1
|
Natalino M, Fumasoni M. Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620637. [PMID: 39553989 PMCID: PMC11565888 DOI: 10.1101/2024.10.29.620637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Evolutionary repair refers to the compensatory evolution that follows perturbations in cellular processes. While evolutionary trajectories are often reproducible, other studies suggest they are shaped by genotype-by-environment (GxE) interactions. Here, we test the predictability of evolutionary repair in response to DNA replication stress-a severe perturbation impairing the conserved mechanisms of DNA synthesis, resulting in genetic instability. We conducted high-throughput experimental evolution on Saccharomyces cerevisiae experiencing constitutive replication stress, grown under different glucose availabilities. We found that glucose levels impact the physiology and adaptation rate of replication stress mutants. However, the genetics of adaptation show remarkable robustness across environments. Recurrent mutations collectively recapitulated the fitness of evolved lines and are advantageous across macronutrient availability. We also identified a novel role of the mediator complex of RNA polymerase II in adaptation to replicative stress. Our results highlight the robustness and predictability of evolutionary repair mechanisms to DNA replication stress and provide new insights into the evolutionary aspects of genome stability, with potential implications for understanding cancer development.
Collapse
Affiliation(s)
- Mariana Natalino
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Marco Fumasoni
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
2
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Greenlaw A, Dell R, Tsukiyama T. Initial acidic media promotes quiescence entry in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001071. [PMID: 38463631 PMCID: PMC10924235 DOI: 10.17912/micropub.biology.001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Quiescence is a conserved cellular state wherein cells cease proliferation and remain poised to re-enter the cell cycle when conditions are appropriate. Budding yeast is a powerful model for studying cellular quiescence. In this work, we demonstrate that the pH of the YPD media strongly affects quiescence entry efficiency in Saccharomyces cerevisiae. Adjusting the initial media pH to 5.5 significantly improves quiescence entry efficiency compared to unadjusted YPD media. Thermotolerance of the produced quiescence yeast are similar, suggesting the media pH influences the quantity of quiescent cells more than quality of quiescence reached.
Collapse
Affiliation(s)
- Alison Greenlaw
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States
| | - Rachel Dell
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States
| |
Collapse
|
4
|
Lewis AG, Carmichael L, Wang RY, Gibney PA. Characterizing a panel of amino acid auxotrophs under auxotrophic starvation conditions. Yeast 2024; 41:5-18. [PMID: 37997284 DOI: 10.1002/yea.3910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Auxotrophic strains starving for their cognate nutrient, termed auxotrophic starvation, are characterized by a shorter lifespan, higher glucose wasting phenotype, and inability to accomplish cell cycle arrest when compared to a "natural starvation," where a cell is starving for natural environmental growth-limiting nutrients such as phosphate. Since evidence of this physiological response is limited to only a subset of auxotrophs, we evaluated a panel of auxotrophic mutants to determine whether these responses are characteristic of a broader range of amino acid auxotrophs. Based on the starvation survival kinetics, the panel of strains was grouped into three categories-short-lived strains, strains with survival similar to a prototrophic wild type strain, and long-lived strains. Among the short-lived strains, we observed that the tyrosine, asparagine, threonine, and aspartic acid auxotrophs rapidly decline in viability, with all strains unable to arrest cell cycle progression. The three basic amino acid auxotrophs had a survival similar to a prototrophic strain starving in minimal media. The leucine, tryptophan, methionine, and cysteine auxotrophs displayed the longest lifespan. We also demonstrate how the phenomenon of glucose wasting is limited to only a subset of the tested auxotrophs, namely the asparagine, leucine, and lysine auxotrophs. Furthermore, we observed pleiotropic phenotypes associated with a subgroup of auxotrophs, highlighting the importance of considering unintended phenotypic effects when using auxotrophic strains especially in chronological aging experiments.
Collapse
Affiliation(s)
- Alisha G Lewis
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Laurin Carmichael
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rebecca Y Wang
- Calico Life Sciences LLC, South San Francisco, California, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Greenlaw AC, Tsukiyama T. Acidic media promotes quiescence entry in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567958. [PMID: 38045406 PMCID: PMC10690216 DOI: 10.1101/2023.11.20.567958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Quiescence is a conserved cellular state wherein cells cease proliferation and remain poised to re-enter the cell cycle when conditions are appropriate. Budding yeast is a powerful model for studying cellular quiescence. In this work, we demonstrate that the pH of the YPD media strongly affects quiescence entry efficiency in Saccharomyces cerevisiae. Adjusting media pH to 5.5 significantly improves quiescence entry efficiency compared to unadjusted YPD media. Thermotolerance of the produced quiescence yeast are similar, suggesting the media pH influences the quantity of quiescent cells more than quality of quiescence reached.
Collapse
Affiliation(s)
- Alison C. Greenlaw
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Center and University of Washington
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Sun S, Tranchina D, Gresham D. Parallel proteomics and phosphoproteomics defines starvation signal specific processes in cell quiescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551843. [PMID: 37577636 PMCID: PMC10418281 DOI: 10.1101/2023.08.03.551843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cells arrest growth and enter a quiescent state upon nutrient deprivation. However, the molecular processes by which cells respond to different starvation signals to regulate exit from the cell division cycle and initiation of quiescence remains poorly understood. To study the role of protein expression and signaling in quiescence we combined temporal profiling of the proteome and phosphoproteome using stable isotope labeling with amino acids in cell culture (SILAC) in Saccharomyces cerevisiae (budding yeast). We find that carbon and phosphorus starvation signals activate quiescence through largely distinct remodeling of the proteome and phosphoproteome. However, increased expression of mitochondrial proteins is associated with quiescence establishment in response to both starvation signals. Deletion of the putative quiescence regulator RIM15, which encodes a serine-threonine kinase, results in reduced survival of cells starved for phosphorus and nitrogen, but not carbon. However, we identified common protein phosphorylation roles for RIM15 in quiescence that are enriched for RNA metabolism and translation. We also find evidence for RIM15-mediated phosphorylation of some targets, including IGO1, prior to starvation consistent with a functional role for RIM15 in proliferative cells. Finally, our results reveal widespread catabolism of amino acids in response to nitrogen starvation, indicating widespread amino acid recycling via salvage pathways in conditions lacking environmental nitrogen. Our study defines an expanded quiescent proteome and phosphoproteome in yeast, and highlights the multiple coordinated molecular processes at the level of protein expression and phosphorylation that are required for quiescence.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Daniel Tranchina
- Department of Biology, New York University, New York, NY, 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology
- Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
7
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
8
|
Miles S, Lee C, Breeden L. BY4741 cannot enter quiescence from rich medium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000742. [PMID: 37012989 PMCID: PMC10066452 DOI: 10.17912/micropub.biology.000742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
In rich medium, W303 Saccharomyces cerevisiae begins to accumulate in G1 an hour before it exhausts the available glucose. It undergoes one more asymmetrical cell division, then stops dividing in G1. In contrast, BY4741, stops dividing four hours before glucose exhaustion, at one-fourth the cell density achieved by W303. There is no asymmetrical cell division and only 50% of the cells arrest in G1. We conclude that BY4741 growth is not limited by glucose and they do not go through the stereotypical events carried out by other strains as they enter quiescence from rich medium. In W303, the timing of glucose limitation and the transition to quiescence is correlated with the rate of biomass accumulation and cell doubling time.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Science, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Cameron Lee
- Tune Therapeutics, 1930 Boren Ave., Seattle, Washington, United States
| | - Linda Breeden
- Basic Science, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| |
Collapse
|
9
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
10
|
Van Oss SB, Parikh SB, Castilho Coelho N, Wacholder A, Belashov I, Zdancewicz S, Michaca M, Xu J, Kang YP, Ward NP, Yoon SJ, McCourt KM, McKee J, Ideker T, VanDemark AP, DeNicola GM, Carvunis AR. On the illusion of auxotrophy: met15Δ yeast cells can grow on inorganic sulfur, thanks to the previously uncharacterized homocysteine synthase Yll058w. J Biol Chem 2022; 298:102697. [PMID: 36379252 PMCID: PMC9763685 DOI: 10.1016/j.jbc.2022.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022] Open
Abstract
Organisms must either synthesize or assimilate essential organic compounds to survive. The homocysteine synthase Met15 has been considered essential for inorganic sulfur assimilation in yeast since its discovery in the 1970s. As a result, MET15 has served as a genetic marker for hundreds of experiments that play a foundational role in eukaryote genetics and systems biology. Nevertheless, we demonstrate here through structural and evolutionary modeling, in vitro kinetic assays, and genetic complementation, that an alternative homocysteine synthase encoded by the previously uncharacterized gene YLL058W enables cells lacking Met15 to assimilate enough inorganic sulfur for survival and proliferation. These cells however fail to grow in patches or liquid cultures unless provided with exogenous methionine or other organosulfurs. We show that this growth failure, which has historically justified the status of MET15 as a classic auxotrophic marker, is largely explained by toxic accumulation of the gas hydrogen sulfide because of a metabolic bottleneck. When patched or cultured with a hydrogen sulfide chelator, and when propagated as colony grids, cells without Met15 assimilate inorganic sulfur and grow, and cells with Met15 achieve even higher yields. Thus, Met15 is not essential for inorganic sulfur assimilation in yeast. Instead, MET15 is the first example of a yeast gene whose loss conditionally prevents growth in a manner that depends on local gas exchange. Our results have broad implications for investigations of sulfur metabolism, including studies of stress response, methionine restriction, and aging. More generally, our findings illustrate how unappreciated experimental variables can obfuscate biological discovery.
Collapse
Affiliation(s)
- S. Branden Van Oss
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Saurin Bipin Parikh
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nelson Castilho Coelho
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Aaron Wacholder
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ivan Belashov
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts & Sciences, Pittsburgh, Pennsylvania, USA
| | - Sara Zdancewicz
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts & Sciences, Pittsburgh, Pennsylvania, USA
| | - Manuel Michaca
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jiazhen Xu
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yun Pyo Kang
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Nathan P. Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Sang Jun Yoon
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Katherine M. McCourt
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jake McKee
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Trey Ideker
- Departments of Medicine, Bioengineering, Computer Science and Engineering, Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts & Sciences, Pittsburgh, Pennsylvania, USA
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,For correspondence: Anne-Ruxandra Carvunis
| |
Collapse
|
11
|
Walker ME, Watson TL, Large CRL, Berkovich Y, Lang TA, Dunham MJ, Formby S, Jiranek V. Directed evolution as an approach to increase fructose utilization in synthetic grape juice by wine yeast AWRI 796. FEMS Yeast Res 2022; 22:foac022. [PMID: 35472090 PMCID: PMC9329090 DOI: 10.1093/femsyr/foac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
In winemaking, slow or stuck alcoholic fermentation can impact processing efficiency and wine quality. Residual fructose in the later stages of fermentation can leave the wine 'out of specification' unless removed, which requires reinoculation or use of a more fructophilic yeast. As such, robust, fermentation efficient strains are still highly desirable to reduce this risk. We report on a combined EMS mutagenesis and Directed Evolution (DE) approach as a 'proof of concept' to improve fructose utilization and decrease fermentation duration. One evolved isolate, Tee 9, was evaluated against the parent, AWRI 796 in defined medium (CDGJM) and Semillon juice. Interestingly, Tee 9 exhibited improved fermentation in CDGJM at several nitrogen contents, but not in juice. Genomic comparison between AWRI 796 and Tee 9 identified 371 mutations, but no chromosomal copy number variation. A total of 95 noncoding and 276 coding mutations were identified in 297 genes (180 of which encode proteins with one or more substitutions). Whilst introduction of two of these, Gid7 (E726K) or Fba1 (G135S), into AWRI 796 did not lead to the fermentation improvement seen in Tee 9, similar allelic swaps with the other mutations are needed to understand Tee 9's adaption to CDGJM. Furthermore, the 378 isolates, potentially mutagenized but with the same genetic background, are likely a useful resource for future phenotyping and genome-wide association studies.
Collapse
Affiliation(s)
- Michelle E Walker
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Yan Berkovich
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Tom A Lang
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Sean Formby
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA, 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
12
|
Kokina A, Tanilas K, Ozolina Z, Pleiko K, Shvirksts K, Vamza I, Liepins J. Purine Auxotrophic Starvation Evokes Phenotype Similar to Stationary Phase Cells in Budding Yeast. J Fungi (Basel) 2021; 8:29. [PMID: 35049969 PMCID: PMC8780165 DOI: 10.3390/jof8010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Purine auxotrophy is an abundant trait among eukaryotic parasites and a typical marker for many budding yeast strains. Supplementation with an additional purine source (such as adenine) is necessary to cultivate these strains. If not supplied in adequate amounts, purine starvation sets in. We explored purine starvation effects in a model organism, a budding yeast Saccharomyces cerevisiae ade8 knockout, at the level of cellular morphology, central carbon metabolism, and global transcriptome. We observed that purine-starved cells stopped their cycle in G1/G0 state and accumulated trehalose, and the intracellular concentration of AXP decreased, but adenylate charge remained stable. Cells became tolerant to severe environmental stresses. Intracellular RNA concentration decreased, and massive downregulation of ribosomal biosynthesis genes occurred. We proved that the expression of new proteins during purine starvation is critical for cells to attain stress tolerance phenotype Msn2/4p targets are upregulated in purine-starved cells when compared to cells cultivated in purine-rich media. The overall transcriptomic response to purine starvation resembles that of stationary phase cells. Our results demonstrate that the induction of a strong stress resistance phenotype in budding yeast can be caused not only by natural starvation, but also starvation for metabolic intermediates, such as purines.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia; (Z.O.); (K.S.); (I.V.); (J.L.)
| | - Kristel Tanilas
- Center of Food and Fermentation Technologies, Akadeemia Tee 15A, 12618 Tallinn, Estonia;
| | - Zane Ozolina
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia; (Z.O.); (K.S.); (I.V.); (J.L.)
| | - Karlis Pleiko
- Faculty of Medicine, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia;
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia; (Z.O.); (K.S.); (I.V.); (J.L.)
| | - Ilze Vamza
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia; (Z.O.); (K.S.); (I.V.); (J.L.)
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia; (Z.O.); (K.S.); (I.V.); (J.L.)
| |
Collapse
|
13
|
Lewis AG, Caldwell R, Rogers JV, Ingaramo M, Wang RY, Soifer I, Hendrickson DG, McIsaac RS, Botstein D, Gibney PA. Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants. Mol Biol Cell 2021; 32:ar39. [PMID: 34668730 PMCID: PMC8694083 DOI: 10.1091/mbc.e21-06-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The electron transport chain (ETC) is a well-studied and highly conserved metabolic pathway that produces ATP through generation of a proton gradient across the inner mitochondrial membrane coupled to oxidative phosphorylation. ETC mutations are associated with a wide array of human disease conditions and to aging-related phenotypes in a number of different organisms. In this study, we sought to better understand the role of the ETC in aging using a yeast model. A panel of ETC mutant strains that fail to survive starvation was used to isolate suppressor mutants that survive. These suppressors tend to fall into major nutrient sensing and signaling pathways, suggesting that the ETC is involved in proper starvation signaling to these pathways in yeast. These suppressors also partially restore ETC-associated gene expression and pH homeostasis defects, though it remains unclear whether these phenotypes directly cause the suppression or are simply effects. This work further highlights the complex cellular network connections between metabolic pathways and signaling events in the cell and their potential roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Alisha G Lewis
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | | | | | | | | | - Ilya Soifer
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | | | | | | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853.,Calico Life Sciences LLC, South San Francisco, CA 94080
| |
Collapse
|
14
|
Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast 2021; 38:30-38. [PMID: 33350501 DOI: 10.1002/yea.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022] Open
Abstract
A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| | | | - Linda L Breeden
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| |
Collapse
|
15
|
Yang J, Tavazoie S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS One 2020; 15:e0239528. [PMID: 33170850 PMCID: PMC7654773 DOI: 10.1371/journal.pone.0239528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been the subject of many studies aimed at understanding mechanisms of adaptation to environmental stresses. Most of these studies have focused on adaptation to sub-lethal stresses, upon which a stereotypic transcriptional program called the environmental stress response (ESR) is activated. However, the genetic and regulatory factors that underlie the adaptation and survival of yeast cells to stresses that cross the lethality threshold have not been systematically studied. Here, we utilized a combination of gene expression profiling, deletion-library fitness profiling, and experimental evolution to systematically explore adaptation of S. cerevisiae to acute exposure to threshold lethal ethanol concentrations—a stress with important biotechnological implications. We found that yeast cells activate a rapid transcriptional reprogramming process that is likely adaptive in terms of post-stress survival. We also utilized repeated cycles of lethal ethanol exposure to evolve yeast strains with substantially higher ethanol tolerance and survival. Importantly, these strains displayed bulk growth-rates that were indistinguishable from the parental wild-type strain. Remarkably, these hyper-ethanol tolerant strains had reprogrammed their pre-stress gene expression states to match the likely adaptive post-stress response in the wild-type strain. Our studies reveal critical determinants of yeast survival to lethal ethanol stress and highlight potentially general principles that may underlie evolutionary adaptation to lethal stresses in general.
Collapse
Affiliation(s)
- Jamie Yang
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Santos SM, Laflin S, Broadway A, Burnet C, Hartheimer J, Rodgers J, Smith DL, Hartman JL. High-resolution yeast quiescence profiling in human-like media reveals complex influences of auxotrophy and nutrient availability. GeroScience 2020; 43:941-964. [PMID: 33015753 PMCID: PMC8110628 DOI: 10.1007/s11357-020-00265-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Yeast cells survive in stationary phase culture by entering quiescence, which is measured by colony-forming capacity upon nutrient re-exposure. Yeast chronological lifespan (CLS) studies, employing the comprehensive collection of gene knockout strains, have correlated weakly between independent laboratories, which is hypothesized to reflect differential interaction between the deleted genes, auxotrophy, media composition, and other assay conditions influencing quiescence. This hypothesis was investigated by high-throughput quiescence profiling of the parental prototrophic strain, from which the gene deletion strain libraries were constructed, and all possible auxotrophic allele combinations in that background. Defined media resembling human cell culture media promoted long-term quiescence and was used to assess effects of glucose, ammonium sulfate, auxotrophic nutrient availability, target of rapamycin signaling, and replication stress. Frequent, high-replicate measurements of colony-forming capacity from cultures aged past 60 days provided profiles of quiescence phenomena such as gasping and hormesis. Media acidification was assayed in parallel to assess correlation. Influences of leucine, methionine, glucose, and ammonium sulfate metabolism were clarified, and a role for lysine metabolism newly characterized, while histidine and uracil perturbations had less impact. Interactions occurred between glucose, ammonium sulfate, auxotrophy, auxotrophic nutrient limitation, aeration, TOR signaling, and/or replication stress. Weak correlation existed between media acidification and maintenance of quiescence. In summary, experimental factors, uncontrolled across previous genome-wide yeast CLS studies, influence quiescence and interact extensively, revealing quiescence as a complex metabolic and developmental process that should be studied in a prototrophic context, omitting ammonium sulfate from defined media, and employing highly replicable protocols.
Collapse
Affiliation(s)
- Sean M Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha Laflin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Audrie Broadway
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cosby Burnet
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joline Hartheimer
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Rodgers
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L Smith
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John L Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Green R, Sonal, Wang L, Hart SFM, Lu W, Skelding D, Burton JC, Mi H, Capel A, Chen HA, Lin A, Subramaniam AR, Rabinowitz JD, Shou W. Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect. PLoS Biol 2020; 18:e3000757. [PMID: 32833957 PMCID: PMC7470746 DOI: 10.1371/journal.pbio.3000757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/03/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.
Collapse
Affiliation(s)
- Robin Green
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sonal
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lin Wang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel F. M. Hart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Skelding
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Justin C. Burton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hanbing Mi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aric Capel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hung Alex Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aaron Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
18
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
19
|
Sun S, Baryshnikova A, Brandt N, Gresham D. Genetic interaction profiles of regulatory kinases differ between environmental conditions and cellular states. Mol Syst Biol 2020; 16:e9167. [PMID: 32449603 PMCID: PMC7247079 DOI: 10.15252/msb.20199167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 01/13/2023] Open
Abstract
Cell growth and quiescence in eukaryotic cells is controlled by an evolutionarily conserved network of signaling pathways. Signal transduction networks operate to modulate a wide range of cellular processes and physiological properties when cells exit proliferative growth and initiate a quiescent state. How signaling networks function to respond to diverse signals that result in cell cycle exit and establishment of a quiescent state is poorly understood. Here, we studied the function of signaling pathways in quiescent cells using global genetic interaction mapping in the model eukaryotic cell, Saccharomyces cerevisiae (budding yeast). We performed pooled analysis of genotypes using molecular barcode sequencing (Bar-seq) to test the role of ~4,000 gene deletion mutants and ~12,000 pairwise interactions between all non-essential genes and the protein kinase genes TOR1, RIM15, and PHO85 in three different nutrient-restricted conditions in both proliferative and quiescent cells. We detect up to 10-fold more genetic interactions in quiescent cells than proliferative cells. We find that both individual gene effects and genetic interaction profiles vary depending on the specific pro-quiescence signal. The master regulator of quiescence, RIM15, shows distinct genetic interaction profiles in response to different starvation signals. However, vacuole-related functions show consistent genetic interactions with RIM15 in response to different starvation signals, suggesting that RIM15 integrates diverse signals to maintain protein homeostasis in quiescent cells. Our study expands genome-wide genetic interaction profiling to additional conditions, and phenotypes, and highlights the conditional dependence of epistasis.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyNew York UniversityNew YorkNYUSA
| | | | - Nathan Brandt
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyNew York UniversityNew YorkNYUSA
| | - David Gresham
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyNew York UniversityNew YorkNYUSA
| |
Collapse
|
20
|
Seif Y, Choudhary KS, Hefner Y, Anand A, Yang L, Palsson BO. Metabolic and genetic basis for auxotrophies in Gram-negative species. Proc Natl Acad Sci U S A 2020; 117:6264-6273. [PMID: 32132208 PMCID: PMC7084086 DOI: 10.1073/pnas.1910499117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxotrophies constrain the interactions of bacteria with their environment, but are often difficult to identify. Here, we develop an algorithm (AuxoFind) using genome-scale metabolic reconstruction to predict auxotrophies and apply it to a series of available genome sequences of over 1,300 Gram-negative strains. We identify 54 auxotrophs, along with the corresponding metabolic and genetic basis, using a pangenome approach, and highlight auxotrophies conferring a fitness advantage in vivo. We show that the metabolic basis of auxotrophy is species-dependent and varies with 1) pathway structure, 2) enzyme promiscuity, and 3) network redundancy. Various levels of complexity constitute the genetic basis, including 1) deleterious single-nucleotide polymorphisms (SNPs), in-frame indels, and deletions; 2) single/multigene deletion; and 3) movement of mobile genetic elements (including prophages) combined with genomic rearrangements. Fourteen out of 19 predictions agree with experimental evidence, with the remaining cases highlighting shortcomings of sequencing, assembly, annotation, and reconstruction that prevent predictions of auxotrophies. We thus develop a framework to identify the metabolic and genetic basis for auxotrophies in Gram-negatives.
Collapse
Affiliation(s)
- Yara Seif
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Kumari Sonal Choudhary
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Ying Hefner
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Amitesh Anand
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Laurence Yang
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bernhard O Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122;
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
21
|
Santos DA, Shi L, Tu BP, Weissman JS. Cycloheximide can distort measurements of mRNA levels and translation efficiency. Nucleic Acids Res 2019; 47:4974-4985. [PMID: 30916348 PMCID: PMC6547433 DOI: 10.1093/nar/gkz205] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 01/26/2023] Open
Abstract
Regulation of the efficiency with which an mRNA is translated into proteins represents a key mechanism for controlling gene expression. Such regulation impacts the number of actively translating ribosomes per mRNA molecule, referred to as translation efficiency (TE), which can be monitored using ribosome profiling and RNA-seq, or by evaluating the position of an mRNA in a polysome gradient. Here we show that in budding yeast, under nutrient limiting conditions, the commonly used translation inhibitor cycloheximide induces rapid transcriptional upregulation of hundreds of genes involved in ribosome biogenesis. Cycloheximide also prevents translation of these newly transcribed messages, leading to an apparent drop in TE of these genes under conditions that include key transitions during the yeast metabolic cycle, meiosis, and amino acid starvation; however, this effect is abolished when cycloheximide pretreatment is omitted. This response requires TORC1 signaling, and is modulated by the genetic background as well as the vehicle used to deliver the drug. The present work highlights an important caveat to the use of translation inhibitors when measuring TE or mRNA levels, and will hopefully aid in future experimental design as well as interpretation of prior results.
Collapse
Affiliation(s)
- Daniel A Santos
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lei Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Kokina A, Ozolina Z, Liepins J. Purine auxotrophy: Possible applications beyond genetic marker. Yeast 2019; 36:649-656. [PMID: 31334866 DOI: 10.1002/yea.3434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Exploring new drug candidates or drug targets against many illnesses is necessary as "traditional" treatments lose their effectivity. Cancer and sicknesses caused by protozoan parasites are among these diseases. Cell purine metabolism is an important drug target. Theoretically, inhibiting purine metabolism could stop the proliferation of unwanted cells. Purine metabolism is similar across all eukaryotes. However, some medically important organisms or cell lines rely on their host purine metabolism. Protozoans causing malaria, leishmaniasis, or toxoplasmosis are purine auxotrophs. Some cancer forms have also lost the ability to synthesize purines de novo. Budding yeast can serve as an effective model for eukaryotic purine metabolism, and thus, purine auxotrophic strains could be an important tool. In this review, we present the common principles of purine metabolism in eukaryotes, effects of purine starvation in eukaryotic cells, and purine-starved Saccharomyces cerevisiae as a model for purine depletion-elicited metabolic states with applications in evolution studies and pharmacology. Purine auxotrophic yeast strains behave differently when growing in media with sufficient supplementation with adenine or in media depleted of adenine (starvation). In the latter, they undergo cell cycle arrest at G1/G0 and become stress resistant. Importantly, similar effects have also been observed among parasitic protozoans or cancer cells. We consider that studies on metabolic changes caused by purine auxotrophy could reveal new options for parasite or cancer therapy. Further, knowledge on phenotypic changes will improve the use of auxotrophic strains in high-throughput screening for primary drug candidates.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Zane Ozolina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
23
|
Hart SFM, Skelding D, Waite AJ, Burton JC, Shou W. High-throughput quantification of microbial birth and death dynamics using fluorescence microscopy. QUANTITATIVE BIOLOGY 2019; 7:69-81. [PMID: 31598381 PMCID: PMC6785046 DOI: 10.1007/s40484-018-0160-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Microbes live in dynamic environments where nutrient concentrations fluctuate. Quantifying fitness in terms of birth rate and death rate in a wide range of environments is critical for understanding microbial evolution and ecology. METHODS Here, using high-throughput time-lapse microscopy, we have quantified how Saccharomyces cerevisiae mutants incapable of synthesizing an essential metabolite (auxotrophs) grow or die in various concentrations of the required metabolite. We establish that cells normally expressing fluorescent proteins lose fluorescence upon death and that the total fluorescence in an imaging frame is proportional to the number of live cells even when cells form multiple layers. We validate our microscopy approach of measuring birth and death rates using flow cytometry, cell counting, and chemostat culturing. RESULTS For lysine-requiring cells, very low concentrations of lysine are not detectably consumed and do not support cell birth, but delay the onset of death phase and reduce the death rate compared to no lysine. In contrast, in low hypoxanthine, hypoxanthine-requiring cells can produce new cells, yet also die faster than in the absence of hypoxanthine. For both strains, birth rates under various metabolite concentrations are better described by the sigmoidal-shaped Moser model than the well-known Monod model, while death rates can vary with metabolite concentration and time. CONCLUSIONS Our work reveals how time-lapse microscopy can be used to discover non-intuitive microbial birth and death dynamics and to quantify growth rates in many environments.
Collapse
Affiliation(s)
| | | | | | | | - Wenying Shou
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
24
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
25
|
Walvekar AS, Srinivasan R, Gupta R, Laxman S. Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Mol Biol Cell 2018; 29:3183-3200. [PMID: 30354837 PMCID: PMC6340205 DOI: 10.1091/mbc.e18-08-0515] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here we construct the organization of this methionine-mediated anabolic program using yeast. Combining comparative transcriptome analysis and biochemical and metabolic flux-based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH)-dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP)-dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine-mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.
Collapse
Affiliation(s)
- Adhish S. Walvekar
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Rajalakshmi Srinivasan
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Ritu Gupta
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| |
Collapse
|
26
|
Acton E, Lee AHY, Zhao PJ, Flibotte S, Neira M, Sinha S, Chiang J, Flaherty P, Nislow C, Giaever G. Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress. Open Biol 2018; 7:rsob.160330. [PMID: 28592509 PMCID: PMC5493772 DOI: 10.1098/rsob.160330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, ‘prototrophic’ versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.
Collapse
Affiliation(s)
- Erica Acton
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Genome Science and Technology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pei Jun Zhao
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephane Flibotte
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mauricio Neira
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chiang
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation. Nat Commun 2018; 9:3521. [PMID: 30166548 PMCID: PMC6117348 DOI: 10.1038/s41467-018-05882-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/02/2018] [Indexed: 01/30/2023] Open
Abstract
Many natural transcription factors are regulated in a pulsatile fashion, but it remains unknown whether synthetic gene expression systems can benefit from such dynamic regulation. Here we find, using a fast-acting, optogenetic transcription factor in Saccharomyces cerevisiae, that dynamic pulsatile signals reduce cell-to-cell variability in gene expression. We then show that by encoding such signals into a single input, expression mean and variability can be independently tuned. Further, we construct a light-responsive promoter library and demonstrate how pulsatile signaling also enables graded multi-gene regulation at fixed expression ratios, despite differences in promoter dose-response characteristics. Pulsatile regulation can thus lead to beneficial functional behaviors in synthetic biological systems, which previously required laborious optimization of genetic parts or the construction of synthetic gene networks.
Collapse
|
28
|
Gibney PA, Schieler A, Chen JC, Bacha-Hummel JM, Botstein M, Volpe M, Silverman SJ, Xu Y, Bennett BD, Rabinowitz JD, Botstein D. Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast. Mol Biol Cell 2018; 29:897-910. [PMID: 29444955 PMCID: PMC5896929 DOI: 10.1091/mbc.e17-11-0666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Metabolic dysregulation leading to sugar-phosphate accumulation is toxic in organisms ranging from bacteria to humans. By comparing two models of sugar-phosphate toxicity in Saccharomyces cerevisiae, we demonstrate that toxicity occurs, at least in part, through multiple, isomer-specific mechanisms, rather than a single general mechanism.
Collapse
Affiliation(s)
- Patrick A Gibney
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Calico Life Sciences LLC, South San Francisco, CA 94080.,Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Ariel Schieler
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Jonathan C Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemistry, Princeton University, Princeton, NJ 08544
| | | | - Maxim Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Matthew Volpe
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Sanford J Silverman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Yifan Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemistry, Princeton University, Princeton, NJ 08544
| | | | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Calico Life Sciences LLC, South San Francisco, CA 94080.,Department of Food Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
29
|
Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One 2017; 12:e0184838. [PMID: 28922393 PMCID: PMC5602661 DOI: 10.1371/journal.pone.0184838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.
Collapse
Affiliation(s)
- Camille Duc
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,Lallemand SAS, Blagnac, France
| | - Martine Pradal
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Isabelle Sanchez
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Catherine Tesnière
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Bruno Blondin
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
30
|
Burgard J, Valli M, Graf AB, Gasser B, Mattanovich D. Biomarkers allow detection of nutrient limitations and respective supplementation for elimination in Pichia pastoris fed-batch cultures. Microb Cell Fact 2017; 16:117. [PMID: 28693509 PMCID: PMC5504661 DOI: 10.1186/s12934-017-0730-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Industrial processes for recombinant protein production challenge production hosts, such as the yeast Pichia pastoris, on multiple levels. During a common P. pastoris fed-batch process, cells experience strong adaptations to different metabolic states or suffer from environmental stresses due to high cell density cultivation. Additionally, recombinant protein production and nutrient limitations are challenging in these processes. RESULTS Pichia pastoris producing porcine carboxypeptidase B (CpB) was cultivated in glucose or methanol-limited fed-batch mode, and the cellular response was analyzed using microarrays. Thereby, strong transcriptional regulations in transport-, regulatory- and metabolic processes connected to sulfur, phosphorus and nitrogen metabolism became obvious. The induction of these genes was observed in both glucose- and methanol- limited fed batch cultivations, but were stronger in the latter condition. As the transcriptional pattern was indicative for nutrient limitations, we performed fed-batch cultivations where we added the respective nutrients and compared them to non-supplemented cultures regarding cell growth, productivity and expression levels of selected biomarker genes. In the non-supplemented reference cultures we observed a strong increase in transcript levels of up to 89-fold for phosphorus limitation marker genes in the late fed-batch phase. Transcript levels of sulfur limitation marker genes were up to 35-fold increased. By addition of (NH4)2SO4 or (NH4)2HPO4, respectively, we were able to suppress the transcriptional response of the marker genes to levels initially observed at the start of the fed batch. Additionally, supplementation had also a positive impact on biomass generation and recombinant protein production. Supplementation with (NH4)2SO4 led to 5% increase in biomass and 52% higher CpB activity in the supernatant, compared to the non-supplemented reference cultivations. In (NH4)2HPO4 supplemented cultures 9% higher biomass concentrations and 60% more CpB activity were reached. CONCLUSIONS Transcriptional analysis of P. pastoris fed-batch cultivations led to the identification of nutrient limitations in the later phases, and respective biomarker genes for indication of limitations. Supplementation of the cultivation media with those nutrients eliminated the limitations on the transcriptional level, and was also shown to enhance productivity of a recombinant protein. The biomarker genes are versatily applicable to media and process optimization approaches, where tailor-made solutions are envisioned.
Collapse
Affiliation(s)
- Jonas Burgard
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Minoska Valli
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B. Graf
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- School of Bioengineering, University of Applied Sciences FH Campus Vienna, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
31
|
Stewart CJ, McClean MN. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications. J Vis Exp 2017. [PMID: 28287505 DOI: 10.3791/54894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Optogenetic systems utilize genetically-encoded proteins that change conformation in response to specific wavelengths of light to alter cellular processes. There is a need for culturing and measuring systems that incorporate programmed illumination and stimulation of optogenetic systems. We present a protocol for building and using a continuous culturing apparatus to illuminate microbial cells with programmed doses of light, and automatically acquire and analyze images of cells in the effluent. The operation of this apparatus as a chemostat allows the growth rate and the cellular environment to be tightly controlled. The effluent of the continuous cell culture is regularly sampled and the cells are imaged by multi-channel microscopy. The culturing, sampling, imaging, and image analysis are fully automated so that dynamic responses in the fluorescence intensity and cellular morphology of cells sampled from the culture effluent are measured over multiple days without user input. We demonstrate the utility of this culturing apparatus by dynamically inducing protein production in a strain of Saccharomyces cerevisiae engineered with an optogenetic system that activates transcription.
Collapse
Affiliation(s)
- Cameron J Stewart
- Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison;
| |
Collapse
|
32
|
Daouda MP, Bouchra EK, Roman PCJ, Aurelio SD, Abdelaziz S. Inorganic Pyrophosphatases: Study of Interest. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.810028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Heidenreich E, Steinboeck F. Glucose starvation as a selective tool for the study of adaptive mutations in Saccharomyces cerevisiae. J Microbiol Methods 2016; 132:4-8. [PMID: 27838539 DOI: 10.1016/j.mimet.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
Abstract
Mutations not only arise in proliferating cells but also in resting - thus non-replicating - cells. Such stationary-phase mutations may occasionally enable an escape from growth repression and e.g. contribute to cancerogenesis or development of drug resistance. The most widely used condition for the study of such adaptive mutations in the eukaryotic model organism Saccharomyces cerevisiae is the starvation for a single amino acid. To overcome some limitations of this experimental setup we developed a new adaptive mutation assay that allows a screening for mutagenic processes during a more regular cell cycle arrest induced by the lack of a fermentable carbon source. We blocked one essential step of gluconeogenesis by inactivation of the FBP1 gene. This drives the cells into a cell cycle arrest when glucose is not available in the medium although a non-fermentable carbon source is present. As another component of the new mutation assay, we established a custom-designed test allele that contains a microsatellite sequence as a target for mutations. We demonstrated the feasibility and validity of this novel experimental setup by the observation and characterization of adaptive mutants.
Collapse
Affiliation(s)
- Erich Heidenreich
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Puig-Castellví F, Alfonso I, Piña B, Tauler R. (1)H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis. Sci Rep 2016; 6:30982. [PMID: 27485935 PMCID: PMC4971537 DOI: 10.1038/srep30982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022] Open
Abstract
Disruption of specific metabolic pathways constitutes the mode of action of many known toxicants and it is responsible for the adverse phenotypes associated to human genetic defects. Conversely, many industrial applications rely on metabolic alterations of diverse microorganisms, whereas many therapeutic drugs aim to selectively disrupt pathogens’ metabolism. In this work we analyzed metabolic changes induced by auxotrophic starvation conditions in yeast in a non-targeted approach, using one-dimensional proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and chemometric analyses. Analysis of the raw spectral datasets showed specific changes linked to the different stages during unrestricted yeast growth, as well as specific changes linked to each of the four tested starvation conditions (L-methionine, L-histidine, L-leucine and uracil). Analysis of changes in concentrations of more than 40 metabolites by Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) showed the normal progression of key metabolites during lag, exponential and stationary unrestricted growth phases, while reflecting the metabolic blockage induced by the starvation conditions. In this case, different metabolic intermediates accumulated over time, allowing identification of the different metabolic pathways specifically affected by each gene disruption. This synergy between NMR metabolomics and molecular biology may have clear implications for both genetic diagnostics and drug development.
Collapse
Affiliation(s)
- Francesc Puig-Castellví
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
McIsaac RS, Lewis KN, Gibney PA, Buffenstein R. From yeast to human: exploring the comparative biology of methionine restriction in extending eukaryotic life span. Ann N Y Acad Sci 2016; 1363:155-70. [DOI: 10.1111/nyas.13032] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022]
|
36
|
Taymaz-Nikerel H, Cankorur-Cetinkaya A, Kirdar B. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations. Front Bioeng Biotechnol 2016; 4:17. [PMID: 26925399 PMCID: PMC4757645 DOI: 10.3389/fbioe.2016.00017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.
Collapse
Affiliation(s)
| | | | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University , Istanbul , Turkey
| |
Collapse
|
37
|
Santos J, Leitão-Correia F, Sousa MJ, Leão C. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium. Oncotarget 2016; 6:6511-23. [PMID: 25576917 PMCID: PMC4466630 DOI: 10.18632/oncotarget.2989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023] Open
Abstract
New evidences have recently emerged from studies in yeast and in higher eukaryotes showing the importance of nutrient balance in dietary regimes and its effects on longevity regulation.We have previously shown that manipulation of ammonium concentration in the culture and/or aging medium can drastically affect chronological lifespan (CLS)of Saccharomyces cerevisiae, especially in amino acid restricted cells. Here we describe that the CLS shortening under amino acid restriction can be completely reverted by removing ammonium from the culture medium. Furthermore, the absence of ammonium, and of any rich nitrogen source, was so effective in extending CLS that no beneficial effect could be observed by further imposing calorie restriction conditions. When present in the culture medium,ammonium impaired the consumption of the auxotrophy-complementing amino acids and caused in an improper cell cycle arrest of the culture.TOR1 deletion reverted ammonium effects both in amino acid restricted and non-restricted cultures, whereas, Ras2p and Sch9p seem to have only a milder effect in the mediation of ammonium toxicity under amino acid restriction and no effect on non-restricted cultures.Our studies highlight ammonium as a key effector in the nutritional equilibrium between rich and essential nitrogen sources and glucose required for longevity promotion.
Collapse
Affiliation(s)
- Júlia Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fernanda Leitão-Correia
- Molecular and Environmental Biology Centre (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Molecular and Environmental Biology Centre (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cecília Leão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
38
|
Son S, Stevens MM, Chao HX, Thoreen C, Hosios AM, Schweitzer LD, Weng Y, Wood K, Sabatini D, Vander Heiden MG, Manalis S. Cooperative nutrient accumulation sustains growth of mammalian cells. Sci Rep 2015; 5:17401. [PMID: 26620632 PMCID: PMC4665017 DOI: 10.1038/srep17401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
The coordination of metabolic processes to allow increased nutrient uptake and utilization for macromolecular synthesis is central for cell growth. Although studies of bulk cell populations have revealed important metabolic and signaling requirements that impact cell growth on long time scales, whether the same regulation influences short-term cell growth remains an open question. Here we investigate cell growth by monitoring mass accumulation of mammalian cells while rapidly depleting particular nutrients. Within minutes following the depletion of glucose or glutamine, we observe a growth reduction that is larger than the mass accumulation rate of the nutrient. This indicates that if one particular nutrient is depleted, the cell rapidly adjusts the amount that other nutrients are accumulated, which is consistent with cooperative nutrient accumulation. Population measurements of nutrient sensing pathways involving mTOR, AKT, ERK, PKA, MST1, or AMPK, or pro-survival pathways involving autophagy suggest that they do not mediate this growth reduction. Furthermore, the protein synthesis rate does not change proportionally to the mass accumulation rate over these time scales, suggesting that intracellular metabolic pools buffer the growth response. Our findings demonstrate that cell growth can be regulated over much shorter time scales than previously appreciated.
Collapse
Affiliation(s)
| | | | | | - Carson Thoreen
- Whitehead Institute for Biomedical Research Nine Cambridge Center, Cambridge, MA
| | | | | | - Yaochung Weng
- Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA
| | - Kris Wood
- Whitehead Institute for Biomedical Research Nine Cambridge Center, Cambridge, MA
| | - David Sabatini
- Whitehead Institute for Biomedical Research Nine Cambridge Center, Cambridge, MA
| | | | | |
Collapse
|
39
|
Dietary Restriction and Nutrient Balance in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4010357. [PMID: 26682004 PMCID: PMC4670908 DOI: 10.1155/2016/4010357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022]
Abstract
Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS) and the Target Of Rapamycin (TOR). The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health.
Collapse
|
40
|
Hernández A, Serrano-Bueno G, Perez-Castiñeira JR, Serrano A. 8-Dehydrosterols induce membrane traffic and autophagy defects through V-ATPase dysfunction in Saccharomyces cerevisae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2945-56. [PMID: 26344037 DOI: 10.1016/j.bbamcr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
8-Dehydrosterols are present in a wide range of biologically relevant situations, from human rare diseases to amine fungicide-treated fungi and crops. However, the molecular bases of their toxicity are still obscure. We show here that 8-dehydrosterols, but not other sterols, affect yeast vacuole acidification through V-ATPases. Moreover, erg2Δ cells display reductions in proton pumping rates consistent with ion-transport uncoupling in vitro. Concomitantly, subunit Vph1p shows conformational changes in the presence of 8-dehydrosterols. Expression of a plant vacuolar H(+)-pumping pyrophosphatase as an alternative H(+)-pump relieves Vma(-)-like phenotypes in erg2Δ-derived mutant cells. As a consequence of these acidification defects, endo- and exo-cytic traffic deficiencies that can be alleviated with a H(+)-pumping pyrophosphatase are also observed. Despite their effect on membrane traffic, 8-dehydrosterols do not induce endoplasmic reticulum stress or assembly defects on the V-ATPase. Autophagy is a V-ATPase dependent process and erg2Δ mutants accumulate autophagic bodies under nitrogen starvation similar to Vma(-) mutants. In contrast to classical Atg(-) mutants, this defect is not accompanied by impairment of traffic through the CVT pathway, processing of Pho8Δ60p, GFP-Atg8p localisation or difficulties to survive under nitrogen starvation conditions, but it is concomitant to reduced vacuolar protease activity. All in all, erg2Δ cells are autophagy mutants albeit some of their phenotypic features differ from classical Atg(-) defective cells. These results may pave the way to understand the aetiology of sterol-related diseases, the cytotoxic effect of amine fungicides, and may explain the tolerance to these compounds observed in plants.
Collapse
Affiliation(s)
- Agustín Hernández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain.
| | - Gloria Serrano-Bueno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain
| | - José Román Perez-Castiñeira
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain.
| |
Collapse
|
41
|
Huang Z, Cai L, Tu BP. Dietary control of chromatin. Curr Opin Cell Biol 2015; 34:69-74. [PMID: 26094239 DOI: 10.1016/j.ceb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/28/2022]
Abstract
Organisms must be able to rapidly alter gene expression in response to changes in their nutrient environment. This review summarizes evidence that epigenetic modifications of chromatin depend on particular metabolites of intermediary metabolism, enabling the facile regulation of gene expression in tune with metabolic state. Nutritional or dietary control of chromatin is an often-overlooked, yet fundamental regulatory mechanism directly linked to human physiology. Nutrient-sensitive epigenetic marks are dynamic, suggesting rapid turnover, and may have functions beyond the regulation of gene transcription, including pH regulation and as carbon sources in cancer cells.
Collapse
Affiliation(s)
- Zhiguang Huang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ling Cai
- Children's Medical Center Research Institute, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Schmidt-Glenewinkel H, Barkai N. Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication for size control mechanisms. Mol Syst Biol 2014; 10:769. [PMID: 25538138 PMCID: PMC4300492 DOI: 10.15252/msb.20145513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Growing cells adjust their division time with biomass accumulation to maintain growth homeostasis. Size control mechanisms, such as the size checkpoint, provide an inherent coupling of growth and division by gating certain cell cycle transitions based on cell size. We describe genetic manipulations that decouple cell division from cell size, leading to the loss of growth homeostasis, with cells becoming progressively smaller or progressively larger until arresting. This was achieved by modulating glucose influx independently of external glucose. Division rate followed glucose influx, while volume growth was largely defined by external glucose. Therefore, the coordination of size and division observed in wild-type cells reflects tuning of two parallel processes, which is only refined by an inherent feedback-dependent coupling. We present a class of size control models explaining the observed breakdowns of growth homeostasis.
Collapse
Affiliation(s)
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Acker J, Nguyen NTT, Vandamme M, Tavenet A, Briand-Suleau A, Conesa C. Sub1 and Maf1, two effectors of RNA polymerase III, are involved in the yeast quiescence cycle. PLoS One 2014; 9:e114587. [PMID: 25531541 PMCID: PMC4273968 DOI: 10.1371/journal.pone.0114587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022] Open
Abstract
Sub1 and Maf1 exert an opposite effect on RNA polymerase III transcription interfering with different steps of the transcription cycle. In this study, we present evidence that Sub1 and Maf1 also exhibit an opposite role on yeast chronological life span. First, cells lacking Sub1 need more time than wild type to exit from resting and this lag in re-proliferation is correlated with a delay in transcriptional reactivation. Second, our data show that the capacity of the cells to properly establish a quiescent state is impaired in the absence of Sub1 resulting in a premature death that is dependent on the Ras/PKA and Tor1/Sch9 signalling pathways. On the other hand, we show that maf1Δ cells are long-lived mutant suggesting a connection between Pol III transcription and yeast longevity.
Collapse
Affiliation(s)
- Joël Acker
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
- * E-mail: (CC); (JA)
| | - Ngoc-Thuy-Trinh Nguyen
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Marie Vandamme
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Arounie Tavenet
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Audrey Briand-Suleau
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Christine Conesa
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
- * E-mail: (CC); (JA)
| |
Collapse
|
44
|
Abstract
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks.
Collapse
Affiliation(s)
- David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Jungeui Hong
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
45
|
Orlandi I, Coppola DP, Vai M. Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan. ACTA ACUST UNITED AC 2014; 1:393-405. [PMID: 28357219 PMCID: PMC5349135 DOI: 10.15698/mic2014.12.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During growth on fermentable substrates, such as glucose, pyruvate, which is the
end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via
acetaldehyde and acetate, or in mitochondria by direct oxidative
decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is
responsible for pyruvate transport into mitochondrial matrix space. During
chronological aging, yeast cells which lack the major structural subunit Mpc1
display a reduced lifespan accompanied by an age-dependent loss of autophagy.
Here, we show that the impairment of pyruvate import into mitochondria linked to
Mpc1 loss is compensated by a flux redirection of TCA cycle intermediates
through the malic enzyme-dependent alternative route. In such a way, the TCA
cycle operates in a “branched” fashion to generate pyruvate and is depleted of
intermediates. Mutant cells cope with this depletion by increasing the activity
of glyoxylate cycle and of the pathway which provides the nucleocytosolic
acetyl-CoA. Moreover, cellular respiration decreases and ROS accumulate in the
mitochondria which, in turn, undergo severe damage. These acquired traits in
concert with the reduced autophagy restrict cell survival of the mpc1∆ mutant
during chronological aging. Conversely, the activation of the carnitine shuttle
by supplying acetyl-CoA to the mitochondria is sufficient to abrogate the
short-lived phenotype of the mutant.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Damiano Pellegrino Coppola
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
46
|
Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2014; 98:8617-28. [PMID: 24970458 DOI: 10.1007/s00253-014-5890-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.
Collapse
|
47
|
Calorie restriction in mammals and simple model organisms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:308690. [PMID: 24883306 PMCID: PMC4026914 DOI: 10.1155/2014/308690] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Calorie restriction (CR), which usually refers to a 20–40% reduction in calorie intake, can effectively prolong lifespan preventing most age-associated diseases in several species. However, recent data from both human and nonhumans point to the ratio of macronutrients rather than the caloric intake as a major regulator of both lifespan and health-span. In addition, specific components of the diet have recently been identified as regulators of some age-associated intracellular signaling pathways in simple model systems. The comprehension of the mechanisms underpinning these findings is crucial since it may increase the beneficial effects of calorie restriction making it accessible to a broader population as well.
Collapse
|
48
|
Slavov N, Budnik BA, Schwab D, Airoldi EM, van Oudenaarden A. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep 2014; 7:705-14. [PMID: 24767987 DOI: 10.1016/j.celrep.2014.03.057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 03/21/2014] [Indexed: 01/16/2023] Open
Abstract
Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.
Collapse
Affiliation(s)
- Nikolai Slavov
- Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Statistics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Bogdan A Budnik
- Department of Statistics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Schwab
- Department of Physics and Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Edoardo M Airoldi
- Department of Statistics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander van Oudenaarden
- Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
49
|
Kokina A, Kibilds J, Liepins J. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A. FEMS Yeast Res 2014; 14:697-707. [PMID: 24661329 DOI: 10.1111/1567-1364.12154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 11/27/2022] Open
Abstract
Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
50
|
Uncoupling reproduction from metabolism extends chronological lifespan in yeast. Proc Natl Acad Sci U S A 2014; 111:E1538-47. [PMID: 24706810 DOI: 10.1073/pnas.1323918111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions.
Collapse
|