1
|
Aalam SMM, Nguyen LV, Ritting ML, Kannan N. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 2024; 43:639-656. [PMID: 37910295 PMCID: PMC11500829 DOI: 10.1007/s10555-023-10149-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.
Collapse
Affiliation(s)
| | - Long Viet Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Megan L Ritting
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Moise AC, Kay JE, Engelward BP. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo. DNA Repair (Amst) 2022; 120:103419. [DOI: 10.1016/j.dnarep.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
|
3
|
Automated fluorescence intensity and gradient analysis enables detection of rare fluorescent mutant cells deep within the tissue of RaDR mice. Sci Rep 2018; 8:12108. [PMID: 30108260 PMCID: PMC6092416 DOI: 10.1038/s41598-018-30557-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 08/01/2018] [Indexed: 11/08/2022] Open
Abstract
Homologous recombination (HR) events are key drivers of cancer-promoting mutations, and the ability to visualize these events in situ provides important information regarding mutant cell type, location, and clonal expansion. We have previously created the Rosa26 Direct Repeat (RaDR) mouse model wherein HR at an integrated substrate gives rise to a fluorescent cell. To fully leverage this in situ approach, we need better ways to quantify rare fluorescent cells deep within tissues. Here, we present a robust, automated event quantification algorithm that uses image intensity and gradient features to detect fluorescent cells in deep tissue specimens. To analyze the performance of our algorithm, we simulate fluorescence behavior in tissue using Monte Carlo methods. Importantly, this approach reduces the potential for bias in manual counting and enables quantification of samples with highly dense HR events. Using this approach, we measured the relative frequency of HR within a chromosome and between chromosomes and found that HR within a chromosome is more frequent, which is consistent with the close proximity of sister chromatids. Our approach is both objective and highly rapid, providing a powerful tool, not only to researchers interested in HR, but also to many other researchers who are similarly using fluorescence as a marker for understanding mammalian biology in tissues.
Collapse
|
4
|
Kimoto T, Kay JE, Li N, Engelward BP. Recombinant cells in the lung increase with age via de novo recombination events and clonal expansion. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:135-145. [PMID: 28370323 PMCID: PMC5827959 DOI: 10.1002/em.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/29/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Homologous recombination (HR) is a critical DNA repair pathway, which is usually error-free, but can sometimes lead to cancer-promoting mutations. Despite the importance of HR as a driver of mutations, the spontaneous frequency of such mutations has proven difficult to study. To gain insight to location, cell type, and subsequent proliferation of mutated cells, we used the Rosa26 Direct Repeat (RaDR) mice for in situ detection and quantification of recombinant cells in the lung. We developed a method for automated enumeration of recombinant cells in lung tissue using the Metafer 4 slide-scanning platform. The mean spontaneous HR frequencies of the lung tissue in young and aged mice were 2 × 10-6 and 30 × 10-6 , respectively, which is consistent with our previous reports that mutated cells accumulate with age. In addition, by using the capability of Metafer 4 to mark the position of fluorescent cells, we found that recombinant cells from the aged mice formed clusters in the lung tissue, likely due to clonal expansion of a single mutant cell. The recombinant cells primarily consisted of alveolar epithelial type II or club (previously known as Clara) cells, both of which have the potential to give rise to cancer. This approach to tissue image analysis reveals the location and cell types that have undergone HR. Being able to quantify mutant cells in situ within lung tissue opens doors to studies of exposure-induced mutations and clonal expansion, giving rise to new opportunities for understanding how genetic and environmental factors cause tumorigenic mutations. Environ. Mol. Mutagen. 58:135-145, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takafumi Kimoto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jennifer E. Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Na Li
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Block MD4 Level 3, 117597, Singapore
- Singapore-MIT Alliance for Research and Technology, Infectious Diseases Interdisciplinary Group, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602, Singapore
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
5
|
Noda A, Mishima S, Hirai Y, Hamasaki K, Landes RD, Mitani H, Haga K, Kiyono T, Nakamura N, Kodama Y. Progerin, the protein responsible for the Hutchinson-Gilford progeria syndrome, increases the unrepaired DNA damages following exposure to ionizing radiation. Genes Environ 2015; 37:13. [PMID: 27350809 PMCID: PMC4917958 DOI: 10.1186/s41021-015-0018-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Progerin, the protein responsible for the Hutchinson-Gilford Progeria Syndrome (HGPS), is a partially deleted form of nuclear lamin A, and its expression has been suggested as a cause for dysfunctional nuclear membrane and premature senescence. To examine the role of nuclear envelop architecture in regulating cellular aging and DNA repair, we used ionizing radiation to increase the number of DNA double strand breaks (DSBs) in normal and HGPS cells, and analyzed possible relationship between unrepaired DSBs and cellular aging. Results We found that HGPS cells are normal in repairing a major fraction of radiation-induced double strand breaks (M-DSBs)but abnormal to show increased amount of residual unrepaired DSBs (R-DSBs). Such unrepaired DSBs were 2.6 times (CI 95 %: 2.2–3.2) higher than that in normal cells one week after the irradiation, and 1.6 times (CI 95 %: 1.3–1.9) higher even one month after the irradiation. These damages tend to increase as the nuclear envelope become abnormal, a characteristic of both HGPS and normal human cells which undergo replicative senescence. The artificial, enforced over-expression of progerin further impaired the repair of M-DSBs, implying lamin A-associated nuclear membrane has an important role for DNA DSB repair. Introduction of telomerase gene function in HGPS cells reversed such aging phenotypes along with upregulation of lamin B1 and downregulation of progerin, which is a hallmark of young cells. Conclusion We suggest that lamin A- or progerin-associated nuclear envelope is involved in cellular aging associated with DNA damage repair. Electronic supplementary material The online version of this article (doi:10.1186/s41021-015-0018-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asao Noda
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| | - Shuji Mishima
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| | - Yuko Hirai
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| | - Kanya Hamasaki
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| | - Reid D Landes
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Sciences, The University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8572 Japan
| | - Kei Haga
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Nori Nakamura
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| | - Yoshiaki Kodama
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan
| |
Collapse
|
6
|
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 2015; 11:e1004901. [PMID: 25647331 PMCID: PMC4372043 DOI: 10.1371/journal.pgen.1004901] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022] Open
Abstract
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. People with chronic inflammatory conditions have a markedly increased risk for cancer. In addition, many cancers have an inflammatory microenvironment that promotes tumor growth. Here, we show that inflammatory infiltration synergizes with tissue regeneration to induce DNA sequence rearrangements in vivo. Chronically inflamed issues that are continuously regenerating are thus at an increased risk for mutagenesis and malignant transformation. Further, rapidly dividing tumor cells in an inflammatory microenvironment can also acquire mutations, which have been shown to contribute to drug resistance and disease recurrence. Finally, inflammation-induced tissue regeneration sensitizes tissues to DNA damaging environmental exposures and chemotherapeutics. The work described here thus increases our understanding of how inflammation leads to genetic changes that drive cancer formation and recurrence.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
7
|
Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 2014; 10:e1004299. [PMID: 24901438 PMCID: PMC4046920 DOI: 10.1371/journal.pgen.1004299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. Cancer is a disease of the genome, caused by accumulated genetic changes, such as point mutations and large-scale sequence rearrangements. Homologous recombination (HR) is a critical DNA repair pathway. While generally accurate, HR between misaligned sequences or between homologous chromosomes can lead to insertions, deletions, and loss of heterozygosity, all of which are known to promote cancer. Indeed, most cancers harbor sequence changes caused by HR, and genetic and environmental conditions that induce or suppress HR are often carcinogenic. To enable studies of HR in vivo, we created the Rosa26 Direct Repeat-Green Fluorescent Protein (RaDR-GFP) mice that carry an integrated transgenic recombination reporter targeted to the ubiquitously expressed Rosa26 locus. Being able to detect recombinant cells by fluorescence reveals that the frequency of recombination is highly variable among tissues. Furthermore, new recombination events accumulate over time, which contributes to our understanding of why our risk for cancer increases with age. This mouse model provides new understanding of this important DNA repair pathway in vivo, and also enables future studies of genetic, environmental and physiological factors that impact the risk of HR-induced sequence rearrangements in vivo.
Collapse
|
8
|
Noda A, Hirai Y, Hamasaki K, Mitani H, Nakamura N, Kodama Y. Unrepairable DNA double-strand breaks that are generated by ionising radiation determine the fate of normal human cells. J Cell Sci 2012; 125:5280-7. [PMID: 22899723 DOI: 10.1242/jcs.101006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
After an exposure to ionising radiation, cells can quickly repair damage to their genomes; however, a few unrepairable DNA double-strand breaks (DSBs) emerge in the nucleus in a prolonged culture and perpetuate as long as the culture continues. These DSBs may be retained forever in cells such as non-dividing ageing tissues, which are resistant to apoptosis. We show that such unrepairable DSBs, which had been advocated by the classical target theory as the 'radiation hit', could account for permanent growth arrest and premature senescence. The unrepairable DSBs build up with repeated irradiation, which accounts for an accumulated dose. Because these DSBs tend to be paired, we propose that the untethered and 'torn-off' molecular structures at the broken ends of the DNA result in an alteration of chromatin structure, which protects the ends of the DNA from genomic catastrophe. Such biochemical responses are important for cell survival but may cause gradual tissue malfunction, which could lead to the late effects of radiation exposure. Thus, understanding the biology of unrepairable damage will provide new insights into the long-term effects of radiation.
Collapse
Affiliation(s)
- Asao Noda
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-Ku, Hiroshima 732-0815, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Wiktor-Brown DM, Sukup-Jackson MR, Fakhraldeen SA, Hendricks CA, Engelward BP. p53 null fluorescent yellow direct repeat (FYDR) mice have normal levels of homologous recombination. DNA Repair (Amst) 2011; 10:1294-9. [PMID: 21993421 DOI: 10.1016/j.dnarep.2011.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 01/16/2023]
Abstract
The tumor suppressor p53 is a transcription factor whose function is critical for maintaining genomic stability in mammalian cells. In response to DNA damage, p53 initiates a signaling cascade that results in cell cycle arrest, DNA repair or, if the damage is severe, programmed cell death. In addition, p53 interacts with repair proteins involved in homologous recombination. Mitotic homologous recombination (HR) plays an essential role in the repair of double-strand breaks (DSBs) and broken replication forks. Loss of function of either p53 or HR leads to an increased risk of cancer. Given the importance of both p53 and HR in maintaining genomic integrity, we analyzed the effect of p53 on HR in vivo using Fluorescent Yellow Direct Repeat (FYDR) mice as well as with the sister chromatid exchange (SCE) assay. FYDR mice carry a direct repeat substrate in which an HR event can yield a fluorescent phenotype. Here, we show that p53 status does not significantly affect spontaneous HR in adult pancreatic cells in vivo or in primary fibroblasts in vitro when assessed using the FYDR substrate and SCEs. In addition, primary fibroblasts from p53 null mice do not show increased susceptibility to DNA damage-induced HR when challenged with mitomycin C. Taken together, the FYDR assay and SCE analysis indicate that, for some tissues and cell types, p53 status does not greatly impact HR.
Collapse
Affiliation(s)
- Dominika M Wiktor-Brown
- Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, 16-743, Cambridge, MA 02139, United States
| | | | | | | | | |
Collapse
|
10
|
Klein AM, Simons BD. Universal patterns of stem cell fate in cycling adult tissues. Development 2011; 138:3103-11. [DOI: 10.1242/dev.060103] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cycling tissues that exhibit high turnover, tissue maintenance and repair are coordinated by stem cells. But, how frequently stem cells are replaced following differentiation, aging or injury remains unclear. By drawing together the results of recent lineage-tracing studies, we propose that tissue stem cells are routinely lost and replaced in a stochastic manner. We show that stem cell replacement leads to neutral competition between clones, resulting in two characteristic and recurring patterns of clone fate dynamics, which provide a unifying framework for interpreting clone fate data and for measuring rates of stem cell loss and replacement in vivo. Thus, we challenge the concept of the stem cell as an immortal, slow-cycling, asymmetrically dividing cell.
Collapse
Affiliation(s)
- Allon M. Klein
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Benjamin D. Simons
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/CR-UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
11
|
Niu Y, Wang H, Wiktor-Brown D, Rugo R, Shen H, Huq MS, Engelward B, Epperly M, Greenberger JS. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy. Radiat Res 2010; 173:453-61. [PMID: 20334517 PMCID: PMC2872095 DOI: 10.1667/rr1763.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo.
Collapse
Affiliation(s)
- Yunyun Niu
- Departments of Radiation Oncology and Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Epperly MW, Rugo R, Cao S, Wang H, Franicola D, Goff JP, Shen H, Zhang X, Wiktor-Brown D, Engelward BP, Greenberger JS. Investigation of the effects of aging on homologous recombination in long-term bone marrow cultures. In Vivo 2009; 23:669-677. [PMID: 19779099 PMCID: PMC2916687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescent yellow direct repeat (FYDR) mice carry a transgenic reporter for homologous recombination (HR) and have been used to reveal an age-dependent increase in HR in the pancreas. An established in vitro model system for accelerated aging of the marrow is the mouse long-term bone marrow culture (LTBMC) system. To determine whether the FYDR system, in which an HR event can lead to a fluorescent cell, can be used to study the effects of aging in LTBMCs, clonally expanded hematopoietic and marrow stromal cells in FYDR, positive control FYDR-Recombined (FYDR-Rec), and negative control wild-type C57BL/6NHsd (WT) LTBMCs were analysed. All groups of cultures demonstrated equivalent parameters of continuous hematopoiesis including generation of multilineage colony forming CFU-GM progenitor cells for over 22 weeks and age associated senescence of hematopoiesis. Results indicate that low expression of the FYDR transgene in bone marrow cells in vivo and in vitro prevents the use of the FYDR mice to study rare combination events in bone marrow. Using an alternative approach for detecting HR, namely the sister chromatid exchange (SCE) assay, a statistically significant increase in the number of SCEs per chromosome was observed in adherent cells subcultured from 20-week-compared to 4-week-old LTBMCs. These data suggest that adherent marrow stromal cells from LTBMCs become increasingly susceptible to HR events during aging.
Collapse
Affiliation(s)
- Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Rebecca Rugo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Shaonan Cao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Julie P. Goff
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Hongmei Shen
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Dominika Wiktor-Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
13
|
Kwon HS, Nam YS, Wiktor-Brown DM, Engelward BP, So PTC. Quantitative morphometric measurements using site selective image cytometry of intact tissue. J R Soc Interface 2009; 6 Suppl 1:S45-57. [PMID: 19049958 DOI: 10.1098/rsif.2008.0431.focus] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Site selective two-photon tissue image cytometry has previously been successfully applied to measure the number of rare cells in three-dimensional tissue specimens up to cubic millimetres in size. However, the extension of this approach for high-throughput quantification of cellular morphological states has not been demonstrated. In this paper, we report the use of site-selective tissue image cytometry for the study of homologous recombination (HR) events during cell division in the pancreas of transgenic mice. Since HRs are rare events, recombinant cells distribute sparsely inside the organ. A detailed measurement throughout the whole tissue is thus not practical. Instead, the site selective two-photon tissue cytometer incorporates a low magnification, wide field, one-photon imaging subsystem that rapidly identifies regions of interest containing recombinant cell clusters. Subsequently, high-resolution three-dimensional assays based on two-photon microscopy can be performed only in these regions of interest. We further show that three-dimensional morphology extraction algorithms can be used to analyse the resultant high-resolution two-photon image stacks providing information not only on the frequency and the distribution of these recombinant cell clusters and their constituent cells, but also on their morphology.
Collapse
Affiliation(s)
- Hyuk-Sang Kwon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|