1
|
Goulding AN, Meeks K, Shay L, Casey S, Applegarth C, McKinney J. Antiretroviral Therapy in Pregnancy: A 2023 Review of the Literature. Curr HIV/AIDS Rep 2024; 21:1-10. [PMID: 38277098 PMCID: PMC11095844 DOI: 10.1007/s11904-024-00688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW Selection of antiretroviral therapy during pregnancy must consider maternal physiology and resulting pharmacokinetic changes in pregnancy, resistance and efficacy profiles, tolerability and frequency of adverse effects, teratogenicity, and maternal, neonatal, and pregnancy outcomes. The objective of this review is to summarize the underlying data that informs the current clinical perinatal guidelines in the USA. RECENT FINDINGS Data now supports the use of dolutegravir at all stages of pregnancy with no significant increase in neural tube defects. Safety and pharmacokinetic data on newer antiretroviral medications in pregnancy continue to lag behind the general population. While there are multiple safety and tolerability concerns with older regimens, there are now multiple options of regimens that are highly efficacious and have good safety data in pregnancy. Most pregnant patients who are virally suppressed on a well-tolerated regimen are able to safely continue those medications during pregnancy.
Collapse
Affiliation(s)
- Alison N Goulding
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Kasey Meeks
- School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Lena Shay
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sarah Casey
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Colton Applegarth
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Jennifer McKinney
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Biryukov M, Ustyantsev K. Origin and Evolution of Plant Long Terminal Repeat Retrotransposons with Additional Ribonuclease H. Genome Biol Evol 2023; 15:evad161. [PMID: 37697050 PMCID: PMC10508981 DOI: 10.1093/gbe/evad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Retroviruses originated from long terminal repeat retrotransposons (LTR-RTs) through several structural adaptations. One such modification was the arrangement of an additional ribonuclease H (aRH) domain next to native RH, followed by degradation and subfunctionalization of the latter. We previously showed that this retrovirus-like structure independently evolved in Tat LTR-RTs in flowering plants, proposing its origin from sequential rearrangements of ancestral Tat structures identified in lycophytes and conifers. However, most nonflowering plant genome assemblies were not available at that time, therefore masking the history of aRH acquisition by Tat and challenging our hypothesis. Here, we revisited Tat's evolution scenario upon the aRH acquisition by covering most of the extant plant phyla. We show that Tat evolved and obtained aRH in an ancestor of land plants. Importantly, we found the retrovirus-like structure in clubmosses, hornworts, ferns, and gymnosperms, suggesting its ancient origin, broad propagation, and yet-to-be-understood benefit for the LTR-RTs' adaptation.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Ustyantsev
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
3
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
4
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
5
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Wang Z, Zhang J, Li F, Ji X, Liao L, Ma L, Xing H, Feng Y, Li D, Shao Y. Drug resistance-related mutations T369V/I in the connection subdomain of HIV-1 reverse transcriptase severely impair viral fitness. Virus Res 2017; 233:8-16. [PMID: 28279801 DOI: 10.1016/j.virusres.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/22/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Fitness is a key parameter in the measurement of transmission capacity of individual drug-resistant HIV. Drug-resistance related mutations (DRMs) T369V/I and A371V in the connection subdomain (CN) of reverse transcriptase (RT) occur at higher frequencies in the individuals experiencing antiretroviral therapy failure. Here, we evaluated the effects of T369V/I and A371V on viral fitness, in the presence or in the absence of thymidine analogue resistance-associated mutations (TAMs) and assessed the effect of potential RT structure-related mechanism on change in viral fitness. Mutations T369V/I, A371V, alone or in combination with TAMs were introduced into a modified HIV-1 infectious clone AT1 by site-directed mutagenesis. Then, experiments on mutant and wild-type virus AT2 were performed separately using a growth-competition assay, and then the relative fitness was calculated. Structural analysis of RT was conducted using Pymol software. Results showed that T369V/I severely impaired the relative virus fitness, and A371V compensated for the viral fitness reduction caused by TAMs. Structural modeling of RT suggests that T369V/I substitutions disrupt powerful hydrogen bonds formed by T369 and V365 in p51 and p66. This study indicates that the secondary DRMs within CN might efficiently damage viral fitness, and provides valuable information for clinical surveillance and prevention of HIV-1 strains carrying these DRMs.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| | - Junli Zhang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Fan Li
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xiaolin Ji
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Lingjie Liao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Liying Ma
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Hui Xing
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yi Feng
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Dan Li
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yiming Shao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| |
Collapse
|
7
|
Schneider A, Schweimer K, Rösch P, Wöhrl BM. AZT resistance alters enzymatic properties and creates an ATP-binding site in SFVmac reverse transcriptase. Retrovirology 2015; 12:21. [PMID: 25808094 PMCID: PMC4359774 DOI: 10.1186/s12977-015-0147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replication of simian foamy virus from macaques can be inhibited by the nucleoside reverse transcriptase inhibitor azidothymidine (AZT, zidovudine). Four substitutions in the protease-reverse transcriptase (PR-RT) protein (K211I, I224T, S345T, E350K) are necessary to obtain highly AZT resistant and fully replication competent virus. AZT resistance is based on the excision of the incorporated AZTMP in the presence of ATP. I224T is a polymorphism which is not essential for AZT resistance per se, but is important for regaining efficient replication of the resistant virus. RESULTS We constructed PR-RT enzymes harboring one to four amino acid substitutions to analyze them biochemically and to determine their ability to remove the incorporated AZTMP. S345T is the only single substitution variant exhibiting significant AZTMP excision activity. Although K211I alone showed no AZTMP excision activity, excision efficiency doubled when K211I was present in combination with S345T and E350K. K211I also decreased nucleotide binding affinity and increased fidelity. NMR titration experiments revealed that a truncated version of the highly AZT resistant mt4 variant, comprising only the fingers-palm subdomains was able to bind ATP with a KD-value of ca. 7.6 mM, whereas no ATP binding could be detected in the corresponding wild type protein. We could show by NMR spectroscopy that S345T is responsible for ATP binding, probably by making a tryptophan residue accessible. CONCLUSION Although AZT resistance in SFVmac is based on excision of the incorporated AZTMP like in HIV-1, the functions of the resistance substitutions in SFVmac PR-RT appear to be different. No mutation resulting in an aromatic residue like F/Y215 in HIV, which is responsible for π-π-stacking interactions with ATP, is present in SFVmac. Instead, S345T is responsible for creating an ATP binding site, probably by making an already existing tryptophan more accessible, which in turn can interact with ATP. This is in contrast to HIV-1 RT, in which an ATP binding site is present in the WT RT but differs from that of the AZT resistant enzyme.
Collapse
|
8
|
Inhibition of the DNA polymerase and RNase H activities of HIV-1 reverse transcriptase and HIV-1 replication by Brasenia schreberi (Junsai) and Petasites japonicus (Fuki) components. J Nat Med 2015; 69:432-40. [PMID: 25663480 DOI: 10.1007/s11418-015-0885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/31/2014] [Indexed: 01/22/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) possesses two distinct enzymatic activities: those of RNA- and DNA-dependent DNA polymerases and RNase H. In the current HIV-1 therapy, all HIV-1 RT inhibitors inhibit the activity of DNA polymerase, but not that of RNase H. We previously reported that ethanol and water extracts of Brasenia schreberi (Junsai) inhibited the DNA polymerase activity of HIV-1 RT [Hisayoshi et al. (2014) J Biol Macromol 14:59-65]. In this study, we screened 43 edible plants and found that ethanol and water extracts of Brasenia schreberi and water extract of Petasites japonicus strongly inhibit not only the activity of DNA polymerase to incorporate dTTP into poly(rA)-p(dT)15 but also the activity of RNase H to hydrolyze the RNA strand of an RNA/DNA hybrid. In addition, these three extracts inhibit HIV-1 replication in human cells, with EC50 values of 1-2 µg/ml. These results suggest that Brasenia schreberi and Petasites japonicus contain substances that block HIV-1 replication by inhibiting the DNA polymerase activity and/or RNase H activity of HIV-1 RT.
Collapse
|
9
|
Zhang XM, Wu H, Zhang Q, Lau TCK, Chu H, Chen ZW, Jin DY, Zheng BJ. A novel mutation, D404N, in the connection subdomain of reverse transcriptase of HIV-1 CRF08_BC subtype confers cross-resistance to NNRTIs. J Antimicrob Chemother 2015; 70:1381-90. [PMID: 25637519 DOI: 10.1093/jac/dku565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Growing evidence suggests that mutations in the connection domain of the HIV-1 reverse transcriptase (RT) can contribute to viral resistance to RT inhibitors. This work was designed to determine the effects of a novel mutation, D404N, in the connection subdomain of RT of HIV-1 CRF08_BC subtype on drug resistance, viral replication capacity (RC) and RT activity. METHODS Mutation D404N, alone or together with the other reported mutations, was introduced into an HIV-1 CRF08_BC subtype infectious clone by site-directed mutagenesis. Viral susceptibility to nine RT inhibitors, viral RC and the DNA polymerase activity of viral RT of the constructed virus mutants were investigated. A modelling study using the server SWISS-MODEL was conducted to explore the possible structure-related drug resistance mechanism of the mutation D404N. RESULTS Single mutations D404N and H221Y conferred low-level resistance to nevirapine, efavirenz, rilpivirine and zidovudine. Double mutations Y181C/D404N and Y181C/H221Y significantly reduced susceptibility to NNRTIs. The most pronounced resistance to NNRTIs was observed with the triple mutation Y181C/D404N/H221Y. Virus containing D404N as the only mutation displayed ∼50% RC compared with the WT virus. The modelling study suggested that the D404N mutation might abolish the hydrogen bonds between residues 404 and K30 in p51 or K431 in p66, leading to impaired RT subunit structure and enhanced drug resistance. CONCLUSIONS These results indicate that D404N is a novel NNRTI-associated mutation in the HIV-1 subtype CRF08_BC and provides information valuable for the monitoring of clinical RTI resistance.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Hao Wu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Qiwei Zhang
- Biosafety Level-3 Laboratory, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Zhi-Wei Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dong-Yan Jin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Bo-Jian Zheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
10
|
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Mol Biol Evol 2015; 32:1197-207. [PMID: 25605791 PMCID: PMC4408406 DOI: 10.1093/molbev/msv008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Alexander Blinov
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
|
12
|
Gupta RK, Van de Vijver DAMC, Manicklal S, Wainberg MA. Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: from treatment to prevention. Retrovirology 2013; 10:82. [PMID: 23902855 PMCID: PMC3733946 DOI: 10.1186/1742-4690-10-82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/26/2013] [Indexed: 12/24/2022] Open
Abstract
The HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has significant economic, social and human costs and prevention efforts are now as great a priority as global antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the first licensed class of ART, have been at the forefront of treatment and prevention of mother to child transmission over the past two decades. Now, their use in adult prevention is being extensively investigated. We describe two approaches: treatment as prevention (TasP) - the use of combination ART (2NRTI and 1NNRTI) following HIV diagnosis to limit transmission and pre-exposure prophylaxis (PrEP) –the use of single or dual oral agents prior to sexual exposure. Prevention of mother-to-child transmission using NRTI has been highly successful, though does not involve sustained use of NRTI to limit transmission. Despite theoretical and preliminary support for TasP and PrEP, data thus far indicate that adherence, retention in care and late diagnosis are the major barriers to their successful, sustained implementation. Future advances in drug technologies will be needed to overcome the issue of drug adherence, through development of drugs that involve both less frequent dosing as well as reduced toxicity, possibly through specific targeting of infected cells.
Collapse
Affiliation(s)
- Ravindra K Gupta
- Division of Infection and Immunity, University College, 90 Gower St, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
13
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 2013; 98:93-120. [PMID: 23403210 DOI: 10.1016/j.antiviral.2013.01.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Delviks-Frankenberry KA, Lengruber RB, Santos AF, Silveira JM, Soares MA, Kearney MF, Maldarelli F, Pathak VK. Connection subdomain mutations in HIV-1 subtype-C treatment-experienced patients enhance NRTI and NNRTI drug resistance. Virology 2013; 435:433-41. [PMID: 23068886 PMCID: PMC3534945 DOI: 10.1016/j.virol.2012.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/31/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022]
Abstract
Mutations in the connection subdomain (CN) and RNase H domain (RH) of HIV-1 reverse transcriptase (RT) from subtype B-infected patients enhance nucleoside and nonnucleoside RT inhibitor (NRTI and NNRTI) resistance by affecting the balance between polymerization and RNase H activity. To determine whether CN mutations in subtype C influence drug sensitivity, single genome sequencing was performed on Brazilian subtype C-infected patients failing RTI therapy. CN mutations identified were similar to subtype B, including A376S, A400T, Q334D, G335D, N348I, and A371V, and increased AZT resistance in the presence of thymidine analog mutations. CN mutations also enhanced NNRTI resistance in the presence of classical NNRTI mutations: etravirine resistance was enhanced 6- to 11-fold in the presence of L100I/K103N/Y181C. These results indicate that selection of CN mutations in treatment-experienced patients also occurs in subtype-C-infected patients and are likely to provide valuable information in predicting clinical RTI resistance.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Renan B. Lengruber
- Laboratório de Virologia Humana, Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre F. Santos
- Laboratório de Virologia Humana, Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jussara M. Silveira
- Faculty of Medicine, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo A. Soares
- Laboratório de Virologia Humana, Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Mary F. Kearney
- Virology Core Facility, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Frank Maldarelli
- Host-Virus Interaction Branch, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| |
Collapse
|
15
|
Lapkouski M, Tian L, Miller JT, Le Grice SFJ, Yang W. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol 2013; 20:230-236. [PMID: 23314251 PMCID: PMC3973182 DOI: 10.1038/nsmb.2485] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
Abstract
Structures of type-1 human immunodeficiency virus (HIV-1) reverse transcriptase (RT) have been determined in several forms, but only one contains an RNA/DNA hybrid. Here we report three structures of HIV-1 RT complexed with a non-nucleotide RT inhibitor (NNRTI) and an RNA/DNA hybrid. In the presence of an NNRTI, the RNA/DNA structure differs from all prior nucleic acid bound to RT including the RNA/DNA hybrid. The enzyme structure also differs from all previous RT–DNA complexes. As a result, the hybrid has ready access to the RNase H active site. These observations indicate that an RT–nucleic acid complex may adopt two structural states, one competent for DNA polymerization and the other for RNA degradation. RT mutations that confer drug resistance but are distant from the inhibitor-binding sites often map to the unique RT–hybrid interface that undergoes conformational changes between two catalytic states.
Collapse
Affiliation(s)
- Mikalai Lapkouski
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Tian
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer T Miller
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
N348I in HIV-1 reverse transcriptase counteracts the synergy between zidovudine and nevirapine. J Acquir Immune Defic Syndr 2012; 61:153-7. [PMID: 22743599 DOI: 10.1097/qai.0b013e3182657990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The efficacy of regimens that include both zidovudine and nevirapine can be explained by the synergistic interactions between these drugs. N348I in HIV-1 reverse transcriptase confers decreased susceptibility to zidovudine and nevirapine. Here, we demonstrate that N348I reverses the synergistic inhibition of HIV-1 by zidovudine and nevirapine. Also, the efficiency of zidovudine-monophosphate excision in the presence of nevirapine is greater for N348I HIV-1 reverse transcriptase compared with the wild-type enzyme. These data help explain the frequent selection of N348I in regimens that contain zidovudine and nevirapine, and suggest that the selection of N348I should be monitored in resource-limited settings where these drugs are routinely used.
Collapse
|
17
|
Betancor G, Garriga C, Puertas MC, Nevot M, Anta L, Blanco JL, Pérez-Elías MJ, de Mendoza C, Martínez MA, Martinez-Picado J, Menéndez-Arias L, Iribarren JA, Caballero E, Ribera E, Llibre JM, Clotet B, Jaén A, Dalmau D, Gatel JM, Peraire J, Vidal F, Vidal C, Riera M, Córdoba J, López Aldeguer J, Galindo MJ, Gutiérrez F, Álvarez M, García F, Pérez-Romero P, Viciana P, Leal M, Palomares JC, Pineda JA, Viciana I, Santos J, Rodríguez P, Gómez Sirvent JL, Gutiérrez C, Moreno S, Pérez-Olmeda M, Alcamí J, Rodríguez C, del Romero J, Cañizares A, Pedreira J, Miralles C, Ocampo A, Morano L, Aguilera A, Garrido C, Manuzza G, Poveda E, Soriano V. Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy. Retrovirology 2012; 9:68. [PMID: 22889300 PMCID: PMC3468358 DOI: 10.1186/1742-4690-9-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. Results The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10-10) and TAMs (P < 10-3), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. Conclusions Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hachiya A, Marchand B, Kirby KA, Michailidis E, Tu X, Palczewski K, Ong YT, Li Z, Griffin DT, Schuckmann MM, Tanuma J, Oka S, Singh K, Kodama EN, Sarafianos SG. HIV-1 reverse transcriptase (RT) polymorphism 172K suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and non-nucleoside RT inhibitors. J Biol Chem 2012; 287:29988-99. [PMID: 22761416 DOI: 10.1074/jbc.m112.351551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.g. thymidine-associated mutations) and not by discrimination mechanism mutations (e.g. Q151M complex). Moreover, it attenuated resistance to nevirapine or efavirenz imparted by NNRTI mutations. Although 172K favored RT-DNA binding at an excisable pre-translocation conformation, it decreased excision by thymidine-associated mutation-containing RT. 172K affected DNA handling and decreased RT processivity without significantly affecting the k(cat)/K(m) values for dNTP. Surface plasmon resonance experiments revealed that RT(172K) decreased DNA binding by increasing the dissociation rate. Hence, the increased zidovudine susceptibility of RT(172K) results from its increased dissociation from the chain-terminated DNA and reduced primer unblocking. We solved a high resolution (2.15 Å) crystal structure of RT mutated at 172 and compared crystal structures of RT(172R) and RT(172K) bound to NNRTIs or DNA/dNTP. Our structural analyses highlight differences in the interactions between α-helix E (where 172 resides) and the active site β9-strand that involve the YMDD loop and the NNRTI binding pocket. Such changes may increase dissociation of DNA, thus suppressing excision-based NRTI resistance and also offset the effect of NNRTI resistance mutations thereby restoring NNRTI binding.
Collapse
Affiliation(s)
- Atsuko Hachiya
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol 2012; 86:5885-94. [PMID: 22438533 DOI: 10.1128/jvi.06597-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As anti-HIV therapy becomes more widely available in developing nations, it is clear that drug resistance will continue to be a major problem. The related viruses HIV-1 and HIV-2 share many of the same resistance pathways to nucleoside reverse transcriptase inhibitors (NRTIs). However, clinical data suggest that while HIV-1 reverse transcriptase (RT) usually uses an ATP-dependent excision pathway to develop resistance to the nucleoside analog zidovudine (AZT), HIV-2 RT does not appear to use this pathway. We previously described data that suggested that wild-type (WT) HIV-2 RT has a much lower ability to excise AZT monophosphate (AZTMP) than does WT HIV-1 RT and suggested that this is the reason that HIV-2 RT more readily adopts an exclusion pathway against AZT triphosphate (AZTTP), while HIV-1 RT is better able to exploit the ATP-dependent pyrophosphorolysis mechanism. However, we have now done additional experiments, which show that while HIV-1 RT can adopt either an exclusion- or excision-based resistance mechanism against AZT, HIV-2 RT can use only the exclusion mechanism. All of our attempts to make HIV-2 RT excision competent did not produce an AZT-resistant RT but instead yielded RTs that were less able to polymerize than the WT. This suggests that the exclusion pathway is the only pathway available to HIV-2.
Collapse
|
20
|
A role of template cleavage in reduced excision of chain-terminating nucleotides by human immunodeficiency virus type 1 reverse transcriptase containing the M184V mutation. J Virol 2012; 86:5122-33. [PMID: 22379084 DOI: 10.1128/jvi.05767-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to nucleoside reverse transcriptase (RT) inhibitors is conferred on human immunodeficiency virus type 1 through thymidine analogue resistance mutations (TAMs) that increase the ability of RT to excise chain-terminating nucleotides after they have been incorporated. The RT mutation M184V is a potent suppressor of TAMs. In RT containing TAMs, the addition of M184V suppressed the excision of 3'-deoxy-3'-azidothymidine monophosphate (AZTMP) to a greater extent on an RNA template than on a DNA template with the same sequence. The catalytically inactive RNase H mutation E478Q abolished this difference. The reduction in excision activity was similar with either ATP or pyrophosphate as the acceptor substrate. Decreased excision of AZTMP was associated with increased cleavage of the RNA template at position -7 relative to the primer terminus, which led to increased primer-template dissociation. Whether M184V was present or not, RT did not initially bind at the -7 cleavage site. Cleavage at the initial site was followed by RT dissociation and rebinding at the -7 cleavage site, and the dissociation and rebinding were enhanced when the M184V mutation was present. In contrast to the effect of M184V, the K65R mutation suppressed the excision activity of RT to the same extent on either an RNA or a DNA template and did not alter the RNase H cleavage pattern. Based on these results, we propose that enhanced RNase H cleavage near the primer terminus plays a role in M184V suppression of AZT resistance, while K65R suppression occurs through a different mechanism.
Collapse
|
21
|
Brehm JH, Scott Y, Koontz DL, Perry S, Hammer S, Katzenstein D, Mellors JW, Sluis-Cremer N, for the AIDS Clinical Trials Group Study 175 Protocol Team. Zidovudine (AZT) monotherapy selects for the A360V mutation in the connection domain of HIV-1 reverse transcriptase. PLoS One 2012; 7:e31558. [PMID: 22363673 PMCID: PMC3283647 DOI: 10.1371/journal.pone.0031558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background We previously demonstrated in vitro that zidovudine (AZT) selects for A371V in the connection domain and Q509L in ribonuclease H (RNase H) domain of HIV-1 reverse transcriptase (RT) which, together with the thymidine analog mutations D67N, K70R and T215F, confer greater than 100-fold AZT resistance. The goal of the current study was to determine whether AZT monotherapy in HIV-1 infected patients also selects the A371V, Q509L or other mutations in the C-terminal domains of HIV-1 RT. Methodology/Principal Findings Full-length RT sequences in plasma obtained pre- and post-therapy were compared in 23 participants who received AZT monotherapy from the AIDS Clinical Trials Group study 175. Five of the 23 participants reached a primary study endpoint. Mutations significantly associated with AZT monotherapy included K70R (p = 0.003) and T215Y (p = 0.013) in the polymerase domain of HIV-1 RT, and A360V (p = 0.041) in the connection domain of HIV-1 RT. HIV-1 drug susceptibility assays demonstrated that A360V, either alone or in combination with thymidine analog mutations, decreased AZT susceptibility in recombinant viruses containing participant-derived full-length RT sequences or site-directed mutant RT. Biochemical studies revealed that A360V enhances the AZT-monophosphate excision activity of purified RT by significantly decreasing the frequency of secondary RNase H cleavage events that reduce the RNA/DNA duplex length and promote template/primer dissociation. Conclusions The A360V mutation in the connection domain of RT was selected in HIV-infected individuals that received AZT monotherapy and contributed to AZT resistance.
Collapse
Affiliation(s)
- Jessica H. Brehm
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yanille Scott
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Dianna L. Koontz
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Steven Perry
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Scott Hammer
- Columbia University Medical Center, New York, New York, United States of America
| | - David Katzenstein
- Division of Infectious Diseases, Center for AIDS Research, Stanford, California, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | | |
Collapse
|
22
|
In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine. Antimicrob Agents Chemother 2011; 56:751-6. [PMID: 22123692 DOI: 10.1128/aac.05821-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.
Collapse
|
23
|
Altered strand transfer activity of a multiple-drug-resistant human immunodeficiency virus type 1 reverse transcriptase mutant with a dipeptide fingers domain insertion. J Mol Biol 2011; 415:248-62. [PMID: 22100453 DOI: 10.1016/j.jmb.2011.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 11/23/2022]
Abstract
Prolonged highly active anti-retroviral therapy with multiple nucleoside reverse transcriptase inhibitors for the treatment of patients infected with human immunodeficiency virus type 1 (HIV-1) can induce the development of an HIV-1 reverse transcriptase (RT) harboring a dipeptide insertion at the RT fingers domain with a background thymidine analog mutation. This mutation renders viral resistance to multiple nucleoside reverse transcriptase inhibitors. We investigated the effect of the dipeptide fingers domain insertion mutation on strand transfer activity using two clinical RT variants isolated during the pre-treatment and post-treatment of an infected patient, termed pre-drug RT without dipeptide insertion and post-drug RT with Ser-Gly insertion, respectively. First, the post-drug RT displayed elevated strand transfer activity compared to the pre-drug RT, with two different RNA templates. Second, the post-drug RT exhibited less RNA template degradation than the pre-drug RT but higher polymerization-dependent RNase H activity. Third, the post-drug RT had a faster association rate (k(on)) for template binding and a lower equilibrium binding constant K(d) for the template, leading to a template binding affinity tighter than that of the pre-drug RT. The k(off) values for the pre-drug RT and the post-drug RT were similar. Finally, the removal of the dipeptide insertion from the post-drug RT abolished the elevated strand transfer activity and RNase H activity, in addition to the loss of azidothymidine resistance. These biochemical data suggest that the dipeptide insertion elevates strand transfer activity by increasing the interaction of the RT with the RNA donor template, promoting cleavage that generates more invasion sites for the acceptor template during DNA synthesis.
Collapse
|
24
|
Dlamini JN, Hu Z, Ledwaba J, Morris L, Maldarelli FM, Dewar RL, Highbarger HC, Somaroo H, Sangweni P, Follmann DA, Pau AK. Genotypic resistance at viral rebound among patients who received lopinavir/ritonavir-based or efavirenz-based first antiretroviral therapy in South Africa. J Acquir Immune Defic Syndr 2011; 58:304-8. [PMID: 21694608 PMCID: PMC3197956 DOI: 10.1097/qai.0b013e3182278c29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonnucleoside reverse transcriptase inhibitor-drug resistance mutations (DRM) are increasingly reported in Africans failing their first antiretroviral regimen. The Phidisa II trial randomized treatment-naive participants to lopinavir/ritonavir or efavirenz with stavudine + lamivudine or zidovudine + didanosine. We report the prevalence of DRM in subjects who achieved HIV RNA <400 copies per milliliter at 6 months, but subsequently had 2 consecutive HIV RNA >1000 copies per milliliter. Sixty-eight participants fulfilled the inclusion criteria. nonnucleoside reverse transcriptase inhibitor-DRM were found in 17 of 36 (47.2%) efavirenz recipients, and M184V/I mutation in 14 of 40 (35.0%) lamivudine recipients. No protease inhibitor mutation was identified in 38 lopinavir/ritonavir recipients. This is one of the first studies in Africa confirming the paucity of protease inhibitor-associated DRM despite virologic failure.
Collapse
Affiliation(s)
- J Nomthandazo Dlamini
- Office of Clinical Operation, Project Phidisa, South African Military Health Service (SAMHS), Pretoria, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Menéndez-Arias L, Betancor G, Matamoros T. HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Res 2011; 92:139-49. [DOI: 10.1016/j.antiviral.2011.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/25/2022]
|
26
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
27
|
Davis CA, Parniak MA, Hughes SH. The effects of RNase H inhibitors and nevirapine on the susceptibility of HIV-1 to AZT and 3TC. Virology 2011; 419:64-71. [PMID: 21907380 DOI: 10.1016/j.virol.2011.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/04/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022]
Abstract
It was recently proposed that HIV RT mutations that decrease RNase H activity increase zidovudine (AZT) resistance by delaying the degradation of the RNA template, allowing more time for AZTMP excision from the 3' end of the viral DNA. This predicts that suboptimal concentrations of an RNase H Inhibitor (RNHI), which would decrease RNaseH activity, would decrease AZT susceptibility. Conversely, a suboptimal concentration of a nonnucleoside RT inhibitor (NNRTI) would decrease polymerase activity and increase AZT susceptibility. We determined the effect of several RNHIs and an NNRTI (nevirapine) on AZT and lamivudine (3TC) susceptibility with vectors that replicate using WT or AZT resistant RTs. Susceptibility to 3TC, which is not readily excised, did not change significantly. Nevirapine, and most RNHIs tested, had only small effects on the susceptibility of either HIV vector to AZT and 3TC. One RNHI, F0444-0019, increased the IC(50) for AZT for either vector by ~5-fold, which may be a concern.
Collapse
Affiliation(s)
- Caroline A Davis
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
28
|
Mbisa JL, Gupta RK, Kabamba D, Mulenga V, Kalumbi M, Chintu C, Parry CM, Gibb DM, Walker SA, Cane PA, Pillay D. The evolution of HIV-1 reverse transcriptase in route to acquisition of Q151M multi-drug resistance is complex and involves mutations in multiple domains. Retrovirology 2011; 8:31. [PMID: 21569325 PMCID: PMC3113953 DOI: 10.1186/1742-4690-8-31] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/11/2011] [Indexed: 12/04/2022] Open
Abstract
Background The Q151M multi-drug resistance (MDR) pathway in HIV-1 reverse transcriptase (RT) confers reduced susceptibility to all nucleoside reverse transcriptase inhibitors (NRTIs) excluding tenofovir (TDF). This pathway emerges after long term failure of therapy, and is increasingly observed in the resource poor world, where antiretroviral therapy is rarely accompanied by intensive virological monitoring. In this study we examined the genotypic, phenotypic and fitness correlates associated with the development of Q151M MDR in the absence of viral load monitoring. Results Single-genome sequencing (SGS) of full-length RT was carried out on sequential samples from an HIV-infected individual enrolled in ART rollout. The emergence of Q151M MDR occurred in the order A62V, V75I, and finally Q151M on the same genome at 4, 17 and 37 months after initiation of therapy, respectively. This was accompanied by a parallel cumulative acquisition of mutations at 20 other codon positions; seven of which were located in the connection subdomain. We established that fourteen of these mutations are also observed in Q151M-containing sequences submitted to the Stanford University HIV database. Phenotypic drug susceptibility testing demonstrated that the Q151M-containing RT had reduced susceptibility to all NRTIs except for TDF. RT domain-swapping of patient and wild-type RTs showed that patient-derived connection subdomains were not associated with reduced NRTI susceptibility. However, the virus expressing patient-derived Q151M RT at 37 months demonstrated ~44% replicative capacity of that at 4 months. This was further reduced to ~22% when the Q151M-containing DNA pol domain was expressed with wild-type C-terminal domain, but was then fully compensated by coexpression of the coevolved connection subdomain. Conclusions We demonstrate a complex interplay between drug susceptibility and replicative fitness in the acquisition Q151M MDR with serious implications for second-line regimen options. The acquisition of the Q151M pathway occurred sequentially over a long period of failing NRTI therapy, and was associated with mutations in multiple RT domains.
Collapse
Affiliation(s)
- Jean L Mbisa
- Virus Reference Department, Microbiology Services, Colindale, Health Protection Agency, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lengruber RB, Delviks-Frankenberry KA, Nikolenko GN, Baumann J, Santos AF, Pathak VK, Soares MA. Phenotypic characterization of drug resistance-associated mutations in HIV-1 RT connection and RNase H domains and their correlation with thymidine analogue mutations. J Antimicrob Chemother 2011; 66:702-8. [PMID: 21393163 PMCID: PMC3058567 DOI: 10.1093/jac/dkr005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/25/2010] [Accepted: 12/28/2010] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES HIV-1 reverse transcriptase (RT) mutations associated with antiviral drug resistance have been extensively characterized in the enzyme polymerase domain. Recent studies, however, have verified the involvement of the RT C-terminal domains (connection and RNase H) in drug resistance to RT inhibitors. In this work, we have characterized the correlation of recently described C-terminal domain mutations with thymidine analogue mutations (TAMs), as well as their phenotypic impact on susceptibility to zidovudine and nevirapine. METHODS HIV-1 RT sequences from Brazilian patients and from public sequence databases for which the C-terminal RT domains and treatment status were also available were retrieved and analysed for the association of C-terminal mutations and the presence of TAMs and treatment status. Several C-terminal RT mutations previously characterized were introduced by site-directed mutagenesis into an HIV-1 subtype B molecular clone in a wild-type, TAM-1 or TAM-2 pathway context. Mutants were tested for drug susceptibility to the prototypic drugs zidovudine and nevirapine. RESULTS Subtype B-infected patient database analysis showed that mutations N348I, A360V/T, T377M and D488E were found to be selected independently of TAMs, whereas mutations R358K, G359S, A371V, A400T, K451R and K512R increased in frequency with the number of TAMs in a dose-dependent fashion. Phenotypic analysis of C-terminal mutations showed that N348I, T369V and A371V conferred reduced susceptibility to zidovudine in the context of the TAM-1 and/or TAM-2 pathway, and also conferred dual resistance to nevirapine. Other mutations, such as D488E and Q547K, showed TAM-specific enhancement of resistance to zidovudine. Finally, mutation G359S displayed a zidovudine hypersusceptibility phenotype, both per se and when combined with A371V. CONCLUSIONS This study demonstrates that distinct RT C-terminal mutations can act as primary or secondary drug resistance mutations, and are associated in a complex array of phenotypes with RT polymerase domain mutations.
Collapse
Affiliation(s)
- Renan B. Lengruber
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Galina N. Nikolenko
- HIV Drug Resistance Program, National Cancer Institute – Frederick, Frederick, MD 21702, USA
| | - Jessica Baumann
- HIV Drug Resistance Program, National Cancer Institute – Frederick, Frederick, MD 21702, USA
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute – Frederick, Frederick, MD 21702, USA
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Michels I, Staszewski S, Gürtler L, Nisius G, Müller A, Locher L, Doerr HW, Stürmer M. Mutations in the C-terminal region of the HIV-1 reverse transcriptase and their correlation with drug resistance associated mutations and antiviral treatment. Eur J Med Res 2011; 15:415-21. [PMID: 21156400 PMCID: PMC3352185 DOI: 10.1186/2047-783x-15-10-415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE replication of HIV-1 after cell entry is essentially dependent on the reverse transcriptase (RT). Antiretroviral drugs impairing the function of the RT currently aim at the polymerase subunit. One reason for failure of antiretroviral treatment is the evolvement of resistance-associated mutations in the viral genome. For RT inhibitors, almost all identified mutations are located within the polymerase; therefore, general genotyping confines to investigate this subunit. Recently several studies have shown that substitutions within the RNase H and the connection domain increase antiviral drug-resistance in vitro, and some of them are present in patient isolates. AIM the aim of the present study was to investigate the prevalence of these substitutions and their association with mutations in the polymerase domain arising during antiretroviral treatment. MATERIAL AND METHODS we performed genotypic analyzes on seventy-four virus isolates derived from treated and untreated patients, followed at the HIV Centre of the Johann Wolfgang Goethe University Hospital (Frankfurt/Main, Germany). We subsequently ana?lysed the different substitutions in the c-terminal region to evaluate whether there were associations with each other, n-terminal substitutions or with antiretroviral treatment. RESULTS We identified several primer grip substitutions, but almost all of them were located in the connection domain. This is consistent with other in-vivo studies, in which especially the primer grip residues located in the RNase H were unvaried. Furthermore, we identified other substitutions in the connection domain and in the RNase H. Especially E399D seemed to be associated with an antiretroviral treatment and N-terminal resistance-delivering mutations. CONCLUSION some of the identified substitutions were associated with antiviral treatment and drug resistance-associated mutations. Due to the low prevalence of C-terminal mutations and as only a few of them could be associated with antiviral treatment and N-terminal resistance-delivering mutations, we would not recommend routinely testing of the C-terminal RT region.
Collapse
Affiliation(s)
- I Michels
- J.W. Goethe University Hospital, Institute for Med. Virology, Paul Ehrlich Str. 40, 60596 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nikolenko GN, Kotelkin AT, Oreshkova SF, Ilyichev AA. Mechanisms of HIV-1 drug resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Mol Biol 2011. [DOI: 10.1134/s0026893311010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Betancor G, Puertas MC, Nevot M, Garriga C, Martínez MA, Martinez-Picado J, Menéndez-Arias L. Mechanisms involved in the selection of HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with nucleoside analogue therapy failure. Antimicrob Agents Chemother 2010; 54:4799-811. [PMID: 20733040 PMCID: PMC2976120 DOI: 10.1128/aac.00716-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 08/17/2010] [Indexed: 12/15/2022] Open
Abstract
Previous studies showed an increased prevalence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) thumb subdomain polymorphisms Pro272, Arg277, and Thr286 in patients failing therapy with nucleoside analogue combinations. Interestingly, wild-type HIV-1(BH10) RT contains Pro272, Arg277, and Thr286. Here, we demonstrate that in the presence of zidovudine, HIV-1(BH10) RT mutations P272A/R277K/T286A produce a significant reduction of the viral replication capacity in peripheral blood mononuclear cells in both the absence and presence of M41L/T215Y. In studies carried out with recombinant enzymes, we show that RT thumb subdomain mutations decrease primer-unblocking activity on RNA/DNA complexes, but not on DNA/DNA template-primers. These effects were observed with primers terminated with thymidine analogues (i.e., zidovudine and stavudine) and carbovir (the relevant derivative of abacavir) and were more pronounced when mutations were introduced in the wild-type HIV-1(BH10) RT sequence context. RT thumb subdomain mutations increased by 2-fold the apparent dissociation equilibrium constant (K(d)) for RNA/DNA without affecting the K(d) for DNA/DNA substrates. RNase H assays carried out with RNA/DNA complexes did not reveal an increase in the reaction rate or in secondary cleavage events that could account for the decreased excision activity. The interaction of Arg277 with the phosphate backbone of the RNA template in HIV-1 RT bound to RNA/DNA and the location of Thr286 close to the RNA strand are consistent with thumb polymorphisms playing a role in decreasing nucleoside RT inhibitor excision activity on RNA/DNA template-primers by affecting interactions with the template-primer duplex without involvement of the RNase H activity of the enzyme.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Maria C. Puertas
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Nevot
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - César Garriga
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Miguel A. Martínez
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Javier Martinez-Picado
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
33
|
Schuckmann MM, Marchand B, Hachiya A, Kodama EN, Kirby KA, Singh K, Sarafianos SG. The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to nevirapine. J Biol Chem 2010; 285:38700-9. [PMID: 20876531 DOI: 10.1074/jbc.m110.153783] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase (RT) confers clinically significant resistance to both nucleoside and non-nucleoside RT inhibitors (NNRTIs) by mechanisms that are not well understood. We used transient kinetics to characterize the enzymatic properties of N348I RT and determine the biochemical mechanism of resistance to the NNRTI nevirapine (NVP). We demonstrate that changes distant from the NNRTI binding pocket decrease inhibitor binding (increase K(d)(-NVP)) by primarily decreasing the association rate of the inhibitor (k(on-NVP)). We characterized RTs mutated in either p66 (p66(N348I)/p51(WT)), p51 (p66(WT)/p51(N348I)), or both subunits (p66(N348I)/p51(N348I)). Mutation in either subunit caused NVP resistance during RNA-dependent and DNA-dependent DNA polymerization. Mutation in p66 alone (p66(N348I)/p51(WT)) caused NVP resistance without significantly affecting RNase H activity, whereas mutation in p51 caused NVP resistance and impaired RNase H, demonstrating that NVP resistance may occur independently from defects in RNase H function. Mutation in either subunit improved affinity for nucleic acid and enhanced processivity of DNA synthesis. Surprisingly, mutation in either subunit decreased catalytic rates (k(pol)) of p66(N348I)/p51(N348I), p66(N348I)/p51(WT), and p66(WT)/p51(N348I) without significantly affecting affinity for deoxynucleotide substrate (K(d)(-dNTP)). Hence, in addition to providing structural integrity for the heterodimer, p51 is critical for fine tuning catalytic turnover, RNase H processing, and drug resistance. In conclusion, connection subdomain mutation N348I decreases catalytic efficiency and causes in vitro resistance to NVP by decreasing inhibitor binding.
Collapse
Affiliation(s)
- Matthew M Schuckmann
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Tanuma J, Hachiya A, Ishigaki K, Gatanaga H, Lien TTM, Hien ND, Kinh NV, Kaku M, Oka S. Impact of CRF01_AE-specific polymorphic mutations G335D and A371V in the connection subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) on susceptibility to nucleoside RT inhibitors. Microbes Infect 2010; 12:1170-7. [PMID: 20713171 DOI: 10.1016/j.micinf.2010.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Certain mutations in the connection subdomain and RNase H domain of reverse transcriptase (RT) of subtype B HIV-1 contribute to resistance to nucleoside reverse transcriptase inhibitors (NRTIs). However, the impact of non-B subtype polymorphisms in this region on drug resistance remains unclear. In this study, we determined the frequencies of drug resistance mutations of the entire RT in patients with treatment failure from a cohort of Circulating recombinant form (CRF) 01_AE HIV-1-infected patients in Hanoi, Viet Nam. Subsequently, we assessed the impact of CRF01_AE polymorphisms G335D and A371V with or without thymidine analogue mutations (TAMs) on susceptibility to NRTI with recombinant viruses. In 49 patients with treatment failure, resistance mutations to NRTIs in the N-terminal half of RT were observed in 89.8%. In the C-terminal half, G335D (100%), N348I (36.8%), A371V (100%), A376S (5.3%) and A400T (97.4%) were detected, although G335D, A371V and A400T were considered polymorphisms of CRF01_AE. Drug susceptibility showed G335D, A371V, or both did not confer resistance by themselves but conferred significant resistance to NRTIs with TAMs, especially in mutants containing G335D, A371V and TAM type 2. Our results suggest the important role of CRF01_AE polymorphisms in the C-terminal half of RT in drug resistance.
Collapse
Affiliation(s)
- Junko Tanuma
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
36
|
Price H, Asboe D, Pozniak A, Gazzard B, Fearnhill E, Pillay D, Dunn D. Positive and negative drug selection pressures on the N348I connection domain mutation: new insights from in vivo data. Antivir Ther 2010; 15:203-11. [PMID: 20386075 DOI: 10.3851/imp1511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND There is conflicting evidence on specific reverse transcriptase inhibitors to which the N348I mutation in the connection domain of HIV type-1 reverse transcriptase confers resistance. Here, we examined associations between the emergence of N348I and antiretroviral history in a large clinical database. METHODS We analysed 5,353 resistance tests (that were sequenced beyond codon 348) among 2,266 antiretroviral-experienced patients. Associations between N348I and individual antiretroviral drug exposure were estimated using a matched case-control approach. Cases were defined as the first resistance test where N348I was detected; for each case, the 10 closest (in calendar time) N348N tests were selected as controls. Odds ratios (ORs) adjusted for effects of all other drugs were estimated by conditional logistic regression. RESULTS N348I was detected in 198 (8.7%) cases. Drugs that were statistically significantly positively associated with N348I were efavirenz (OR 1.55, 95% confidence interval [CI] 1.08-2.23; P=0.017) and nevirapine (OR 2.06, 95% CI 1.49-2.85; P<0.001). Tenofovir disoproxil fumarate (TDF) was significantly negatively associated (OR 0.27, 95% CI 0.15-0.48; P<0.001) with N348I. Similar findings were observed when the analysis was repeated to include only those tests within 2 years of the resistance test. Effects for zidovudine and stavudine were evident only in an additional analysis, which considered exposure to both drugs jointly within 2 years prior to the resistance test: exposure to zidovudine alone (OR 4.61, 95% CI 1.83-11.61; P<0.001) and exposure to stavudine alone (OR 3.39, 95% CI 1.32-8.71; P=0.011). CONCLUSIONS This is the first clinical evidence to suggest that efavirenz might select for N348I in addition to nevirapine, that stavudine might select for N348I in addition to zidovudine and that TDF might protect against the mutation.
Collapse
Affiliation(s)
- Huw Price
- Chelsea and Westminster NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Delviks-Frankenberry KA, Nikolenko GN, Pathak VK. The "Connection" Between HIV Drug Resistance and RNase H. Viruses 2010; 2:1476-1503. [PMID: 21088701 PMCID: PMC2982141 DOI: 10.3390/v2071476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 11/17/2022] Open
Abstract
Currently, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) are two classes of antiretroviral agents that are approved for treatment of HIV-1 infection. Since both NRTIs and NNRTIs target the polymerase (pol) domain of reverse transcriptase (RT), most genotypic analysis for drug resistance is limited to the first ~300 amino acids of RT. However, recent studies have demonstrated that mutations in the C-terminal domain of RT, specifically the connection subdomain and RNase H domain, can also increase resistance to both NRTIs and NNRTIs. In this review we will present the potential mechanisms by which mutations in the C-terminal domain of RT influence NRTI and NNRTI susceptibility, summarize the prevalence of the mutations in these regions of RT identified to date, and discuss their importance to clinical drug resistance.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA; E-Mails: (K.A.D.-F.); (G.N.N.)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA; E-Mails: (K.A.D.-F.); (G.N.N.)
| |
Collapse
|
38
|
Connection domain mutations in treatment-experienced patients in the OPTIMA trial. J Acquir Immune Defic Syndr 2010; 54:160-6. [PMID: 20130473 DOI: 10.1097/qai.0b013e3181cbd235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine the frequency of mutations in the connection domain (CD) of HIV reverse transcriptase in treatment-experienced patients in the Options in Management with Antiretrovirals trial, their impact on susceptibility to antiretroviral (ARV) drugs, and their impact on virologic outcomes. METHODS Baseline plasma ARV genotypes and inferred resistance phenotypes were obtained. Frequencies of E312Q, Y318F, G333D, G333E, G335C, G335D, N348I, A360I, A360V, V365I, A371V, A376S, and E399G were compared with a treatment-naive population. The association of CD mutations with inferred IC50 fold changes to nucleos(t)ide reverse transcriptase inhibitors was evaluated. Univariate and multivariate analyses examined the association of CD mutations with a >1 log10 per milliliter decrease in HIV viral load after 24 weeks on a new ARV regimen. RESULTS Higher CD mutation rates were seen in Options in Management with Antiretrovirals patients (n = 345) compared with a treatment-naive population. CD mutations were associated with increased inferred IC50 fold changes to abacavir, stavudine, tenofovir, and zidovudine. On univariate analysis, A371V was associated with lack of virologic response, as was having any CD mutation on multivariate analysis. CONCLUSIONS CD mutations are frequent in treatment-experienced populations. They are associated with reduced susceptibility to some nucleos(t)ide reverse transcriptase inhibitors and with a diminished response to ARV therapy.
Collapse
|
39
|
Biondi MJ, Beilhartz GL, McCormick S, Götte M. N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation. J Biol Chem 2010; 285:26966-26975. [PMID: 20530477 DOI: 10.1074/jbc.m110.105775] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drug resistance-associated mutations in HIV-1 reverse transcriptase (RT) can affect the balance between polymerase and ribonuclease H (RNase H) activities of the enzyme. We have recently demonstrated that the N348I mutation in the connection domain causes selective dissociation from RNase H-competent complexes, whereas the functional integrity of the polymerase-competent complex remains largely unaffected. N348I has been associated with resistance to the non-nucleoside RT inhibitor (NNRTI), nevirapine; however, a possible mechanism that links changes in RNase H activity to changes in NNRTI susceptibility remains to be established. To address this problem, we consider recent findings suggesting that NNRTIs may affect the orientation of RT on its nucleic acid substrate and increase RNase H activity. Here we demonstrate that RNase H-mediated primer removal is indeed more efficient in the presence of NNRTIs; however, the N348I mutant enzyme is able to counteract this effect. Efavirenz, a tight binding inhibitor, restricts the influence of the mutation. These findings provide strong evidence to suggest that N348I can thwart the inhibitory effects of nevirapine during initiation of (+)-strand DNA synthesis, which provides a novel mechanism for resistance. The data are in agreement with clinical data, which demonstrate a stronger effect of N348I on susceptibility to nevirapine as compared with efavirenz.
Collapse
Affiliation(s)
- Mia J Biondi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Greg L Beilhartz
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Suzanne McCormick
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Matthias Götte
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
40
|
HIV-1 Ribonuclease H: Structure, Catalytic Mechanism and Inhibitors. Viruses 2010; 2:900-926. [PMID: 21994660 PMCID: PMC3185654 DOI: 10.3390/v2040900] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 11/16/2022] Open
Abstract
Since the human immunodeficiency virus (HIV) was discovered as the etiological agent of acquired immunodeficiency syndrome (AIDS), it has encouraged much research into antiviral compounds. The reverse transcriptase (RT) of HIV has been a main target for antiviral drugs. However, all drugs developed so far inhibit the polymerase function of the enzyme, while none of the approved antiviral agents inhibit specifically the necessary ribonuclease H (RNase H) function of RT. This review provides a background on structure-function relationships of HIV-1 RNase H, as well as an outline of current attempts to develop novel, potent chemotherapeutics against a difficult drug target.
Collapse
|
41
|
Radzio J, Yap SH, Tachedjian G, Sluis-Cremer N. N348I in reverse transcriptase provides a genetic pathway for HIV-1 to select thymidine analogue mutations and mutations antagonistic to thymidine analogue mutations. AIDS 2010; 24:659-67. [PMID: 20160634 DOI: 10.1097/qad.0b013e328336781d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Several nonnucleoside (e.g. Y181C) and nucleoside (e.g. L74V and M184V) resistance mutations in HIV-1 reverse transcriptase are antagonistic toward thymidine analogue mutations (TAMs) that confer zidovudine (ZDV) resistance. The N348I mutation in the connection domain of reverse transcriptase also confers ZDV resistance; however, the mechanisms involved are different from TAMs. In this study, we examined whether N348I compensates for the antagonism of the TAM K70R by Y181C, L74V and M184V. DESIGN AND METHODS The ZDV monophosphate and ribonuclease H activities of recombinant-purified HIV-1 reverse transcriptase-containing combinations of K70R, N348I and Y181C, L74V or M184V were assessed using standard biochemical and antiviral assays. RESULTS As expected, the introduction of the Y181C, L74V or M184V mutations into K70R HIV-1 reverse transcriptase significantly diminished the ATP-mediated ZDV monophosphate excision activity of the enzyme. However, the N348I mutation compensated for this antagonism on RNA/DNA template/primers by significantly decreasing the frequency of secondary ribonuclease H cleavages that reduce the overall efficiency of the excision reaction. CONCLUSION The acquisition of N348I in HIV-1 reverse transcriptase - which can occur early in therapy, oftentimes before TAMs - may provide a simple genetic pathway that allows the virus to select both TAMs and mutations that are antagonistic toward TAMs.
Collapse
|
42
|
A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol 2010; 84:5238-49. [PMID: 20219933 DOI: 10.1128/jvi.01545-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.
Collapse
|
43
|
Acosta-Hoyos AJ, Scott WA. The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance. Viruses 2010; 2:372-394. [PMID: 20523911 PMCID: PMC2879589 DOI: 10.3390/v2020372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/15/2010] [Accepted: 01/25/2010] [Indexed: 01/17/2023] Open
Abstract
Nucleoside reverse transcriptase (RT) inhibitors of HIV block viral replication through the ability of HIV RT to incorporate chain-terminating nucleotide analogs during viral DNA synthesis. Once incorporated, the chain-terminating residue must be removed before DNA synthesis can continue. Removal can be accomplished by the excision activity of HIV RT, which catalyzes the transfer of the 3'-terminal residue on the blocked DNA chain to an acceptor substrate, probably ATP in most infected cells. Mutations of RT that enhance excision activity are the most common cause of resistance to 3'-azido-3'-deoxythymidine (AZT) and exhibit low-level cross-resistance to most other nucleoside RT inhibitors. The resistance to AZT is suppressed by a number of additional mutations in RT, most of which were identified because they conferred resistance to other RT inhibitors. Here we review current understanding of the biochemical mechanisms responsible for increased or decreased excision activity due to these mutations.
Collapse
Affiliation(s)
- Antonio J. Acosta-Hoyos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA; E-Mail: (A.J.A.-H.)
| | - Walter A. Scott
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA; E-Mail: (A.J.A.-H.)
| |
Collapse
|
44
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
45
|
Van Baelen K, Rondelez E, Van Eygen V, Ariën K, Clynhens M, Van den Zegel P, Winters B, Stuyver LJ. A combined genotypic and phenotypic human immunodeficiency virus type 1 recombinant virus assay for the reverse transcriptase and integrase genes. J Virol Methods 2009; 161:231-9. [PMID: 19559730 DOI: 10.1016/j.jviromet.2009.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/09/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
With the approval of the first HIV-1 integrase inhibitor raltegravir and a second one in phase III clinical development (elvitegravir), genotypic and phenotypic resistance assays are required to guide antiretroviral therapy and to investigate treatment failure. In this study, a genotypic and phenotypic recombinant virus assay was validated for determining resistance against integrase inhibitors. The assays are based on the amplification of a region encompassing not only HIV-1 integrase, but also reverse transcriptase and RNAseH. The overall amplification success was 85% (433/513) and increased to 93% (120/129) for samples with a viral load above 3 log(10) copies/ml. Both B and non-B HIV-1 subtypes could be genotyped successfully (93%; 52/56 and 100%; 49/49, respectively) and reproducibly. The phenotypic assay showed a high success rate (96.5%; 139/144) for subtype B (100%; 19/19) and non-B subtypes (92%; 45/49), and was found to be accurate and reproducible as assessed using well-characterized integrase mutants. Using both assays, baseline resistance to raltegravir and elvitegravir in subtype B and non-B HIV-1 strains selected at random was not observed, although integrase polymorphisms were present at varying prevalence. Biological cutoff values were found to be 2.1 and 2.0 for raltegravir and elvitegravir, respectively. In summary, a genotypic and phenotypic integrase resistance assay was validated successfully for accuracy, reproducibility, analytical and clinical sensitivity, and dynamic range.
Collapse
Affiliation(s)
- Kurt Van Baelen
- Virco BVBA, Generaal De Wittelaan L11 B3, Mechelen, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3'-azido-3'-deoxythymidine. J Virol 2009; 83:8502-13. [PMID: 19553318 DOI: 10.1128/jvi.00859-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency virus type 1 (HIV-1) subtype B reverse transcriptase (RT) increase 3'-azido-3'-deoxythymidine (AZT) resistance in the context of thymidine analog mutations (TAMs) by affecting the balance between polymerization and RNase H activity. To determine whether this balance affects drug resistance in other HIV-1 subtypes, recombinant subtype CRF01_AE was analyzed. Interestingly, CRF01_AE containing TAMs exhibited 64-fold higher AZT resistance relative to wild-type B, whereas AZT resistance of subtype B containing the same TAMs was 13-fold higher, which in turn correlated with higher levels of AZT-monophosphate (AZTMP) excision on both RNA and DNA templates. The high level of AZT resistance exhibited by CRF01_AE was primarily associated with the T400 residue in wild-type subtype AE CN subdomain. An A400T substitution in subtype B enhanced AZT resistance, increased AZTMP excision on both RNA and DNA templates, and reduced RNase H cleavage. Replacing the T400 residue in CRF01_AE with alanine restored AZT sensitivity and reduced AZTMP excision on both RNA and DNA templates, suggesting that the T400 residue increases AZT resistance in CRF01_AE at least in part by directly increasing the efficiency of AZTMP excision. These results show for the first time that CRF01_AE exhibits higher levels of AZT resistance in the presence of TAMs and that this resistance is primarily associated with T400. Our results also show that mixing the RT polymerase, CN, and RNase H domains from different subtypes can underestimate AZT resistance levels, and they emphasize the need to develop subtype-specific genotypic and phenotypic assays to provide more accurate estimates of clinical drug resistance.
Collapse
|
47
|
Hachiya A, Shimane K, Sarafianos SG, Kodama EN, Sakagami Y, Negishi F, Koizumi H, Gatanaga H, Matsuoka M, Takiguchi M, Oka S. Clinical relevance of substitutions in the connection subdomain and RNase H domain of HIV-1 reverse transcriptase from a cohort of antiretroviral treatment-naïve patients. Antiviral Res 2009; 82:115-21. [PMID: 19428602 DOI: 10.1016/j.antiviral.2009.02.189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/27/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Some mutations in the connection subdomain of the polymerase domain and in the RNase H domain of HIV-1 reverse transcriptase (RT) have been shown to contribute to resistance to RT inhibitors. However, the clinical relevance of such mutations is not well understood. To address this point we determined the prevalence of such mutations in a cohort of antiretroviral treatment-naïve patients (n=123) and assessed whether these substitutions are associated with drug resistance in vitro and in vivo. We report here significant differences in the prevalence of substitutions among subtype B, and non-subtype B HIV isolates. Specifically, the E312Q, G333E, G335D, V365I, A371V and A376S substitutions were present in 2-6% of subtype B, whereas the G335D and A371V substitutions were commonly observed in 69% and 75% of non-B HIV-1 isolates. We observed a significant decline in the viral loads of patients that were infected with HIV-1 carrying these substitutions and were subsequently treated with triple drug regimens, even in the case where zidovudine (AZT) was included in such regimens. We show here that, generally, such single substitutions at the connection subdomain or RNase H domain have no influence on drug susceptibility in vitro by themselves. Instead, they generally enhance AZT resistance in the presence of excision-enhancing mutations (EEMs, also known as thymidine analogue-associated mutations, TAMs). However, N348I, A376S and Q509L did confer varying amounts of nevirapine resistance by themselves, even in the absence of EEMs. Our studies indicate that several connection subdomain and RNase H domain substitutions typically act as pre-therapy polymorphisms.
Collapse
Affiliation(s)
- Atsuko Hachiya
- AIDS Clinical Center, International Medical Center of Japan, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brehm JH, Mellors JW, Sluis-Cremer N. Mechanism by which a glutamine to leucine substitution at residue 509 in the ribonuclease H domain of HIV-1 reverse transcriptase confers zidovudine resistance. Biochemistry 2008; 47:14020-7. [PMID: 19067547 PMCID: PMC2740331 DOI: 10.1021/bi8014778] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported that zidovudine (AZT) selected for the Q509L mutation in the ribonuclease H (RNase H) domain of HIV-1 reverse transcriptase (RT), which increases resistance to AZT in combination with the thymidine analogue mutations D67N, K70R, and T215F. In the current study, we have defined the mechanism by which Q509L confers AZT resistance by performing in-depth biochemical analyses of wild type, D67N/K70R/T215F and D67N/K70R/T215F/Q509L HIV-1 RT. Our results show that Q509L increases AZT-monophosphate (AZT-MP) excision activity of RT on RNA/DNA template/primers (T/Ps) but not DNA/DNA T/Ps. This increase in excision activity on the RNA/DNA T/P is due to Q509L decreasing a secondary RNase H cleavage event that reduces the RNA/DNA duplex length to 10 nucleotides and significantly impairs the enzyme's ability to excise the chain-terminating nucleotide. Presteady-state kinetic analyses indicate that Q509L does not affect initial rates of the polymerase-directed RNase H activity but only polymerase-independent cleavages that occur after a T/P dissociation event. Furthermore, competition binding assays suggest that Q509L decreases the affinity of the enzyme to bind T/P with duplex lengths less than 18 nucleotides in the polymerase-independent RNase H cleavage mode, while not affecting the enzyme's affinity to bind the same T/P in an AZT-MP excision competent mode. Taken together, this study provides the first mechanistic insights into how a mutation in the RNase H domain of RT increases AZT resistance and highlights how the polymerase and RNase H domains of RT function in concert to confer drug resistance.
Collapse
Affiliation(s)
| | | | - Nicolas Sluis-Cremer
- Corresponding author. University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, S817 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261. Tel: 412 648-8457. Fax: 412 648-8521. E-mail:
| |
Collapse
|
49
|
Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 2008; 385:693-713. [PMID: 19022262 DOI: 10.1016/j.jmb.2008.10.071] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
Abstract
The rapid replication of HIV-1 and the errors made during viral replication cause the virus to evolve rapidly in patients, making the problems of vaccine development and drug therapy particularly challenging. In the absence of an effective vaccine, drugs are the only useful treatment. Anti-HIV drugs work; so far drug therapy has saved more than three million years of life. Unfortunately, HIV-1 develops resistance to all of the available drugs. Although a number of useful anti-HIV drugs have been approved for use in patients, the problems associated with drug toxicity and the development of resistance means that the search for new drugs is an ongoing process. The three viral enzymes, reverse transcriptase (RT), integrase (IN), and protease (PR) are all good drug targets. Two distinct types of RT inhibitors, both of which block the polymerase activity of RT, have been approved to treat HIV-1 infections, nucleoside analogs (NRTIs) and nonnucleosides (NNRTIs), and there are promising leads for compounds that either block the RNase H activity or block the polymerase in other ways. A better understanding of the structure and function(s) of RT and of the mechanism(s) of inhibition can be used to generate better drugs; in particular, drugs that are effective against the current drug-resistant strains of HIV-1.
Collapse
Affiliation(s)
- Stefan G Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|