06.18.599639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Early diagnosis and biomarker discovery to bolster the therapeutic pipeline for Parkinson's disease (PD) are urgently needed. In this study, we leverage the large-scale whole-blood total RNA-seq dataset from the Accelerating Medicine Partnership in Parkinson's Disease (AMP PD) program to identify PD-associated RNAs, including both known genes and novel circular RNAs (circRNA) and enhancer RNAs (eRNAs). There were 1,111 significant marker RNAs, including 491 genes, 599 eRNAs, and 21 circRNAs, that were first discovered in the PPMI cohort (FDR < 0.05) and confirmed in the PDBP/BioFIND cohorts (nominal p < 0.05). Functional enrichment analysis showed that the PD-associated genes are involved in neutrophil activation and degranulation, as well as the TNF-alpha signaling pathway. We further compare the PD-associated genes in blood with those in post-mortem brain dopamine neurons in our BRAINcode cohort. 44 genes show significant changes with the same direction in both PD brain neurons and PD blood, including neuroinflammation-associated genes IKBIP, CXCR2, and NFKBIB. Finally, we built a novel multi-omics machine learning model to predict PD diagnosis with high performance (AUC = 0.89), which was superior to previous studies and might aid the decision-making for PD diagnosis in clinical practice. In summary, this study delineates a wide spectrum of the known and novel RNAs linked to PD and are detectable in circulating blood cells in a harmonized, large-scale dataset. It provides a generally useful computational framework for further biomarker development and early disease prediction.
Collapse
Affiliation(s)
- Ruifeng Hu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ruoxuan Wang
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jie Yuan
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zechuan Lin
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | - Zhixiang Liao
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganqiang Liu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xianjun Dong
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
15
|
Barnhoorn S, Milanese C, Li T, Dons L, Ghazvini M, Sette M, Farina S, Sproviero D, Payan-Gomez C, Mastroberardino PG. Orthogonal analysis of mitochondrial function in Parkinson's disease patients. Cell Death Dis 2024; 15:243. [PMID: 38570521 PMCID: PMC10991487 DOI: 10.1038/s41419-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
The etiopathology of Parkinson's disease has been associated with mitochondrial defects at genetic, laboratory, epidemiological, and clinical levels. These converging lines of evidence suggest that mitochondrial defects are systemic and causative factors in the pathophysiology of PD, rather than being mere correlates. Understanding mitochondrial biology in PD at a granular level is therefore crucial from both basic science and translational perspectives. In a recent study, we investigated mitochondrial alterations in fibroblasts obtained from PD patients assessing mitochondrial function in relation to clinical measures. Our findings demonstrated that the magnitude of mitochondrial alterations parallels disease severity. In this study, we extend these investigations to blood cells and dopamine neurons derived from induced pluripotent stem cells reprogrammed from PD patients. To overcome the inherent metabolic heterogeneity of blood cells, we focused our analyses on metabolically homogeneous, accessible, and expandable erythroblasts. Our results confirm the presence of mitochondrial anomalies in erythroblasts and induced dopamine neurons. Consistent with our previous findings in fibroblasts, we observed that mitochondrial alterations are reversible, as evidenced by enhanced mitochondrial respiration when PD erythroblasts were cultured in a galactose medium that restricts glycolysis. This observation indicates that suppression of mitochondrial respiration may constitute a protective, adaptive response in PD pathogenesis. Notably, this effect was not observed in induced dopamine neurons, suggesting their distinct bioenergetic behavior. In summary, we provide additional evidence for the involvement of mitochondria in the disease process by demonstrating mitochondrial abnormalities in additional cell types relevant to PD. These findings contribute to our understanding of PD pathophysiology and may have implications for the development of novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Chiara Milanese
- IFOM-ETS, the AIRC Institute for molecular Oncology, Milan, Italy
| | - Tracy Li
- Erasmus MC iPS Facility, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Dons
- Erasmus MC iPS Facility, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Stefania Farina
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Daisy Sproviero
- IFOM-ETS, the AIRC Institute for molecular Oncology, Milan, Italy
| | | | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands.
- IFOM-ETS, the AIRC Institute for molecular Oncology, Milan, Italy.
- Università degli Studi dell'Aquila, L'Aquila, Italy.
| |
Collapse
|
16
|
Xu Q, Jiang S, Kang R, Wang Y, Zhang B, Tian J. Deciphering the molecular pathways underlying dopaminergic neuronal damage in Parkinson's disease associated with SARS-CoV-2 infection. Comput Biol Med 2024; 171:108200. [PMID: 38428099 DOI: 10.1016/j.compbiomed.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.
Collapse
Affiliation(s)
- Qiuhan Xu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Sisi Jiang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Ruiqing Kang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Yiling Wang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
17
|
D’Angiolini S, Lui M, Mazzon E, Calabrò M. Network Analysis Performed on Transcriptomes of Parkinson's Disease Patients Reveals Dysfunction in Protein Translation. Int J Mol Sci 2024; 25:1299. [PMID: 38279299 PMCID: PMC10816150 DOI: 10.3390/ijms25021299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain. The hallmark pathological feature of PD is the accumulation of misfolded proteins, leading to the formation of intracellular aggregates known as Lewy bodies. Recent data evidenced how disruptions in protein synthesis, folding, and degradation are events commonly observed in PD and may provide information on the molecular background behind its etiopathogenesis. In the present study, we used a publicly available transcriptomic microarray dataset of peripheral blood of PD patients and healthy controls (GSE6613) to investigate the potential dysregulation of elements involved in proteostasis-related processes at the transcriptomic level. Our bioinformatics analysis revealed 375 differentially expressed genes (DEGs), of which 281 were down-regulated and 94 were up-regulated. Network analysis performed on the observed DEGs highlighted a cluster of 36 elements mainly involved in the protein synthesis processes. Different enriched ontologies were related to translation initiation and regulation, ribosome structure, and ribosome components nuclear export. Overall, this data consistently points to a generalized impairment of the translational machinery and proteostasis. Dysregulation of these mechanics has been associated with PD pathogenesis. Understanding the precise regulation of such processes may shed light on the molecular mechanisms of PD and provide potential data for early diagnosis.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | | |
Collapse
|
18
|
Lu H, Zhang B, Yin T, Hua Y, Cao C, Ge M, Shen D, Zhou YL, Jia Z. Ferroptosis-Related Immune Genes in Hematological Diagnosis of Parkinson's Diseases. Mol Neurobiol 2023; 60:6395-6409. [PMID: 37452932 DOI: 10.1007/s12035-023-03468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence suggested that ferroptosis and immune activation, as well as their interactions, played a crucial role in the occurrence and progression of Parkinson's disease (PD). However, whether this interaction could serve as the basis for a hematological diagnosis of PD remained poorly understood. This study aimed to construct a novel hematological model for PD diagnosis based on the ferroptosis-related immune genes. The brain imaging of PD patients was obtained from the Affiliated Hospital of Nantong University. We used least absolute shrinkage and selection operator (LASSO) to identify the optimal signature ferroptosis-related immune genes based on six gene expression profile datasets of substantia nigra (SN) and peripheral blood of PD patients. Then we used the support vector machine (SVM) classifier to construct the hematological diagnostic model named Ferr.Sig for PD. Gene set enrichment analysis was utilized to execute gene functional annotation. The brain imaging and functional annotation analysis revealed prominent iron deposition and immune activation in the SN region of PD patients. We identified a total of 17 signature ferroptosis-related immune genes using LASSO method and imported them to SVM classifier. The Ferr.Sig model exhibited a high diagnostic accuracy, and its area under the curve (AUC) for distinguishing PD patients from healthy controls in the training and internal validation cohort reached 0.856 and 0.704, respectively. We also used the Ferr.Sig into other external validation cohorts, and a comparable AUC with the internal cohort was obtained, with the AUC of 0.727 in Scherzer's cohort, 0.745 in Roncagli's cohort, and 0.778 in Meiklejohn's cohort. Furthermore, the diagnostic performance of Ferr.Sig was not interfered by the other neurodegenerative diseases. This study revealed the value of ferroptosis-related immune genes in PD diagnosis, which may provide a novel direction and strategy for the development of novel biomarkers with less invasiveness, low cost, and high accuracy for PD screening and diagnosis.
Collapse
Affiliation(s)
- Heyue Lu
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Bo Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Tingting Yin
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Ye Hua
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Chenyang Cao
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Min Ge
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Dandan Shen
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China.
| | - Zhongzheng Jia
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
19
|
Wang H, Dou S, Wang C, Gao W, Cheng B, Yan F. Identification and Experimental Validation of Parkinson's Disease with Major Depressive Disorder Common Genes. Mol Neurobiol 2023; 60:6092-6108. [PMID: 37418066 DOI: 10.1007/s12035-023-03451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease that affects about 10 million people worldwide. Non-motor and motor symptoms usually accompany PD. Major depressive disorder (MDD) is one of the non-motor manifestations of PD it remains unrecognized and undertreated effectively. MDD in PD has complicated pathophysiologies and remains unclear. The study aimed to explore the candidate genes and molecular mechanisms of PD with MDD. PD (GSE6613) and MDD (GSE98793) gene expression profiles were downloaded from Gene Expression Omnibus (GEO). Above all, the data of the two datasets were standardized separately, and differentially expressed genes (DEGs) were obtained by using the Limma package of R. Take the intersection of the two differential genes and remove the genes with inconsistent expression trends. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were investigated to explore the function of the common DEGs. Additionally, the construction of the protein-protein interaction (PPI) network was to search the hub genes, and then the least absolute shrinkage and selection operator (LASSO) regression was used to further identify the key genes. GSE99039 for PD and GSE201332 for MDD were performed to validate the hub genes by the violin plot and receiver operating characteristic (ROC) curve. Last but not least, immune cell dysregulation in PD was investigated by immune cell infiltration. As a result, a total of 45 common genes with the same trend. Functional analysis revealed that they were enriched in neutrophil degranulation, secretory granule membrane, and leukocyte activation. LASSO was performed on 8 candidate hub genes after CytoHubba filtered 14 node genes. Finally, AQP9, SPI1, and RPH3A were validated by GSE99039 and GSE201332. Additionally, the three genes were also detected by the qPCR in vivo model and all increased compared to the control. The co-occurrence of PD and MDD can be attributed to AQP9, SPI1, and RPH3A genes. Neutrophils and monocyte infiltration play important roles in the development of PD and MDD. Novel insights may be gained from the findings for the study of mechanisms.
Collapse
Affiliation(s)
- Huiqing Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Shanshan Dou
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, 272067, China
| | - Wenming Gao
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Baohua Cheng
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China.
- Neurobiology Institute, Jining Medical University, Jining, 272067, China.
| | - Fuling Yan
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
20
|
Bhandari N, Walambe R, Kotecha K, Kaliya M. Integrative gene expression analysis for the diagnosis of Parkinson's disease using machine learning and explainable AI. Comput Biol Med 2023; 163:107140. [PMID: 37315380 DOI: 10.1016/j.compbiomed.2023.107140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. Various symptoms and diagnostic tests are used in combination for the diagnosis of PD; however, accurate diagnosis at early stages is difficult. Blood-based markers can support physicians in the early diagnosis and treatment of PD. In this study, we used Machine Learning (ML) based methods for the diagnosis of PD by integrating gene expression data from different sources and applying explainable artificial intelligence (XAI) techniques to find the significant set of gene features contributing to diagnosis. We utilized the Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge regression for the feature selection process. We utilized state-of-the-art ML techniques for the classification of PD cases and healthy controls. Logistic regression and Support Vector Machine showed the highest diagnostic accuracy. SHapley Additive exPlanations (SHAP) based global interpretable model-agnostic XAI method was utilized for the interpretation of the Support Vector Machine model. A set of significant biomarkers that contributed to the diagnosis of PD were identified. Some of these genes are associated with other neurodegenerative diseases. Our results suggest that the utilization of XAI can be useful in making early therapeutic decisions for the treatment of PD. The integration of datasets from different sources made this model robust. We believe that this research article will be of interest to clinicians as well as computational biologists in translational research.
Collapse
Affiliation(s)
- Nikita Bhandari
- Computer Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, MH, India; Symbiosis Center for Applied Artificial Intelligence (SCAAI), Symbiosis International Deemed University, Pune, Maharashtra, India
| | - Rahee Walambe
- Electronics and Telecommunication Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, Maharashtra, India; Symbiosis Center for Applied Artificial Intelligence (SCAAI), Symbiosis International Deemed University, Pune, Maharashtra, India.
| | - Ketan Kotecha
- Computer Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, MH, India; Electronics and Telecommunication Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Mehul Kaliya
- Department of General Medicine, AIIMS, Rajkot, Gujrat, India
| |
Collapse
|
21
|
Nashiry MA, Sumi SS, Alyami SA, Moni MA. Systems biology approach discovers comorbidity interaction of Parkinson's disease with psychiatric disorders utilizing brain transcriptome. Front Mol Neurosci 2023; 16:1232805. [PMID: 37654790 PMCID: PMC10466791 DOI: 10.3389/fnmol.2023.1232805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
Several studies found that most patients with Parkinson's disorder (PD) appear to have psychiatric symptoms such as depression, anxiety, hallucination, delusion, and cognitive dysfunction. Therefore, recognizing these psychiatrically symptoms of PD patients is crucial for both symptomatic therapy and better knowledge of the pathophysiology of PD. In order to address this issue, we created a bioinformatics framework to determine the effects of PD mRNA expression on understanding its relationship with psychiatric symptoms in PD patients. We have discovered a significant overlap between the sets of differentially expressed genes from PD exposed tissue and psychiatric disordered tissues using RNA-seq datasets. We have chosen Bipolar disorder and Schizophrenia as psychiatric disorders in our study. A number of significant correlations between PD and the occurrence of psychiatric diseases were also found by gene set enrichment analysis, investigations of the protein-protein interaction network, gene regulatory network, and protein-chemical agent interaction network. We anticipate that the results of this pathogenetic study will provide crucial information for understanding the intricate relationship between PD and psychiatric diseases.
Collapse
Affiliation(s)
- Md Asif Nashiry
- Data Analytics, Northern Alberta Institute of Technology, Edmonton, AB, Canada
| | - Shauli Sarmin Sumi
- Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Salem A. Alyami
- Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Data Science, Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Saint Lucia, QLD, Australia
- Artificial Intelligence and Cyber Futures Institute, Charles Stuart University, Bathurst, NSW, Australia
| |
Collapse
|
22
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
23
|
Jensen PH, Schlossmacher MG, Stefanis L. Who Ever Said It Would Be Easy? Reflecting on Two Clinical Trials Targeting α-Synuclein. Mov Disord 2023; 38:378-384. [PMID: 36645106 DOI: 10.1002/mds.29318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Two recent, high-profile manuscripts reported negative results with two parallel approaches of passive immunization targeting α-synuclein in a population of patients with early Parkinson's disease (PD). These phase II studies failed to show a bona fide disease-modifying neuroprotective effect on PD progression, despite the evidence that these antibodies effectively bind native α-synuclein in human serum. Here, we discuss the possible reasons that could help explain the lack of clinical efficacy. In particular, we highlight (1) the wealth of evidence supporting the notion of α-synuclein as a valid therapeutic target; (2) the lack of evidence of target engagement in the aforementioned studies, especially of the elusive oligomeric species, the likely culprits in disease pathogenesis and/or its propagation; (3) the limitations, especially in terms of timing passive immunization, of preclinical models, where the same α-synuclein antibodies succeeded in mitigating disease manifestations; (4) the consideration of possibly intervening at an even earlier stage of disease in future trials; and (5) the multitude of strategies beyond passive immunization that could be used to combat α-synuclein-mediated neurodegeneration, if in the end the current approach is not fruitful. Overall, our perception is that converging developments in the field, among them novel bioassays and biomarkers, improved cellular and animal models and objective measurements of motor activities integrated into clinical trials, if further optimized, will gradually move the momentum of the field forward. This, to better test the concept of whether α-synuclein-targeting therapies can indeed deliver the "holy grail" of neuroprotection to the benefit of the PD community. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Poul Henning Jensen
- Department of Biomedicine and DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Michael G Schlossmacher
- Program in Neuroscience and Division of Neurology, The Ottawa Hospital, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Leonidas Stefanis
- First Department of Neurology, National and Kapodistrian University of Athens Medical School and Laboratory of Neurodegenerative Diseases, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
24
|
Jang YO, Ahn HS, Dao TNT, Hong J, Shin W, Lim YM, Chung SJ, Lee JH, Liu H, Koo B, Kim MG, Kim K, Lee EJ, Shin Y. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases. Biomater Res 2023; 27:12. [PMID: 36797805 PMCID: PMC9936675 DOI: 10.1186/s40824-023-00353-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Brain-derived exosomes released into the blood are considered a liquid biopsy to investigate the pathophysiological state, reflecting the aberrant heterogeneous pathways of pathological progression of the brain in neurological diseases. Brain-derived blood exosomes provide promising prospects for the diagnosis of neurological diseases, with exciting possibilities for the early and sensitive diagnosis of such diseases. However, the capability of traditional exosome isolation assays to specifically isolate blood exosomes and to characterize the brain-derived blood exosomal proteins by high-throughput proteomics for clinical specimens from patients with neurological diseases cannot be assured. We report a magnetic transferrin nanoparticles (MTNs) assay, which combined transferrin and magnetic nanoparticles to isolate brain-derived blood exosomes from clinical samples. METHODS The principle of the MTNs assay is a ligand-receptor interaction through transferrin on MTNs and transferrin receptor on exosomes, and electrostatic interaction via positively charged MTNs and negatively charged exosomes to isolate brain-derived blood exosomes. In addition, the MTNs assay is simple and rapid (< 35 min) and does not require any large instrument. We confirmed that the MTNs assay accurately and efficiently isolated exosomes from serum samples of humans with neurodegenerative diseases, such as dementia, Parkinson's disease (PD), and multiple sclerosis (MS). Moreover, we isolated exosomes from serum samples of 30 patients with three distinct neurodegenerative diseases and performed unbiased proteomic analysis to explore the pilot value of brain-derived blood protein profiles as biomarkers. RESULTS Using comparative statistical analysis, we found 21 candidate protein biomarkers that were significantly different among three groups of neurodegenerative diseases. CONCLUSION The MTNs assay is a convenient approach for the specific and affordable isolation of extracellular vesicles from body fluids for minimally-invasive diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Yoon Ok Jang
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hee-Sung Ahn
- grid.413967.e0000 0001 0842 2126Department of Convergence Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea
| | - Thuy Nguyen Thi Dao
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - JeongYeon Hong
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505 Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Wangyong Shin
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Young-Min Lim
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Sun Ju Chung
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Huifang Liu
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Bonhan Koo
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Myoung Gyu Kim
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea. .,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Yang Y, Zhou Y, Nyholt DR, Yap CX, Tannenberg RK, Wang Y, Wu Y, Zhu Z, Taylor BV, Gratten J. The shared genetic landscape of blood cell traits and risk of neurological and psychiatric disorders. CELL GENOMICS 2023; 3:100249. [PMID: 36819664 PMCID: PMC9932996 DOI: 10.1016/j.xgen.2022.100249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
Phenotypic associations have been reported between blood cell traits (BCTs) and a range of neurological and psychiatric disorders (NPDs), but in most cases, it remains unclear whether these associations have a genetic basis and, if so, to what extent genetic correlations reflect causality. Here, we report genetic correlations and Mendelian randomization analyses between 11 NPDs and 29 BCTs, using genome-wide association study summary statistics. We found significant genetic correlations for four BCT-NPD pairs, all of which have prior evidence for a phenotypic correlation. We identified a previously unreported causal effect of increased platelet distribution width on susceptibility to Parkinson's disease. We identified multiple functional genes and regulatory elements for specific BCT-NPD pairs, some of which are targets of known drugs. These results enrich our understanding of the shared genetic landscape underlying BCTs and NPDs and provide a robust foundation for future work to improve prognosis and treatment of common NPDs.
Collapse
Affiliation(s)
- Yuanhao Yang
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding author
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Dale R. Nyholt
- School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Chloe X. Yap
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rudolph K. Tannenberg
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- National Centre for Register-based Research, Aarhus University, Aarhus 8210, Denmark
| | - Bruce V. Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jacob Gratten
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Corresponding author
| |
Collapse
|
26
|
SNCA Gene Methylation in Parkinson's Disease and Multiple System Atrophy. EPIGENOMES 2023; 7:epigenomes7010005. [PMID: 36810559 PMCID: PMC9944792 DOI: 10.3390/epigenomes7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In recent years, epigenetic mechanisms have been implicated in the development of multifactorial diseases including neurodegenerative disorders. In Parkinson's disease (PD), as a synucleinopathy, most studies focused on DNA methylation of SNCA gene coding alpha-synuclein but obtained results were rather contradictory. In another neurodegenerative synucleinopathy, multiple system atrophy (MSA), very few studies investigated the epigenetic regulation. This study included patients with PD (n = 82), patients with MSA (n = 24), and a control group (n = 50). In three groups, methylation levels of CpG and non-CpG sites in regulatory regions of the SNCA gene were analyzed. We revealed hypomethylation of CpG sites in the SNCA intron 1 in PD and hypermethylation of predominantly non-CpG sites in the SNCA promoter region in MSA. In PD patients, hypomethylation in the intron 1 was associated with earlier age at the disease onset. In MSA patients, hypermethylation in the promotor was associated with shorter disease duration (before examination). These results showed different patterns of the epigenetic regulation in two synucleinopathies-PD and MSA.
Collapse
|
27
|
Hu S, Li S, Ning W, Huang X, Liu X, Deng Y, Franceschi D, Ogbuehi AC, Lethaus B, Savkovic V, Li H, Gaus S, Zimmerer R, Ziebolz D, Schmalz G, Huang S. Identifying crosstalk genetic biomarkers linking a neurodegenerative disease, Parkinson's disease, and periodontitis using integrated bioinformatics analyses. Front Aging Neurosci 2022; 14:1032401. [PMID: 36545026 PMCID: PMC9760933 DOI: 10.3389/fnagi.2022.1032401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To identify the genetic linkage mechanisms underlying Parkinson's disease (PD) and periodontitis, and explore the role of immunology in the crosstalk between both these diseases. Methods The gene expression omnibus (GEO) datasets associated with whole blood tissue of PD patients and gingival tissue of periodontitis patients were obtained. Then, differential expression analysis was performed to identify the differentially expressed genes (DEGs) deregulated in both diseases, which were defined as crosstalk genes. Inflammatory response-related genes (IRRGs) were downloaded from the MSigDB database and used for dividing case samples of both diseases into different clusters using k-means cluster analysis. Feature selection was performed using the LASSO model. Thus, the hub crosstalk genes were identified. Next, the crosstalk IRRGs were selected and Pearson correlation coefficient analysis was applied to investigate the correlation between hub crosstalk genes and hub IRRGs. Additionally, immune infiltration analysis was performed to examine the enrichment of immune cells in both diseases. The correlation between hub crosstalk genes and highly enriched immune cells was also investigated. Results Overall, 37 crosstalk genes were found to be overlapping between the PD-associated DEGs and periodontitis-associated DEGs. Using clustering analysis, the most optimal clustering effects were obtained for periodontitis and PD when k = 2 and k = 3, respectively. Using the LASSO feature selection, five hub crosstalk genes, namely, FMNL1, MANSC1, PLAUR, RNASE6, and TCIRG1, were identified. In periodontitis, MANSC1 was negatively correlated and the other four hub crosstalk genes (FMNL1, PLAUR, RNASE6, and TCIRG1) were positively correlated with five hub IRRGs, namely, AQP9, C5AR1, CD14, CSF3R, and PLAUR. In PD, all five hub crosstalk genes were positively correlated with all five hub IRRGs. Additionally, RNASE6 was highly correlated with myeloid-derived suppressor cells (MDSCs) in periodontitis, and MANSC1 was highly correlated with plasmacytoid dendritic cells in PD. Conclusion Five genes (i.e., FMNL1, MANSC1, PLAUR, RNASE6, and TCIRG1) were identified as crosstalk biomarkers linking PD and periodontitis. The significant correlation between these crosstalk genes and immune cells strongly suggests the involvement of immunology in linking both diseases.
Collapse
Affiliation(s)
- Shaonan Hu
- Stomatological Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Shaonan Hu,
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Debora Franceschi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Rüdiger Zimmerer
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China,Shaohong Huang,
| |
Collapse
|
28
|
Cheng F, Zheng W, Liu C, Barbuti PA, Yu-Taeger L, Casadei N, Huebener-Schmid J, Admard J, Boldt K, Junger K, Ueffing M, Houlden H, Sharma M, Kruger R, Grundmann-Hauser K, Ott T, Riess O. Intronic enhancers of the human SNCA gene predominantly regulate its expression in brain in vivo. SCIENCE ADVANCES 2022; 8:eabq6324. [PMID: 36417521 PMCID: PMC9683720 DOI: 10.1126/sciadv.abq6324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Evidence from patients with Parkinson's disease (PD) and our previously reported α-synuclein (SNCA) transgenic rat model support the idea that increased SNCA protein is a substantial risk factor of PD pathogenesis. However, little is known about the transcription control of the human SNCA gene in the brain in vivo. Here, we identified that the DYT6 gene product THAP1 (THAP domain-containing apoptosis-associated protein 1) and its interaction partner CTCF (CCCTC-binding factor) act as transcription regulators of SNCA. THAP1 controls SNCA intronic enhancers' activities, while CTCF regulates its enhancer-promoter loop formation. The SNCA intronic enhancers present neurodevelopment-dependent activities and form enhancer clusters similar to "super-enhancers" in the brain, in which the PD-associated single-nucleotide polymorphisms are enriched. Deletion of the SNCA intronic enhancer clusters prevents the release of paused RNA polymerase II from its promoter and subsequently reduces its expression drastically in the brain, which may provide new therapeutic approaches to prevent its accumulation and thus related neurodegenerative diseases defined as synucleinopathies.
Collapse
Affiliation(s)
- Fubo Cheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
| | - Wenxu Zheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Peter Antony Barbuti
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jeannette Huebener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tuebingen, Tuebingen, Germany
| | - Rejko Kruger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
| | - Thomas Ott
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- IZKF-Core Facility Transgenic Animals, University Clinics Tuebingen, Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
30
|
Regulation of Αlpha-Synuclein Gene (SNCA) by Epigenetic Modifier TET1 in Parkinson Disease. Int Neurourol J 2022; 26:S85-93. [PMID: 36503211 PMCID: PMC9767688 DOI: 10.5213/inj.2222206.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Deregulation of SNCA encoding α-synuclein (α-SYN) has been associated with both the familial and sporadic forms of Parkinson disease (PD). Epigenetic regulation plays a crucial role in PD. The intron1 of SNCA harbors a large unmethylated CpG island. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1), a CpG island binding protein, can repress gene expression by occupying hypomethylated CpG-rich promoters, and therefore SNCA could be a target for TET1. We investigated whether TET1 binds to SNCA-intron1 and regulates gene expression. METHODS The dopaminergic neuronal cell line, ReNcell VM, was used. Reverse transcription-polymerase chain reaction (RT-PCR), real time-quantitative PCR, Western blot, dot-blot, and Chromatin immunoprecipitation were conducted. The substantia nigra tissues of postmortem PD samples were used to confirm the level of TET1 expression. RESULTS In the human dopaminergic cell line, ReNcell VM, overexpression of the DNA-binding domain of TET1 (TET1-CXXC) led to significant repression of α-SYN. On the contrary, knocking down of TET1 led to significantly higher expression of α-SYN. However, overexpression of the DNA-hydroxymethylating catalytic domain of TET1 failed to change the expression of α-SYN. Altogether, we showed that TET1 is a repressor for SNCA, and a CXXC domain of TET1 is the primary mediator for this repressive action independent of its hydroxymethylation activity. TET1 levels in PD patients are significantly lower than that in the controls. CONCLUSION We identified that TET1 acts as a repressor for SNCA by binding the intron1 regions of the gene. As a high level of α-SYN is strongly implicated in the pathogenesis of PD, discovering a repressor for the gene encoding α-SYN is highly important for developing novel therapeutic strategies for the disease.
Collapse
|
31
|
Erythrocytic alpha-synuclein in early Parkinson's disease: A 3-year longitudinal study. Parkinsonism Relat Disord 2022; 104:44-48. [PMID: 36228514 DOI: 10.1016/j.parkreldis.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Early diagnosis of Parkinson's disease (PD) could significantly improve outcomes for patients and future disease-modifying treatments. Several studies have revealed that α-synuclein levels in peripheral erythrocytes are associated with PD, but the diagnostic value in early PD is still unknown. METHODS This study included both cross-sectional and longitudinal design. The subjects included 45 patients with early PD and 79 age-matched healthy controls. Participants were re-examined with repeated blood collection and clinical assessments after 3 years. The electrochemiluminescence assay was used to measure total and oligomeric α-synuclein levels respectively. The diagnostic value of erythrocytic α-synuclein for early PD was determined by receiver operator characteristic (ROC) curve. Correlations between RBC α-synuclein levels and changes over 3 years in clinical characteristic scores were further investigated with a linear regression. RESULTS Total and oligomeric α-synuclein levels in erythrocyte were significantly increased in early PD groups compared with control group (Total α-synuclein, p < 0.001; Oligomer, p < 0.001). Levels of total and oligomeric α-synuclein in erythrocytes were correlated with MDS-UPDRS III scores in early PD (Total α-synuclein, p = 0.008; Oligomer, p = 0.037). After adjusting for age, gender and dopaminergic medication, an association was found between higher erythrocytic oligomeric α-synuclein levels at baseline and greater increase in MDS-UPDRS III scores over 3 years (p = 0.007). CONCLUSION Our study suggests that total and oligomeric α-synuclein in erythrocyte were elevated even in the initial motor stage of PD. Higher erythrocytic oligomeric α-synuclein levels at baseline predicts a faster clinical decline over time in patients with early PD.
Collapse
|
32
|
Gupta A, Martin-Rufino JD, Jones TR, Subramanian V, Qiu X, Grody EI, Bloemendal A, Weng C, Niu SY, Min KH, Mehta A, Zhang K, Siraj L, Al' Khafaji A, Sankaran VG, Raychaudhuri S, Cleary B, Grossman S, Lander ES. Inferring gene regulation from stochastic transcriptional variation across single cells at steady state. Proc Natl Acad Sci U S A 2022; 119:e2207392119. [PMID: 35969771 PMCID: PMC9407670 DOI: 10.1073/pnas.2207392119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.
Collapse
Affiliation(s)
- Anika Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| | - Jorge D. Martin-Rufino
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115
- Dana-Farber Cancer Institute, Boston, MA 02215
| | | | | | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Chen Weng
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115
- Dana-Farber Cancer Institute, Boston, MA 02215
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - Kyung Hoi Min
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Arnav Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Kaite Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Layla Siraj
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - Vijay G. Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115
- Dana-Farber Cancer Institute, Boston, MA 02215
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA 02115
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
33
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
34
|
Granata F, Brancaleoni V, Barman-Aksözen J, Scopetti M, De Luca G, Fustinoni S, Motta I, Di Pierro E, Graziadei G. Heme Biosynthetic Gene Expression Analysis With dPCR in Erythropoietic Protoporphyria Patients. Front Physiol 2022; 13:886194. [PMID: 35923227 PMCID: PMC9340544 DOI: 10.3389/fphys.2022.886194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The heme biosynthesis (HB) involves eight subsequent enzymatic steps. Erythropoietic protoporphyria (EPP) is caused by loss-of-function mutations in the ferrochelatase (FECH) gene, which in the last HB step inserts ferrous iron into protoporphyrin IX (PPIX) to form heme.Aim and method: The aim of this work was to for the first time analyze the mRNA expression of all HB genes in peripheral blood samples of patients with EPP having the same genotype FECH c.[215dupT]; [315-48T > C] as compared to healthy controls by highly sensitive and specific digital PCR assays (dPCR).Results: We confirmed a decreased FECH mRNA expression in patients with EPP. Further, we found increased ALAS2 and decreased ALAS1, CPOX, PPOX and HMBS mRNA expression in patients with EPP compared to healthy controls. ALAS2 correlated with FECH mRNA expression (EPP: r = 0.63, p = 0.03 and controls: r = 0.68, p = 0.02) and blood parameters like PPIX (EPP: r = 0.58 p = 0.06).Conclusion: Our method is the first that accurately quantifies HB mRNA from blood samples with potential applications in the monitoring of treatment effects of mRNA modifying therapies in vivo, or investigation of the HB pathway and its regulation. However, our findings should be studied in separated blood cell fractions and on the enzymatic level.
Collapse
Affiliation(s)
- Francesca Granata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- *Correspondence: Francesca Granata,
| | - Valentina Brancaleoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Jasmin Barman-Aksözen
- Department of Medical Institutes, Institute of Laboratory Medicine, Stadtspital Zürich, Zürich, Switzerland
| | | | - Giacomo De Luca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Silvia Fustinoni
- EPIGET—Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.S Tossicologia, Università degli Studi di Milano, Milan, Italy
| | - Irene Motta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Di Pierro
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Giovanna Graziadei
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| |
Collapse
|
35
|
Ling L, Wang F, Yu D. Beyond neurodegenerative diseases: α-synuclein in erythropoiesis. Hematology 2022; 27:629-635. [PMID: 35621991 DOI: 10.1080/16078454.2022.2078041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
α-synuclein (α-syn) is a highly conserved and thermostable protein that is widely distributed in human brain. An intracellular aggregation of α-syn in dopaminergic neurons is the hallmark of a group of neurodegenerative diseases including Parkinson's disease. Interestingly, α-syn is also highly expressed in red blood cells and is considered as one of the most abundant proteins in red blood cells. Moreover, α-syn is thought to play a regulatory role during normal erythropoiesis. However, whether α-syn participates in the pathogenesis of erythroid diseases has not been reported. In this review, we discuss the protein structure of α-syn and the importance of α-syn in erythropoiesis.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China
| | - Fangfang Wang
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China.,Department of Hematology, Yangzhou University, Clinical Medical College, Yangzhou, People's Republic of China
| | - Duonan Yu
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
36
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
37
|
Schaffner SL, Wassouf Z, Lazaro DF, Xylaki M, Gladish N, Lin DTS, MacIsaac J, Ramadori K, Hentrich T, Schulze-Hentrich JM, Outeiro TF, Kobor MS. Alpha-synuclein overexpression induces epigenomic dysregulation of glutamate signaling and locomotor pathways. Hum Mol Genet 2022; 31:3694-3714. [PMID: 35567546 PMCID: PMC9616577 DOI: 10.1093/hmg/ddac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Diana F Lazaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicole Gladish
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David T S Lin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Julia MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Katia Ramadori
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
38
|
Identification of Novel Noninvasive Diagnostics Biomarkers in the Parkinson’s Diseases and Improving the Disease Classification Using Support Vector Machine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5009892. [PMID: 35342758 PMCID: PMC8941533 DOI: 10.1155/2022/5009892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Background Parkinson's disease (PD) is a neurological disorder that is marked by the deficit of neurons in the midbrain that changes motor and cognitive function. In the substantia nigra, the selective demise of dopamine-producing neurons was the main cause of this disease. The purpose of this research was to discover genes involved in PD development. Methods In this study, the microarray dataset (GSE22491) provided by GEO was used for further analysis. The Limma package under R software was used to examine and assess gene expression and identify DEGs. The DAVID online tool was used to accomplish GO enrichment analysis and KEGG pathway for DEGs. Furthermore, the PPI network of these DEGs was depicted using the STRING database and analyzed through the Cytoscape to identify hub genes. Support vector machine (SVM) classifier was subsequently employed to predict the accuracy of genes. Result PPI network consisted of 264 nodes as well as 502 edges was generated using the DEGs recognized from the Limma package under the R software. Moreover, three genes were identified as hubs: GNB5, GNG11, and ELANE. By using 3-gene combination, SVM found that prediction accuracy of 88% can be achieved. Conclusion According to the findings of the study, the 3 hub genes GNB5, GNG11, and ELANE may be used as PD detection biomarkers. Moreover, the results obtained from SVM with high accuracy can be considered as PD biomarkers in further investigations.
Collapse
|
39
|
Amorim Neto DP, Bosque BP, Pereira de Godoy JV, Rodrigues PV, Meneses DD, Tostes K, Costa Tonoli CC, Faustino de Carvalho H, González-Billault C, de Castro Fonseca M. Akkermansia muciniphila induces mitochondrial calcium overload and α -synuclein aggregation in an enteroendocrine cell line. iScience 2022; 25:103908. [PMID: 35243260 PMCID: PMC8881719 DOI: 10.1016/j.isci.2022.103908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influence neurodevelopment, modulate behavior, and contribute to neurodegenerative disorders. Several studies have consistently reported a greater abundance of Akkermansia muciniphila in Parkinson disease (PD) fecal samples. Therefore, we investigated whether A.muciniphila-conditioned medium (CM) could initiate α-synuclein (αSyn) misfolding in enteroendocrine cells (EEC) — a component of the gut epithelium featuring neuron-like properties. We found that A. muciniphila CM composition is influenced by the ability of the strain to degrade mucin. Our in vitro experiments showed that the protein-enriched fraction of mucin-free CM induces RyR-mediated Ca2+ release and increased mitochondrial Ca2+ uptake leading to ROS generation and αSyn aggregation. Oral administration of A. muciniphila cultivated in the absence of mucin to mice led to αSyn aggregation in cholecystokinin (CCK)-positive EECs but no motor deficits were observed. Noteworthy, buffering mitochondrial Ca2+ reverted the damaging effects observed. These molecular insights offer evidence that bacterial proteins can induce αSyn aggregation in EECs. Gut bacterium Akkermansia muciniphila is increased in patients with Parkinson disease A. muciniphila-conditioned medium induces mitochondrial Ca2+ overload in EECs Mitochondrial Ca2+ overload leads to ROS generation and αSyn aggregation in vitro Buffering mitochondrial Ca2+ inhibits A. muciniphila-induced αSyn aggregation
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dario Donoso Meneses
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | | | - Christian González-Billault
- Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Corresponding author
| |
Collapse
|
40
|
Zagare A, Barmpa K, Smajic S, Smits LM, Grzyb K, Grünewald A, Skupin A, Nickels SL, Schwamborn JC. Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression. Am J Hum Genet 2022; 109:311-327. [PMID: 35077669 PMCID: PMC8874228 DOI: 10.1016/j.ajhg.2021.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Human brain organoid models that recapitulate the physiology and complexity of the human brain have a great potential for in vitro disease modeling, in particular for neurodegenerative diseases, such as Parkinson disease. In the present study, we compare single-cell RNA-sequencing data of human midbrain organoids to the developing human embryonic midbrain. We demonstrate that the in vitro model is comparable to its in vivo equivalents in terms of developmental path and cellular composition. Moreover, we investigate the potential of midbrain organoids for modeling early developmental changes in Parkinson disease. Therefore, we compare the single-cell RNA-sequencing data of healthy-individual-derived midbrain organoids to their isogenic LRRK2-p.Gly2019Ser-mutant counterparts. We show that the LRRK2 p.Gly2019Ser variant alters neurodevelopment, resulting in an untimely and incomplete differentiation with reduced cellular variability. Finally, we present four candidate genes, APP, DNAJC6, GATA3, and PTN, that might contribute to the LRRK2-p.Gly2019Ser-associated transcriptome changes that occur during early neurodevelopment.
Collapse
|
41
|
Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2022; 11:antiox11020303. [PMID: 35204186 PMCID: PMC8868268 DOI: 10.3390/antiox11020303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of motor neurons, leading to muscle atrophy, paralysis and even death. Immune disorder, redox imbalance, autophagy disorder, and iron homeostasis disorder have been shown to play critical roles in the pathogenesis of ALS. However, the exact pathogenic genes and the underlying mechanism of ALS remain unclear. The purpose of this study was to screen for pathogenic regulatory genes and prognostic markers in ALS using bioinformatics methods. We used Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and expression regulation network analysis to investigate the function of differentially expressed genes in the nerve tissue, lymphoid tissue, and whole blood of patients with ALS. Our results showed that the up-regulated genes were mainly involved in immune regulation and inflammation, and the down-regulated genes were mainly involved in energy metabolism and redox processes. Eleven up-regulated transcription factors (CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, and FOXJ1) and one down-regulated transcription factor (NOG) in the nerve tissue of patients with ALS likely play important regulatory roles in the pathogenesis of ALS. Based on construction and evaluation of the ALS biomarker screening model, cluster analysis of the identified characteristic genes, univariate Cox proportional hazards regression analysis, and the random survival forest algorithm, we found that MAEA, TPST1, IFNGR2, and ALAS2 may be prognostic markers regarding the survival of ALS patients. High expression of MAEA, TPST1, and IFNGR2 and low expression of ALAS2 in ALS patients may be closely related to short survival of ALS patients. Taken together, our results indicate that immune disorders, inflammation, energy metabolism, and redox imbalance may be the important pathogenic factors of ALS. CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, FOXJ1, and NOG may be important regulatory factors linked to the pathogenesis of ALS. MAEA, TPST1, IFNGR2, and ALAS2 are potential important ALS prognostic markers. Our findings provide evidence on the pathogenesis of ALS, potential targets for the development of new drugs for ALS, and important markers for predicting ALS prognosis.
Collapse
|
42
|
MicroRNAs in the pathophysiology of Alzheimer's disease and Parkinson's disease: an overview. Mol Neurobiol 2022; 59:1589-1603. [PMID: 35001356 DOI: 10.1007/s12035-022-02727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons of the central nervous system (CNS) and serve as a major cause of morbidity, mortality and functional dependence especially among the elderly. Despite extensive research and development efforts, the success rate of clinical pipelines has been very limited. However, microRNAs (miRs) have been proved to be of crucial importance in regulating intracellular pathways for various pathologic conditions including those of a neurodegenerative nature. There is ample evidence of altered levels of various miRs in clinical samples of Alzheimer's disease and Parkinson's disease patients with potentially major clinical implications. In the current review, we aim to summarize the relevant literature on the role of miRs in the pathophysiology of Alzheimer's disease (AD) and Parkinson's disease (PD) as the two globally predominant neurodegenerative conditions.
Collapse
|
43
|
Wang L, Cao J, Xu Q, Lu X, Yang X, Song Q, Chen S, Du K, Huang R, Zou C. 2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione Ameliorates Diabetic Cognitive Impairment Through Inhibiting Hif3α and Apoptosis. Front Pharmacol 2021; 12:708141. [PMID: 34975464 PMCID: PMC8716628 DOI: 10.3389/fphar.2021.708141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk factor for cognitive impairment. Although the etiology of diabetic cognitive impairment is complex and multifactorial, the hippocampus neuronal apoptosis is recognized as a main cause of diabetes-induced cognitive impairment. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD was safe and effective in delaying some diabetic complications. However, the efficacy of DMDD to ameliorate diabetic cognitive impairment in type 2 diabetes mice has not been reported. In the present study, the behavioral evaluation was performed by Y maze and novel object recognition in db/db mice. Gene expression profiles were detected using mouse lncRNA microarray analysis in the hippocampi of db/db mice. Changes in the neurodegeneration-associated proteins and the apoptosis-related proteins were determined in both db/db mice and high glucose-treated HT22 cells by Western blotting. We observed that DMDD treatment significantly ameliorated the spatial working memory and object recognition memory impairment in db/db mice. Further study showed that neurodegeneration-associated protein tau was decreased after DMDD treatment in the hippocampi of db/db mice. Eleven lncRNAs and four mRNAs including pro-apoptotic gene Hif3a were significantly differently expressed after DMDD treatment in the hippocampi of db/db mice. The expression of Hif3a, cleaved parp, and caspase 3 proteins was significantly increased in the hippocampi of diabetic db/db mice compared with db/m control mice and then decreased after DMDD treatment. Similar beneficial effects of DMDD were observed in HG-treated HT22 cells. These data indicate that DMDD can alleviate cognitive impairment by inhibiting neuronal apoptosis through decreasing the expression of pro-apoptotic protein Hif3a. In conclusion, our study suggests that DMDD has great potential to be a new preventive and therapeutic compound for diabetic cognitive impairment.
Collapse
Affiliation(s)
- Lihui Wang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
- Department of Pharmacology, Guangxi Medical University, Nanning, China
| | - Jinjin Cao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Qianqian Xu
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiaomei Lu
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xin Yang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Qiong Song
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Shuai Chen
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Kechen Du
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Renbin Huang
- Department of Pharmacology, Guangxi Medical University, Nanning, China
- *Correspondence: Renbin Huang, ; Chunlin Zou,
| | - Chunlin Zou
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Renbin Huang, ; Chunlin Zou,
| |
Collapse
|
44
|
Vavougios GD, Zarogiannis S, Barh D, Breza M, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Innate immunity and metal ion trafficking pathway perturbations in idiopathic Parkinson's disease and Tuberculosis: A comparative transcriptomics approach. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
45
|
Yang M, Wu XQ, Ding CB, Zhang GF, Li M, Lv LN, Li YH, Sun DW, Zhao JJ. Weighted gene co-expression network analysis identifies specific modules and hub genes related to Parkinson's disease. Neuroreport 2021; 32:1073-1081. [PMID: 34284443 DOI: 10.1097/wnr.0000000000001695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is one of the most common neurodegenerative diseases. This study aims to screen specific modules and key genes related to PD. METHODS Gene expression profile data GSE6613 and GSE22491 were downloaded from the Gene Expression Omnibus database. The significantly differentially expressed genes (DEGs) in different datasets were screened, followed by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The Weighted Gene Co-expression Network Analysis (WGCNA) was used to screen disease-related modules that are significantly stable across datasets. The protein-protein interaction network was constructed using the DEGs in the stable module obtained and preservation modules. Finally, the hub genes directly related to PD were screened. RESULTS A total of 179 DEGs with the same significant difference direction were screened. The enrichment analysis of GO and KEGG pathways showed that 20 significantly related GO biological processes and 9 KEGG signaling pathways were screened. A total of three highly conservative modules were detected in the WGCNA network. Finally, three significant PD-related KEGG pathways screened from the Comparative Toxicogenomics Database were identified, including neuroactive ligand-receptor interaction (CRHR2, CTSG, GRIN1, GRIN2D, LPAR4 and P2RX3), amyotrophic lateral sclerosis (BCL2, GRIN1 and GRIN2D) and alcoholism (CAMKK2, GRIN1, GRIN2D and SLC18A2). Key genes, such as SLC18A2, GRIN1 and GRIN2D, may be potential candidate genes for PD progression. CONCLUSIONS Our findings indicate that SLC18A2, GRIN1 and GRIN2D may play an important role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Min Yang
- Changchun University of Chinese Medicine
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University
| | - Xing-Quan Wu
- Affiliated Hospital of Changchun University of Chinese Medicine
| | - Chuan-Bo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Guo-Feng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University
| | - Li-Na Lv
- Changchun University of Chinese Medicine
| | - Yu-Hui Li
- Changchun University of Chinese Medicine
| | | | - Jian-Jun Zhao
- Affiliated Hospital of Changchun University of Chinese Medicine
| |
Collapse
|
46
|
Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res 2021; 16:1730-1739. [PMID: 33510062 PMCID: PMC8328771 DOI: 10.4103/1673-5374.306066] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is one of the most debilitating brain diseases. Despite the availability of symptomatic treatments, response towards the health of PD patients remains scarce. To fulfil the medical needs of the PD patients, an efficacious and etiological treatment is required. In this review, we have compiled the information covering limitations of current therapeutic options in PD, novel drug targets for PD, and finally, the role of some critical beneficial natural products to control the progression of PD.
Collapse
Affiliation(s)
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ritu Varshney
- Department of Bioengineering and Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - M. P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
47
|
Raha S, Dutta D, Roy A, Pahan K. Reduction of Lewy Body Pathology by Oral Cinnamon. J Neuroimmune Pharmacol 2021; 16:592-608. [PMID: 32889602 PMCID: PMC7933354 DOI: 10.1007/s11481-020-09955-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
α-Synucleinopathies in a broader sense comprise of several neurodegenerative disorders that primarily include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). These disorders are well characterized by the accumulation of aggregated insoluble α-synuclein (α-syn) protein known as Lewy bodies. Till date no effective cure is available to reduce the burden of Lewy body. The present investigation underlines the importance of a naturally used spice and flavoring agent viz. cinnamon in reducing α-syn deposits in transgenic mice expressing mutant A53T human α-syn. Upon oral administration, cinnamon markedly reduced the level of insoluble α-syn in nigra, hippocampus and brain stem of A53T mice. We also demonstrated that sodium benzoate (NaB), a metabolite of cinnamon, a widely used food additive and a FDA-approved drug for glycine encephalopathy, was also capable of reducing α-syn deposits in A53T mice. In addition, both cinnamon and NaB treatments showed improvement in their motor and cognitive functions. Glial activation plays an important role in the pathogenesis of various neurodegenerative disorders including PD, DLB and MSA, and we found suppression of microglial and astroglial activation in the nigra of A53T mice upon cinnamon treatment. Moreover, neuroprotective proteins like DJ-1 and Parkin are known to reduce the formation of Lewy bodies in the CNS. Accordingly, we observed upregulation and/or normalization of DJ-1 and Parkin in the nigra of A53T mice by treatment with cinnamon and NaB. Together, these results highlight a new therapeutic property of cinnamon and suggest that cinnamon and NaB may be used to halt the progression of α-synucleinopathies.Graphical Abstract.
Collapse
Affiliation(s)
- Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA.
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, 60612, USA.
| |
Collapse
|
48
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
49
|
Cong S, Xiang C, Wang H, Cong S. Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis. J Neurol 2021; 268:2703-2712. [PMID: 32162061 DOI: 10.1007/s00415-020-09781-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) is an adult onset, fatal neurodegenerative disease. However, no reliable biomarker is currently available to guide clinical diagnosis and help to determine the prognosis. Thus, a comprehensive meta-analysis is warranted to determine effective biomarkers for MSA and provide useful guidance for clinical diagnosis. METHODS A comprehensive literature search was made of the PubMed, Embase, Cochrane and Web of Science databases for relevant clinical trial articles for 1984-2019. Two review authors examined the full-text records, respectively, and determined which studies met the inclusion criteria. We estimated the mean difference, standard deviation and 95% confidence intervals. RESULTS A total of 28 studies and 11 biomarkers were included in our analysis. Several biomarkers were found to be useful to distinguish MSA patients from healthy controls, including the reduction of phosphorylated tau, α-synuclein (α-syn), 42-amino-acid form of Aβ and total tau (t-tau), the elevation of neurofilament light-chain protein (NFL) in cerebrospinal fluid, the elevation of uric acid and reduction of homocysteine and coenzyme Q10 in plasma. Importantly, α-syn, NFL and t-tau could be used to distinguish MSA from Parkinson's disease (PD), indicating that these three biomarkers could be useful biomarkers in MSA diagnosis. CONCLUSION The findings of our meta-analysis demonstrated diagnostic biomarkers for MSA. Moreover, three biomarkers could be used in differential diagnosis of MSA and PD. The results could be helpful for the early diagnosis of MSA and the accuracy of MSA diagnosis.
Collapse
Affiliation(s)
- Shengri Cong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunchen Xiang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Hailong Wang
- Department of Clinical Epidemiology and Evidence-Based Medicine, First Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
50
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|