1
|
Karamivandishi A, Hatami A, Eslami MM, Soleimani M, Izadi N. Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Hum Immunol 2025; 86:111207. [PMID: 39667204 DOI: 10.1016/j.humimm.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Advancements in the field of CAR-T therapy have brought about a revolution in the treatment of numerous types of cancer in the past ten years. However, despite the remarkable success achieved thus far, certain barriers impede the widespread implementation of this therapy such as intricate manufacturing processes and treatment-associated toxicities. As an alternative, chimeric antigen receptor-engineered natural killer cell (CAR-NK) therapy presents a viable opportunity for a simpler and more cost-effective "off-the-shelf" treatment option, which is likely to result in fewer adverse reactions. A total of 71 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science and Scopus. Based on data extracted from articles, we concluded that CAR-NK cell efficiency can vary considerably depending on factors such as tumor model, dosage, CAR generation and expansion method. Furthermore, investigating consequences of utilizing various constructs and generations of CAR-NK cells on their anti-tumor activity examined in this review.
Collapse
Affiliation(s)
- Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Hatami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Masoud Eslami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Neda Izadi
- Research Center for Social Determinants of Health,Research institute for metabolic and obesity disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
3
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
5
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
6
|
Li X, Li W, Xu L, Song Y. Chimeric antigen receptor-immune cells against solid tumors: Structures, mechanisms, recent advances, and future developments. Chin Med J (Engl) 2024; 137:1285-1302. [PMID: 37640679 PMCID: PMC11191032 DOI: 10.1097/cm9.0000000000002818] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Indexed: 08/31/2023] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR)-T cell immunotherapies has led to breakthroughs in the treatment of hematological malignancies. However, their success in treating solid tumors has been limited. CAR-natural killer (NK) cells have several advantages over CAR-T cells because NK cells can be made from pre-existing cell lines or allogeneic NK cells with a mismatched major histocompatibility complex (MHC), which means they are more likely to become an "off-the-shelf" product. Moreover, they can kill cancer cells via CAR-dependent/independent pathways and have limited toxicity. Macrophages are the most malleable immune cells in the body. These cells can efficiently infiltrate into tumors and are present in large numbers in tumor microenvironments (TMEs). Importantly, CAR-macrophages (CAR-Ms) have recently yielded exciting preclinical results in several solid tumors. Nevertheless, CAR-T, CAR-NK, and CAR-M all have their own advantages and limitations. In this review, we systematically discuss the current status, progress, and the major hurdles of CAR-T cells, CAR-NK cells, and CAR-M as they relate to five aspects: CAR structure, therapeutic mechanisms, the latest research progress, current challenges and solutions, and comparison according to the existing research in order to provide a reasonable option for treating solid tumors in the future.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Linping Xu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
7
|
Yu X, Li W, Li Z, Wu Q, Sun S. Influence of Microbiota on Tumor Immunotherapy. Int J Biol Sci 2024; 20:2264-2294. [PMID: 38617537 PMCID: PMC11008264 DOI: 10.7150/ijbs.91771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, P. R. China
| | - Zhi Li
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
8
|
Guo F, Zhang Y, Cui J. Manufacturing CAR-NK against tumors: Who is the ideal supplier? Chin J Cancer Res 2024; 36:1-16. [PMID: 38455373 PMCID: PMC10915637 DOI: 10.21147/j.issn.1000-9604.2024.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cells have emerged as another prominent player in the realm of tumor immunotherapy following CAR-T cells. The unique features of CAR-NK cells make it possible to compensate for deficiencies in CAR-T therapy, such as the complexity of the manufacturing process, clinical adverse events, and solid tumor challenges. To date, CAR-NK products from different allogeneic sources have exhibited remarkable anti-tumor effects on preclinical studies and have gradually been applied in clinical practice. However, each source has advantages and disadvantages. Selecting a suitable source may help maximize CAR-NK cell efficacy and increase the feasibility of clinical transformation. Therefore, this review discusses the development and challenges of CAR-NK cells from different sources to provide a reference for future exploration.
Collapse
Affiliation(s)
- Feifei Guo
- The First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Yi Zhang
- The First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| |
Collapse
|
9
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nat Biomed Eng 2024; 8:132-148. [PMID: 37430157 PMCID: PMC11320892 DOI: 10.1038/s41551-023-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
Engineering cells for adoptive therapy requires overcoming limitations in cell viability and, in the efficiency of transgene delivery, the duration of transgene expression and the stability of genomic integration. Here we report a gene-delivery system consisting of a Sleeping Beauty (SB) transposase encoded into a messenger RNA delivered by an adeno-associated virus (AAV) encoding an SB transposon that includes the desired transgene, for mediating the permanent integration of the transgene. Compared with lentiviral vectors and with the electroporation of plasmids of transposon DNA or minicircle DNA, the gene-delivery system, which we named MAJESTIC (for 'mRNA AAV-SB joint engineering of stable therapeutic immune cells'), offers prolonged transgene expression, as well as higher transgene expression, therapeutic-cell yield and cell viability. MAJESTIC can deliver chimeric antigen receptors (CARs) into T cells (which we show lead to strong anti-tumour activity in vivo) and also transduce natural killer cells, myeloid cells and induced pluripotent stem cells with bi-specific CARs, kill-switch CARs and synthetic T-cell receptors.
Collapse
Affiliation(s)
- Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
11
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
13
|
Ciulean IS, Fischer J, Quaiser A, Bach C, Abken H, Tretbar US, Fricke S, Koehl U, Schmiedel D, Grunwald T. CD44v6 specific CAR-NK cells for targeted immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2023; 14:1290488. [PMID: 38022580 PMCID: PMC10667728 DOI: 10.3389/fimmu.2023.1290488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major challenge for current therapies. CAR-T cells have shown promising results in blood cancers, however, their effectiveness against solid tumors remains a hurdle. Recently, CD44v6-directed CAR-T cells demonstrated efficacy in controlling tumor growth in multiple myeloma and solid tumors such as HNSCC, lung and ovarian adenocarcinomas. Apart from CAR-T cells, CAR-NK cells offer a safe and allogenic alternative to autologous CAR-T cell therapy. In this paper, we investigated the capacity of CAR-NK cells redirected against CD44v6 to execute cytotoxicity against HNSCC. Anti-CD44v6 CAR-NK cells were generated from healthy donor peripheral blood-derived NK cells using gamma retroviral vectors (gRVs). The NK cell transduction was optimized by exploring virus envelope proteins derived from the baboon endogenous virus envelope (BaEV), feline leukemia virus (FeLV, termed RD114-TR) and gibbon ape leukemia virus (GaLV), respectively. BaEV pseudotyped gRVs induced the highest transduction rate compared to RD114-TR and GaLV envelopes as measured by EGFP and surface CAR expression of transduced NK cells. CAR-NK cells showed a two- to threefold increase in killing efficacy against various HNSCC cell lines compared to unmodified, cytokine-expanded primary NK cells. Anti-CD44v6 CAR-NK cells were effective in eliminating tumor cell lines with high and low CD44v6 expression levels. Overall, the improved cytotoxicity of CAR-NK cells holds promise for a therapeutic option for the treatment of HNSCC. However, further preclinical trials are necessary to test in vivo efficacy and safety, as well to optimize the treatment regimen of anti-CD44v6 CAR-NK cells against solid tumors.
Collapse
Affiliation(s)
- Ioana Sonya Ciulean
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Joe Fischer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andrea Quaiser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Christoph Bach
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Regensburg, Germany
| | - Uta Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
14
|
Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer. Immunol Rev 2023; 320:83-99. [PMID: 37491719 DOI: 10.1111/imr.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.
Collapse
Affiliation(s)
- Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Cassandra E Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| |
Collapse
|
15
|
Hojjatipour T, Sharifzadeh Z, Maali A, Azad M. Chimeric antigen receptor-natural killer cells: a promising sword against insidious tumor cells. Hum Cell 2023; 36:1843-1864. [PMID: 37477869 DOI: 10.1007/s13577-023-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Natural killer (NK) cells are a critical component of innate immunity, particularly in initial cancer recognition and inhibition of additional tumor growth or metastasis propagation. NK cells recognize transformed cells without prior sensitization via stimulatory receptors and rapidly eradicate them. However, the protective tumor microenvironment facilitates tumor escaping via induction of an exhaustion state in immune cells, including NK cells. Hence, genetic manipulation of NK cells for specific identification of tumor-associated antigens or a more robust response against tumor cells is a promising strategy for NK cells' tumoricidal augmentation. Regarding the remarkable achievement of engineered CAR-T cells in treating hematologic malignancies, there is evolving interest in CAR-NK cell recruitment in cancer immunotherapy. Innate functionality of NK cells, higher safety, superior in vivo maintenance, and the off-the-shelf potential move CAR-NK-based therapy superior to CAR-T cells treatment. In this review, we have comprehensively discussed the recent genetic manipulations of CAR-NK cell manufacturing regarding different domains of CAR constructs and their following delivery systems into diverse sources of NK cells. Then highlight the preclinical and clinical investigations of CAR-NK cells and examine the current challenges and prospects as an optimistic remedy in cancer immunotherapy.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciecnes, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, 3419759811, Iran.
| |
Collapse
|
16
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
17
|
Kiaei SZF, Nouralishahi A, Ghasemirad M, Barkhordar M, Ghaffari S, Kheradjoo H, Saleh M, Mohammadzadehsaliani S, Molaeipour Z. Advances in natural killer cell therapies for breast cancer. Immunol Cell Biol 2023; 101:705-726. [PMID: 37282729 DOI: 10.1111/imcb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
Breast cancer (BC) is the most common cause of cancer death in women. According to the American Cancer Society's yearly cancer statistics, BC constituted almost 15% of all the newly diagnosed cancer cases in 2022 for both sexes. Metastatic disease occurs in 30% of patients with BC. The currently available treatments fail to cure metastatic BC, and the average survival time for patients with metastatic BC is approximately 2 years. Developing a treatment method that terminates cancer stem cells without harming healthy cells is the primary objective of novel therapeutics. Adoptive cell therapy is a branch of cancer immunotherapy that utilizes the immune cells to attack cancer cells. Natural killer (NK) cells are an essential component of innate immunity and are critical in destroying tumor cells without prior stimulation with antigens. With the advent of chimeric antigen receptors (CARs), the autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes for treating patients with cancer. Here, we describe recent developments in NK and CAR-NK cell immunotherapy, including the biology and function of NK cells, clinical trials, different sources of NK cells and their future perspectives on BC.
Collapse
Affiliation(s)
- Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghasemirad
- Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Barkhordar
- Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| | | | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
19
|
Couto SCF, Kowes A, Aurabi CS, Oliveira TGM, Klinger P, Rocha V. Autologous, allogeneic hematopoietic cell transplantation and CAR-T/NK therapy: what is their real importance in PTCL? Front Oncol 2023; 13:1195759. [PMID: 37711206 PMCID: PMC10498763 DOI: 10.3389/fonc.2023.1195759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
Peripheral T cell lymphoma (PTCL) is a rare and aggressive type of non-Hodgkin's lymphoma that affects mature T cells. This type of cancer is characterized by the abnormal growth of T cells, which can accumulate in the lymph nodes, spleen, bone marrow, and other organs, leading to a variety of symptoms. PTCLs are often difficult to diagnose and treat, and they have a poorer prognosis than other types of lymphoma. However, recent advancements in treatment options, such as targeted therapies have shown promise in improving outcomes for patients with PTCL. Here, we discuss the use of autologous and allogeneic hematopoietic cell transplantation (HCT) as a treatment strategy for patients with PTCL, as well as the recent treatment approaches based on advanced cellular therapy. The current evidence for the use of HCT in PTCL is mainly derived from registry data, retrospective studies, and expert opinion, as randomized trials are limited due to the low incidence and histological heterogeneity of PTCL subtypes.
Collapse
Affiliation(s)
- Samuel C. F. Couto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Fundação Pró-Sangue–Hemocentro de São Paulo, São Paulo, Brazil
| | - Ariel Kowes
- Fundação Pró-Sangue–Hemocentro de São Paulo, São Paulo, Brazil
| | | | - Theo G. M. Oliveira
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Fundação Pró-Sangue–Hemocentro de São Paulo, São Paulo, Brazil
| | - Paulo Klinger
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Fundação Pró-Sangue–Hemocentro de São Paulo, São Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
| |
Collapse
|
20
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
21
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. Therapeutic immune cell engineering with an mRNA : AAV- Sleeping Beauty composite system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532651. [PMID: 36993594 PMCID: PMC10055155 DOI: 10.1101/2023.03.14.532651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Adoptive cell therapy has shown clinical success in patients with hematological malignancies. Immune cell engineering is critical for production, research, and development of cell therapy; however, current approaches for generation of therapeutic immune cells face various limitations. Here, we establish a composite gene delivery system for the highly efficient engineering of therapeutic immune cells. This system, termed MAJESTIC ( m RNA A AV-Sleeping-Beauty J oint E ngineering of S table T herapeutic I mmune C ells), combines the merits of mRNA, AAV vector, and transposon into one composite system. In MAJESTIC, the transient mRNA component encodes a transposase that mediates permanent genomic integration of the Sleeping Beauty (SB) transposon, which carries the gene-of-interest and is embedded within the AAV vector. This system can transduce diverse immune cell types with low cellular toxicity and achieve highly efficient and stable therapeutic cargo delivery. Compared with conventional gene delivery systems, such as lentiviral vector, DNA transposon plasmid, or minicircle electroporation, MAJESTIC shows higher cell viability, chimeric antigen receptor (CAR) transgene expression, therapeutic cell yield, as well as prolonged transgene expression. CAR-T cells generated by MAJESTIC are functional and have strong anti-tumor activity in vivo . This system also demonstrates versatility for engineering different cell therapy constructs such as canonical CAR, bi-specific CAR, kill switch CAR, and synthetic TCR; and for CAR delivery into various immune cells, including T cells, natural killer cells, myeloid cells, and induced pluripotent stem cells.
Collapse
|
22
|
Liu Q, Li J, Zheng H, Yang S, Hua Y, Huang N, Kleeff J, Liao Q, Wu W. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023; 22:28. [PMID: 36750830 PMCID: PMC9903509 DOI: 10.1186/s12943-023-01735-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
In recent decades, immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy are two milestone achievements in clinical immunotherapy. However, both show limited efficacies in most solid neoplasms, which necessitates the exploration of new immunotherapeutic modalities. The failure of CAR-T and immune checkpoint blockade in several solid neoplasms is attributed to multiple factors, including low antigenicity of tumor cells, low infiltration of effector T cells, and diverse mechanisms of immunosuppression in the tumor microenvironment. New adoptive cell therapies have been attempted for solid neoplasms, including TCR-T, CAR-natural killer cells (CAR-NK), and CAR-macrophages (CAR-M). Compared to CAR-T, these new adoptive cell therapies have certain advantages in treating solid neoplasms. In this review, we summarized the 40-year evolution of adoptive cell therapies, then focused on the advances of TCR-T, CAR-NK, and CAR-M in solid neoplasms and discussed their potential clinical applications.
Collapse
Affiliation(s)
- Qiaofei Liu
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jiayi Li
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Huaijin Zheng
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Sen Yang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Yuze Hua
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Nan Huang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jorg Kleeff
- grid.9018.00000 0001 0679 2801Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
23
|
El Ghazzi N, Italiano A, Bay JO, Dougé A. [CAR-T cells development in solid tumors]. Bull Cancer 2023; 110:32-41. [PMID: 36543680 DOI: 10.1016/j.bulcan.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
CAR-T cells have produced very promising results in the field of onco-hematology and have been rapidly approved for marketing in France for several years now. In solid tumors, current results are more disappointing. Indeed, many hurdles come in the way. Tumor vascularization, the strongly immunosuppressive microenvironment, the loss of the target antigen as well as T cell exhaustion are part of the explanation of those results. Hence many researchers are working to develop strategies to counteract these resistance mechanisms. Arming CAR-T cells with BiTEs, with immune checkpoint inhibitors or with interleukins seem to be effective ways to improve antitumor efficacy. Other strategies including vaccines association or local delivery of the CAR-T cells look very promising. Many Phase I studies are investigating these new strategies and are expected to improve the previous results obtained to date in this area.
Collapse
Affiliation(s)
- Nathan El Ghazzi
- CHU Gabriel Montpied, service d'oncologie médicale, Clermont-Ferrand, France; Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Italiano
- Institut Bergonié, unité de phases précoces, Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Jacques-Olivier Bay
- CHU Gabriel Montpied, service d'oncologie médicale, Clermont-Ferrand, France; Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aurore Dougé
- CHU Gabriel Montpied, service d'oncologie médicale, Clermont-Ferrand, France; Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
24
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
25
|
Laurent PA, Morel D, Meziani L, Depil S, Deutsch E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 2022; 12:2158013. [PMID: 36567802 PMCID: PMC9788698 DOI: 10.1080/2162402x.2022.2158013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | - Daphne Morel
- Drug Development Department (D.I.T.E.P), Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| |
Collapse
|
26
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
27
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
28
|
Assessment of T Cell Receptor Complex Expression Kinetics in Natural Killer Cells. Curr Issues Mol Biol 2022; 44:3859-3871. [PMID: 36135177 PMCID: PMC9497757 DOI: 10.3390/cimb44090265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Among the polypeptides that comprise the T cell receptor (TCR), only CD3ζ is found in Natural Killer (NK) cells, where it transmits signals from activating receptors such as CD16 and NKp46. NK cells are potent immune cells that recognize target cells through germline-encoded activating and inhibitory receptors. Genetic engineering of NK cells enables tumor-specific antigen recognition and, thus, has a significant promise in adoptive cell therapy. Ectopic expression of engineered TCR components in T cells leads to mispairing with the endogenous components, making a knockout of the endogenous TCR necessary. To circumvent the mispairing of TCRs or the need for knockout technologies, TCR complex expression has been studied in NK cells. In the current study, we explored the cellular processing of the TCR complex in NK cells. We observed that in the absence of CD3 subunits, the TCR was not expressed on the surface of NK cells and vice versa. Moreover, a progressive increase in surface expression of TCR between day three and day seven was observed after transduction. Interestingly, the TCR complex expression in NK92 cells was enhanced with a proteasome inhibitor (bortezomib) but not a lysosomal inhibitor (chloroquine). Additionally, we observed that the TCR complex was functional in NK92 cells as measured by estimating CD107a as a degranulation marker, IFNγ cytokine production, and killing assays. NK92 cells strongly degranulated when CD3ε was engaged in the presence of TCR, but not when only CD3 was overexpressed. Therefore, our findings encourage further investigation to unravel the mechanisms that prevent the surface expression of the TCR complex.
Collapse
|
29
|
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110:109041. [PMID: 35839565 DOI: 10.1016/j.intimp.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Adoptive cell treatment (ACT) utilizing chimeric antigen receptors (CAR) diverts the specificity of safe cells against a target-specific antigen and portrays exceptional potential for cancer treatment. While CAR T cell treatment has risen as a breakthrough with unprecedented results within the therapeutic procedures of human malignancies, different deficiencies including challenging and costly generation processes, strict patient qualification criteria, and undesirable toxicity have ruined its application. Unlike T cells, the application of natural killer (NK) cells has attracted consideration as a reasonable alternative owing to the major histocompatibility complex (MHC)-independency, shorter life expectancy, the potential to create an off-the-shelf immune product, and potent antitumor properties. In this article, we provide an updated review of the differences between CAR T and CAR NK cells, current enhancements in CAR NK design, the available sources for collecting NK cells, and strategies for the transduction step of the CARs to NK cells. Furthermore, we focus on the published and ongoing preclinical and clinical studies of CAR NK treatment strategies both in hematologic malignancies and solid tumors. We also discuss limitations and plausible solutions to improve the perseverance, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
Affiliation(s)
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Zhuang X, Long EO. NK Cells Equipped With a Chimeric Antigen Receptor That Overcomes Inhibition by HLA Class I for Adoptive Transfer of CAR-NK Cells. Front Immunol 2022; 13:840844. [PMID: 35585985 PMCID: PMC9108249 DOI: 10.3389/fimmu.2022.840844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Dominant inhibitory receptors for HLA class I (HLA-I) endow NK cells with high intrinsic responsiveness, a process termed licensing or education, but hinder their ability to kill HLA-I+ tumor cells. Cancer immunotherapy with adoptive transfer of NK cells must overcome inhibitory signals by such receptors to promote elimination of HLA-I+ tumor cells. As proof of concept, we show here that a chimeric antigen receptor (CAR) can be engineered to overcome inhibition by receptors for HLA-I and to promote lysis of HLA-I+ tumor cells by CAR-NK cells. The design of this NK-tailored CAR (NK-CAR) relied on the potent NK cell activation induced by the synergistic combination of NK receptors CD28H (CD28 homolog, TMIGD2) and 2B4 (CD244, SLAMF4). An NK-CAR consisting of the single-chain fragment variable (scFv) of a CD19 antibody, the CD28H transmembrane domain, and the fusion of CD28H, 2B4, and TCRζ signaling domains was compared to a third-generation T-cell CAR with a CD28-41BB-TCRζ signaling domain. The NK-CAR delivered stronger activation signals to NK cells and induced more robust tumor cell lysis. Furthermore, such CAR-NK cells could overcome inhibition by HLA-E or HLA-C expressed on tumor cells. Therefore, engineering of CAR-NK cells that could override inhibition by HLA-I in patients undergoing cancer immunotherapy is feasible. This approach offers an attractive alternative to more complex strategies, such as genetic editing of inhibitory receptors in CAR-NK cells or treatment of patients with a combination of CAR-NK cells and checkpoint blockade with antibodies to inhibitory receptors. A significant benefit of inhibition-resistant NK-CARs is that NK cell inhibition would be overcome only during contact with targeted tumor cells and that HLA-I on healthy cells would continue to maintain NK cell responsiveness through licensing.
Collapse
Affiliation(s)
| | - Eric O. Long
- *Correspondence: Eric O. Long, ; Xiaoxuan Zhuang,
| |
Collapse
|
31
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
32
|
Hossian AKMN, Hackett CS, Brentjens RJ, Rafiq S. Multipurposing CARs: Same engine, different vehicles. Mol Ther 2022; 30:1381-1395. [PMID: 35151842 PMCID: PMC9077369 DOI: 10.1016/j.ymthe.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modifying a patient's T cells to recognize and kill cancer cells. With the FDA approval of 5 CAR T cell products, this approach has been validated as a powerful new drug in the therapeutic armamentarium against cancer. Researchers are now studying how to expand this technology beyond its use in conventional polyclonal αβ T cells to address limitations to the current therapy in cancer and applications beyond it. Considering the specific characteristics of immune cell from diverse lineages, several preclinical and clinical studies are under way to assess the advantages of CAR-redirected function in these cells and apply the lessons learned from CAR T cell therapy in cancer to other diseases.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Christopher S Hackett
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41:119. [PMID: 35361234 PMCID: PMC8969382 DOI: 10.1186/s13046-022-02327-z] [Citation(s) in RCA: 367] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.
Collapse
Affiliation(s)
- Kevin Pan
- Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Hizra Farrukh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Huihong Xu
- Boston University, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, MA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,VA Boston Healthcare System, West Roxbury, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| | - Zheng Zhu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| |
Collapse
|
34
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
35
|
Novel insights in CAR-NK cells beyond CAR-T cell technology; promising advantages. Int Immunopharmacol 2022; 106:108587. [PMID: 35149294 DOI: 10.1016/j.intimp.2022.108587] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
CAR-T (chimeric antigen receptor T cell) technology, which has recently showed successful results in the treatment of hematological tumors, has been the focus of attention as one of the most potent approaches in tumor immunotherapy. However, side effects and limitations of this application, such as the risk of graft versus host disease (GvHD), make it challenging to be as accessible as other treatments. Natural killer cells (NK) could be transplanted without alloreactivity, making them as an off-the-shelf product. CAR-NK (chimeric antigen receptor NK cell) therapy can circumvent some serious limitations of CAR-T cell therapy. Application of CAR-NK cells have some considerable advantages over CAR-T cells. These include lack of cytokine release syndrome (CRS), neurotoxicity, and GvHD when using allogenic CAR-T cell. These features lessen the risk of tumor antigen loss and disease relapse. Moreover, NK cells which were derived from different sources, can make the CAR therapy more feasible. In this narrative review, we outlined the key features of CAR-NK cells as an alternative to CAR-T cell therapy in cancer immunotherapy and highlighted the main advantages.
Collapse
|
36
|
Schmidt D, Ebrahimabadi S, Gomes KRDS, de Moura Aguiar G, Cariati Tirapelle M, Nacasaki Silvestre R, de Azevedo JTC, Tadeu Covas D, Picanço-Castro V. Engineering CAR-NK cells: how to tune innate killer cells for cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac003. [PMID: 35919494 PMCID: PMC9327111 DOI: 10.1093/immadv/ltac003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is an innovative approach that permits numerous possibilities in the field of cancer treatment. CAR-T cells have been successfully used in patients with hematologic relapsed/refractory. However, the need for autologous sources for T cells is still a major drawback. CAR-NK cells have emerged as a promising resource using allogeneic cells that could be established as an off-the-shelf treatment. NK cells can be obtained from various sources, such as peripheral blood (PB), bone marrow, umbilical cord blood (CB), and induced pluripotent stem cells (iPSC), as well as cell lines. Genetic engineering of NK cells to express different CAR constructs for hematological cancers and solid tumors has shown promising preclinical results and they are currently being explored in multiple clinical trials. Several strategies have been employed to improve CAR-NK-cell expansion and cytotoxicity efficiency. In this article, we review the latest achievements and progress made in the field of CAR-NK-cell therapy.
Collapse
Affiliation(s)
- Dayane Schmidt
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sima Ebrahimabadi
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kauan Ribeiro de Sena Gomes
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziela de Moura Aguiar
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariane Cariati Tirapelle
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virginia Picanço-Castro
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X, Lu X, Song Z, Wei L, Xiang Z, Zou Y. A Soluble NK-CAR Mediates the Specific Cytotoxicity of NK Cells toward the Target CD20 + Lymphoma Cells. Aging Dis 2022; 13:1576-1588. [PMID: 36186137 PMCID: PMC9466963 DOI: 10.14336/ad.2022.0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Rongjiao Liu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Qizhi Luo
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Weiguang Luo
- Department of Laboratory Medicine, Henan Provincial People's Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ling Wan
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Quan Zhu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiangli Yin
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zixuan Song
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Leiyan Wei
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Yizhou Zou, Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China. .
| |
Collapse
|
38
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
39
|
Lian G, Mak TSK, Yu X, Lan HY. Challenges and Recent Advances in NK Cell-Targeted Immunotherapies in Solid Tumors. Int J Mol Sci 2021; 23:164. [PMID: 35008589 PMCID: PMC8745474 DOI: 10.3390/ijms23010164] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cell is a powerful malignant cells killer, providing rapid immune responses via direct cytotoxicity without the need of antigen processing and presentation. It plays an essential role in preventing early tumor, metastasis and minimal residual disease. Although adoptive NK therapies achieved great success in clinical trials against hematologic malignancies, their accumulation, activation, cytotoxic and immunoregulatory functions are severely impaired in the immunosuppressive microenvironment of solid tumors. Now with better understandings of the tumor evasive mechanisms from NK-mediated immunosurveillance, immunotherapies targeting the key molecules for NK cell dysfunction and exhaustion have been developed and tested in both preclinical and clinical studies. In this review, we introduce the challenges that NK cells encountered in solid tumor microenvironment (TME) and the therapeutic approaches to overcome these limitations, followed by an outline of the recent preclinical advances and the latest clinical outcomes of NK-based immunotherapies, as well as promising strategies to optimize current NK-targeted immunotherapies for solid tumors.
Collapse
Affiliation(s)
- Guangyu Lian
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Thomas Shiu-Kwong Mak
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
40
|
Cienfuegos-Jimenez O, Vazquez-Garza E, Rojas-Martinez A. CAR-NK Cells for Cancer Therapy: Molecular Redesign of the Innate Antineoplastic Response. Curr Gene Ther 2021; 22:303-318. [PMID: 34923939 DOI: 10.2174/1566523222666211217091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
The Chimeric Antigen Receptor (CAR) has arisen as a powerful synthetic biology-based technology with demonstrated versatility for implementation in T and NK cells. Despite CAR T cell successes in clinical trials, several challenges remain to be addressed regarding adverse events and long-term efficacy. NK cells present an attractive alternative with intrinsic advantages over T cells for treating solid and liquid tumors. Early preclinical and clinical trials suggest at least two major advantages: improved safety and an off-the-shelf application in patients due to its HLA independence. Due to the early stages of CAR NK translation to clinical trials, limited data is currently available. By analyzing these results, it seems that CAR NK cells could offer a reduced probability of Cytokine Release Syndrome (CRS) or Graft versus Host Disease (GvHD) in cancer patients, reducing safety concerns. Furthermore, NK cell therapy approaches may be boosted by combining it with immunological checkpoint inhibitors and by implementing genetic circuits to direct CAR-bearing cell behavior. This review provides a description of the CAR technology for modifying NK cells and the translation from preclinical studies to early clinical trials in this new field of immunotherapy.
Collapse
Affiliation(s)
- Oscar Cienfuegos-Jimenez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| | - Eduardo Vazquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| |
Collapse
|
41
|
Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E, Multhoff G. NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells 2021; 10:cells10123390. [PMID: 34943898 PMCID: PMC8699535 DOI: 10.3390/cells10123390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, cell-based immunotherapies have demonstrated promising results in the treatment of cancer. Chimeric antigen receptors (CARs) arm effector cells with a weapon for targeting tumor antigens, licensing engineered cells to recognize and kill cancer cells. The quality of the CAR-antigen interaction strongly depends on the selected tumor antigen and its expression density on cancer cells. CD19 CAR-engineered T cells approved by the Food and Drug Administration have been most frequently applied in the treatment of hematological malignancies. Clinical challenges in their application primarily include cytokine release syndrome, neurological symptoms, severe inflammatory responses, and/or other off-target effects most likely mediated by cytotoxic T cells. As a consequence, there remains a significant medical need for more potent technology platforms leveraging cell-based approaches with enhanced safety profiles. A promising population that has been advanced is the natural killer (NK) cell, which can also be engineered with CARs. NK cells which belong to the innate arm of the immune system recognize and kill virally infected cells as well as (stressed) cancer cells in a major histocompatibility complex I independent manner. NK cells play an important role in the host’s immune defense against cancer due to their specialized lytic mechanisms which include death receptor (i.e., Fas)/death receptor ligand (i.e., Fas ligand) and granzyme B/perforin-mediated apoptosis, and antibody-dependent cellular cytotoxicity, as well as their immunoregulatory potential via cytokine/chemokine release. To develop and implement a highly effective CAR NK cell-based therapy with low side effects, the following three principles which are specifically addressed in this review have to be considered: unique target selection, well-designed CAR, and optimized gene delivery.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
- Correspondence: ; Tel.: +49-89-4140-6013
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany;
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
| |
Collapse
|
42
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
43
|
Rudek LS, Zimmermann K, Galla M, Meyer J, Kuehle J, Stamopoulou A, Brand D, Sandalcioglu IE, Neyazi B, Moritz T, Rossig C, Altvater B, Falk CS, Abken H, Morgan MA, Schambach A. Generation of an NFκB-Driven Alpharetroviral "All-in-One" Vector Construct as a Potent Tool for CAR NK Cell Therapy. Front Immunol 2021; 12:751138. [PMID: 34804035 PMCID: PMC8595471 DOI: 10.3389/fimmu.2021.751138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapeutics are increasingly applied in oncology. Especially chimeric antigen receptor (CAR) T cells are successfully used to treat several B cell malignancies. Efforts to engineer CAR T cells for improved activity against solid tumors include co-delivery of pro-inflammatory cytokines in addition to CARs, via either constitutive cytokine expression or inducible cytokine expression triggered by CAR recognition of its target antigen-so-called "T cells redirected for universal cytokine-mediated killing" (TRUCKs) or fourth-generation CARs. Here, we tested the hypothesis that TRUCK principles could be expanded to improve anticancer functions of NK cells. A comparison of the functionality of inducible promoters responsive to NFAT or NFκB in NK cells showed that, in contrast to T cells, the inclusion of NFκB-responsive elements within the inducible promoter construct was essential for CAR-inducible expression of the transgene. We demonstrated that GD2CAR-specific activation induced a tight NFκB-promoter-driven cytokine release in NK-92 and primary NK cells together with an enhanced cytotoxic capacity against GD2+ target cells, also shown by increased secretion of cytolytic cytokines. The data demonstrate biologically relevant differences between T and NK cells that are important when clinically translating the TRUCK concept to NK cells for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andriana Stamopoulou
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Daniel Brand
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology, Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
An NK cell line (NK92-41BB) expressing high levels of granzyme is engineered to express the high affinity chimeric genes CD16/CAR. Cytotechnology 2021; 73:539-553. [PMID: 34349345 DOI: 10.1007/s10616-021-00476-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 10/20/2022] Open
Abstract
Natural killer (NK) cells are known to play a role in mediating innate immunity and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) based on the reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, devoid of CD16 and derived from a lymphoma patient, has been well characterized. The adoptive transfer of irradiated NK-92 cells demonstrated safety and showed preliminary evidence of clinical benefit for cancer patients. The molecules 41BB and CD3 are commonly used as stimulators in the CAR structure, and their expression in NK cells can promote the activation of NK cells, leading to the enhanced perforin- and granzyme-mediated lysis of tumor cells. This study showed that genetically modified NK-92 cells combined with antibody-mediated ADCC using rituximab and trastuzumab monoclonal antibodies lysed tumor cells more efficient than the NK-92 cell lines. It also showed that the anti-tumor activity of chimeric stimulator molecules of the CAR-modified CD16 receptor was stronger than that of CD16 (allotype V158). These studies provide a rationale for the use of genetically modified NK-92 cells in combination with IgG1 anti-tumor monoclonal antibodies. We also provide a rationale for the chimeric modified CD16 receptor that can improve the anti-tumor effect of NK92 cells via ADCC. Supplementary Information The online version of this article (10.1007/s10616-021-00476-1) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, Zhang Y, Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology 2021; 10:e1286. [PMID: 34188916 PMCID: PMC8219901 DOI: 10.1002/cti2.1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) technology has brought advances in the genetic manipulation of eukaryotic cells, which has revolutionised cancer research and treatment options. It is increasingly being used in cancer immunotherapy, including adoptive T and natural killer (NK) cell transfer, secretion of antibodies, cytokine stimulation and overcoming immune checkpoints. CRISPR-Cas9 technology is used in autologous T cells and NK cells to express various innovative antigen designs and combinations of chimeric antigen receptors (CARs) targeted at specific antigens for haematological and solid tumors. Additionally, advanced engineering in immune cells to enhance their sensing circuits with sophisticated functionality is now possible. Intensive research on the CRISPR-Cas9 system has provided scientists with the ability to overcome the hostile tumor microenvironment and generate more products for future clinical use, especially off-the-shelf, universal cellular products, bringing exciting milestones for immunotherapy. This review discussed the application and challenges of CRISPR technology in cancer research and immunotherapy, its advances and prospects for promoting new cell-based therapeutic beyond immune oncology.
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Mariam O Afolabi
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Musbahu M Sani
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Wahab O Okunowo
- Department of BiochemistryCollege of MedicineUniversity of LagosLagosNigeria
| | - Dehong Yan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang Chen
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaou Zhang
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Xiaochun Wan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
47
|
Robbins GM, Wang M, Pomeroy EJ, Moriarity BS. Nonviral genome engineering of natural killer cells. Stem Cell Res Ther 2021; 12:350. [PMID: 34134774 PMCID: PMC8207670 DOI: 10.1186/s13287-021-02406-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system capable of immune surveillance. Given their ability to rapidly and effectively recognize and kill aberrant cells, especially transformed cells, NK cells represent a unique cell type to genetically engineer to improve its potential as a cell-based therapy. NK cells do not express a T cell receptor and thus do not contribute to graft-versus-host disease, nor do they induce T cell-driven cytokine storms, making them highly suited as an off-the-shelf cellular therapy. The clinical efficacy of NK cell-based therapies has been hindered by limited in vivo persistence and the immunosuppressive tumor microenvironment characteristic of many cancers. Enhancing NK cell resistance to tumor inhibitory signaling through genome engineering has the potential to improve NK cell persistence in the tumor microenvironment and restore cytotoxic functions. Alongside silencing NK cell inhibitory receptors, NK cell killing can be redirected by the integration of chimeric antigen receptors (CARs). However, NK cells are associated with technical and biological challenges not observed in T cells, typically resulting in low genome editing efficiencies. Viral vectors have achieved the greatest gene transfer efficiencies but carry concerns of random, insertional mutagenesis given the high viral titers necessary. As such, this review focuses on nonviral methods of gene transfer within the context of improving cancer immunotherapy using engineered NK cells.
Collapse
Affiliation(s)
- Gabrielle M Robbins
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55455, USA
| | - Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
48
|
Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, Jarahian M. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021; 11:673276. [PMID: 34178661 PMCID: PMC8223062 DOI: 10.3389/fonc.2021.673276] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russia
- Tyumen Industrial University, Tyumen, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
49
|
CAR-NK Cells in the Treatment of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115899. [PMID: 34072732 PMCID: PMC8197981 DOI: 10.3390/ijms22115899] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor-patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.
Collapse
|
50
|
Portillo AL, Hogg R, Poznanski SM, Rojas EA, Cashell NJ, Hammill JA, Chew MV, Shenouda MM, Ritchie TM, Cao QT, Hirota JA, Dhesy-Thind S, Bramson JL, Ashkar AA. Expanded human NK cells armed with CAR uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience 2021; 24:102619. [PMID: 34159300 PMCID: PMC8193615 DOI: 10.1016/j.isci.2021.102619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/14/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Despite the remarkable success of chimeric antigen receptor (CAR)-T cells against hematologic malignancies, severe off-tumor effects have constrained their use against solid tumors. Recently, CAR-engineered natural killer (NK) cells have emerged as an effective and safe alternative. Here, we demonstrate that HER2 CAR-expression in NK cells from healthy donors and patients with breast cancer potently enhances their anti-tumor functions against various HER2-expressing cancer cells, regardless of MHC class I expression. Moreover, HER2 CAR-NK cells exert higher cytotoxicity than donor-matched HER2 CAR-T cells against tumor targets. Importantly, unlike CAR-T cells, HER2 CAR-NK cells do not elicit enhanced cytotoxicity or inflammatory cytokine production against non-malignant human lung epithelial cells with basal HER2 expression. Further, HER2 CAR-NK cells maintain high cytotoxic function in the presence of immunosuppressive factors enriched in solid tumors. These results show that CAR-NK cells may be a highly potent and safe source of immunotherapy in the context of solid tumors. Primary HER2 CAR-NK cells from patients with cancer have potent anti-tumor functions HER2 CAR-NK cells have a higher tumor killing capacity than HER2 CAR-T cells HER2 CAR-NK cells are not overly activated against HER2+ lung epithelial cells CAR-NK cells can overcome inhibition by the immunosuppressive factors TGF-β and PGE2
Collapse
Affiliation(s)
- Ana L Portillo
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Richard Hogg
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sophie M Poznanski
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Eduardo A Rojas
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Niamh J Cashell
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joanne A Hammill
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Marianne V Chew
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mira M Shenouda
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tyrah M Ritchie
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Quynh T Cao
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada.,Firestone Institute for Respiratory Health - Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jeremy A Hirota
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada.,Firestone Institute for Respiratory Health - Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | - Jonathan L Bramson
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|