1
|
Nguyen TD, Winek MA, Rao MK, Dhyani SP, Lee MY. Nuclear envelope components in vascular mechanotransduction: emerging roles in vascular health and disease. Nucleus 2025; 16:2453752. [PMID: 39827403 DOI: 10.1080/19491034.2025.2453752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function. Studies implicate nucleoskeletal elements (e.g. nuclear lamina) and the linker of nucleoskeleton and cytoskeleton (LINC) complex in force transmission, emphasizing nucleo-cytoskeletal communication in mechanotransduction. The nuclear pore complex (NPC) and its component proteins (i.e. nucleoporins) also play roles in cardiovascular disease (CVD) progression. We herein summarize evidence on the roles of nuclear lamina proteins, LINC complex members, and nucleoporins in endothelial and vascular cell mechanotransduction. Numerous studies attribute NE components in cytoskeletal-related cellular behaviors to insinuate dysregulation of nucleocytoskeletal feedback and nucleocytoplasmic transport as a mechanism of endothelial and vascular dysfunction, and hence implications for aging and vascular pathophysiology.
Collapse
Affiliation(s)
- Tung D Nguyen
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Michael A Winek
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Mihir K Rao
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Shaiva P Dhyani
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Monica Y Lee
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Merta H, Gov K, Isogai T, Paul B, Sannigrahi A, Radhakrishnan A, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. Cell Rep 2025; 44:115502. [PMID: 40184252 DOI: 10.1016/j.celrep.2025.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/20/2024] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knockin technologies, we map the proteomic landscape of the human ER network. Sub-organelle proteomics reveals enrichments of proteins into ER tubules, sheets, and the nuclear envelope. We uncover an ER-enriched actin-binding protein, calmin/CLMN, and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. Mechanistically, we find that CLMN depletion perturbs adhesion disassembly, actin dynamics, and cell movement. CLMN-depleted cells display decreased polarization of ER-plasma membrane contacts and calcium signaling factor STIM1 and altered calcium signaling near ER-actin interfaces, suggesting that CLMN influences calcium signaling to facilitate F-actin/adhesion dynamics. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kaitlynn Gov
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Achinta Sannigrahi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Goelzer M, Howard S, Zavala AG, Conway D, Rubin J, Uzer G. Depletion of SUN1/2 induces heterochromatin accrual in mesenchymal stem cells during adipogenesis. Commun Biol 2025; 8:428. [PMID: 40082539 PMCID: PMC11906923 DOI: 10.1038/s42003-025-07832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Critical to the mechano-regulation of mesenchymal stem cells (MSC), Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex transduces cytoskeletal forces to the nuclei. The LINC complex contains outer nuclear membrane Nesprin proteins that associate with the cytoskeleton and their inner nuclear membrane couplers, SUN proteins. Here we tested the hypothesis that severing of the LINC complex-mediated cytoskeletal connections may have different effects on chromatin organization and MSC differentiation than those due to ablation of SUN proteins. In cells cultured under adipogenic conditions, interrupting LINC complex function through dominant-negative KASH domain expression (dnKASH) increased adipogesis while heterochromatin H3K27 and H3K9 methylation was unaltered. In contrast, SUN1/2 depletion inhibited adipogenic gene expression and fat droplet formation; as well the anti-adipogenic effect of SUN1/2 depletion was accompanied by increased H3K9me3, which was enriched on Adipoq, silencing this fat locus. We conclude that releasing the nucleus from cytoskeletal constraints via dnKASH accelerates adipogenesis while depletion of SUN1/2 increases heterochromatin accrual on adipogenic genes in a fashion independent of LINC complex function. Therefore, while these two approaches both disable LINC complex functions, their divergent effects on the epigenetic landscape indicate they cannot be used interchangeably to study mechanical regulation of cell differentiation.
Collapse
Affiliation(s)
- Matthew Goelzer
- Boise State University, Boise, ID, USA
- Oral Roberts University, Tulsa, OK, USA
| | | | | | - Daniel Conway
- The Ohio State University University, Columbus, OH, USA
| | - Janet Rubin
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
5
|
Gümüşderelioğlu S, Sahabandu N, Elnatan D, Gregory EF, Chiba K, Niwa S, Luxton GWG, McKenney RJ, Starr DA. The KASH protein UNC-83 differentially regulates kinesin-1 activity to control developmental stage-specific nuclear migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641899. [PMID: 40093101 PMCID: PMC11908248 DOI: 10.1101/2025.03.06.641899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope KASH protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity. The shorter UNC-83c isoform promotes kinesin-1-dependent nuclear movement in embryonic hyp7 precursors, while longer UNC-83a/b isoforms facilitate dynein-mediated nuclear migration in larval P cells. We demonstrate that UNC-83a's N-terminal domain functions as a kinesin-1 inhibitory module by directly binding kinesin heavy chain (UNC-116). This isoform-specific inhibition, combined with differential affinity for kinesin light chain (KLC-2), establishes a molecular switch for directional control. Together, these interdisciplinary studies reveal how alternative isoforms of cargo adaptors can generate developmental stage-specific regulation of motor activity during development.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Natalie Sahabandu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| |
Collapse
|
6
|
Sahabandu N, Okada K, Khan A, Elnatan D, Starr DA, Ori-McKenney KM, Luxton G, McKenney RJ. Active microtubule-actin cross-talk mediated by a nesprin-2G-kinesin complex. SCIENCE ADVANCES 2025; 11:eadq4726. [PMID: 39982998 PMCID: PMC11844729 DOI: 10.1126/sciadv.adq4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Nesprin-2 Giant (N2G) is a large integral membrane protein that physically connects the nucleus to the cytoskeleton, but how N2G performs this activity to maintain nuclear positioning and drive nuclear movement is unclear. This study investigates N2G's role in nucleocytoskeletal coupling, a process critical for cellular function and development. We uncover multiple roles for N2G, including its activity as an F-actin bundler, an adapter that activates kinesin-1 motors, and a mediator of cytoskeletal cross-talk. Notably, N2G directly links kinesin-1 to F-actin, enabling the transport of actin filaments along microtubule tracks, establishing active cross-talk between the actin and microtubule cytoskeletons. These findings provide crucial insights into nuclear movement, advancing our understanding of fundamental cellular processes and their implications in development and disease.
Collapse
Affiliation(s)
- Natalie Sahabandu
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kyoko Okada
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Aisha Khan
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel Elnatan
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel A. Starr
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | - Gant Luxton
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard J. McKenney
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Fujita M. Maintenance of the Golgi ribbon structure by the KASH protein Jaw1. J Biochem 2025; 177:65-67. [PMID: 39557397 DOI: 10.1093/jb/mvae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/20/2024] Open
Abstract
The Golgi apparatus is an organelle responsible for modification, secretion and transport of biomolecules. Its structure and morphology are crucial for the efficient processing and proper transport of proteins. The maintenance of this Golgi ribbon structure involves multiple proteins including GRASP and golgin proteins and the microtubule network. Particularly, the microtubule network extending from the Golgi is important for the Golgi ribbon formation and positioning. A recent report by Okumura et al. (J. Biochem. 2023; 173: 383-392) demonstrated that Jaw1, one of the Klarsicht/ANC-1/Syne/homology (KASH) proteins that are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, is essential for maintaining the Golgi ribbon structure. Knockdown of Jaw1 disrupted the Golgi ribbon structure leading to the fragmentation, whilst the Golgi ministacks were preserved. Acetylated tubulin, a marker of the Golgi-derived microtubule network, became more dispersed, losing its local compactness in the Jaw-depleted cells. These phenomena suggest that Jaw1 is required to maintain the proper organization of the Golgi-derived microtubule network.
Collapse
Affiliation(s)
- Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
9
|
Gräf R, Batsios P, Grafe M, Meyer I, Mitic K. Nuclear Envelope Dynamics in Dictyostelium Amoebae. Cells 2025; 14:186. [PMID: 39936978 PMCID: PMC11816917 DOI: 10.3390/cells14030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
In the last decades, the study of many nuclear envelope components in Dictyostelium amoebae has revealed conserved mechanisms of nuclear envelope dynamics that root back unexpectedly deep into the eukaryotic tree of life. In this review, we describe the state of the art in nuclear envelope research in this organism starting from early work on nuclear pore complexes to characterization of the first true lamin in a non-metazoan organism and its associated nuclear envelope transmembrane proteins, such as the HeH-family protein Src1 and the LINC complex protein Sun1. We also describe the dynamic processes during semi-closed mitosis, including centrosome insertion into the nuclear envelope, and processes involved in the restoration of nuclear envelope permeability around mitotic exit and compare them to the situation in cells with open or fully closed mitosis.
Collapse
Affiliation(s)
- Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Petros Batsios
- Sigma-Aldrich Chemie GmbH, Eschenstraße 5, 82024 Taufkirchen, Germany;
| | - Marianne Grafe
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Kristina Mitic
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| |
Collapse
|
10
|
Qin Q, Zhou ZY, Liu Y, Zhou F, Cao C, Teng L. Unraveling the nexus of nesprin in dilated cardiomyopathy: From molecular insights to therapeutic prospects. Life Sci 2024; 358:123126. [PMID: 39396640 DOI: 10.1016/j.lfs.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dilated cardiomyopathy is a complex and debilitating heart disorder characterized by the enlargement and weakening of the cardiac chambers, leading to impaired contractility and heart failure. Nesprins, a family of nuclear envelope spectrin repeat proteins that include isoforms Nesprin-1/-2, are integral components of the LInker of Nucleoskeleton and Cytoskeleton complex. They facilitate the connection between the nuclear envelope and the cytoskeleton, crucial for maintaining nuclear architecture, migration and positioning, and mechanical transduction and signaling. Nesprin-1/-2 are abundantly expressed in cardiac and skeletal muscles.They have emerged as key players in the pathogenesis of dilated cardiomyopathy. Mutations in synaptic nuclear envelope-1/-2 genes encoding Nesprin-1/-2 are associated with dilated cardiomyopathy, underscoring their significance in cardiac health. This review highlights the all known cases of Nesprin-1/-2 related dilated cardiomyopathy, focusing on their interactions with the nuclear envelope, their role in mechanical transduction, and their influence on gene expression. Moreover, it delves into the underlying mechanisms through which Nesprin dysfunction disrupts nuclear-cytoskeletal coupling, leading to abnormal nuclear morphology, impaired mechanotransduction, and altered gene regulation. The exploration of Nesprin's impact on dilated cardiomyopathy offers a promising avenue for therapeutic interventions aimed at ameliorating the disease. This review provides a comprehensive overview of recent advancements in understanding the pivotal role of Nesprins in dilated cardiomyopathy research.
Collapse
Affiliation(s)
- Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Yangyuanzhi Liu
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China
| | - Chunyu Cao
- School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China; College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, UK.
| |
Collapse
|
11
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
13
|
Zhou C, Wu YK, Ishidate F, Fujiwara TK, Kengaku M. Nesprin-2 coordinates opposing microtubule motors during nuclear migration in neurons. J Cell Biol 2024; 223:e202405032. [PMID: 39115447 PMCID: PMC11310688 DOI: 10.1083/jcb.202405032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.
Collapse
Affiliation(s)
- Chuying Zhou
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - You Kure Wu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Ju RJ, Falconer AD, Schmidt CJ, Enriquez Martinez MA, Dean KM, Fiolka RP, Sester DP, Nobis M, Timpson P, Lomakin AJ, Danuser G, White MD, Haass NK, Oelz DB, Stehbens SJ. Compression-dependent microtubule reinforcement enables cells to navigate confined environments. Nat Cell Biol 2024; 26:1520-1534. [PMID: 39160291 DOI: 10.1038/s41556-024-01476-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments.
Collapse
Affiliation(s)
- Robert J Ju
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Alistair D Falconer
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Marco A Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto P Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David P Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Max Nobis
- Faculty of Medicine, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Paul Timpson
- Faculty of Medicine, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alexis J Lomakin
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Institute of Medical Chemistry and Pathobiochemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie D White
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nikolas K Haass
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Dietmar B Oelz
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia.
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Chinnathambi S, Adithyan A, Suresh S, Velmurugan G, Chandrashekar M, Sahu S, Mishra M. Nuclear transport protein suppresses Tau neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:363-385. [PMID: 39843141 DOI: 10.1016/bs.apcsb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport. Hyperphosphorylated Tau, a hallmark of AD pathology, interacts with central channel NUPs such as Nup62 and Nup98, causing cytoplasmic mis-localization of these proteins and impairing nuclear transport. Furthermore, Tau-NUP interactions promote Tau aggregation and the formation of neurofibrillary tangles, exacerbating neurodegeneration. Oligomeric Tau adheres to the lamin B receptor as well as nuclear lamin, preventing nucleocytoplasmic transport and resulting in heterochromatin unwinding, DNA damage, and neuronal death. The decrease in lamin B and increasing levels of lamin A along with C in AD-affected brain areas highlight the disease's intricacy. Furthermore, Tau internalization in the nucleus and interaction with nuclear pore complexes worsen NPC dysfunction, which contributes to neurotoxicity. Tau-DNA interactions suggest a chaperone-like role for Tau in DNA organization and repair, highlighting its involvement in maintaining genomic integrity. This review explores the intricate relationships between Tau, NPC components, and nuclear lamin in the context of AD, providing insights into the mechanisms underlying Tau-induced neurodegeneration and potential therapeutic targets.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| | - Anusree Adithyan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Swathi Suresh
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Gowshika Velmurugan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Surajita Sahu
- Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
16
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. J Cell Biol 2024; 223:e202308152. [PMID: 38683248 PMCID: PMC11059771 DOI: 10.1083/jcb.202308152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
17
|
Wang X, Li T, Xu J, Zhang F, Liu L, Wang T, Wang C, Ren H, Zhang Y. Distinct functions of microtubules and actin filaments in the transportation of the male germ unit in pollen. Nat Commun 2024; 15:5448. [PMID: 38937444 PMCID: PMC11211427 DOI: 10.1038/s41467-024-49323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.
Collapse
Affiliation(s)
- Xiangfei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Tonghui Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Jiuting Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Lifang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Beijing Normal University, 519087, Zhuhai, China.
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
18
|
Perea Paizal J, Au SH, Bakal C. Nuclear rupture induced by capillary constriction forces promotes differential effects on metastatic and normal breast cells. Sci Rep 2024; 14:14793. [PMID: 38926422 PMCID: PMC11208511 DOI: 10.1038/s41598-024-64733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
During metastatic dissemination, circulating tumour cells (CTCs) enter capillary beds, where they experience mechanical constriction forces. The transient and persistent effects of these forces on CTCs behaviour remain poorly understood. Here, we developed a high-throughput microfluidic platform mimicking human capillaries to investigate the impact of mechanical constriction forces on malignant and normal breast cell lines. We observed that capillary constrictions induced nuclear envelope rupture in both cancer and normal cells, leading to transient changes in nuclear and cytoplasmic area. Constriction forces transiently activated cGAS/STING and pathways involved in inflammation (NF-κB, STAT and IRF3), especially in the non-malignant cell line. Furthermore, the non-malignant cell line experienced transcriptional changes, particularly downregulation of epithelial markers, while the metastatic cell lines showed minimal alterations. These findings suggest that mechanical constriction forces within capillaries may promote differential effects in malignant and normal cell lines.
Collapse
Affiliation(s)
- Julia Perea Paizal
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, SW6 6JB, UK.
- Cancer Research UK Convergence Science Centre, Roderic Hill Building, Imperial College London, London, SW7 2BB, UK.
| | - Sam H Au
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Cancer Research UK Convergence Science Centre, Roderic Hill Building, Imperial College London, London, SW7 2BB, UK
| | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, SW6 6JB, UK
- Cancer Research UK Convergence Science Centre, Roderic Hill Building, Imperial College London, London, SW7 2BB, UK
| |
Collapse
|
19
|
Young N, Gui Z, Mustafa S, Papa K, Jessop E, Ruddell E, Bevington L, Quinlan RA, Benham AM, Goldberg MW, Obara B, Karakesisoglou I. Inhibition of PDIs Downregulates Core LINC Complex Proteins, Promoting the Invasiveness of MDA-MB-231 Breast Cancer Cells in Confined Spaces In Vitro. Cells 2024; 13:906. [PMID: 38891038 PMCID: PMC11172124 DOI: 10.3390/cells13110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.
Collapse
Affiliation(s)
- Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Zizhao Gui
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Suleiman Mustafa
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Kleopatra Papa
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Elizabeth Ruddell
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Laura Bevington
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Roy A. Quinlan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Adam M. Benham
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Martin W. Goldberg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| |
Collapse
|
20
|
Bougaran P, Bautch VL. Life at the crossroads: the nuclear LINC complex and vascular mechanotransduction. Front Physiol 2024; 15:1411995. [PMID: 38831796 PMCID: PMC11144885 DOI: 10.3389/fphys.2024.1411995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Vascular endothelial cells line the inner surface of all blood vessels, where they are exposed to polarized mechanical forces throughout their lifespan. Both basal substrate interactions and apical blood flow-induced shear stress regulate blood vessel development, remodeling, and maintenance of vascular homeostasis. Disruption of these interactions leads to dysfunction and vascular pathologies, although how forces are sensed and integrated to affect endothelial cell behaviors is incompletely understood. Recently the endothelial cell nucleus has emerged as a prominent force-transducing organelle that participates in vascular mechanotransduction, via communication to and from cell-cell and cell-matrix junctions. The LINC complex, composed of SUN and nesprin proteins, spans the nuclear membranes and connects the nuclear lamina, the nuclear envelope, and the cytoskeleton. Here we review LINC complex involvement in endothelial cell mechanotransduction, describe unique and overlapping functions of each LINC complex component, and consider emerging evidence that two major SUN proteins, SUN1 and SUN2, orchestrate a complex interplay that extends outward to cell-cell and cell-matrix junctions and inward to interactions within the nucleus and chromatin. We discuss these findings in relation to vascular pathologies such as Hutchinson-Gilford progeria syndrome, a premature aging disorder with cardiovascular impairment. More knowledge of LINC complex regulation and function will help to understand how the nucleus participates in endothelial cell force sensing and how dysfunction leads to cardiovascular disease.
Collapse
Affiliation(s)
- Pauline Bougaran
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
| | - Victoria L. Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Zi-Yi Z, Qin Q, Fei Z, Cun-Yu C, Lin T. Nesprin proteins: bridging nuclear envelope dynamics to muscular dysfunction. Cell Commun Signal 2024; 22:208. [PMID: 38566066 PMCID: PMC10986154 DOI: 10.1186/s12964-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.
Collapse
Affiliation(s)
- Zhou Zi-Yi
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Zhou Fei
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Cao Cun-Yu
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Teng Lin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China.
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, SE5 9NU, UK.
| |
Collapse
|
22
|
Brotto D, Greggio M, De Filippis C, Trevisi P. Autosomal Recessive Non-Syndromic Deafness: Is AAV Gene Therapy a Real Chance? Audiol Res 2024; 14:239-253. [PMID: 38525683 PMCID: PMC10961695 DOI: 10.3390/audiolres14020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The etiology of sensorineural hearing loss is heavily influenced by genetic mutations, with approximately 80% of cases attributed to genetic causes and only 20% to environmental factors. Over 100 non-syndromic deafness genes have been identified in humans thus far. In non-syndromic sensorineural hearing impairment, around 75-85% of cases follow an autosomal recessive inheritance pattern. In recent years, groundbreaking advancements in molecular gene therapy for inner-ear disorders have shown promising results. Experimental studies have demonstrated improvements in hearing following a single local injection of adeno-associated virus-derived vectors carrying an additional normal gene or using ribozymes to modify the genome. These pioneering approaches have opened new possibilities for potential therapeutic interventions. Following the PRISMA criteria, we summarized the AAV gene therapy experiments showing hearing improvement in the preclinical phases of development in different animal models of DFNB deafness and the AAV gene therapy programs currently in clinical phases targeting autosomal recessive non syndromic hearing loss. A total of 17 preclinical studies and 3 clinical studies were found and listed. Despite the hurdles, there have been significant breakthroughs in the path of HL gene therapy, holding great potential for providing patients with novel and effective treatment.
Collapse
Affiliation(s)
- Davide Brotto
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
- Otolaryngology Unit, Azienda Ospedale Università Padova, 35128 Padova, Italy
| | - Marco Greggio
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
- Otolaryngology Unit, Azienda Ospedale Università Padova, 35128 Padova, Italy
| | - Cosimo De Filippis
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
| | - Patrizia Trevisi
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
- Otolaryngology Unit, Azienda Ospedale Università Padova, 35128 Padova, Italy
| |
Collapse
|
23
|
Rodrigo AP, Moutinho Cabral I, Alexandre A, Costa PM. Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives. Animals (Basel) 2024; 14:635. [PMID: 38396603 PMCID: PMC10885894 DOI: 10.3390/ani14040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Proteinaceous toxins are peptides or proteins that hold great biotechnological value, evidenced by their ecological role, whether as defense or predation mechanisms. Bioprospecting using bioinformatics and omics may render screening for novel bioactives more expeditious, especially considering the immense diversity of toxin-secreting marine organisms. Eulalia sp. (Annelida: Phyllodocidae), a toxin bearing marine annelid, was recently shown to secrete cysteine-rich protein (Crisp) toxins (hitherto referred to as 'phyllotoxins') that can immobilize its prey. By analyzing and validating transcriptomic data, we narrowed the list of isolated full coding sequences of transcripts of the most abundant toxins or accompanying bioactives secreted by the species (the phyllotoxin Crisp, hyaluronidase, serine protease, and peptidases M12A, M13, and M12B). Through homology matching with human proteins, the biotechnological potential of the marine annelid's toxins and related proteins was tentatively associated with coagulative and anti-inflammatory responses for the peptidases PepM12A, SePr, PepM12B, and PepM13, and with the neurotoxic activity of Crisp, and finally, hyaluronidase was inferred to bear properties of an permeabilizing agent. The in silico analysis succeeded by validation by PCR and Sanger sequencing enabled us to retrieve cDNAs can may be used for the heterologous expression of these toxins.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês Moutinho Cabral
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - António Alexandre
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Pedro M. Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
24
|
Chiba K, Niwa S. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis. Curr Opin Cell Biol 2024; 86:102301. [PMID: 38096601 DOI: 10.1016/j.ceb.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Kinesin-1, composed of kinesin heavy chain and kinesin light chain, is a founding member of kinesin superfamily and transports various neuronal cargos. Kinesin-1 is one of the most abundant ATPases in the cell and thus need to be tightly regulated to avoid wastage of energy. It has been well established that kinesin-1 is regulated by the autoinhibition mechanism. This review focuses on the recent researches that have contributed to the understanding of mechanisms for the autoinhibition of kinesin-1 and its unlocking. Recent electron microscopic studies have shown an unanticipated structure of autoinhibited kinesin-1. Biochemical reconstitution have revealed detailed molecular mechanisms how the autoinhibition is unlocked. Importantly, misregulation of kinesin-1 is emerging as one of the major causes of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
25
|
Gurusaran M, Erlandsen BS, Davies OR. The crystal structure of SUN1-KASH6 reveals an asymmetric LINC complex architecture compatible with nuclear membrane insertion. Commun Biol 2024; 7:138. [PMID: 38291267 PMCID: PMC10827754 DOI: 10.1038/s42003-024-05794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The LINC complex transmits cytoskeletal forces into the nucleus to control the structure and movement of nuclear contents. It is formed of nuclear SUN and cytoplasmic KASH proteins, which interact within the nuclear lumen, immediately below the outer nuclear membrane. However, the symmetrical location of KASH molecules within SUN-KASH complexes in previous crystal structures has been difficult to reconcile with the steric requirements for insertion of their immediately upstream transmembrane helices into the outer nuclear membrane. Here, we report the crystal structure of the SUN-KASH complex between SUN1 and JAW1/LRMP (KASH6) in an asymmetric 9:6 configuration. This intertwined assembly involves two distinct KASH conformations such that all six KASH molecules emerge on the same molecular surface. Hence, they are ideally positioned for insertion of upstream sequences into the outer nuclear membrane. Thus, we report a SUN-KASH complex architecture that appears to be directly compatible with its biological role.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Benedikte S Erlandsen
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
26
|
Merta H, Isogai T, Paul B, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577043. [PMID: 38328045 PMCID: PMC10849733 DOI: 10.1101/2024.01.24.577043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knock-in technologies, here we map the proteomic landscape of the human ER and nuclear envelope. Spatial proteomics reveals enrichments of proteins into ER tubules, sheets, and nuclear envelope. We uncover an ER-enriched actin-binding protein, Calmin (CLMN), and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. CLMN depletion perturbs focal adhesion disassembly, actin dynamics, and cell movement. Mechanistically, CLMN-depleted cells also exhibit defects in calcium signaling near ER-actin interfaces, suggesting CLMN promotes calcium signaling near adhesions to facilitate their disassembly. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
27
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573651. [PMID: 38234722 PMCID: PMC10793428 DOI: 10.1101/2023.12.29.573651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
28
|
Yerima G, Domkam N, Ornowski J, Jahed Z, Mofrad MRK. Force transmission and SUN-KASH higher-order assembly in the LINC complex models. Biophys J 2023; 122:4582-4597. [PMID: 37924205 PMCID: PMC10719071 DOI: 10.1016/j.bpj.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The linkers of the nucleoskeleton and cytoskeleton (LINC) complex comprises Sad-1 and UNC-84 (SUN) and Klarsicht, ANC-1, SYNE homology (KASH) domain proteins, whose conserved interactions provide a physical coupling between the cytoskeleton and the nucleoskeleton, thereby mediating the transfer of physical forces across the nuclear envelope. The LINC complex can perform distinct cellular functions by pairing various KASH domain proteins with the same SUN domain protein. Recent studies have suggested a higher-order assembly of SUN and KASH instead of a more widely accepted linear trimer model for the LINC complex. In the present study, we use molecular dynamics simulations to investigate the mechanism of force transfer across the two proposed models of LINC complex assembly, namely the 3:3 linear trimer model and the 6:6 higher-order model. Employing steered molecular dynamics simulations with various structures using forces at different rates and directions, we examine the structural stability of the two models under various biologically relevant conditions. Our results suggest that both models can withstand and transfer significant levels of force while retaining their structural integrity. However, the force response of various SUN/KASH assemblies depend on the force direction and pulling rates. Slower pulling rates result in higher mean square fluctuations of the 3:3 assembly compared to the fast pulling. Interestingly, the 6:6 assembly tends to provide an additional range of motion flexibility and might be more advantageous to the structural rigidity and pliability of the nuclear envelope. These findings offer insights into how the SUN and KASH proteins maintain the structural integrity of the nuclear membrane.
Collapse
Affiliation(s)
- Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zeinab Jahed
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California.
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
29
|
Wallace M, Fedorchak GR, Agrawal R, Gilbert RM, Patel J, Park S, Paszek M, Lammerding J. The lamin A/C Ig-fold undergoes cell density-dependent changes that alter epitope binding. Nucleus 2023; 14:2180206. [PMID: 36809122 PMCID: PMC9980629 DOI: 10.1080/19491034.2023.2180206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Lamins A/C are nuclear intermediate filament proteins that are involved in diverse cellular mechanical and biochemical functions. Here, we report that recognition of Lamins A/C by a commonly used antibody (JOL-2) that binds the Lamin A/C Ig-fold and other antibodies targeting similar epitopes is highly dependent on cell density, even though Lamin A/Clevels do not change. We propose that the effect is caused by partial unfolding or masking of the C'E and/or EF loops of the Ig-fold in response to cell spreading. Surprisingly, JOL-2 antibody labeling was insensitive to disruption of cytoskeletal filaments or the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Furthermore, neither nuclear stiffness nor nucleo-cytoskeletal force transmission changed with cell density. These findings are important for the interpretation of immunofluorescence data for Lamin A/C and also raise the intriguing prospect that the conformational changes may play a role in Lamin A/C mediated cellular function.
Collapse
Affiliation(s)
- Melanie Wallace
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Weill Institute for Cell and Molecular Biology, Ithaca, NY, USA
| | - Gregory R. Fedorchak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Weill Institute for Cell and Molecular Biology, Ithaca, NY, USA
| | - Richa Agrawal
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Weill Institute for Cell and Molecular Biology, Ithaca, NY, USA
| | - Rachel M. Gilbert
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Weill Institute for Cell and Molecular Biology, Ithaca, NY, USA
| | - Jineet Patel
- Weill Institute for Cell and Molecular Biology, Ithaca, NY, USA
| | - Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA,Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Weill Institute for Cell and Molecular Biology, Ithaca, NY, USA,CONTACT Jan Lammerding Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
30
|
Tan Z, Yue Y, Leprevost F, Haynes S, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. eLife 2023; 12:RP86776. [PMID: 37910016 PMCID: PMC10619981 DOI: 10.7554/elife.86776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine crosslinking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer (kinesin-1 heavy chain [KHC]) and kinesin-1 heterotetramer (KHC bound to kinesin light chain 1 [KLC1]). Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled-coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of MichiganAnn ArborUnited States
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Yang Yue
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Felipe Leprevost
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Sarah Haynes
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Venkatesha Basrur
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of MichiganAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Kristen J Verhey
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Michael A Cianfrocco
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
31
|
King MC. Dynamic regulation of LINC complex composition and function across tissues and contexts. FEBS Lett 2023; 597:2823-2832. [PMID: 37846646 DOI: 10.1002/1873-3468.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.
Collapse
Affiliation(s)
- Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Tan Z, Yue Y, da Veiga Leprevost F, Haynes SE, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525761. [PMID: 36747757 PMCID: PMC9901034 DOI: 10.1101/2023.01.26.525761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine cross-linking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer [kinesin-1 heavy chain (KHC)] and kinesin-1 heterotetramer [KHC bound to kinesin light chain 1 (KLC1)]. Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of Michigan
- Life Sciences Institute, University of Michigan
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan
| | | | | | | | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | | | - Michael A. Cianfrocco
- Life Sciences Institute, University of Michigan
- Department of Biological Chemistry, University of Michigan
| |
Collapse
|
33
|
Gümüşderelioğlu S, Resch L, Brock T, Undiagnosed Diseases Network, Luxton GWG, Cope H, Tan QKG, Hopkins C, Starr DA. A humanized Caenorhabditis elegans model of hereditary spastic paraplegia-associated variants in KLC4. Dis Model Mech 2023; 16:dmm050076. [PMID: 37565267 PMCID: PMC10481945 DOI: 10.1242/dmm.050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain 4 (KLC4) that is suspected to be associated with autosomal-dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized Caenorhabditis elegans model in which klc-2 was replaced by human KLC4 (referred to as hKLC4) and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2. Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality, with significant defects in nuclear migration when homozygous and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late-onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and to use it to test the significance of five variants of uncertain significance in the human gene KLC4.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Queenie K.-G. Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
De Silva S, Fan Z, Kang B, Shanahan CM, Zhang Q. Nesprin-1: novel regulator of striated muscle nuclear positioning and mechanotransduction. Biochem Soc Trans 2023; 51:1331-1345. [PMID: 37171063 PMCID: PMC10317153 DOI: 10.1042/bst20221541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Giant nesprin-1 and -2 localise to the outer nuclear membrane, interact with SUN (Sad1p/UNC-84) domain-containing proteins at the inner nuclear membrane to form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, which, in association with lamin A/C and emerin, mechanically couples the nucleus to the cytoskeleton. Despite ubiquitous expression of nesprin giant isoforms, pathogenic mutations in nesprin-1 and -2 are associated with tissue-specific disorders, particularly related to striated muscle such as dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Recent evidence suggests this muscle-specificity might be attributable in part, to the small muscle specific isoform, nesprin-1α2, which has a novel role in striated muscle function. Our current understanding of muscle-specific functions of nesprin-1 and its isoforms will be summarised in this review to provide insight into potential pathological mechanisms of nesprin-related muscle disease and may inform potential targets of therapeutic modulation.
Collapse
Affiliation(s)
- Shanelle De Silva
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Zhijuan Fan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Baoqiang Kang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Catherine M. Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| |
Collapse
|
35
|
Gurusaran M, Biemans JJ, Wood CW, Davies OR. Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1. Front Cell Dev Biol 2023; 11:1144277. [PMID: 37416798 PMCID: PMC10320395 DOI: 10.3389/fcell.2023.1144277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The LINC complex, consisting of interacting SUN and KASH proteins, mechanically couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex transmits microtubule-generated forces to chromosome ends, driving the rapid chromosome movements that are necessary for synapsis and crossing over. In somatic cells, it defines nuclear shape and positioning, and has a number of specialised roles, including hearing. Here, we report the X-ray crystal structure of a coiled-coiled domain of SUN1's luminal region, providing an architectural foundation for how SUN1 traverses the nuclear lumen, from the inner nuclear membrane to its interaction with KASH proteins at the outer nuclear membrane. In combination with light and X-ray scattering, molecular dynamics and structure-directed modelling, we present a model of SUN1's entire luminal region. This model highlights inherent flexibility between structured domains, and raises the possibility that domain-swap interactions may establish a LINC complex network for the coordinated transmission of cytoskeletal forces.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jelle J. Biemans
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christopher W. Wood
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
36
|
Prüschenk S, Majer M, Schlossmann J. Novel Functional Features of cGMP Substrate Proteins IRAG1 and IRAG2. Int J Mol Sci 2023; 24:9837. [PMID: 37372987 DOI: 10.3390/ijms24129837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The inositol triphosphate-associated proteins IRAG1 and IRAG2 are cGMP kinase substrate proteins that regulate intracellular Ca2+. Previously, IRAG1 was discovered as a 125 kDa membrane protein at the endoplasmic reticulum, which is associated with the intracellular Ca2+ channel IP3R-I and the PKGIβ and inhibits IP3R-I upon PKGIβ-mediated phosphorylation. IRAG2 is a 75 kDa membrane protein homolog of IRAG1 and was recently also determined as a PKGI substrate. Several (patho-)physiological functions of IRAG1 and IRAG2 were meanwhile elucidated in a variety of human and murine tissues, e.g., of IRAG1 in various smooth muscles, heart, platelets, and other blood cells, of IRAG2 in the pancreas, heart, platelets, and taste cells. Hence, lack of IRAG1 or IRAG2 leads to diverse phenotypes in these organs, e.g., smooth muscle and platelet disorders or secretory deficiency, respectively. This review aims to highlight the recent research regarding these two regulatory proteins to envision their molecular and (patho-)physiological tasks and to unravel their functional interplay as possible (patho-)physiological counterparts.
Collapse
Affiliation(s)
- Sally Prüschenk
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Majer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
37
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
38
|
Gümüşderelioğlu S, Resch L, Brock T, Luxton GWG, Tan QKG, Hopkins C, Starr DA. A humanized Caenorhabditis elegans model of Hereditary Spastic Paraplegia-associated variants in kinesin light chain KLC4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523106. [PMID: 36789438 PMCID: PMC9928042 DOI: 10.1101/2023.01.07.523106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain KLC4 that is suspected to be associated with autosomal dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized C. elegans model where klc- 2 was replaced with human KLC4 and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2 . Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality with significant defects in nuclear migration when homozygous, and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and use it to test the significance of five variants of uncertain significance in the human gene KLC4 . Summary Statement We identified a variant in KLC4 associated with Hereditary Spastic Paraplegia. The variant had physiological relevance in a humanized C. elegans model where we replaced klc-2 with human KLC4 .
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Queenie K-G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| |
Collapse
|
39
|
Taiber S, Gozlan O, Cohen R, Andrade LR, Gregory EF, Starr DA, Moran Y, Hipp R, Kelley MW, Manor U, Sprinzak D, Avraham KB. A Nesprin-4/kinesin-1 cargo model for nuclear positioning in cochlear outer hair cells. Front Cell Dev Biol 2022; 10:974168. [PMID: 36211453 PMCID: PMC9537699 DOI: 10.3389/fcell.2022.974168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/07/2022] [Indexed: 11/14/2022] Open
Abstract
Nuclear positioning is important for the functionality of many cell types and is mediated by interactions of cytoskeletal elements and nucleoskeleton proteins. Nesprin proteins, part of the linker of nucleoskeleton and cytoskeleton (LINC) complex, have been shown to participate in nuclear positioning in multiple cell types. Outer hair cells (OHCs) in the inner ear are specialized sensory epithelial cells that utilize somatic electromotility to amplify auditory signals in the cochlea. Recently, Nesprin-4 (encoded by Syne4) was shown to play a crucial role in nuclear positioning in OHCs. Syne4 deficiency in humans and mice leads to mislocalization of the OHC nuclei and cell death resulting in deafness. However, it is unknown how Nesprin-4 mediates the position of the nucleus, and which other molecular components are involved in this process. Here, we show that the interaction of Nesprin-4 and the microtubule motor kinesin-1 is mediated by a conserved 4 amino-acid motif. Using in vivo AAV gene delivery, we show that this interaction is critical for nuclear positioning and hearing in mice. Nuclear mislocalization and cell death of OHCs coincide with the onset of hearing and electromotility and are solely restricted to outer, but not inner, hair cells. Likewise, the C. elegans functional homolog of Nesprin-4, UNC-83, uses a similar motif to mediate interactions between migrating nuclei and kinesin-1. Overall, our results suggest that OHCs require unique cellular machinery for proper nuclear positioning at the onset of electromotility. This machinery relies on the interaction between Nesprin-4 and kinesin-1 motors supporting a microtubule cargo model for nuclear positioning.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Gozlan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rebecca Hipp
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,*Correspondence: David Sprinzak, ; Karen B. Avraham,
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,*Correspondence: David Sprinzak, ; Karen B. Avraham,
| |
Collapse
|
40
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
41
|
Chiba K, Ori-McKenney KM, Niwa S, McKenney RJ. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity. Cell Rep 2022; 39:110900. [PMID: 35649356 PMCID: PMC9365671 DOI: 10.1016/j.celrep.2022.110900] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022] Open
Abstract
Kinesin-1 activity is regulated by autoinhibition. Intramolecular interactions within the kinesin heavy chain (KHC) are proposed to be one facet of motor regulation. The KHC also binds to the kinesin light chain (KLC), which has been implicated in both autoinhibition and activation of the motor. We show that the KLC inhibits the kinesin-microtubule interaction independently from the proposed intramolecular interaction within KHC. Cargo-adaptor proteins that bind the KLC stimulated processive movement, but the landing rate of activated kinesin complexes remained low. Mitogen-activated protein 7 (MAP7) enhanced motility by increasing the landing rate and run length of the activated kinesin motors. Our results support a model whereby the motor activity of the kinesin is regulated by synergistic inhibition mechanisms and that cargo-adaptor binding to the KLC releases both mechanisms. However, a non-motor MAP is required for robust microtubule association of the activated motor. Thus, human kinesin is regulated by synergistic autoinhibition and activation mechanisms.
Collapse
Affiliation(s)
- Kyoko Chiba
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Meqbel BRM, Gomes M, Omer A, Gallouzi IE, Horn HF. LINCing Senescence and Nuclear Envelope Changes. Cells 2022; 11:1787. [PMID: 35681483 PMCID: PMC9179861 DOI: 10.3390/cells11111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE's role in supporting and maintaining a myriad of other functions has made it a target of study in many cellular processes, including senescence. The nucleus undergoes dramatic changes in senescence, many of which are driven by changes in the NE. Indeed, Lamin B1, a key NE protein that is consistently downregulated in senescence, has become a marker for senescence. Other NE proteins have also been shown to play a role in senescence, including LINC (linker of nucleoskeleton and cytoskeleton) complex proteins. LINC complexes span the NE, forming physical connections between the cytoplasm to the nucleoplasm. In this way, they integrate nuclear and cytoplasmic mechanical signals and are essential not only for a variety of cellular functions but are needed for cell survival. However, LINC complex proteins have been shown to have a myriad of functions in addition to forming a LINC complex, often existing as nucleoplasmic or cytoplasmic soluble proteins in a variety of isoforms. Some of these proteins have now been shown to play important roles in DNA repair, cell signaling, and nuclear shape regulation, all of which are important in senescence. This review will focus on some of these roles and highlight the importance of LINC complex proteins in senescence.
Collapse
Affiliation(s)
- Bakhita R. M. Meqbel
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Matilde Gomes
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
| | - Amr Omer
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Imed E. Gallouzi
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
43
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
44
|
Zhang Y, Kong Y, Guo H, Liu Y, Zang Y, Li J. Inner nuclear membrane protein TMEM201 maintains endothelial cell migration and angiogenesis by interacting with the LINC complex. J Mol Cell Biol 2022; 14:6551315. [PMID: 35311970 PMCID: PMC9280987 DOI: 10.1093/jmcb/mjac017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
The nuclear envelope comprises the outer nuclear membrane (ONM), inner nuclear membrane (INM), and nucleopore. Although ∼60 INM proteins have been identified, only a few of them have been well characterized, revealing their crucial roles. Our group focused on the INM protein transmembrane protein 201 (TMEM201), whose role in cellular function remains to be defined. In this study, we investigated the role of TMEM201 in endothelial cell migration and angiogenesis. Depletion of TMEM201 expression by short hairpin RNA-mediated interference impeded human umbilical vein endothelial cell (HUVEC) angiogenic behavior in tube formation and fibrin gel bead sprouting assays. Meanwhile, TMEM201-deficient HUVEC exhibited impaired migration ability. We next explored the underlying mechanism and found that the N-terminal of TMEM201 interacted with the linker of nucleoskeleton and cytoskeleton (LINC) complex and was required for regulating endothelial cell migration and angiogenesis. The above in vitro findings were further confirmed by using in vivo models. In Tmem201-knockout mice, retinal vessel development was arrested and aortic ring sprouting was defective. In addition, loss of tmem201 impaired zebrafish intersegmental vessel development. In summary, TMEM201 was shown to regulate endothelial cell migration and control the process of angiogenesis. This study is the first to reveal the role of INM proteins in the vascular system and angiogenesis.
Collapse
Affiliation(s)
- Yutian Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Kong
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haoran Guo
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Zang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jia Li
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
45
|
Computational Analysis of the Potential Impact of MTC Complex Missenses SNPs Associated with Male Infertility. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1664825. [PMID: 35342767 PMCID: PMC8956405 DOI: 10.1155/2022/1664825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/13/2022] [Accepted: 02/23/2022] [Indexed: 01/09/2023]
Abstract
Meiotic chromosomes endure rapid prophase movements that ease the formation of interhomologue recombination intermediates that drive synapsis, crossing over, and segregation process. To generate these fast moves, the meiotic telomere complex (MTC) enables telomere-inner nuclear membrane attachment during meiotic prophase I and transfers cytoskeletal signals via another complex: the LINC complex. Furthermore, disruption or mutations of any of the MTC genes (TERB1, TERB2, and MAJIN) alters telomere association with the nuclear envelope leading to impairment of homologous pairing and synapsis, a meiotic arrest, and consequently to male infertility. To decipher the effect of TERB1, TERB2, and MAJIN missense mutations on protein structure, stability, and function, different bioinformatic tools were used in this study including VEP, Mutabind2, Haddock, Prodigy, Ligplot, ConSurf, DUET and MusiteDeep. In total, thirty mutations were predicted to be deleterious using VEP web server: seventeen for TERB1, eleven for TERB2, and two for MAJIN. All these single nucleotide polymorphisms were further analyzed and only 11 SNPs (W8R, G25R, P649A, I624T, C618R, F607V, S604G, C592Y, C592R, G187W, and R53C) were found to be the most damaging by at least six software tools and exert deleterious effect on the TERB1, TERB2, and MAJIN protein structures and likely functions. They revealed high conservation, less stability, and having a role in posttranslational modifications. This in silico approach provides information to gain further insights about variants that might affect stability, change binding affinity, and edit protein-protein interactions to facilitate their identification and functional characterization associated with male infertility.
Collapse
|
46
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
47
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
48
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
49
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
50
|
Gupta S, Patteson AE, Schwarz JM. The role of vimentin-nuclear interactions in persistent cell motility through confined spaces. NEW JOURNAL OF PHYSICS 2021; 23:093042. [PMID: 35530563 PMCID: PMC9075336 DOI: 10.1088/1367-2630/ac2550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|