1
|
Shi P, Xu J, Cui H. Targeting oxygenases could be a viable anti-metastatic approach in cancer therapy. Int J Biol Macromol 2025; 310:143375. [PMID: 40268020 DOI: 10.1016/j.ijbiomac.2025.143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Malignant tumors are characterized by irregular boundaries, rapid and uncontrolled cell growth, the ability to invade surrounding tissues, and the potential to spread and metastasize to other parts of the body through the bloodstream or lymphatic system. More than 90 % of cancer-related deaths are attributed to the metastasis of cancer cells. When malignant tumors metastasize, the metabolic processes within the cells undergo significant changes, with enzymes playing a crucial role in regulating metabolism and serving as key mediators in both synthesis and degradation. Oxygenases are a group of oxidative enzymes that catalyze the incorporation of oxygen atoms into various substrates. Advances in our understanding of the genome and proteome of malignant tumors have revealed that oxygenases are highly expressed in many metastatic tumor cells, where they can enhance the activity of specific proteins that regulate tumor metastasis. Furthermore, there is a growing recognition that certain drugs can specifically target oxygenases to inhibit tumor metastasis, with several of these agents are currently undergoing clinical evaluation. In this context, we summarize the mechanisms by which oxygenases influence cancer cell behavior, along with the preclinical and clinical studies related to targeted therapies involving oxygenases.
Collapse
Affiliation(s)
- Pengfei Shi
- Jinfeng Laboratory, 401329 Chongqing, China; Cancer Center, Medical Research Institute, Southwest University, 400716 Chongqing, China
| | - Jie Xu
- Jinfeng Laboratory, 401329 Chongqing, China; Cancer Center, Medical Research Institute, Southwest University, 400716 Chongqing, China
| | - Hongjuan Cui
- Jinfeng Laboratory, 401329 Chongqing, China; Cancer Center, Medical Research Institute, Southwest University, 400716 Chongqing, China.
| |
Collapse
|
2
|
Zohar N, Maguire R, Khalilieh S, Jain A, Bosykh D, Bowne WB, Lavu H, Yeo CJ, Nevler A. Gene Expression Profiling of Pancreatic Ductal Adenocarcinoma Cells in Hypercapnia Identifies SIAH3 as a Novel Prognostic Biomarker. Int J Mol Sci 2025; 26:2848. [PMID: 40243415 PMCID: PMC11988995 DOI: 10.3390/ijms26072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
Hypercapnia is a key feature of the respiratory microenvironment in many pathologic conditions. It occurs both as a regional and as a systemic process, and it is associated with multiple metabolic changes such as mitochondrial dysfunction, decreased ATP production, and metabolic shift from glycolytic energy production to fatty acid metabolism. In the cancer tumor microenvironment, hypercapnia has been linked at times to enhanced cell migration, invasion, and chemoresistance. Our previous work has shown that hypercapnia-associated gene signatures can be used as prognostic biomarkers. However, unlike the hypoxia-inducible factor pathway, there are no validated targets to quantify hypercapnia. In this study, we investigated the phenotypic and transcriptomic changes occurring in pancreatic ductal adenocarcinoma (PDAC) due to chronic exposure to hypercapnic atmospheres. We then identified and validated SIAH3 as a hypercapnia-affected target and explored its clinical relevance as a prognostic factor in PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (N.Z.); (R.M.); (S.K.); (A.J.); (D.B.); (W.B.B.); (H.L.); (C.J.Y.)
| |
Collapse
|
3
|
Feng Y, Radaeva M, Amiri M, Deshpande AJ, Olson S, Jovanovic P, Pass I, Deng Q, Lazar I, Murad R, Molinolo A, Kim H, Sergienko E, Villaneuva J, Topisirovic I, Jackson M, Sonenberg N, Cherkasov A, Ronai ZA. Targeting eIF4G1-dependent translation in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624566. [PMID: 39605602 PMCID: PMC11601521 DOI: 10.1101/2024.11.20.624566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Elevated expression of components of eIF4F translation initiation complex has been documented in cancer, resulting in enhanced translation of mRNAs encoding pro-tumorigenic factors, including oncogenic proteins. We previously identified SBI-756, a small molecule that interferes with the eIF4F assembly and overcomes melanoma resistance to BRAF inhibitors. SBI-756 enhanced anti-tumor immunity in pancreatic cancer and was effective in the treatment of diffuse large B cell lymphoma. Here, we identified the eIF4G1 MA3 (4G1-MA3) domain as the target of SBI-756, attenuating eIF4F complex assembly. Melanoma cells expressing a mutant form of 4G1-MA3 exhibited polysome profiles resembling those of melanoma cells treated with SBI-756. A structure-based in silico screen against the eIF4G1 MA3 domain identified M19, a small molecule inhibitor that exhibited anti-melanoma effects. RNA sequencing (RNA-seq) revealed upregulation of UPR, mTOR, p53, and ROS signaling in M19-treated melanoma cells. Ribosome sequencing identified changes in ribosomal structure and electron transport chain components following M19-6 treatment of melanoma cells. Autophagy and histone deacetylase inhibitors were found to enhance anti-neoplastic activities of M19 or its analog, M19-6. M19-6 conferred a greater effect on melanoma than melanocytes and overcame melanoma resistance to BRAF or MEK inhibitors. Alone, M19-6 reduced melanoma growth and metastasis in a xenograft model. M19-6 offers a new therapeutic modality to overcome resistance and metastasis.
Collapse
|
4
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
5
|
Dong J, Che J, Wu Y, Deng Y, Jiang X, He Z, Zhang J. Dexmedetomidine promotes colorectal cancer progression via Piwil2 signaling. Cell Oncol (Dordr) 2024; 47:1459-1474. [PMID: 38592610 DOI: 10.1007/s13402-024-00944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
PURPOSE α2-adrenoceptor agonist dexmedetomidine (DEX) has been reported to promote tumorigenesis. Stem-cell protein Piwil2 is associated with cancer progression. Whether Piwil2 plays a role in tumor-promoting effects of DEX is unknown. METHODS We examined the expression of Piwil2 in human colorectal cancer (CRC) cell lines with/without DEX treatment. We also studied the roles of Piwil2 in proliferation, invasion, migration, as well as expressions of epithelial-mesenchymal transition (EMT)-related proteins in DEX-treated in vitro and in vivo CRC models. And the experiments with genetic and pharmacological treatments were conducted to investigate the underlying molecular mechanism. RESULTS RNA-sequencing (RNA-seq) analysis found Piwil2 is one of most upregulated genes upon DEX treatment in CRC cells. Furthermore, Piwil2 protein levels significantly increased in DEX-treated CRC cancer cells, which promoted proliferation, invasion, and migration in both CRC cell lines and human tumor xenografts model. Mechanistically, DEX increased nuclear factor E2-related factor 2 (Nrf2) expression, which enhanced Piwil2 transcription via binding to its promoter. Furthermore, in vitro experiments with Piwil2 knockdown or Siah2 inhibition indicated that DEX promoted EMT process and tumorigenesis through Siah2/PHD3/HIF1α pathway. The experiments with another α2-adrenoceptor agonist Brimonidine and antagonists yohimbine and atipamezole also suggested the role of Piwil2 signaling in tumor-promoting effects via an α2 adrenoceptor-dependent manner. CONCLUSION DEX promotes CRC progression may via activating α2 adrenoceptor-dependent Nrf2/Piwil2/Siah2 pathway and thus EMT process. Our work provides a novel insight into the mechanism underlying tumor-promoting effects of α2-adrenoceptor agonists.
Collapse
Affiliation(s)
- Jing Dong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yuanyuan Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Zhiyong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
| |
Collapse
|
6
|
Schörghofer D, Vock L, Mirea MA, Eckel O, Gschwendtner A, Neesen J, Richtig E, Hengstschläger M, Mikula M. Late stage melanoma is hallmarked by low NLGN4X expression leading to HIF1A accumulation. Br J Cancer 2024; 131:468-480. [PMID: 38902533 PMCID: PMC11300789 DOI: 10.1038/s41416-024-02758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Despite ongoing research and recent advances in therapy, metastatic melanoma remains one of the cancers with the worst prognosis. Here we studied the postsynaptic cell adhesion molecule Neuroligin 4X (NLGN4X) and investigated its role in melanoma progression. METHODS We analysed histologic samples to assess the expression and predictive value of NLGN4X in human melanoma. The oncogenic role of NLGN4X was determined by loss or gain-of-function experiments in vitro as well as by analysis of tumorspheres, which were grafted to human skin organoids derived from pluripotent stem cells. Whole genome expression analysis and validation experiments were performed to clarify the molecular mechanism. RESULTS We identified that suppression of NLGN4X down regulated the prefoldin member Von Hippel-Lindau binding protein 1 (VBP1). Moreover, loss of VBP1 was sufficient for accumulation of HIF1A and HIF1A signalling was further shown to be essential for the acquisition of migratory properties in melanoma. We re-established NLGN4X expression in late stage melanoma lines and observed decreased tumour growth after transplantation to human skin organoids generated from pluripotent stem cells. In line, we showed that high amounts of NLGN4X and its target VBP1 in human patient samples had a beneficial prognostic effect on patient survival. CONCLUSION In view of these findings, we propose that decreased amounts of NLGN4X are indicative of a metastatic melanoma phenotype and that loss of NLGN4X provides a novel mechanism for HIF induction.
Collapse
Affiliation(s)
- David Schörghofer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Laurenz Vock
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Madalina A Mirea
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Oliver Eckel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Anna Gschwendtner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Mario Mikula
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
7
|
Scortegagna M, Du Y, Bradley LM, Wang K, Molinolo A, Ruppin E, Murad R, Ronai ZA. Ubiquitin Ligases Siah1a/2 Control Alveolar Macrophage Functions to Limit Carcinogen-Induced Lung Adenocarcinoma. Cancer Res 2023; 83:2016-2033. [PMID: 37078793 PMCID: PMC10330299 DOI: 10.1158/0008-5472.can-23-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Cellular components of the tumor microenvironment, including myeloid cells, play important roles in the progression of lung adenocarcinoma (LUAD) and its response to therapy. Here, we characterize the function of the ubiquitin ligases Siah1a/2 in regulating the differentiation and activity of alveolar macrophages (AM) and assess the implication of Siah1a/2 control of AMs for carcinogen-induced LUAD. Macrophage-specific genetic ablation of Siah1a/2 promoted accumulation of AMs with an immature phenotype and increased expression of protumorigenic and pro-inflammatory Stat3 and β-catenin gene signatures. Administration of urethane to wild-type mice promoted enrichment of immature-like AMs and lung tumor development, which was enhanced by macrophage-specific Siah1a/2 ablation. The profibrotic gene signature seen in Siah1a/2-ablated immature-like macrophages was associated with increased tumor infiltration of CD14+ myeloid cells and poorer survival of patients with LUAD. Single-cell RNA-seq confirmed the presence of a cluster of immature-like AMs expressing a profibrotic signature in lungs of patients with LUAD, a signature enhanced in smokers. These findings identify Siah1a/2 in AMs as gatekeepers of lung cancer development. SIGNIFICANCE The ubiquitin ligases Siah1a/2 control proinflammatory signaling, differentiation, and profibrotic phenotypes of alveolar macrophages to suppress lung carcinogenesis.
Collapse
Affiliation(s)
- Marzia Scortegagna
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Yuanning Du
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Linda M. Bradley
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Kun Wang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rabi Murad
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Ze’ev A. Ronai
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| |
Collapse
|
8
|
Vu HT, Kaur H, Kies KR, Starks RR, Tuteja G. Identifying novel regulators of placental development using time-series transcriptome data. Life Sci Alliance 2023; 6:6/2/e202201788. [PMID: 36622342 PMCID: PMC9748866 DOI: 10.26508/lsa.202201788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The placenta serves as a connection between the mother and the fetus during pregnancy, providing the fetus with oxygen, nutrients, and growth hormones. However, the regulatory mechanisms and dynamic gene interaction networks underlying early placental development are understudied. Here, we generated RNA-sequencing data from mouse fetal placenta at embryonic days 7.5, 8.5, and 9.5 to identify genes with timepoint-specific expression, then inferred gene interaction networks to analyze highly connected network modules. We determined that timepoint-specific gene network modules were associated with distinct developmental processes, and with similar expression profiles to specific human placental cell populations. From each module, we identified hub genes and their direct neighboring genes, which were predicted to govern placental functions. We confirmed that four novel candidate regulators identified through our analyses regulate cell migration in the HTR-8/SVneo cell line. Overall, we predicted several novel regulators of placental development expressed in specific placental cell types using network analysis of bulk RNA-sequencing data. Our findings and analysis approaches will be valuable for future studies investigating the transcriptional landscape of early development.
Collapse
Affiliation(s)
- Ha Th Vu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Kelby R Kies
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Zakaria S, Elsebaey S, Allam S, Abdo W, El-Sisi A. Siah2 inhibitor and the metabolic antagonist Oxamate retard colon cancer progression and downregulate PD1 expression. Recent Pat Anticancer Drug Discov 2023; 19:PRA-EPUB-128869. [PMID: 36650629 DOI: 10.2174/1574892818666230116142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Solid tumors such as colon cancer are characterized by rapid and sustained cell proliferation, which ultimately results in hypoxia, induction of hypoxia-inducible factor-1α (HIF-1α), and activation of glycolysis to promote tumor survival and immune evasion. We hypothesized that a combinatorial approach of menadione (MEN) as an indirect HIF-1α inhibitor and sodium oxamate (OX) as a glycolysis inhibitor may be a promising treatment strategy for colon cancer. OBJECTIVES We investigated the potential efficacy of this combination for promoting an antitumor immune response and suppressing tumor growth in a rat model of colon cancer. METHODS Colon cancer was induced by once-weekly subcutaneous injection of 20 mg/kg dimethylhydrazine (DMH) for 16 weeks. Control rats received the vehicle and then no further treatment (negative control) or MEN plus OX for 4 weeks (drug control). Dimethylhydrazine-treated rats were then randomly allocated to four groups: DMH alone group and other groups treated with MEN, OX, and a combination of (MEN and OX) for 4 weeks. Serum samples were assayed for the tumor marker carbohydrate antigen (CA19.9), while expression levels of HIF-1α, caspase-3, PHD3, LDH, and PD1 were evaluated in colon tissue samples by immunoassay and qRT-PCR. Additionally, Ki-67 and Siah2 expression levels were examined by immunohistochemistry. RESULTS The combination of MEN plus OX demonstrated a greater inhibitory effect on the expression levels of HIF-1α, Siah2, LDH, Ki-67, and PD1, and greater enhancement of caspase-3 and PHD3 expression in colon cancer tissues than either drug alone. CONCLUSION Simultaneous targeting of hypoxia and glycolysis pathways by a combination of MEN and OX could be a promising therapy for inhibiting colon cancer cell growth and promoting antitumor immunity [1].
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
| | - Samar Elsebaey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511, Menoufia, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kaferelsheikh, Egypt
| | - Alaa El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31512, Tanta, Egypt
| |
Collapse
|
10
|
Gul S, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, Ara C, Li Y, Ma T. Vitamin K: A novel cancer chemosensitizer. Biotechnol Appl Biochem 2022; 69:2641-2657. [PMID: 34993998 DOI: 10.1002/bab.2312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Cancer incidences are growing rapidly and causing millions of deaths globally. Cancer treatment is one of the most exigent challenges. Drug resistance is a natural phenomenon and is considered one of the major obstacles in the successful treatment of cancer by chemotherapy. Combination therapy by the amalgamation of various anticancer drugs has suggested modulating tumor response by targeting various signaling pathways in a synergistic or additive manner. Vitamin K is an essential nutrient and has recently been investigated as a potential anticancer agent. The combination of vitamin K analogs, such as vitamins K1, K2, K3, and K5, with other chemotherapeutic drugs have demonstrated a safe, cost-effective, and most efficient way to overcome drug resistance and improved the outcomes of prevailing chemotherapy. Published reports have shown that vitamin K in combination therapy improved the efficacy of clinical drugs by promoting apoptosis and cell cycle arrest and overcoming drug resistance by inhibiting P-glycoprotein. In this review, we discuss the mechanism, cellular targets, and possible ways to develop vitamin K subtypes into effective cancer chemosensitizers. Finally, this review will provide a scientific basis for exploiting vitamin K as a potential agent to improve the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sameena Gul
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Muhammad Faisal Maqbool
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Amara Maryam
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Muhammad Khan
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Hafiz Abdullah Shakir
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Chaman Ara
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus Lahore, Lahore, Pakistan
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tonghui Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Zhou R, Wen Z, Liao Y, Wu J, Xi S, Zeng D, Sun H, Wu J, Shi M, Bin J, Liao Y, Liao W. Evaluation of stromal cell infiltration in the tumor microenvironment enable prediction of treatment sensitivity and prognosis in colon cancer. Comput Struct Biotechnol J 2022; 20:2153-2168. [PMID: 35615026 PMCID: PMC9118126 DOI: 10.1016/j.csbj.2022.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Current clinical factors for screening candidates that might benefit from adjuvant chemotherapy in colon cancer are inadequate. Tumor microenvironment, especially the stromal components, has the potential to determine treatment response. However, clinical translation of the tumor-associated stromal characterization into a practical biomarker for helping treatment decision has not been established. Using machine learning, we established a novel 31-gene signature, called stromal cell infiltration intensity score (SIIS), to distinguish patients characterized by the enrichment of abundant stromal cells in five colon cancer datasets from GEO (N = 990). Patients with high-SIIS were at higher risk for recurrence and mortality, and could not benefit from adjuvant chemotherapy due to their intrinsic drug resistance; however, the opposite was reported for patients with low-SIIS. The role of SIIS in detection of patients with high stromal cell infiltration and reduced drug efficiency was consistently validated in the TCGA-COAD cohort (N = 382), Sun Yat-sen University Cancer Center cohort (N = 30), and could also be observed in TCGA pan-cancer settings (N = 4898) and four independent immunotherapy cohorts (N = 467). Based on multi-omics data analysis and the CRISPR library screen, we reported that lack of gene mutation, hypomethylation in ADCY4 promoter region, activation of WNT-PCP pathway and SIAH2-GPX3 axis were potential mechanisms responsible for the chemoresistance of patients within high-SIIS group. Our findings demonstrated that SIIS provide an important reference for those making treatment decisions for such special patients.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yifu Liao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Corresponding author at: Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China.
| |
Collapse
|
12
|
Dang TN, Tiongco RP, Brown LM, Taylor JL, Lyons JM, Lau FH, Floyd ZE. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer 2022; 22:300. [PMID: 35313831 PMCID: PMC8939188 DOI: 10.1186/s12885-022-09379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. METHODS Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. RESULTS Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. CONCLUSIONS These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - Rafael P Tiongco
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Loren M Brown
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - John M Lyons
- Our Lady of the Lake Medical Center, Baton Rouge, Louisiana, 70808, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA.
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA.
| |
Collapse
|
13
|
Song L, Tang L, Lu D, Hu M, Liu C, Zhang H, Zhao Y, Liu D, Zhang S. Sinomenine Inhibits Vasculogenic Mimicry and Migration of Breast Cancer Side Population Cells via Regulating miR-340-5p/SIAH2 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4914005. [PMID: 35309179 PMCID: PMC8926463 DOI: 10.1155/2022/4914005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia and its induced vasculogenic mimicry (VM) formation, which both closely related with stem-like side population (SP) cells, are the main culprits leading to tumor invasion and metastasis. Sinomenine exhibits excellent anticancer activity in breast cancer, but whether and how it affects hypoxia-triggered VM formation in breast cancer SP cells remains unclear. In this study, breast cancer SP cells were sorted from MDA-MB-231 cells and cultured with sinomenine under hypoxic conditions. Sinomenine obviously repressed the migration and VM formation of breast cancer SP cells. Through downregulating SIAH2 and HIF-1α, sinomenine can inhibit epithelial-mesenchymal transition process of breast cancer SP cells. SIAH2 was identified as a target of miR-340-5p and was downregulated by it, and sinomenine can upregulate miR-340-5p. Hypoxia-induced downregulation of miR-340-5p and activation of SIAH2/HIF-1α pathway can be both counteracted by the sinomenine. Moreover, miR-340-5p inhibition and SIAH2 overexpression can partly counteract the anticancer effects of sinomenine. Taken together, sinomenine inhibits hypoxia-caused VM formation and metastasis of breast cancer SP cells by regulating the miR-340-5p/SIAH2 axis.
Collapse
Affiliation(s)
- Lingqin Song
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| | - Liqiong Tang
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| | - Dalin Lu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Min Hu
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology & Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061 Shaanxi, China
| | - Haifeng Zhang
- Department of Pathology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061 Shaanxi, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| | - Di Liu
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| |
Collapse
|
14
|
Li K, Li J, Ye M, Jin X. The role of Siah2 in tumorigenesis and cancer therapy. Gene 2022; 809:146028. [PMID: 34687788 DOI: 10.1016/j.gene.2021.146028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.
Collapse
Affiliation(s)
- Kailang Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
Xu D, Li C. Regulation of the SIAH2-HIF-1 Axis by Protein Kinases and Its Implication in Cancer Therapy. Front Cell Dev Biol 2021; 9:646687. [PMID: 33842469 PMCID: PMC8027324 DOI: 10.3389/fcell.2021.646687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The cellular response to hypoxia is a key biological process that facilitates adaptation of cells to oxygen deprivation (hypoxia). This process is critical for cancer cells to adapt to the hypoxic tumor microenvironment resulting from rapid tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor and a master regulator of the cellular response to hypoxia. The activity of HIF-1 is dictated primarily by its alpha subunit (HIF-1α), whose level and/or activity are largely regulated by an oxygen-dependent and ubiquitin/proteasome-mediated process. Prolyl hydroxylases (PHDs) and the E3 ubiquitin ligase Von Hippel-Lindau factor (VHL) catalyze hydroxylation and subsequent ubiquitin-dependent degradation of HIF-1α by the proteasome. Seven in Absentia Homolog 2 (SIAH2), a RING finger-containing E3 ubiquitin ligase, stabilizes HIF-1α by targeting PHDs for ubiquitin-mediated degradation by the proteasome. This SIAH2-HIF-1 signaling axis is important for maintaining the level of HIF-1α under both normoxic and hypoxic conditions. A number of protein kinases have been shown to phosphorylate SIAH2, thereby regulating its stability, activity, or substrate binding. In this review, we will discuss the regulation of the SIAH2-HIF-1 axis via phosphorylation of SIAH2 by these kinases and the potential implication of this regulation in cancer biology and cancer therapy.
Collapse
Affiliation(s)
- Dazhong Xu
- Department of Pathology, Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Cen Li
- Department of Pathology, Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
16
|
Piedade WP, Famulski JK. E3 ubiquitin ligase-mediated regulation of vertebrate ocular development; new insights into the function of SIAH enzymes. Biochem Soc Trans 2021; 49:327-340. [PMID: 33616626 PMCID: PMC7924998 DOI: 10.1042/bst20200613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
Developmental regulation of the vertebrate visual system has been a focus of investigation for generations as understanding this critical time period has direct implications on our understanding of congenital blinding disease. The majority of studies to date have focused on transcriptional regulation mediated by morphogen gradients and signaling pathways. However, recent studies of post translational regulation during ocular development have shed light on the role of the ubiquitin proteasome system (UPS). This rather ubiquitous yet highly diverse system is well known for regulating protein function and localization as well as stability via targeting for degradation by the 26S proteasome. Work from many model organisms has recently identified UPS activity during various milestones of ocular development including retinal morphogenesis, retinal ganglion cell function as well as photoreceptor homeostasis. In particular work from flies and zebrafish has highlighted the role of the E3 ligase enzyme family, Seven in Absentia Homologue (Siah) during these events. In this review, we summarize the current understanding of UPS activity during Drosophila and vertebrate ocular development, with a major focus on recent findings correlating Siah E3 ligase activity with two major developmental stages of vertebrate ocular development, retinal morphogenesis and photoreceptor specification and survival.
Collapse
|
17
|
Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry 2020; 7:528-537. [PMID: 32061320 DOI: 10.1016/s2215-0366(19)30520-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system is a master regulator of neural development and the maintenance of brain structure and function. It influences neurogenesis, synaptogenesis, and neurotransmission by determining the localisation, interaction, and turnover of scaffolding, presynaptic, and postsynaptic proteins. Moreover, ubiquitin-proteasome system signalling transduces epigenetic changes in neurons independently of protein degradation and, as such, dysfunction of components and substrates of this system has been linked to a broad range of brain conditions. Although links between ubiquitin-proteasome system dysfunction and neurodegenerative disorders have been known for some time, only recently have similar links emerged for neurodevelopmental disorders, such as schizophrenia. Here, we review the components of the ubiquitin-proteasome system that are reported to be dysregulated in schizophrenia, and discuss specific molecular changes to these components that might, in part, explain the complex causes of this mental disorder.
Collapse
Affiliation(s)
- Sandra Luza
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Carlos M Opazo
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; University of Calgary, Calgary, AB, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; NorthWestern Mental Health, Melbourne, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
18
|
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J Invest Dermatol 2020; 140:2466-2477. [PMID: 32360601 DOI: 10.1016/j.jid.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Among the hallmarks of melanoma are impaired proteostasis and rapid development of resistance to targeted therapy that represent a major clinical challenge. However, the molecular machinery that links these processes is unknown. Here we describe that by stabilizing key melanoma oncoproteins, the ubiquitin ligase RNF4 promotes tumorigenesis and confers resistance to targeted therapy in melanoma cells, xenograft mouse models, and patient samples. In patients, RNF4 protein and mRNA levels correlate with poor prognosis and with resistance to MAPK inhibitors. Remarkably, RNF4 tumorigenic properties, including therapy resistance, require the translation initiation factor initiation elongation factor alpha (eIF2α). RNF4 binds, ubiquitinates, and stabilizes the phosphorylated eIF2α (p-eIF2α) but not activating transcription factor 4 or C/EBP homologous protein that mediates the eIF2α-dependent integrated stress response. In accordance, p-eIF2α levels were significantly elevated in high-RNF4 patient-derived melanomas. Thus, RNF4 and p-eIF2α establish a positive feed-forward loop connecting oncogenic translation and ubiquitin-dependent protein stabilization in melanoma.
Collapse
Affiliation(s)
- Emily Avitan-Hersh
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Avital Oknin Vaisman
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yamen Abu Ahmad
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA; Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Saeed Sheikh Khalil
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Feiler
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Harriet Kluger
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chaim Kahana
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Kevin Brown
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA
| | - Ze'ev A Ronai
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
19
|
Scortegagna M, Hockemeyer K, Dolgalev I, Poźniak J, Rambow F, Li Y, Feng Y, Tinoco R, Otero DC, Zhang T, Brown K, Bosenberg M, Bradley LM, Marine JC, Aifantis I, Ronai ZA. Siah2 control of T-regulatory cells limits anti-tumor immunity. Nat Commun 2020; 11:99. [PMID: 31911617 PMCID: PMC6946684 DOI: 10.1038/s41467-019-13826-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Understanding the mechanisms underlying anti-tumor immunity is pivotal for improving immune-based cancer therapies. Here, we report that growth of BRAF-mutant melanoma cells is inhibited, up to complete rejection, in Siah2-/- mice. Growth-inhibited tumors exhibit increased numbers of intra-tumoral activated T cells and decreased expression of Ccl17, Ccl22, and Foxp3. Marked reduction in Treg proliferation and tumor infiltration coincide with G1 arrest in tumor infiltrated Siah2-/- Tregs in vivo or following T cell stimulation in culture, attributed to elevated expression of the cyclin-dependent kinase inhibitor p27, a Siah2 substrate. Growth of anti-PD-1 therapy resistant melanoma is effectively inhibited in Siah2-/- mice subjected to PD-1 blockade, indicating synergy between PD-1 blockade and Siah2 loss. Low SIAH2 and FOXP3 expression is identified in immune responsive human melanoma tumors. Overall, Siah2 regulation of Treg recruitment and cell cycle progression effectively controls melanoma development and Siah2 loss in the host sensitizes melanoma to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Kathryn Hockemeyer
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Igor Dolgalev
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Joanna Poźniak
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | - Florian Rambow
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | | | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Roberto Tinoco
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dennis C Otero
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, Yale University, School of Medicine, New Haven, CT, 06520, USA
| | - Linda M Bradley
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | - Ioannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
20
|
Identification and characterization of small molecule inhibitors of the ubiquitin ligases Siah1/2 in melanoma and prostate cancer cells. Cancer Lett 2019; 449:145-162. [PMID: 30771432 DOI: 10.1016/j.canlet.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Inhibition of ubiquitin ligases with small molecule remains a very challenging task, given the lack of catalytic activity of the target and the requirement of disruption of its interactions with other proteins. Siah1/2, which are E3 ubiquitin ligases, are implicated in melanoma and prostate cancer and represent high-value drug targets. We utilized three independent screening approaches in our efforts to identify small-molecule Siah1/2 inhibitors: Affinity Selection-Mass Spectrometry, a protein thermal shift-based assay and an in silico based screen. Inhibitors were assessed for their effect on viability of melanoma and prostate cancer cultures, colony formation, prolyl-hydroxylase-HIF1α signaling, expression of selected Siah2-related transcripts, and Siah2 ubiquitin ligase activity. Several analogs were further characterized, demonstrating improved efficacy. Combination of the top hits identified in the different assays demonstrated an additive effect, pointing to complementing mechanisms that underlie each of these Siah1/2 inhibitors.
Collapse
|
21
|
Van Sciver RE, Lee MP, Lee CD, Lafever AC, Svyatova E, Kanda K, Colliver AL, Siewertsz van Reesema LL, Tang-Tan AM, Zheleva V, Bwayi MN, Bian M, Schmidt RL, Matrisian LM, Petersen GM, Tang AH. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers (Basel) 2018; 10:142. [PMID: 29757973 PMCID: PMC5977115 DOI: 10.3390/cancers10050142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Michael P Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Caroline Dasom Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Alex C Lafever
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Elizaveta Svyatova
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Kevin Kanda
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Amber L Colliver
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | - Angela M Tang-Tan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Vasilena Zheleva
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Monicah N Bwayi
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Minglei Bian
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Rebecca L Schmidt
- Department of Biology, Upper Iowa University, Fayette, IA 52142, USA.
| | - Lynn M Matrisian
- Pancreatic Cancer Action Network, 1050 Connecticut Ave NW, Suite 500, Washington, DC 20036, USA.
- Pancreatic Cancer Action Network, 1500 Rosecrans Ave, Suite 200, Manhattan Beach, CA 90266, USA.
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic Cancer Center, Mayo Clinic Pancreatic Cancer SPORE, BioBusiness 5-85, 200 First Street SW, Rochester, MN 55905, USA.
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
22
|
Segarra-Mondejar M, Casellas-Díaz S, Ramiro-Pareta M, Müller-Sánchez C, Martorell-Riera A, Hermelo I, Reina M, Aragonés J, Martínez-Estrada OM, Soriano FX. Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. EMBO J 2018; 37:e97368. [PMID: 29615453 PMCID: PMC5920244 DOI: 10.15252/embj.201797368] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The formation of neurites is an important process affecting the cognitive abilities of an organism. Neurite growth requires the addition of new membranes, but the metabolic remodeling necessary to supply lipids for membrane expansion is poorly understood. Here, we show that synaptic activity, one of the most important inducers of neurite growth, transcriptionally regulates the expression of neuronal glucose transporter Glut3 and rate-limiting enzymes of glycolysis, resulting in enhanced glucose uptake and metabolism that is partly used for lipid synthesis. Mechanistically, CREB regulates the expression of Glut3 and Siah2, the latter and LDH activity promoting the normoxic stabilization of HIF-1α that regulates the expression of rate-limiting genes of glycolysis. The expression of dominant-negative HIF-1α or Glut3 knockdown blocks activity-dependent neurite growth in vitro while pharmacological inhibition of the glycolysis and specific ablation of HIF-1α in early postnatal mice impairs the neurite architecture. These results suggest that the manipulation of neuronal glucose metabolism could be used to treat some brain developmental disorders.
Collapse
Affiliation(s)
- Marc Segarra-Mondejar
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Sergi Casellas-Díaz
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Alejandro Martorell-Riera
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Ismaïl Hermelo
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Julián Aragonés
- Research Unit, Hospital of La Princesa, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Ofelia M Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Francesc X Soriano
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Kokate SB, Dixit P, Das L, Rath S, Roy AD, Poirah I, Chakraborty D, Rout N, Singh SP, Bhattacharyya A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells. FASEB J 2018; 32:5378-5389. [PMID: 29688807 DOI: 10.1096/fj.201701344rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric epithelial cells infected with Helicobacter pylori acquire highly invasive and metastatic characteristics. The seven in absentia homolog (Siah)2, an E3 ubiquitin ligase, is one of the major proteins that induces invasiveness of infected gastric epithelial cells. We find that p300-driven acetylation of Siah2 at lysine 139 residue stabilizes the molecule in infected cells, thereby substantially increasing its efficiency to degrade prolyl hydroxylase (PHD)3 in the gastric epithelium. This enhances the accumulation of an oncogenic transcription factor hypoxia-inducible factor 1α (Hif1α) in H. pylori-infected gastric cancer cells in normoxic condition and promotes invasiveness of infected cells. Increased acetylation of Siah2, Hif1α accumulation, and the absence of PHD3 in the infected human gastric metastatic cancer biopsy samples and in invasive murine gastric cancer tissues further confirm that the acetylated Siah2 (ac-Siah2)-Hif1α axis is crucial in promoting gastric cancer invasiveness. This study establishes the importance of a previously unrecognized function of ac-Siah2 in regulating invasiveness of H. pylori-infected gastric epithelial cells.-Kokate, S. B., Dixit, P., Das, L., Rath, S., Roy, A. D., Poirah, I., Chakraborty, D., Rout, N., Singh, S. P., Bhattacharyya, A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.
Collapse
Affiliation(s)
- Shrikant Babanrao Kokate
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Lopamudra Das
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Suvasmita Rath
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Arjama Dhar Roy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Odisha, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, Srirama Chandra Bhanja (SCB) Medical College, Odisha, India
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| |
Collapse
|
24
|
Abstract
The cellular response to external stress signals and DNA damage depends on the activity of ubiquitin ligases (E3s), which regulate numerous cellular processes, including homeostasis, metabolism and cell cycle progression. E3s recognize, interact with and ubiquitylate protein substrates in a temporally and spatially regulated manner. The topology of the ubiquitin chains dictates the fate of the substrates, marking them for recognition and degradation by the proteasome or altering their subcellular localization or assembly into functional complexes. Both genetic and epigenetic alterations account for the deregulation of E3s in cancer. Consequently, the stability and/or activity of E3 substrates are also altered, in some cases leading to downregulation of tumour-suppressor activities and upregulation of oncogenic activities. A better understanding of the mechanisms underlying E3 regulation and function in tumorigenesis is expected to identify novel prognostic markers and to enable the development of the next generation of anticancer therapies. This Review summarizes the oncogenic and tumour-suppressor roles of selected E3s and highlights novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
| | - Jianfei Qi
- University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
- Technion Integrated Cancer Center, Technion, Israel Institute of Technology Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
25
|
Ong T, Solecki DJ. Seven in Absentia E3 Ubiquitin Ligases: Central Regulators of Neural Cell Fate and Neuronal Polarity. Front Cell Neurosci 2017; 11:322. [PMID: 29081737 PMCID: PMC5646344 DOI: 10.3389/fncel.2017.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
During neural development, neural precursors transition from a proliferative state within their germinal niches to a migratory state as they relocate to their final laminar positions. Transitions across these states are coupled with dynamic alterations in cellular polarity. This key feature can be seen throughout the developing vertebrate brain, in which neural stem cells give rise to multipolar or unpolarized transit-amplifying progenitors. These transit-amplifying progenitors then expand to give rise to mature neuronal lineages that become polarized as they initiate radial migration to their final laminar positions. The conventional understanding of the cellular polarity regulatory program has revolved around signaling cascades and transcriptional networks. In this review, we discuss recent discoveries concerning the role of the Siah2 ubiquitin ligase in initiating neuronal polarity during cerebellar development. Given the unique features of Siah ubiquitin ligases, we highlight some of the key substrates that play important roles in cellular polarity and propose a function for the Siah ubiquitin proteasome pathway in mediating a post-translational regulatory network to control the onset of polarization.
Collapse
Affiliation(s)
- Taren Ong
- Cancer and Developmental Biology Track, Integrated Biomedical Sciences Graduate Program, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
26
|
Abstract
The cellular hypoxic response contributes to cell transformation and tumor progression. Hypoxia-inducible factor 1 (HIF-1) is a key transcription factor that mediates transcription of genes whose products are essential for cellular adaptation to hypoxia. The activity of HIF-1 is largely regulated by the abundance of its alpha subunit (HIF-1α), which is primarily regulated by an oxygen-dependent and ubiquitin/proteasome-mediated degradation process. The HIF-1α protein level is also regulated by protein kinases through phosphorylation. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase with a tumor suppressive function. Plk3 phosphorylates and destabilizes HIF-1α. Plk3 also phosphorylates and stabilizes PTEN, a known regulator of HIF-1α stability via the PI3K pathway. Our latest study showed that the Plk3 protein is suppressed by hypoxia or nickel treatment via the ubiquitin/proteasome system. We discovered that Seven in Absentia Homologue 2 (SIAH2) is the E3 ubiquitin ligase of Plk3 and that Plk3 in turn destabilizes SIAH2. Given the role of SIAH2 in promoting stability of HIF-1α, our work reveals a novel mutual regulatory mechanism between Plk3 and SIAH2, which may function to fine-tune the cellular hypoxic response. Here we discuss the role of Plk3 in the hypoxic response and tumorigenesis in light of these latest findings.
Collapse
Affiliation(s)
- Dazhong Xu
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| | - Wei Dai
- b Department of Environmental Medicine , New York University Langone Medical Center , Tuxedo , NY , USA
| | - Cen Li
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| |
Collapse
|
27
|
Pepper IJ, Van Sciver RE, Tang AH. Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa. BMC Evol Biol 2017; 17:182. [PMID: 28784114 PMCID: PMC5547486 DOI: 10.1186/s12862-017-1024-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Background The RAS signaling pathway is a pivotal developmental pathway that controls many fundamental biological processes including cell proliferation, differentiation, movement and apoptosis. Drosophila Seven-IN-Absentia (SINA) is a ubiquitin E3 ligase that is the most downstream signaling “gatekeeper” whose biological activity is essential for proper RAS signal transduction. Vertebrate SINA homologs (SIAHs) share a high degree of amino acid identity with that of Drosophila SINA. SINA/SIAH is the most conserved signaling component in the canonical EGFR/RAS/RAF/MAPK signal transduction pathway. Results Vertebrate SIAH1, 2, and 3 are the three orthologs to invertebrate SINA protein. SINA and SIAH1 orthologs are found in all major taxa of metazoans. These proteins have four conserved functional domains, known as RING (Really Interesting New Gene), SZF (SIAH-type zinc finger), SBS (substrate binding site) and DIMER (Dimerization). In addition to the siah1 gene, most vertebrates encode two additional siah genes (siah2 and siah3) in their genomes. Vertebrate SIAH2 has a highly divergent and extended N-terminal sequence, while its RING, SZF, SBS and DIMER domains maintain high amino acid identity/similarity to that of SIAH1. But unlike vertebrate SIAH1 and SIAH2, SIAH3 lacks a functional RING domain, suggesting that SIAH3 may be an inactive E3 ligase. The SIAH3 subtree exhibits a high degree of amino acid divergence when compared to the SIAH1 and SIAH2 subtrees. We find that SIAH1 and SIAH2 are expressed in all human epithelial cell lines examined thus far, while SIAH3 is only expressed in a limited subset of cancer cell lines. Conclusion Through phylogenetic analyses of metazoan SINA and SIAH E3 ligases, we identified many invariant and divergent amino acid residues, as well as the evolutionarily conserved functional motifs in this medically relevant gene family. Our phylomedicinal study of this unique metazoan SINA/SIAH protein family has provided invaluable evolution-based support towards future effort to design logical, potent, and durable anti-SIAH-based anticancer strategies against oncogenic K-RAS-driven metastatic human cancers. Thus, this method of evolutionary study should be of interest in cancer biology. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1024-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian J Pepper
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Leroy T. Canoles Jr. Cancer Research Center, Harry T. Lester Hall, Room 454-457, 651 Colley Avenue, Norfolk, VA, 23501, USA
| | - Robert E Van Sciver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Leroy T. Canoles Jr. Cancer Research Center, Harry T. Lester Hall, Room 454-457, 651 Colley Avenue, Norfolk, VA, 23501, USA
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Leroy T. Canoles Jr. Cancer Research Center, Harry T. Lester Hall, Room 454-457, 651 Colley Avenue, Norfolk, VA, 23501, USA.
| |
Collapse
|
28
|
|
29
|
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, Algire C. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle 2016; 14:3734-47. [PMID: 26654769 PMCID: PMC4825722 DOI: 10.1080/15384101.2015.1104441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.
Collapse
Affiliation(s)
- M Gordian Adam
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany.,b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | - Sonja Matt
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Sven Christian
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | | | | | - Thomas G Hofmann
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Carolyn Algire
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| |
Collapse
|
30
|
Sun J, Zhang X, Han Y, Zhen J, Meng Y, Song M. Overexpression of seven in absentia homolog 2 protein in human breast cancer tissues is associated with the promotion of tumor cell malignant behavior in in vitro. Oncol Rep 2016; 36:1301-12. [PMID: 27459914 DOI: 10.3892/or.2016.4976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
Abstract
Seven in absentia homolog 2 (SIAH2), a homologue of Drosophila seven in absentia (Sina), has emerged as an oncogene and plays important roles in cancer development and progression. This study further assessed the role of SIAH2 in breast cancer and the underlying molecular events. The data showed that SIAH2 protein was overexpressed in invasive breast cancer (IBC) compared to the expression noted in normal or ductal carcinoma in situ (DCIS) tissues, expression of which is associated with malignant behaviors. SIAH2 may function differently in different molecular subtypes (e.g., luminal- vs. basal-like type) of breast cancer. Manipulation of SIAH2 expression led to a 'cross-talk' of the ERK and PI3K pathway, which could be one of the mechanisms by which SIAH2 regulates viability, apoptosis, and invasion capacity in these breast cancer cell lines.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojuan Zhang
- Intensive Care Unit, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanchun Han
- Department of Pathology, Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Juan Zhen
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Meng
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Min Song
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
ETS2 and Twist1 promote invasiveness of Helicobacter pylori-infected gastric cancer cells by inducing Siah2. Biochem J 2016; 473:1629-40. [PMID: 27048589 PMCID: PMC4888467 DOI: 10.1042/bcj20160187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
H. pylori induce ETS2 and Twist1 expression in the infected GCC. ETS2 and Twist1 transcriptionally activate siah2 in the H. pylori-infected GCCs. H. pylori-mediated Siah2 induction enhances motility and invasiveness of the infected GCCs.
Helicobacter pylori infection is one of the most potent factors leading to gastric carcinogenesis. The seven in absentia homologue (Siah2) is an E3 ubiquitin ligase which has been implicated in various cancers but its role in H. pylori-mediated gastric carcinogenesis has not been established. We investigated the involvement of Siah2 in gastric cancer metastasis which was assessed by invasiveness and migration of H. pylori-infected gastric epithelial cancer cells. Cultured gastric cancer cells (GCCs) MKN45, AGS and Kato III showed significantly induced expression of Siah2, increased invasiveness and migration after being challenged with the pathogen. Siah2-expressing stable cells showed increased invasiveness and migration after H. pylori infection. Siah2 was transcriptionally activated by E26 transformation-specific sequence 2 (ETS2)- and Twist-related protein 1 (Twist1) induced in H. pylori-infected gastric epithelial cells. These transcription factors dose-dependently enhanced the aggressiveness of infected GCCs. Our data suggested that H. pylori-infected GCCs gained cell motility and invasiveness through Siah2 induction. As gastric cancer biopsy samples also showed highly induced expression of ETS2, Twist1 and Siah2 compared with noncancerous gastric tissue, we surmise that ETS2- and Twist1-mediated Siah2 up-regulation has potential diagnostic and prognostic significance and could be targeted for therapeutic purpose.
Collapse
|
32
|
Gao Y, Liu Y, Meng F, Shang P, Wang S, Zhang Y, Sun Y, Wang Y, Wang J, Chen X. Overexpression of Siah2 Is Associated With Poor Prognosis in Patients With Epithelial Ovarian Carcinoma. Int J Gynecol Cancer 2016; 26:114-9. [PMID: 26512788 DOI: 10.1097/igc.0000000000000574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Seven in absentia homolog 2 (Siah2) is an E3 ubiquitin ligase that is expressed in mammals and is homologous to seven in absentia in Drosophila. Siah2 is involved in the progression of many malignancies. However, the role of Siah2 in ovarian cancer remains unclear. This study aims to evaluate the prognostic value of Siah2 expression for epithelial ovarian carcinoma (EOC) patients. MATERIALS AND METHODS Immunohistochemical analysis was conducted using 32 normal ovarian specimens and 122 ovarian carcinoma specimens, respectively. We analyzed the correlations of Siah2 expression with the clinicopathological factors and prognosis of ovarian cancer patients. χ Analysis, Kaplan-Meier method, and multivariate Cox proportional hazard analysis were conducted for statistical analyses. RESULTS Immunohistochemical staining demonstrated that the expression of Siah2 was higher in the EOC tissues than in the normal tissues. High Siah2 expression positively correlated with histological grade and lymph node metastasis but not with age, histologic type, International Federation of Gynecology and Obstetrics staging, and CA125. Patients with positive Siah2 expression showed lower overall survival and disease-free survival rates than those with negative Siah2 expression (P < 0.05 for both). Multivariate Cox analysis indicated that Siah2 was an independent parameter for overall survival (hazards ratio, 2.166; 95% confidence interval, 1.182-3.970; P = 0.012) and disease-free survival (hazards ratio, 1.819; 95% confidence interval, 1.030-3.216; P = 0.039). CONCLUSIONS Siah2 is possibly involved in tumor development and progression in EOC. Thus, Siah2 is a promising biomarker for predicting the prognosis of ovarian cancer patients and may serve as a novel target for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Ya Gao
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Moreno P, Lara-Chica M, Soler-Torronteras R, Caro T, Medina M, Álvarez A, Salvatierra Á, Muñoz E, Calzado MA. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2) Is Increased in Human Lung Cancer. PLoS One 2015; 10:e0143376. [PMID: 26580787 PMCID: PMC4651316 DOI: 10.1371/journal.pone.0143376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/04/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH) proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry) in human non-small cell lung cancer (NSCLC) samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features. MATERIALS AND METHODS One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables. RESULTS The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry) in non-small cell lung cancer (NSCLC). We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC) and squamous cell lung cancer (SCC). Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(18F)fluoro-D-glucose) uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates, the serine/threonine kinase DYRK2. CONCLUSIONS Our results provide insight into the potential use of SIAH2 as a novel target for lung cancer treatment.
Collapse
Affiliation(s)
- Paula Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Thoracic Surgery and Lung Transplantation Unit, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Maribel Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Rafael Soler-Torronteras
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Teresa Caro
- Department of Pathology, Hospital Universitario Reina Sofía, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ University of Córdoba, 14004 Córdoba, Spain
| | - Manuel Medina
- Department of Pathology, Hospital Universitario Reina Sofía, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Álvarez
- Thoracic Surgery and Lung Transplantation Unit, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Ángel Salvatierra
- Thoracic Surgery and Lung Transplantation Unit, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Eduardo Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marco A. Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| |
Collapse
|
34
|
Zhang H, Guo Q, Wang X, Wang C, Zhao X, Li M. Aberrant expression of hSef and Sprouty4 in endometrial adenocarcinoma. Oncol Lett 2015; 11:45-50. [PMID: 26870165 PMCID: PMC4727078 DOI: 10.3892/ol.2015.3835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/16/2015] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor (FGF) 2-mediated signaling of the mitogen-activated protein kinase/RAS/extracellular signal-regulated kinase 1/2 pathway is a critical modulator in angiogenesis and is therefore essential for the pathogenesis of endometrial carcinoma. Human similar expression to FGFs (hSef) and Sprouty4 have each been reported to be negative regulators of FGF signaling. The aim of the present study was to investigate the expression of hSef and Sprouty4 in human endometrial adenocarcinoma. Using immunohistochemistry analysis, the expression of hSef and Sprouty4 was detected in human endometrial adenocarcinomas. Increased hSef expression was found to be present in endometrial adenocarcinomas. In addition, decreased hSef expression was identified in the blood vessels of endometrial adenocarcinoma samples. However, the expression of Sprouty4 was downregulated in human endometrial adenocarcinoma. Aberrant expression of hSef and Sprouty4 are involved in the pathogenesis of human endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qiufen Guo
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xia Wang
- Department of Nursing, Shandong Rongjun General Hospital, Jinan, Shandong 250013, P.R. China
| | - Chong Wang
- Department of General Surgery, Shandong Rongjun General Hospital, Jinan, Shandong 250013, P.R. China
| | - Xingbo Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mingjiang Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
35
|
Loss of Siah2 does not impact angiogenic potential of murine endothelial cells. Microvasc Res 2015; 102:38-45. [PMID: 26275748 DOI: 10.1016/j.mvr.2015.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022]
Abstract
Angiogenesis is triggered in response to hypoxia under many circumstances, from healthy cells and tissues during embryogenesis to pathological conditions like the formation of new blood vessels to supply tumours and promote invasive cancer. Siah2 has been shown to regulate the hypoxia pathway upstream of hypoxia-induced transcription factor subunit Hif-1alpha, and therefore may play an important role in angiogenesis in response to hypoxic stress in endothelial cells. This study aims to investigate the basic function of Siah2 in endothelial cells under hypoxia and to test the ability of Siah2 deficient cells to mount an angiogenic response when deprived of oxygen. We and others have previously shown that Siah2 is crucial for mediating the hypoxic response in many different cell types studied. In this study however, we describe that Siah2(-/-) endothelial cells have an intact hypoxic signalling pathway, including Hif-1alpha stabilisation and gene expression, the first report of a tissue or cell lineage in which the loss of Siah2 does not seem to impact hypoxic response signalling. In mice, the infiltration of Siah2(-/-) endothelial cells into a Matrigel plug containing a VEGF-A attractant was similar compared with wildtype endothelial cells. Ex vivo however, there was a reduced capacity of Siah2(-/-) aorta to form tubes or new vessels. Thus, we conclude that Siah2 is not essential for the hypoxic response of endothelial cells.
Collapse
|
36
|
Knauer SK, Mahendrarajah N, Roos WP, Krämer OH. The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev 2015; 26:405-13. [DOI: 10.1016/j.cytogfr.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
|
37
|
Kocabas F, Xie L, Xie J, Yu Z, DeBerardinis RJ, Kimura W, Thet S, Elshamy AF, Abouellail H, Muralidhar S, Liu X, Chen C, Sadek HA, Zhang CC, Zheng J. Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci 2015. [PMID: 26221532 PMCID: PMC4517642 DOI: 10.1186/s13578-015-0020-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment, known as niche in the endosteal regions of the bone marrow. This stem cell niche with low oxygen tension requires HSCs to adopt a unique metabolic profile. We have recently demonstrated that mouse long-term hematopoietic stem cells (LT-HSCs) utilize glycolysis instead of mitochondrial oxidative phosphorylation as their main energy source. However, the metabolic phenotype of human hematopoietic progenitor and stem cells (HPSCs) remains unknown. Results We show that HPSCs have a similar metabolic phenotype, as shown by high rates of glycolysis, and low rates of oxygen consumption. Fractionation of human mobilized peripheral blood cells based on their metabolic footprint shows that cells with a low mitochondrial potential are highly enriched for HPSCs. Remarkably, low MP cells had much better repopulation ability as compared to high MP cells. Moreover, similar to their murine counterparts, we show that Hif-1α is upregulated in human HPSCs, where it is transcriptionally regulated by Meis1. Finally, we show that Meis1 and its cofactors Pbx1 and HoxA9 play an important role in transcriptional activation of Hif-1α in a cooperative manner. Conclusions These findings highlight the unique metabolic properties of human HPSCs and the transcriptional network that regulates their metabolic phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0020-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatih Kocabas
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755 Turkey
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Jingjing Xie
- Bingzhou Medical University, Taishan Scholar Program, Yantai, 264003 China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Ralph J DeBerardinis
- Departments of Pediatrics and Genetics, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Wataru Kimura
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - SuWannee Thet
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Ahmed F Elshamy
- Department of Clinical Pathology, El Galaa Hospital, Cairo, Egypt
| | | | - Shalini Muralidhar
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Xiaoye Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| |
Collapse
|
38
|
Fan L, Peng G, Hussain A, Fazli L, Guns E, Gleave M, Qi J. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells. J Biol Chem 2015; 290:20865-20879. [PMID: 26160177 DOI: 10.1074/jbc.m115.662155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells.
Collapse
Affiliation(s)
- Lingling Fan
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Guihong Peng
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Arif Hussain
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Emma Guns
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
39
|
Kim Y, Kim H, Park D, Jeoung D. miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3. Mol Cells 2015; 38:562-72. [PMID: 25997740 PMCID: PMC4469914 DOI: 10.14348/molcells.2015.0051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/07/2023] Open
Abstract
We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| |
Collapse
|
40
|
Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Rep 2015; 11:1458-73. [PMID: 26027934 PMCID: PMC4681438 DOI: 10.1016/j.celrep.2015.04.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022] Open
Abstract
Despite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with elevated expression of receptor tyrosine kinases (RTKs), including EGFR. Notably, RNF125 altered RTK expression through JAK1, which we identified as an RNF125 substrate. RNF125 bound to and ubiquitinated JAK1, prompting its degradation and suppressing RTK expression. Inhibition of JAK1 and EGFR signaling overcame BRAFi resistance in melanoma with reduced RNF125 expression, as shown in culture and in in vivo xenografts. Our findings suggest that combination therapies targeting both JAK1 and EGFR could be effective against BRAFi-resistant tumors with de novo low RNF125 expression.
Collapse
|
41
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
42
|
Abstract
The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.
Collapse
|
43
|
Luo W, Lin B, Wang Y, Zhong J, O'Meally R, Cole RN, Pandey A, Levchenko A, Semenza GL. PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility. Mol Biol Cell 2014; 25:2788-96. [PMID: 25079693 PMCID: PMC4161513 DOI: 10.1091/mbc.e14-02-0775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 01/03/2023] Open
Abstract
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins.
Collapse
Affiliation(s)
- Weibo Luo
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Benjamin Lin
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yingfei Wang
- Neuroregeneration Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jun Zhong
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andre Levchenko
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
44
|
Gopalsamy A, Hagen T, Swaminathan K. Investigating the molecular basis of Siah1 and Siah2 E3 ubiquitin ligase substrate specificity. PLoS One 2014; 9:e106547. [PMID: 25202994 PMCID: PMC4159269 DOI: 10.1371/journal.pone.0106547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022] Open
Abstract
The Siah1 and Siah2 E3 ubiquitin ligases play an important role in diverse signaling pathways and have been shown to be deregulated in cancer. The human Siah1 and Siah2 isoforms share high sequence similarity but possess contrary roles in cancer, with Siah1 more often acting as a tumor suppressor while Siah2 functions as a proto-oncogene. The different function of Siah1 and Siah2 in cancer is likely due to the ubiquitination of distinct substrates. Hence, we decided to investigate the molecular basis of the substrate specificity, utilizing the well-characterized Siah2 substrate PHD3. Using chimeric and mutational approaches, we identified critical residues in Siah2 that promote substrate specificity. Thus, we have found that four residues in the N-terminal region of the Siah2 substrate binding domain (SBD) (Ser132, His150, Pro155, Tyr163) are critical for substrate specificity. In the C-terminal region of the SBD, a single residue, Leu250, was identified to promote the specific binding of Siah2 SBD to PHD3. Our study may help to overcome the challenges in the identification of Siah2 specific inhibitors.
Collapse
Affiliation(s)
- Anupriya Gopalsamy
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
45
|
Scortegagna M, Kim H, Li JL, Yao H, Brill LM, Han J, Lau E, Bowtell D, Haddad G, Kaufman RJ, Ronai ZA. Fine tuning of the UPR by the ubiquitin ligases Siah1/2. PLoS Genet 2014; 10:e1004348. [PMID: 24809345 PMCID: PMC4014425 DOI: 10.1371/journal.pgen.1004348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/18/2014] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) responds to changes in intracellular homeostasis through activation of the unfolded protein response (UPR). Yet, it is not known how UPR-signaling coordinates adaptation versus cell death. Previous studies suggested that signaling through PERK/ATF4 is required for cell death. We show that high levels of ER stress (i.e., ischemia-like conditions) induce transcription of the ubiquitin ligases Siah1/2 through the UPR transducers PERK/ATF4 and IRE1/sXBP1. In turn, Siah1/2 attenuates proline hydroxylation of ATF4, resulting in its stabilization, thereby augmenting ER stress output. Conversely, ATF4 activation is reduced upon Siah1/2 KD in cultured cells, which attenuates ER stress-induced cell death. Notably, Siah1a(+/-)::Siah2(-/-) mice subjected to neuronal ischemia exhibited smaller infarct volume and were protected from ischemia-induced death, compared with the wild type (WT) mice. In all, Siah1/2 constitutes an obligatory fine-tuning mechanism that predisposes cells to death under severe ER stress conditions.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hyungsoo Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jian-Liang Li
- Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hang Yao
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Laurence M. Brill
- Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jaeseok Han
- Degenerative Diseases Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Eric Lau
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - David Bowtell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RJK); (ZAR)
| | - Ze'ev A. Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RJK); (ZAR)
| |
Collapse
|
46
|
Kang N, Won M, Rhee M, Ro H. Siah ubiquitin ligases modulate nodal signaling during zebrafish embryonic development. Mol Cells 2014; 37:389-98. [PMID: 24823357 PMCID: PMC4044310 DOI: 10.14348/molcells.2014.0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/15/2023] Open
Abstract
Siah2 is a zebrafish homologue of mammalian Siah family. Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TPluciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.
Collapse
Affiliation(s)
- Nami Kang
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Minho Won
- Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland,
USA
| | - Myungchull Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
47
|
Abstract
SIGNIFICANCE The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. RECENT ADVANCES A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. CRITICAL ISSUES Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. FUTURE DIRECTIONS Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration.
Collapse
Affiliation(s)
- Cheng Cheng Zhang
- Division of Cardiology, Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hesham A. Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
48
|
Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 2014; 67:15-24. [PMID: 23700162 DOI: 10.1007/s12013-013-9636-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Siah ubiquitin ligases are members of the RING finger E3 ligases. The Siah E3s are conserved from fly to mammals. Primarily implicated in cellular stress responses, Siah ligases play a key role in hypoxia, through the regulation of HIF-1α transcription stability and activity. Concomitantly, physiological conditions associated with varying oxygen tension often highlight the importance of Siah, as seen in cancer and neurodegenerative disorders. Notably, recent studies also point to the role of these ligases in fundamental processes including DNA damage response, cellular organization and polarity. This review summarizes the current understanding of upstream regulators and downstream effectors of Siah.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
49
|
Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 2014; 19:285-92. [PMID: 24506869 PMCID: PMC3920584 DOI: 10.1016/j.cmet.2013.11.022] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/07/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022]
Abstract
Recent reports have identified a phenomenon by which hypoxia shifts glutamine metabolism from oxidation to reductive carboxylation. We now identify the mechanism by which HIF-1 activation results in a dramatic reduction in the activity of the key mitochondrial enzyme complex α ketoglutarate dehydrogenase (αKGDH). HIF-1 activation promotes SIAH2 targeted ubiquitination and proteolysis of the 48 kDa splice variant of the E1 subunit of the αKGDH complex (OGDH2). Knockdown of SIAH2 or mutation of the ubiquitinated lysine residue on OGDH2 (336KA) reverses the hypoxic drop in αKGDH activity, stimulates glutamine oxidation, and reduces glutamine-dependent lipid synthesis. 336KA OGDH2-expressing cells require exogenous lipids or citrate for growth in hypoxia in vitro and fail to grow as model tumors in immunodeficient mice. Reversal of hypoxic mitochondrial function may provide a target for the development of next-generation anticancer agents targeting tumor metabolism.
Collapse
Affiliation(s)
- Ramon C Sun
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, Ohio State University Wexner School of Medicine, Columbus, OH 43210, USA
| | - Nicholas C Denko
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, Ohio State University Wexner School of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
O’Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, Li L, Herlyn M, Villanueva J, Liu Q, Yin X, Widura S, Nelson J, Ruiz N, Camilli TC, Indig FE, Flaherty KT, Wargo JA, Frederick DT, Cooper ZA, Nair S, Amaravadi RK, Schuchter LM, Karakousis GC, Xu W, Xu X, Weeraratna AT. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov 2013; 3:1378-93. [PMID: 24104062 PMCID: PMC3918498 DOI: 10.1158/2159-8290.cd-13-0005] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED An emerging concept in melanoma biology is that of dynamic, adaptive phenotype switching, where cells switch from a highly proliferative, poorly invasive phenotype to a highly invasive, less proliferative one. This switch may hold significant implications not just for metastasis, but also for therapy resistance. We demonstrate that phenotype switching and subsequent resistance can be guided by changes in expression of receptors involved in the noncanonical Wnt5A signaling pathway, ROR1 and ROR2. ROR1 and ROR2 are inversely expressed in melanomas and negatively regulate each other. Furthermore, hypoxia initiates a shift of ROR1-positive melanomas to a more invasive, ROR2-positive phenotype. Notably, this receptor switch induces a 10-fold decrease in sensitivity to BRAF inhibitors. In patients with melanoma treated with the BRAF inhibitor vemurafenib, Wnt5A expression correlates with clinical response and therapy resistance. These data highlight the fact that mechanisms that guide metastatic progression may be linked to those that mediate therapy resistance. SIGNIFICANCE These data show for the fi rst time that a single signaling pathway, the Wnt signaling pathway, can effectively guide the phenotypic plasticity of tumor cells, when primed to do so by a hypoxic microenvironment. Importantly, this increased Wnt5A signaling can give rise to a subpopulation of highly invasive cells that are intrinsically less sensitive to novel therapies for melanoma, and targeting the Wnt5A/ROR2 axis could improve the efficacy and duration of response for patients with melanoma on vemurafenib.
Collapse
Affiliation(s)
- Michael P. O’Connell
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Katie Marchbank
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Marie R. Webster
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Alexander A. Valiga
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Amanpreet Kaur
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Adina Vultur
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Ling Li
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Meenhard Herlyn
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA
| | - Sandy Widura
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Janelle Nelson
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Nivia Ruiz
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| | - Tura C. Camilli
- The National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Fred E. Indig
- The National Institute on Aging, National Institutes of Health, Baltimore, MD
| | | | | | | | | | | | - Ravi K. Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Lynn M. Schuchter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Wei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Xiaowei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ashani T. Weeraratna
- Tumor Metastasis and Microenvironment Program, The Wistar Institute, Philadelphia, PA
| |
Collapse
|