1
|
Zabala-Rodriguez MC, Teter K, Tatulian SA. Amyloid β fragments that suppress oligomers but not fibrils are cytoprotective. Arch Biochem Biophys 2025; 768:110386. [PMID: 40086565 DOI: 10.1016/j.abb.2025.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Neurotoxic aggregates of amyloid beta (Aβ) peptide contribute to the etiology of Alzheimer's disease (AD). In this work, we examined how seven overlapping fragments derived from Aβ1-42 affect the oligomerization and toxicity of the full-length peptide. Four fragments inhibited the toxicity of oligomeric Aβ1-42 to various degrees, two others conferred no cellular protection against Aβ1-42 toxicity, and one fragment enhanced both Aβ1-42 oligomerization and toxicity. The structural and aggregation propensities of the peptides that support strong inhibition of Aβ1-42 toxicity have been identified. Data analysis allowed elucidation of the mechanisms of action of each of the seven peptide fragments on Aβ1-42 cytotoxicity. Our work establishes the potential therapeutic value of four Aβ fragments and supports the notion that agents directed to disruption of Aβ oligomers may be more effective AD drug candidates than those targeting Aβ fibrils.
Collapse
Affiliation(s)
| | - Ken Teter
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Hu X, Cheng J, Yuan R, Zhou Y, Rao J, Wan Y, Li Y, Zhang X, Li R. Gold Nanoparticles: Diagnostic and Therapeutic Applications in Neurodegenerative Disorders. J Drug Target 2025:1-39. [PMID: 40396445 DOI: 10.1080/1061186x.2025.2509287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases, pose a significant and escalating health challenge in the context of an aging population. Gold nanoparticles (GNPs) have emerged as promising agents in the diagnostic and therapeutic realms of NDDs, due to their unique ability to enhance drug delivery across the blood-brain barrier (BBB). This paper presents a comprehensive review of the application of GNPs in the context of NDDs diagnosis and therapy, highlighting their potential to transform patient management. Additionally, we systematically address the critical challenges associated with the use of GNPs in the treatment and diagnosis of NDDs, focusing on pharmacokinetics and metabolism, toxicity, long-term biocompatibility, regulatory challenges, and cost-effectiveness. Furthermore, we synthesize ongoing clinical studies to provide a holistic perspective on the current state of research in this field. We also explore the prospective trajectories and clinical translational potential of GNPs, which may usher in a new era in the treatment of NDDs.
Collapse
Affiliation(s)
- Xin Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jingxian Cheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ruri Yuan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yiting Zhou
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jiajia Rao
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ying Wan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yi Li
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University; Metabolic Vascular Disease Key Laboratory of Sichuan Province Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rong Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
3
|
Im D, Lee YE, Yoon G, Goddard WA, Choi TS, Kim HI. Antiparallel β-Sheet as a Key Motif of Amyloid-β Inhibitor Designed via Topological Peptide Reprogramming. Angew Chem Int Ed Engl 2025:e202504640. [PMID: 40345176 DOI: 10.1002/anie.202504640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Peptide inhibitor design targeting self-assembly of amyloid-β (Aβ) represents a promising strategy for suppressing the pathogenic mechanism of Alzheimer's disease (AD). Conventional approaches have primarily mimicked repetitive sequences found in fibrillar structures of Aβ aggregates. However, since the inherent flexibility of Aβ structures promotes the structural changes in the early-stage oligomerization, a structural modulation should be considered in the design of peptide inhibitors. Herein, we introduce topological reprogramming of peptides to control the structural transformation in pathogenic Aβ 1-42 (Aβ42). The eleven-residue peptide scaffold Pa11 (14HQKLVNFAEDV24) identified through the initial screening was dimerized via a disulfide bond. The dimerization stabilizes Aβ42 into higher order structures by promoting antiparallel β-sheet conformations, thereby significantly suppressing Aβ42 aggregation. Our approach underscores that modification in peptide connectivity would be a breakthrough for controlling the intrinsic flexibility of Aβ, surpassing the limitation in conventional, one-dimensional peptide building block.
Collapse
Affiliation(s)
- Dongjoon Im
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ye Eun Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Gyusub Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tae Su Choi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
- Center for Mechanogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Han YL, Yin HH, Li C, Du J, He Y, Guan YX. Discovery of New Pentapeptide Inhibitors Against Amyloid-β Aggregation Using Word2Vec and Molecular Simulation. ACS Chem Neurosci 2025; 16:1055-1065. [PMID: 39999409 DOI: 10.1021/acschemneuro.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of amyloid-β (Aβ) peptides into toxic oligomers and fibrils. The efficacy of existing peptide inhibitors based on the central hydrophobic core (CHC) sequence of Aβ42 remains limited due to self-aggregation or poor inhibition. This study aimed to identify novel pentapeptide inhibitors with high similarity and low binding energy to the CHC region LVFFA using a new computational screening workflow based on Word2Vec and molecular simulation. The antimicrobial peptides and human brain protein sequences were used for training the Word2Vec model. After tuning the parameters of the Word2Vec model, 1017 pentapeptides with high similarity to LVFFA were identified. Molecular docking was employed to estimate the affinity of the pentapeptides for the target of Aβ14-42 pentamer, and 103 peptides with favorable docking scores were obtained. Finally, five pentapeptides with a low binding energy and high binding stability via molecular dynamics simulation were experimentally validated using thioflavin T assays. Surprisingly, one pentapeptide, i.e., PALIR, exhibited significant inhibition surpassing the positive control LPFFN. This study demonstrates an effective combinatorial strategy to discover new peptide inhibitors. With PALIR representing a promising lead candidate, further optimization of PALIR could aid in the development of improved therapies to prevent amyloid toxicity in AD.
Collapse
Affiliation(s)
- Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chen Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiangyue Du
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310020, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Sehra N, Parmar R, Jain R. Peptide-based amyloid-beta aggregation inhibitors. RSC Med Chem 2024:d4md00729h. [PMID: 39882170 PMCID: PMC11773382 DOI: 10.1039/d4md00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development. Over the years, researchers have utilized a variety of therapeutic strategies targeting different pathways, extensively studying peptide-based approaches to understand AD pathology and demonstrate their efficacy against Aβ aggregation. This review highlights rationally designed peptide/mimetics, including structure-based peptides, metal-peptide chelators, stapled peptides, and peptide-based nanomaterials as potential amyloid inhibitors.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| |
Collapse
|
6
|
Sehra N, Parmar R, Maurya IK, Kumar V, Tikoo K, Jain R. Synthesis and mechanistic study of Aβ 42 C-terminus domain derived tetrapeptides that inhibit Alzheimer's Aβ-aggregation-induced neurotoxicity. Bioorg Med Chem Lett 2024; 112:129929. [PMID: 39151661 DOI: 10.1016/j.bmcl.2024.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer's disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ42 "VVIA-NH2" and its retro-sequence "AIVV-NH2." A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide 13 (Ala-Ile-Aib-Val-NH2) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer "Aib" in peptide 13 manifested the conformational transition from cross-β-sheets to α-helical content in Aβ42. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide 13. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of 13, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Indresh K Maurya
- Center of Infectious Disease, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
7
|
Oasa S, Kouznetsova VL, Tsigelny IF, Terenius L. Small molecular decoys in Alzheimer's disease. Neural Regen Res 2024; 19:1658-1659. [PMID: 38103228 PMCID: PMC10960305 DOI: 10.4103/1673-5374.389643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Mallesh R, Khan J, Gharai PK, Arshi MU, Garg S, Gupta S, Ghosh S. Hydrophobic C-Terminal Peptide Analog Aβ 31-41 Protects the Neurons from Aβ-Induced Toxicity. ACS Chem Neurosci 2024; 15:2372-2385. [PMID: 38822790 DOI: 10.1021/acschemneuro.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024] Open
Abstract
Spontaneous aggregation of amyloid beta (Aβ) leads to the formation of neurotoxic senile plaque considered as the most crucial event in Alzheimer's disease (AD) progression. Inhibition or disruption of this deadly aggregate formation is one of the most efficient strategies for the development of potential therapeutics, and extensive research is in progress by various research groups. In this direction, the development of a peptide analogous to that of the native Aβ peptide is an attractive strategy. Based on this rationale, β-sheet breakers were developed from the Aβ central hydrophobic core. These peptide derivatives will bind to the full length of the parent Aβ and interfere in self-recognition, thereby preventing the folding of the Aβ peptide into cross β-sheet neurotoxic aggregates. However, this approach is effective in the inhibition of fibrillar aggregation, but this strategy is ineffective in the Aβ neurotoxic oligomer formation. Therefore, an alternative and efficient approach is to use the Aβ peptide analogous to the C-terminal region, which arbitrates fibrillation and oligomerization. Herein, we developed the Aβ C-terminal fragment (ACT-1 to ACT-7) for inhibition of oligomerization as well as fibrillar aggregation. Screening of these seven peptides resulted in an efficient anti-Aβ peptide aggregative agent (ACT-7), which was evaluated by the ThT assay peptide. The ThT assay reveals complete inhibition and showed significant neuroprotection of PC-12-derived neurons from Aβ-induced toxicity and reduced cell apoptosis. Further, analysis using CD and FTIR spectroscopy reveals that the ACT-7 peptide efficiently inhibits the formation of the β-sheet secondary structure content. HR-TEM microscopic analysis confirmed the inhibition of formation. Therefore, the inhibition of β-sheet Aβ fibrillary aggregation by the protease-stable ACT-7 peptide may provide a beneficial effect on AD treatment to control the Aβ aggregates. Finally, we anticipate that our newly designed ACT peptides may also assist as a template molecular scaffold for designing potential anti-AD therapeutics.
Collapse
Affiliation(s)
- Rathnam Mallesh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
| | - Prabir Kumar Gharai
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
| | - Mohammad Umar Arshi
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
9
|
Thew HY, Boon Keat K, Tan YC, Ong YS, Parat MO, Murugaiyah V, Goh BH, Khaw KY. Probing the anti-Aβ42 aggregation and protective effects of prenylated xanthone against Aβ42-induced toxicity in transgenic Caenorhabditis elegans model. Chem Biol Interact 2024; 394:110978. [PMID: 38552766 DOI: 10.1016/j.cbi.2024.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) protein aggregates, leading to synaptic dysfunction and neuronal cell death. In this study, we used a comprehensive approach encompassing in vitro assays, computational analyses, and an in vivo Caenorhabditis elegans model to evaluate the inhibitory effects of various xanthones, focusing on Garcinone D (GD), on Aβ42 oligomer formation. Dot blot analysis revealed concentration-dependent responses among xanthones, with GD consistently inhibiting Aβ42 oligomer formation at low concentrations (0.1 and 0.5 μM, inhibitions of 84.66 ± 2.25% and 85.06 ± 6.57%, respectively). Molecular docking and dynamics simulations provided insights into the molecular interactions between xanthones and Aβ42, highlighting the disruption of key residues involved in Aβ42 aggregation. The neuroprotective potential of GD was established using transgenic C. elegans GMC101, with substantial delays in paralysis reported at higher concentrations. Our findings show that GD is a potent suppressor of Aβ42 oligomer formation, suggesting its potential as a therapeutic candidate for AD. The concentration-dependent effects observed in both in vitro and in vivo models underscore the need for nuanced dose-response assessments. These findings contribute novel insights into the therapeutic landscape of xanthones against AD, emphasizing the multifaceted potential of GD for further translational endeavors in neurodegenerative disorder research.
Collapse
Affiliation(s)
- Hin Yee Thew
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khor Boon Keat
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yong Chiang Tan
- International Medical University, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Marie-Odile Parat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Sehra N, Parmar R, Maurya IK, Kumar V, Tikoo K, Jain R. Synthesis and mechanistic study of ultrashort peptides that inhibits Alzheimer's Aβ-aggregation-induced neurotoxicity. Bioorg Chem 2024; 144:107159. [PMID: 38309001 DOI: 10.1016/j.bioorg.2024.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Misfolding/aggregation of β-amyloid peptide lead to the formation of toxic oligomers or accumulation of amyloid plaques, which is a seminal step in the progression of Alzheimer's disease (AD). Despite continuous efforts in the development of therapeutic agents, the cure for AD remains a major challenge. Owing to specific binding affinity of structure-based peptides, we report the synthesis of new peptide-based inhibitors derived from the C-terminal sequences, Aβ38-40 and Aβ40-42. Preliminary screening using MTT cell viability assay and corroborative results from ThT fluorescence assay revealed a tripeptide showing significantly effective inhibition towards Aβ1-42 aggregation and induced toxicity. Peptide 3 exhibited excellent cell viability of 94.3 % at 2 μM and of 100 % at 4 μM and 10 μM. CD study showed that peptide 3 restrict the conformation transition of Aβ1-42 peptide towards cross-β-sheet structure and electron microscopy validated the absence of Aβ aggregates as indicated by the altered morphology of Aβ1-42 in the presence of peptide 3. The HRMS-ESI, DLS and ANS studies were performed to gain mechanistic insights into the effect of inhibitor against Aβ aggregation. This Aβ-derived ultrashort motif provides impetus for the development of peptide-based anti-AD agents.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Indresh K Maurya
- Center of Infectious Disease, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
11
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
12
|
Sarkar D, Bhunia A. Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis. ACS BIO & MED CHEM AU 2024; 4:4-19. [PMID: 38404748 PMCID: PMC10885112 DOI: 10.1021/acsbiomedchemau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 02/27/2024]
Abstract
The pursuit of a novel structural motif that can shed light on the key functional attributes is a primary focus in the study of protein folding disorders. Decades of research on Alzheimer's disease (AD) have centered on the Amyloid β (Aβ) pathway, highlighting its significance in understanding the disorder. The diversity in the Aβ pathway and the possible silent tracks which are yet to discover, makes it exceedingly intimidating to the interdisciplinary scientific community. Over the course of AD research, Aβ has consistently been at the forefront of scientific inquiry and discussion. In this review, we epitomize the role of a potential structural motif (GxxxG motif) that may provide a new horizon to the Aβ conflict. We emphasize on how comprehensive understanding of this motif from a structure-function perspective may pave the way for designing novel therapeutics intervention in AD and related diseases.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| |
Collapse
|
13
|
Song C, Li H, Zhang T, Zheng C, Zhang Y. Synergetic effect of matrine on the catalytic scFv antibody HS72 in vitro and in mice with Alzheimer disease pathology. Neuropharmacology 2024; 242:109775. [PMID: 37913984 DOI: 10.1016/j.neuropharm.2023.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Single-chain variable fragment (scFv) HS72 is a catalytic antibody that specifically degrades amyloid β-protein 1-42 (Aβ42) aggregates in vitro or reduces the level or burden of Aβ42 deposits/plaques in the brains of mice with Alzheimer disease pathology. Its efficacy has been shown in protecting neural cells in vitro and improving the morphology of the cell population in the brain of mice with AD pathology (AD mice). Matrine (Mat) is a natural product capable of binding to Aβ42 or its aggregates and blocking their neurotoxicity at concentrations of at least 10 μM or greater. However, this study revealed a synergistic effect of Mat on the catalytic effect of HS72 at low concentrations (0.01-2.5 μM). This is evidenced by the fact that Mat synergistically enhances HS72's ability to degrade Aβ42 aggregates and protect neural cells (SH-SY5Y and HT22 cells, and brain cells of AD mice). The molecular docking models and characterization of Mat's action both indicated that the mechanism of Mat's synergistic impact on HS72 catalysis is to increase the turnover number (or molecular activity) of HS72 by enhancing the catalytic power of the HS72's catalytic groups and encouraging the release of the degradation products (Aβ fragments). The study's results suggest a natural synergy between Mat-like small molecules and the catalytic anti-oligomeric Aβ42 antibody HS72, enabling more effective reduction or removal of Aβ42 aggregates or plaques than the antibody alone. These findings provide novel insights into the effectiveness of anti-oligomeric Aβ42 antibodies in AD immunotherapy.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
14
|
Oasa S, Chen G, Schultzberg M, Terenius L. Small Molecule Decoy of Amyloid-β Aggregation Blocks Activation of Microglia-Like Cells. J Alzheimers Dis 2024; 101:787-796. [PMID: 39240634 PMCID: PMC11492064 DOI: 10.3233/jad-231399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/07/2024]
Abstract
Background Aggregated forms of the amyloid-β (Aβ) peptides which form protofibrils and fibrils in the brain are signatures of Alzheimer's disease (AD). Aggregates are also recognized by microglia, which in early phases may be protective and in later phases contribute to the pathology. We have identified several small molecules, decoys which interfere with Aβ oligomerization and induce other aggregation trajectories leading to aggregated macrostructures which are non-toxic. Objective This study investigates whether the small-molecule decoys affect microglial activation in terms of cytokine secretion and phagocytosis of Aβ peptide. Methods The effects of the decoys (NSC 69318, NSC 100873, NSC 16224) were analyzed in a model of human THP-1 monocytes differentiated to microglia-like cells. The cells were activated by Aβ40 and Aβ42 peptides, respectively, and after treatment with each decoy the secreted levels of pro-inflammatory cytokines and the Aβ phagocytosis were analyzed. Results NSC16224, which generates a double-stranded aggregate of thin protofibrils, was found to block Aβ40- and Aβ42-induced increase in microglial secretion of pro-inflammatory cytokines. NSC 69318, selective for neurotoxicity of Aβ42, and NSC 100873 did not significantly reduce the microglial activation in terms of cytokine secretion. The uptake of Aβ42 was not affected by anyone of the decoys. Conclusions Our findings open the possibility that the molecular decoys of Aβ aggregation may block microglial activation by Aβ40 and Aβ42 in addition to blocking neurotoxicity as shown previously.
Collapse
Affiliation(s)
- Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Bioclinicum J10 : 30, Karolinska Institutet, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Kaur A, Goyal B. Identification of new pentapeptides as potential inhibitors of amyloid-β 42 aggregation using virtual screening and molecular dynamics simulations. J Mol Graph Model 2023; 124:108558. [PMID: 37390790 DOI: 10.1016/j.jmgm.2023.108558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly characterized by extracellular accumulation of amyloid-β (Aβ) peptide. Previous studies reported pentapeptide RIIGL as an effective inhibitor of Aβ aggregation and neurotoxicity induced by Aβ aggregates. In this work, a library of 912 pentapeptides based on RIIGL has been designed and assessed for their efficacy to inhibit Aβ42 aggregation using computational techniques. The top hit pentapeptides revealed by molecular docking were further assessed for their binding affinity with Aβ42 monomer using MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method. The MM-PBSA analysis identified RLAPV, RVVPI, and RIAPA, which bind to Aβ42 monomer with a higher binding affinity -55.80, -46.32, and -44.26 kcal/mol, respectively, as compared to RIIGL (ΔGbinding = -41.29 kcal/mol). The residue-wise binding free energy predicted hydrophobic contacts between Aβ42 monomer and pentapeptides. The secondary structure analysis of the conformational ensembles generated by molecular dynamics (MD) depicted remarkably enhanced sampling of helical and no β-sheet conformations in Aβ42 monomer on the incorporation of RVVPI and RIAPA. Notably, RVVPI and RIAPA destabilized the D23-K28 salt bridge in Aβ42 monomer, which plays a crucial role in Aβ42 oligomer stability and fibril formation. The MD simulations highlighted that the incorporation of proline and arginine in pentapeptides contributed to their strong binding with Aβ42 monomer. Furthermore, RVVPI and RIAPA prevented conformational conversion of Aβ42 monomer to aggregation-prone structures, which, in turn, resulted in a lower aggregation tendency of Aβ42 monomer.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
16
|
Taha HB, Chawla E, Bitan G. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2066-2086. [PMID: 37607351 DOI: 10.1021/jasms.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid β-protein (Aβ42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Integrative Biology & Physiology, University of California Los Angeles, California 90095, United States
| | - Esha Chawla
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Brain Research Institute, University of California Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Yao SY, Wang JF, Xu Z, Meng Y, Xue Y, Yang F, Yao WB, Gao XD, Chen S. A peptide rich in glycine-serine-alanine repeats ameliorates Alzheimer-type neurodegeneration. Br J Pharmacol 2023; 180:1878-1896. [PMID: 36727262 DOI: 10.1111/bph.16048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Repeated amino acid sequences in proteins are widely found, and the glycine-serine-alanine repeat is an element with a general propensity to form β-sheet aggregates as found in key pathological factors, in several neurodegenerative diseases. Such properties of this repeat may guide development of disease-modifying therapies for neurodegenerative disease. However, details of its role and underlying mechanism(s) remain largely unknown. EXPERIMENTAL APPROACH Actions of specific glycine-serine-alanine repeat peptides (SNPs), especially SNP-9, on Alzheimer's disease (AD)-like abnormalities were evaluated in transgenic mice and Caenorhabditis elegans, and in rat and cell models. Entry of SNPs into the brain, SNP activity in neuronal cells and peptide entry into cells were analysed in vivo and in vitro. Cell-free systems and the yeast two-hybrid system were also used to explore possible targets of SNP-9, and interactions of potential targets with SNP-9 were confirmed in cell-based systems. KEY RESULTS We first identified SNP-9 as a potent neuroprotective peptide with the activity to decrease oligomeric amyloid β (Aβ) via co-assembling with the toxic Aβ oligomer to form hetero-oligomers. Also, calcyclin-binding protein was found to act as a SNP-9-binding protein, by screening of a human brain cDNA library. Such binding showed that SNP-9 could regulate the abnormal hyperphosphorylation of tau via calcyclin-binding protein. CONCLUSION AND IMPLICATIONS Our study provides a foundation for development of SNPs, especially SNP-9, as potential therapeutic interventions for AD. We propose SNP-9 as a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Si-Yuan Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jia-Fan Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zheng Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Meng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wen-Bing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang-Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
20
|
Ren B, Tang Y, Zhang D, Liu Y, Zhang Y, Chen H, Hu R, Zhang M, Zheng J. Conformational-Specific Self-Assembled Peptides as Dual-Mode, Multi-target Inhibitors and Detectors for Different Amyloid Pro-teins. J Mater Chem B 2022; 10:1754-1762. [DOI: 10.1039/d1tb02775a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prevention and detection of misfolded amyloid proteins and their β-structure-rich aggregates are the two promising but differ-ent (pre)clinical strategies to treat and diagnose neurodegenerative diseases including Alzheimer’s diseases (AD) and...
Collapse
|
21
|
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021; 179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Employing natural cells as drug carriers has been a hotspot in recent years, attributing to their biocompatibility and inherent dynamic properties. In the earlier stage, cells were mainly used as vehicles by virtue of their lipid-delimited compartmentalized structures and native membrane proteins. The scope emphasis was 'what cell displays' instead of 'how cell changes'. More recently, the dynamic behaviours, such as changes in surface protein patterns, morphologies, polarities and in-situ generation of therapeutics, of natural cells have drawn more attention for developing advanced drug delivery systems by fully taking advantage of these processes. In this review, we revolve around the dynamic cellular transformation behaviours which facilitate targeted therapy. Cellular deformation in geometry shape, spitting smaller vesicles, activation of antigen present cells, polarization between distinct phenotypes, local production of therapeutics, and hybridization with synthetic materials are involved. Other than focusing on the traditional delivery of concrete cargoes, more functional 'handles' that are derived from the cells themselves are introduced, such as information exchange, cellular communication and interactions between cell and extracellular environment.
Collapse
|
22
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
23
|
Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 2021; 11:19262. [PMID: 34584131 PMCID: PMC8479085 DOI: 10.1038/s41598-021-98644-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1-10 (P1), Aβ6-15 (P2), Aβ11-20 (P3), Aβ16-25 (P4), Aβ21-30 (P5), Aβ26-36 (P6), and Aβ31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1-42 molecules and thereby inhibit Aβ1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
Collapse
|
24
|
Breaker peptides against amyloid-β aggregation: a potential therapeutic strategy for Alzheimer's disease. Future Med Chem 2021; 13:1767-1794. [PMID: 34498978 DOI: 10.4155/fmc-2021-0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which blocking the early steps of extracellular misfolded amyloid-β (Aβ) aggregation is a promising therapeutic approach. However, the pathological features of AD progression include the accumulation of intracellular tau protein, membrane-catalyzed cell death and the abnormal deposition of Aβ. Here, we focus on anti-amyloid breaker peptides derived from the Aβ sequence and non-Aβ-based peptides containing both natural and modified amino acids. Critical aspects of the breaker peptides include N-methylation, conformational restriction through cyclization, incorporation of unnatural amino acid, fluorinated molecules, polymeric nanoparticles and PEGylation. This review confers a general idea of such breaker peptides with in vitro and in vivo studies, which may advance our understanding of AD pathology and develop an effective treatment strategy against AD.
Collapse
|
25
|
Wu J, Blum TB, Farrell DP, DiMaio F, Abrahams JP, Luo J. Cryo-electron Microscopy Imaging of Alzheimer's Amyloid-beta 42 Oligomer Displayed on a Functionally and Structurally Relevant Scaffold. Angew Chem Int Ed Engl 2021; 60:18680-18687. [PMID: 34042235 PMCID: PMC8457241 DOI: 10.1002/anie.202104497] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Amyloid-β peptide (Aβ) oligomers are pathogenic species of amyloid aggregates in Alzheimer's disease. Like certain protein toxins, Aβ oligomers permeabilize cellular membranes, presumably through a pore formation mechanism. Owing to their structural and stoichiometric heterogeneity, the structure of these pores remains to be characterized. We studied a functional Aβ42-pore equivalent, created by fusing Aβ42 to the oligomerizing, soluble domain of the α-hemolysin (αHL) toxin. Our data reveal Aβ42-αHL oligomers to share major structural, functional, and biological properties with wild-type Aβ42-pores. Single-particle cryo-EM analysis of Aβ42-αHL oligomers (with an overall 3.3 Å resolution) reveals the Aβ42-pore region to be intrinsically flexible. The Aβ42-αHL oligomers will allow many of the features of the wild-type amyloid oligomers to be studied that cannot be otherwise, and may be a highly specific antigen for the development of immuno-base diagnostics and therapies.
Collapse
Affiliation(s)
- Jinming Wu
- Department of Biology and ChemistryPaul Scherrer Institute5232VilligenSwitzerland
| | - Thorsten B. Blum
- Department of Biology and ChemistryPaul Scherrer Institute5232VilligenSwitzerland
| | - Daniel P Farrell
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Jan Pieter Abrahams
- Department of Biology and ChemistryPaul Scherrer Institute5232VilligenSwitzerland
- BiozentrumUniversity of Basel4058BaselSwitzerland
| | - Jinghui Luo
- Department of Biology and ChemistryPaul Scherrer Institute5232VilligenSwitzerland
| |
Collapse
|
26
|
Cryo‐electron Microscopy Imaging of Alzheimer's Amyloid‐beta 42 Oligomer Displayed on a Functionally and Structurally Relevant Scaffold. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
28
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. J Neuropathol Exp Neurol 2021; 80:514-529. [PMID: 33970243 PMCID: PMC8177849 DOI: 10.1093/jnen/nlab039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurogenerative diseases are characterized by diverse protein aggregates with a variety of microscopic morphologic features. Although ultrastructural studies of human neurodegenerative disease tissues have been conducted since the 1960s, only recently have near-atomic resolution structures of neurodegenerative disease aggregates been described. Solid-state nuclear magnetic resonance spectroscopy and X-ray crystallography have provided near-atomic resolution information about in vitro aggregates but pose logistical challenges to resolving the structure of aggregates derived from human tissues. Recent advances in cryo-electron microscopy (cryo-EM) have provided the means for near-atomic resolution structures of tau, amyloid-β (Aβ), α-synuclein (α-syn), and transactive response element DNA-binding protein of 43 kDa (TDP-43) aggregates from a variety of diseases. Importantly, in vitro aggregate structures do not recapitulate ex vivo aggregate structures. Ex vivo tau aggregate structures indicate individual tauopathies have a consistent aggregate structure unique from other tauopathies. α-syn structures show that even within a disease, aggregate heterogeneity may correlate to disease course. Ex vivo structures have also provided insight into how posttranslational modifications may relate to aggregate structure. Though there is less cryo-EM data for human tissue-derived TDP-43 and Aβ, initial structural studies provide a basis for future endeavors. This review highlights structural variations across neurodegenerative diseases and reveals fundamental differences between experimental systems and human tissue derived protein inclusions.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Send correspondence to: Edward B. Lee, MD, PhD, Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd., Philadelphia, PA 19104, USA; E-mail:
| |
Collapse
|
29
|
Maity D, Howarth M, Vogel MC, Magzoub M, Hamilton AD. Peptidomimetic-Based Vesicles Inhibit Amyloid-β Fibrillation and Attenuate Cytotoxicity. J Am Chem Soc 2021; 143:3086-3093. [PMID: 33600171 DOI: 10.1021/jacs.0c09967] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An interruption in Aβ homeostasis leads to the deposit of neurotoxic amyloid plaques and is associated with Alzheimer's disease. A supramolecular strategy based on the assembly of peptidomimetic agents into functional vesicles has been conceived for the simultaneous inhibition of Aβ42 fibrillation and expedited clearance of Aβ42 aggregates. Tris-pyrrolamide peptidomimetic, ADH-353, contains one hydrophobic N-butyl and two hydrophilic N-propylamine side chains and readily forms vesicles under physiological conditions. These vesicles completely rescue both mouse neuroblastoma N2a and human neuroblastoma SH-SY5Y cells from the cytotoxicity that follows from Aβ42 misfolding likely in mitochondria. Biophysical studies, including confocal imaging, demonstrate the biocompatibility and selectivity of the approach toward this aberrant protein assembly in cellular milieu.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Madeline Howarth
- Biology Program, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
30
|
Hou Q, Li N, Chao Y, Li S, Zhang L. Design and regulation of the surface and interfacial behavior of protein molecules. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Manek E, Darvas F, Petroianu GA. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer's Disease. Molecules 2020; 25:E4866. [PMID: 33096898 PMCID: PMC7587961 DOI: 10.3390/molecules25204866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 24 million people worldwide and represents an immense medical, social and economic burden. While a vast array of active pharmaceutical ingredients (API) is available for the prevention and possibly treatment of AD, applicability is limited by the selective nature of the blood-brain barrier (BBB) as well as by their severe peripheral side effects. A promising solution to these problems is the incorporation of anti-Alzheimer drugs in polymeric nanoparticles (NPs). However, while several polymeric NPs are nontoxic and biocompatible, many of them are not biodegradable and thus not appropriate for CNS-targeting. Among polymeric nanocarriers, chitosan-based NPs emerge as biodegradable yet stable vehicles for the delivery of CNS medications. Furthermore, due to their mucoadhesive character and intrinsic bioactivity, chitosan NPs can not only promote brain penetration of drugs via the olfactory route, but also act as anti-Alzheimer therapeutics themselves. Here we review how chitosan-based NPs could be used to address current challenges in the treatment of AD; with a specific focus on the enhancement of blood-brain barrier penetration of anti-Alzheimer drugs and on the reduction of their peripheral side effects.
Collapse
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| | - Ferenc Darvas
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Georg A. Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| |
Collapse
|
32
|
Hyaluronan-carnosine conjugates inhibit Aβ aggregation and toxicity. Sci Rep 2020; 10:15998. [PMID: 32994475 PMCID: PMC7524733 DOI: 10.1038/s41598-020-72989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder. Finding a pharmacological approach that cures and/or prevents the onset of this devastating disease represents an important challenge for researchers. According to the amyloid cascade hypothesis, increases in extracellular amyloid-β (Aβ) levels give rise to different aggregated species, such as protofibrils, fibrils and oligomers, with oligomers being the more toxic species for cells. Many efforts have recently been focused on multi-target ligands to address the multiple events that occur concurrently with toxic aggregation at the onset of the disease. Moreover, investigating the effect of endogenous compounds or a combination thereof is a promising approach to prevent the side effects of entirely synthetic drugs. In this work, we report the synthesis, structural characterization and Aβ antiaggregant ability of new derivatives of hyaluronic acid (Hy, 200 and 700 kDa) functionalized with carnosine (Car), a multi-functional natural dipeptide. The bioactive substances (HyCar) inhibit the formation of amyloid-type aggregates of Aβ42 more than the parent compounds; this effect is proportional to Car loading. Furthermore, the HyCar derivatives are able to dissolve the amyloid fibrils and to reduce Aβ-induced toxicity in vitro. The enzymatic degradation of Aβ is also affected by the interaction with HyCar.
Collapse
|
33
|
Mason AJ, Hurst I, Malik R, Siddique I, Solomonov I, Sagi I, Klärner FG, Schrader T, Bitan G. Different Inhibitors of Aβ42-Induced Toxicity Have Distinct Metal-Ion Dependency. ACS Chem Neurosci 2020; 11:2243-2255. [PMID: 32559370 DOI: 10.1021/acschemneuro.0c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oligomers of amyloid β-protein (Aβ) are thought to be the proximal toxic agents initiating the neuropathologic process in Alzheimer's disease (AD). Therefore, targeting the self-assembly and oligomerization of Aβ has been an important strategy for designing AD therapeutics. In parallel, research into the metallobiology of AD has shown that Zn2+ can strongly modulate the aggregation of Aβ in vitro and both promote and inhibit the neurotoxicity of Aβ, depending on the experimental conditions. Thus, successful inhibitors of Aβ self-assembly may have to inhibit the toxicity not only of Aβ oligomers themselves but also of Aβ-Zn2+ complexes. However, there has been relatively little research investigating the effects of Aβ self-assembly and toxicity inhibitors in the presence of Zn2+. Our group has characterized previously a series of Aβ42 C-terminal fragments (CTFs), some of which have been shown to inhibit Aβ oligomerization and neurotoxicity. Here, we asked whether three CTFs shown to be potent inhibitors of Aβ42 toxicity maintained their activity in the presence of Zn2+. Biophysical analysis showed that the CTFs had different effects on oligomer, β-sheet, and fibril formation by Aβ42-Zn2+ complexes. However, cell viability experiments in differentiated PC-12 cells incubated with Aβ42-Zn2+ complexes in the absence or presence of these CTFs showed that the CTFs completely lost their inhibitory activity in the presence of Zn2+ even when applied at 10-fold excess relative to Aβ42. In light of these results, we tested another inhibitor, the molecular tweezer CLR01, which coincidentally had been shown to have a high affinity for Zn2+, suggesting that it could disrupt both Aβ42 oligomerization and Aβ42-Zn2+ complexation. Indeed, we found that CLR01 effectively inhibited the toxicity of Aβ42-Zn2+ complexes. Moreover, it did so at a lower concentration than needed for inhibiting the toxicity of Aβ42 alone. In agreement with these results, CLR01 inhibited β-sheet and fibril formation in Aβ42-Zn2+ complexes. Our data suggest that, for the development of efficient therapeutic agents, inhibitors of Aβ self-assembly and toxicity should be examined in the presence of relevant metal ions and that molecular tweezers may be particularly attractive candidates for therapy development.
Collapse
Affiliation(s)
- Ashley J. Mason
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Ian Hurst
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Liu H, Qian C, Yang T, Wang Y, Luo J, Zhang C, Wang X, Wang X, Guo Z. Small molecule-mediated co-assembly of amyloid-β oligomers reduces neurotoxicity through promoting non-fibrillar aggregation. Chem Sci 2020; 11:7158-7169. [PMID: 34123000 PMCID: PMC8159368 DOI: 10.1039/d0sc00392a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloid-β (Aβ) oligomers, particularly low molecular weight (LMW) oligomers, rather than fibrils, contribute very significantly to the onset and progression of Alzheimer's Disease (AD). However, due to the inherent heterogeneity and metastability of oligomers, most of the conventional anti-oligomer therapies have indirectly modulated oligomers' toxicity through manipulating Aβ self-assembly to reduce oligomer levels, which are prone to suffering from the risk of regenerating toxic oligomers from the products of modulation. To circumvent this disadvantage, we demonstrate, for the first time, rational design of rigid pincer-like scaffold-based small molecules with blood–brain barrier permeability that specifically co-assemble with LMW Aβ oligomers through directly binding to the exposed hydrophobic regions of oligomers to form non-fibrillar, degradable, non-toxic co-aggregates. As a proof of concept, treatment with a europium complex (EC) in such a structural mode can rescue Aβ-mediated dysfunction in C. elegans models of AD in vivo. This small molecule-mediated oligomer co-assembly strategy offers an efficient approach for AD treatment. A rational design of pincer-like scaffold-based small molecule with blood-brain barrier permeability that can specifically co-assemble with low molecular weight Aβ oligomers to form non-fibrillar, degradable, non-toxic co-aggregates.![]()
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Chengyuan Qian
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Tao Yang
- Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng 224007 P. R. China
| | - Jian Luo
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang College Nanjing 211171 P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China .,State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| | - Xiaoyong Wang
- Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
35
|
Kumari A, Sharma R, Shrivastava N, Somvanshi P, Grover A. Bleomycin modulates amyloid aggregation in β-amyloid and hIAPP. RSC Adv 2020; 10:25929-25946. [PMID: 35518630 PMCID: PMC9055351 DOI: 10.1039/d0ra04949b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 12/06/2022] Open
Abstract
Aberrant misfolding and amyloid aggregation, which result in amyloid fibrils, are frequent and critical pathological incidents in various neurodegenerative disorders. Multiple drugs or inhibitors have been investigated to avert amyloid aggregation in individual peptides, exhibiting sequence-dependent inhibition mechanisms. Establishing or inventing inhibitors capable of preventing amyloid aggregation in a wide variety of amyloid peptides is quite a daunting task. Bleomycin (BLM), a complex glycopeptide, has been widely used as an antibiotic and antitumor drug due to its ability to inhibit DNA metabolism, and as an antineoplastic, especially for solid tumors. In this study, we investigated the dual inhibitory effects of BLM on Aβ aggregation, associated with Alzheimer's disease and hIAPP, which is linked to type 2 diabetes, using both computational and experimental techniques. Combined results from drug repurposing and replica exchange molecular dynamics simulations demonstrate that BLM binds to the β-sheet region considered a hotspot for amyloid fibrils of Aβ and hIAPP. BLM was also found to be involved in β-sheet destabilization and, ultimately, in its reduction. Further, experimental validation through in vitro amyloid aggregation assays was obtained wherein the fibrillar load was decreased for the BLM-treated Aβ and hIAPP peptides in comparison to controls. For the first time, this study shows that BLM is a dual inhibitor of Aβ and hIAPP amyloid aggregation. In the future, the conformational optimization and processing of BLM may help develop various efficient sequence-dependent inhibitors against amyloid aggregation in various amyloid peptides. Bleomycin acts as a dual inhibitor against both amyloid β and human islet amyloid polypeptide by binding to the β-sheet grooves considered as the amyloids hotspot.![]()
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi
- India
- School of Biotechnology
| | - Ritika Sharma
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | | | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| |
Collapse
|
36
|
Asadbegi M, Shamloo A. Identification of a Novel Multifunctional Ligand for Simultaneous Inhibition of Amyloid-Beta (Aβ 42) and Chelation of Zinc Metal Ion. ACS Chem Neurosci 2019; 10:4619-4632. [PMID: 31566950 DOI: 10.1021/acschemneuro.9b00468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc binding to β-amyloid structure could promote amyloid-β aggregation, as well as reactive oxygen species (ROS) production, as suggested in many experimental and theoretical studies. Therefore, the introduction of multifunctional drugs capable of chelating zinc metal ion and inhibiting Aβ aggregation is a promising strategy in the development of AD treatment. The present study has evaluated the efficacy of a new bifunctional peptide drug using molecular docking and molecular dynamics (MD) simulations. This drug comprises two different domains, an inhibitor domain, obtained from the C-terminal hydrophobic region of Aβ, and a Zn2+ chelating domain, derived from rapeseed meal, merge with a linker. The multifunctionality of the ligand was evaluated using a comprehensive set of MD simulations spanning up to 3.2 μs including Aβ relaxation, ligand-Zn2+ bilateral interaction, and, more importantly, ligand-Zn2+-Aβ42 trilateral interactions. Analysis of the results strongly indicated that the bifunctional ligand can chelate zinc metal ion and avoid Aβ aggregation simultaneously. The present study illustrated that the proposed ligand has considerable hydrophobic interactions and hydrogen bonding with monomeric Aβ in the presence of zinc metal ion. Therefore, in light of these considerable interactions and contacts, the α-helical structure of Aβ has been enhanced, while the β-sheet formation is prevented and the α-helix native structure is protected. Furthermore, the analysis of interactions between Aβ and ligand-zinc complex revealed that the zinc metal ion is coordinated to Met13, the ending residue of the ligand and merely one residue in Aβ. The results have proven the previous experimental and theoretical findings in the literature about Aβ interactions with zinc metal ion and also Aβ interactions with the first domain of the proposed ligand. Moreover, the current research has evaluated the chelation using MD simulation and linear interaction energy (LIE) methods, and the result has been satisfactorily verified with previous experimental and theoretical (DFT) studies.
Collapse
Affiliation(s)
- Mohsen Asadbegi
- Sharif University of Technology, School of Mechanical Engineering, Tehran 94305, Iran
| | - Amir Shamloo
- Sharif University of Technology, School of Mechanical Engineering, Tehran 94305, Iran
| |
Collapse
|
37
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
38
|
Zhao J, Li K, Wan K, Sun T, Zheng N, Zhu F, Ma J, Jiao J, Li T, Ni J, Shi X, Wang H, Peng Q, Ai J, Xu W, Liu S. Organoplatinum‐Substituted Polyoxometalate Inhibits β‐amyloid Aggregation for Alzheimer's Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Zhao
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Kexin Li
- School of Pharmaceutical SciencesHarbin Medical University Harbin 150081 China
| | - Kaiwei Wan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Tiedong Sun
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Nannan Zheng
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Fanjiao Zhu
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Jichao Ma
- School of Pharmaceutical SciencesHarbin Medical University Harbin 150081 China
| | - Jia Jiao
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Tianchan Li
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Jinyuan Ni
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| | - Xinghua Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Hui Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Qiang Peng
- Department of Urologythe Fourth Hospital of Harbin Medical University Harbin 150001 China
| | - Jing Ai
- School of Pharmaceutical SciencesHarbin Medical University Harbin 150081 China
| | - Wanhai Xu
- Department of Urologythe Fourth Hospital of Harbin Medical University Harbin 150001 China
| | - Shaoqin Liu
- School of Life Science and TechnologyMOE Key Laboratory of Micro-systems and Micro-structures ManufacturingHarbin Institute of Technology Harbin 150080 China
| |
Collapse
|
39
|
Zhao J, Li K, Wan K, Sun T, Zheng N, Zhu F, Ma J, Jiao J, Li T, Ni J, Shi X, Wang H, Peng Q, Ai J, Xu W, Liu S. Organoplatinum-Substituted Polyoxometalate Inhibits β-amyloid Aggregation for Alzheimer's Therapy. Angew Chem Int Ed Engl 2019; 58:18032-18039. [PMID: 31591753 DOI: 10.1002/anie.201910521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/16/2022]
Abstract
Aggregated β-amyloid (Aβ) is widely considered as a key factor in triggering progressive loss of neuronal function in Alzheimer's disease (AD), so targeting and inhibiting Aβ aggregation has been broadly recognized as an efficient therapeutic strategy for curing AD. Herein, we designed and prepared an organic platinum-substituted polyoxometalate, (Me4 N)3 [PW11 O40 (SiC3 H6 NH2 )2 PtCl2 ] (abbreviated as PtII -PW11 ) for inhibiting Aβ42 aggregation. The mechanism of inhibition on Aβ42 aggregation by PtII -PW11 was attributed to the multiple interactions of PtII -PW11 with Aβ42 including coordination interaction of Pt2+ in PtII -PW11 with amino group in Aβ42 , electrostatic attraction, hydrogen bonding and van der Waals force. In cell-based assay, PtII -PW11 displayed remarkable neuroprotective effect for Aβ42 aggregation-induced cytotoxicity, leading to increase of cell viability from 49 % to 67 % at a dosage of 8 μm. More importantly, the PtII -PW11 greatly reduced Aβ deposition and rescued memory loss in APP/PS1 transgenic AD model mice without noticeable cytotoxicity, demonstrating its potential as drugs for AD treatment.
Collapse
Affiliation(s)
- Jing Zhao
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Kexin Li
- School of Pharmaceutical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Kaiwei Wan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tiedong Sun
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Nannan Zheng
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Fanjiao Zhu
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Jichao Ma
- School of Pharmaceutical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jia Jiao
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Tianchan Li
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Jinyuan Ni
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Xinghua Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qiang Peng
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jing Ai
- School of Pharmaceutical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shaoqin Liu
- School of Life Science and Technology, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
40
|
Zhao G, Qi F, Dong X, Zheng J, Sun Y. LVFFARK conjugation to poly (carboxybetaine methacrylate) remarkably enhances its inhibitory potency on amyloid β-protein fibrillogenesis. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Mudedla SK, Murugan NA, Ågren H. Effect of Familial Mutations on the Interconversion of α-Helix to β-Sheet Structures in an Amyloid-Forming Peptide: Insight from Umbrella Sampling Simulations. ACS Chem Neurosci 2019; 10:1347-1354. [PMID: 30586502 DOI: 10.1021/acschemneuro.8b00425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Understanding the initial events of aggregation of amyloid β monomers to form β-sheet rich fibrils is useful for the development of therapeutics for Alzheimer's disease. In this context, the changes in energetics involved in the aggregation of helical amyloid β monomers into β-sheet rich dimers have been investigated using umbrella sampling simulations and density functional theory calculations. The results from umbrella sampling simulations for the free energy profile for the interconversion closely agree with the results of density functional theory calculations. The results reveal that helical peptides converted to β-sheet structures through coil-like conformations as intermediates that are mostly stabilized by intramolecular hydrogen bonds. The stabilization of intermediate structures could be a possible way to inhibit fibril formation. Mutations substantially decrease the height of the energy barrier for interconversion from α-helix to β-sheet structure when compared to that of the wild type, something that is attributed to an increase in the number of intramolecular hydrogen bonds between backbone atoms in the coil structures that correspond to a maximum value on the free energy surface. The reduction of the energy barrier leads to an enhancement of the rate of aggregation of amyloid β monomers upon introduction of various familial mutations, which is consistent with previous experimental reports.
Collapse
Affiliation(s)
- Sathish Kumar Mudedla
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology (KTH), S-106 91 Stockholm, Sweden
| | - N. Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology (KTH), S-106 91 Stockholm, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology (KTH), S-106 91 Stockholm, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
42
|
Blinov N, Wishart DS, Kovalenko A. Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the 3D-RISM-KH Molecular Theory of Solvation. J Phys Chem B 2019; 123:2491-2506. [PMID: 30811210 DOI: 10.1021/acs.jpcb.9b00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural characterization of amyloid (A)β peptides implicated in Alzheimer's disease is a challenging problem due to their intrinsically disordered nature and their high propensity for aggregation. Only limited information is currently available from experiments on conformational properties and aggregation pathways of the peptides in cellular environments. In silico modeling complements experimental information, providing atomistic insight into structure and dynamics of different Aβ species. All-atom explicit solvent molecular dynamics (MD) simulations with a properly selected force field can deliver reliable structural and dynamic information. In the case of intrinsically disordered Aβ peptides, enhanced sampling simulations beyond the nanosecond time scale are required to obtain statistically meaningful results even for simple solvent conditions. To overcome the challenges of conformational sampling in crowded cellular environments, alternative approaches have to be used, including postprocessing of MD data. In this study, we employ the statistical-mechanical, three-dimensional reference interaction site model with the Kovalenko-Hirata closure integral equation molecular theory of solvation to describe solvent composition effects on the conformational equilibrium in a structural ensemble of the Aβ42 (covering residues 1-42) monomer based on a statistical reweighting technique. The methodology enables a computationally efficient prediction on how different factors in the cellular environment, such as solvent composition, nonpolar solvation, and macromolecular crowding, affect the structural properties of the monomer. Similarities have been identified between changes in the structural ensemble caused by nonpolar solvation and crowded environments modeled by ionic solution with large negative ions. In particular, both solvent conditions reduce the random coil content and enhance the helical structure content of the monomer. In contrast to the previous studies, which reported increased α-helical content of peptides in crowded environments, this work attributes these structural features to the difference in solvent exposure of hydrophilic residues of the monomer for different secondary structure elements, rather than to (entropic) excluded volume effects.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| | - David S Wishart
- Departments of Computing Science and Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E8 , Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
43
|
Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? NANO CONVERGENCE 2018; 5:38. [PMID: 30539365 PMCID: PMC6289934 DOI: 10.1186/s40580-018-0170-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 05/08/2023]
Abstract
Peptide-nanoparticle conjugates (PNCs) have recently emerged as a versatile tool for biomedical applications. Synergism between the two promising classes of materials allows enhanced control over their biological behaviors, overcoming intrinsic limitations of the individual materials. Over the past decades, a myriad of PNCs has been developed for various applications, such as drug delivery, inhibition of pathogenic biomolecular interactions, molecular imaging, and liquid biopsy. This paper provides a comprehensive overview of existing technologies that have been recently developed in the broad field of PNCs, offering a guideline especially for investigators who are new to this field.
Collapse
Affiliation(s)
- Woo-jin Jeong
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - Stephanie S. Chen
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - YoungSoo Kim
- Integrated Science and Engineering Division, Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, 03722 Republic of Korea
| |
Collapse
|
44
|
Hoffmann S, Gorzelanny C, Moerschbacher B, Goycoolea FM. Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. NANOMATERIALS 2018; 8:nano8100846. [PMID: 30336593 PMCID: PMC6215305 DOI: 10.3390/nano8100846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Sub-micron o/w emulsions coated with chitosan have been used for drug delivery, quorum sensing inhibition, and vaccine development. To study interactions with biological systems, nanocapsules have been fluorescently labelled in previous works, but it is often difficult to distinguish the released label from intact nanocapsules. In this study, we present advanced-labelling strategies based on Förster Resonance Energy Transfer (FRET) measurements for chitosan-coated nanocapsules and investigate their dissolution and degradation. We used FRET measurements of nanocapsules loaded with equimolar concentrations of two fluorescent dyes in their oily core and correlated them with dynamic light scattering (DLS) count rate measurement and absorbance measurements during their disintegration by dissolution. Using count rate measurements, we also investigated the enzymatic degradation of nanocapsules using pancreatin and how protein corona formation influences their degradation. Of note, nanocapsules dissolved in ethanol, while FRET decreased simultaneously with count rate, and absorbance was caused by nanocapsule turbidity, indicating increased distance between dye molecules after their release. Nanocapsules were degradable by pancreatin in a dose-dependent manner, and showed a delayed enzymatic degradation after protein corona formation. We present here novel labelling strategies for nanocapsules that allow us to judge their status and an in vitro method to study nanocapsule degradation and the influence of surface characteristics.
Collapse
Affiliation(s)
- Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bruno Moerschbacher
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
45
|
Bansal S, Maurya IK, Yadav N, Thota CK, Kumar V, Tikoo K, Chauhan VS, Jain R. C-Terminal Fragment, Aβ 39-42-Based Tetrapeptides Mitigates Amyloid-β Aggregation-Induced Toxicity. ACS OMEGA 2018; 3:10019-10032. [PMID: 31459130 PMCID: PMC6645473 DOI: 10.1021/acsomega.8b01522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 06/07/2023]
Abstract
Since the introduction of acetyl cholinesterase inhibitors as the first approved drugs by the US Food and Drug Administration for Alzheimer's disease (AD) in clinics, less than satisfactory success in the design of anti-AD agents has impelled the scientists to also focus toward inhibition of Aβ aggregation. Considering the specific binding of fragments for their parent peptide, herein, we synthesized more than 40 new peptides based on a C-terminus tetrapeptide fragment of Aβ1-42. Initial screening by MTT cell viability assay and supportive results by ThT fluorescence assay led us to identify a tetrapeptide showing complete inhibition for Aβ1-42 aggregation. Peptide 20 displayed 100% cell viability at 20 μM concentration, while at lower concentrations of 10 and 2 μM 76.6 and 70% of cells were viable. Peptide 20 was found to restrict the conformational transition of Aβ1-42 peptide toward β-sheet structure. Inhibitory activity of tetrapeptide 20 was further evidenced by the absence of Aβ1-42 aggregates in electron microscopy. Peptide 20 and other significantly active tetrapeptide analogues could prove imperative in the future design of anti-AD agents.
Collapse
Affiliation(s)
- Sunil Bansal
- Department
of Medicinal Chemistry and Department of Pharmacology and
Toxicology, National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S Nagar, 160 062 Punjab, India
| | - Indresh Kumar Maurya
- Department
of Microbial Biotechnology, Punjab University, Sector 14, Chandigarh 160 014, India
| | - Nitin Yadav
- International
Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Chaitanya Kumar Thota
- International
Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Vinod Kumar
- Department
of Medicinal Chemistry and Department of Pharmacology and
Toxicology, National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S Nagar, 160 062 Punjab, India
| | - Kulbhushan Tikoo
- Department
of Medicinal Chemistry and Department of Pharmacology and
Toxicology, National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S Nagar, 160 062 Punjab, India
| | - Virander Singh Chauhan
- International
Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rahul Jain
- Department
of Medicinal Chemistry and Department of Pharmacology and
Toxicology, National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S Nagar, 160 062 Punjab, India
| |
Collapse
|
46
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
48
|
Ren B, Liu Y, Zhang Y, Cai Y, Gong X, Chang Y, Xu L, Zheng J. Genistein: A Dual Inhibitor of Both Amyloid β and Human Islet Amylin Peptides. ACS Chem Neurosci 2018; 9:1215-1224. [PMID: 29432676 DOI: 10.1021/acschemneuro.8b00039] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abnormal misfolding and aggregation of amyloid peptides into amyloid fibrils are common and critical pathological events in many neurodegenerative diseases. Most inhibitors or drugs have been developed to prevent amyloid aggregation of a specific peptide, showing sequence-dependent inhibition mechanisms. It is more challenging to develop or discover inhibitors capable of preventing the aggregation of two or more different amyloid peptides. Genistein, a major phytoestrogen in soybean, has been widely used as an anti-inflammation and cerebrovascular drug due to its antioxidation and antiacetylcholinesterase effects. Herein, we examine the inhibitory effects of genistein on the aggregation of amyloid-β (Aβ, associated with Alzheimer's disease) and human islet amylin (hIAPP, associated with type 2 diabetes) and Aβ- and hIAPP-induced neurotoxicity using a combination of experimental and computational approaches. Collective experimental results from thioflavin T (ThT), atomic force microscopy (AFM), and circular dichroism (CD) demonstrate that genistein shows strong inhibition ability to prevent the conformational transition of both Aβ and hIAPP monomers to β-sheet structures, thus reducing final amyloid fibrillization from Aβ and hIAPP monomer aggregation by 40-63%. Further 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and large unilamellar vesicle (LUV) assays show that genistein helps to increase cell viability, decrease cell apoptosis, and reduce cell membrane leakage, where the cell protection effect of genistein is likely correlated with its reduced membrane leakage. Comparative molecular dynamics (MD) simulations reveal that genistein prefers to bind the β-sheet groove, a common structural motif of amyloid fibrils, of both Aβ and hIAPP oligomers to interfere with their self-aggregation. This work for the first time demonstrates genistein as a dual inhibitor of Aβ and hIAPP aggregation. Further structural optimization and refinement of genistein may generate a series of effective sequence-independent inhibitors against the aggregation and toxicity of different amyloid peptides.
Collapse
Affiliation(s)
- Baiping Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yongqing Cai
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiong Gong
- Department of Polymer Engineering, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
49
|
Liu Y, Xu LP, Wang Q, Yang B, Zhang X. Synergistic Inhibitory Effect of GQDs-Tramiprosate Covalent Binding on Amyloid Aggregation. ACS Chem Neurosci 2018; 9:817-823. [PMID: 29244487 DOI: 10.1021/acschemneuro.7b00439] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inhibiting the amyloid aggregation is considered to be an effective strategy to explore possible treatment of amyloid-related diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. Herein, a new high-efficiency and low-cytotoxicity Aβ aggregation inhibitors, GQD-T, was designed through the combination of two Aβ aggregation inhibitors, graphene quantum dots (GQDs) and tramiprosate. GQD-T showed the capability of efficiently inhibiting the aggregation of Aβ peptides and rescuing Aβ-induced cytotoxicity due to the synergistic effect of the GQDs and tramiprosate. In addition, the GQD-T has the characteristics of low toxicity and great biocompatibility. It is believed that GQD-T may be a potential candidate for an Alzheimer's drug and this work provides a new strategy for exploring Aβ peptide aggregation inhibitors.
Collapse
Affiliation(s)
- Yibiao Liu
- Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
- Henan Provincial Key Laboratory of Nano-composite Materials and Applications, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Qiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, The Chinese Academy of Sciences, Taiyuan 030001, P.R. China
| | - Baocheng Yang
- Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
- Henan Provincial Key Laboratory of Nano-composite Materials and Applications, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
50
|
Han X, He G. Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer's Disease Treatment. ACS Chem Neurosci 2018; 9:198-210. [PMID: 29251488 DOI: 10.1021/acschemneuro.7b00477] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The last decades have witnessed a growing global burden of Alzheimer's disease (AD). Evidence indicates that the onset and progression of AD is associated with β-amyloid (Aβ) peptide fibrillation. As such, there is a strong passion with discovering potent Aβ fibrillation inhibitors that can be developed into anti-amyloiddogenic agents for AD treatment. Current challenges that have arisen with this development involve with Aβ oligomer toxicity suppression and Blood Brain Barrier penetration capability. Considering most natural or biological events, one would observe that there is usually a "seed" to direct natural materials to assemble in response to a certain stimulation. Inspired by this, several materials or compounds, including nanoparticle, peptide or peptide mimics, and organic molecules, have been designed for the purpose of redirecting or impeding Aβ aggregation. Achieving these tasks requires comprehensive understanding on (1) initial Aβ assembly into insoluble deposits, (2) main concerns with fibrillation inhibition, and (3) current major methodologies to disrupt the aggregation. Herein, the objective of this review is to address these three areas, and enable the pathway for a promising therapeutic agent design for AD treatment.
Collapse
Affiliation(s)
- Xu Han
- Huston Labs, 1951 NW Seventh
Avenue, Suite 600, Miami, Florida 33136, United States
| | - Gefei He
- East China Normal University, 3663 Zhongshan N Road, Putuo District, Shanghai 200062, China
| |
Collapse
|