1
|
Jian L, Zhang Q, Yao D, Wang Q, Chen M, Xia Y, Li S, Shen Y, Cao M, Qin A, Li L, Cao Y. The structural insight into the functional modulation of human anion exchanger 3. Nat Commun 2024; 15:6134. [PMID: 39033175 PMCID: PMC11271275 DOI: 10.1038/s41467-024-50572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Anion exchanger 3 (AE3) is pivotal in regulating intracellular pH across excitable tissues, yet its structural intricacies and functional dynamics remain underexplored compared to other anion exchangers. This study unveils the structural insights into human AE3, including the cryo-electron microscopy structures for AE3 transmembrane domains (TMD) and a chimera combining AE3 N-terminal domain (NTD) with AE2 TMD (hAE3NTD2TMD). Our analyzes reveal a substrate binding site, an NTD-TMD interlock mechanism, and a preference for an outward-facing conformation. Unlike AE2, which has more robust acid-loading capabilities, AE3's structure, including a less stable inward-facing conformation due to missing key NTD-TMD interactions, contributes to its moderated pH-modulating activity and increased sensitivity to the inhibitor DIDS. These structural differences underline AE3's distinct functional roles in specific tissues and underscore the complex interplay between structural dynamics and functional specificity within the anion exchanger family, enhancing our understanding of the physiological and pathological roles of the anion exchanger family.
Collapse
Affiliation(s)
- Liyan Jian
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Deqiang Yao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Moxin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China.
| |
Collapse
|
2
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
3
|
Ma Y, Xu Y, Zhang Y, Duan X. Molecular Mechanisms of Craniofacial and Dental Abnormalities in Osteopetrosis. Int J Mol Sci 2023; 24:10412. [PMID: 37373559 DOI: 10.3390/ijms241210412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Osteopetrosis is a group of genetic bone disorders characterized by increased bone density and defective bone resorption. Osteopetrosis presents a series of clinical manifestations, including craniofacial deformities and dental problems. However, few previous reports have focused on the features of craniofacial and dental problems in osteopetrosis. In this review, we go through the clinical features, types, and related pathogenic genes of osteopetrosis. Then we summarize and describe the characteristics of craniofacial and dental abnormalities in osteopetrosis that have been published in PubMed from 1965 to the present. We found that all 13 types of osteopetrosis have craniomaxillofacial and dental phenotypes. The main pathogenic genes, such as chloride channel 7 gene (CLCN7), T cell immune regulator 1 (TCIRG1), osteopetrosis-associated transmembrane protein 1 (OSTM1), pleckstrin homology domain-containing protein family member 1 (PLEKHM1), and carbonic anhydrase II (CA2), and their molecular mechanisms involved in craniofacial and dental phenotypes, are discussed. We conclude that the telltale craniofacial and dental abnormalities are important for dentists and other clinicians in the diagnosis of osteopetrosis and other genetic bone diseases.
Collapse
Affiliation(s)
- Yu Ma
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yali Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
4
|
Zhang Q, Jian L, Yao D, Rao B, Xia Y, Hu K, Li S, Shen Y, Cao M, Qin A, Zhao J, Cao Y. The structural basis of the pH-homeostasis mediated by the Cl -/HCO 3- exchanger, AE2. Nat Commun 2023; 14:1812. [PMID: 37002221 PMCID: PMC10066210 DOI: 10.1038/s41467-023-37557-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The cell maintains its intracellular pH in a narrow physiological range and disrupting the pH-homeostasis could cause dysfunctional metabolic states. Anion exchanger 2 (AE2) works at high cellular pH to catalyze the exchange between the intracellular HCO3- and extracellular Cl-, thereby maintaining the pH-homeostasis. Here, we determine the cryo-EM structures of human AE2 in five major operating states and one transitional hybrid state. Among those states, the AE2 shows the inward-facing, outward-facing, and intermediate conformations, as well as the substrate-binding pockets at two sides of the cell membrane. Furthermore, critical structural features were identified showing an interlock mechanism for interactions among the cytoplasmic N-terminal domain and the transmembrane domain and the self-inhibitory effect of the C-terminal loop. The structural and cell-based functional assay collectively demonstrate the dynamic process of the anion exchange across membranes and provide the structural basis for the pH-sensitive pH-rebalancing activity of AE2.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Liyan Jian
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Deqiang Yao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Bing Rao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Kexin Hu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China.
| |
Collapse
|
5
|
Xue JY, Ikegawa S, Guo L. SLC4A2, another gene involved in acid-base balancing machinery of osteoclasts, causes osteopetrosis. Bone 2023; 167:116603. [PMID: 36343920 DOI: 10.1016/j.bone.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
SLC4A2 belongs to the Na+-independent solute carrier family 4 (SLC4) of anion exchangers, which regulate electroneutral exchange of Cl- for HCO3- and mediate intra- and extra-cellular pH, chloride concentration and cell volume. Slc4a2 also participates in gastric acid secretion, spermatogenesis and osteoclastogenesis. During osteoclast differentiation, Slc4a2 is exclusively expressed at the contra-lacunar membrane and is up-regulated with osteoclast maturation. Bi-allelic Slc4a2 loss-of-function mutations have been known to cause osteopetrosis in mice and cattle, but not in human. Recently, we have identified bi-allelic pathogenic variants in SLC4A2 in a patient affected by osteopetrosis with severe renal insufficiency, suggesting SLC4A2 deficiency causes a new type of autosomal recessive osteopetrosis (osteopetrosis, Ikegawa type). In this article, we review the advances in exploring the multiple functions of SLC4A2 with emphasis on its roles in osteoclast. Our review would contribute to understanding of the phenotypic spectrum and the pathomechanism of SLC4A2-associated osteopetrosis.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Long Guo
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
6
|
Garneau AP, Slimani S, Haydock L, Nsimba-Batomene TR, Préfontaine FCM, Lavoie MM, Tremblay LE, Fiola MJ, Mac-Way F, Isenring P. Molecular mechanisms, physiological roles, and therapeutic implications of ion fluxes in bone cells: Emphasis on the cation-Cl - cotransporters. J Cell Physiol 2022; 237:4356-4368. [PMID: 36125923 PMCID: PMC10087713 DOI: 10.1002/jcp.30879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Bone turnover diseases are exceptionally prevalent in human and come with a high burden on physical health. While these diseases are associated with a variety of risk factors and causes, they are all characterized by common denominators, that is, abnormalities in the function or number of osteoblasts, osteoclasts, and/or osteocytes. As such, much effort has been deployed in the recent years to understand the signaling mechanisms of bone cell proliferation and differentiation with the objectives of exploiting the intermediates involved as therapeutic preys. Ion transport systems at the external and in the intracellular membranes of osteoblasts and osteoclasts also play an important role in bone turnover by coordinating the movement of Ca2+ , PO4 2- , and H+ ions in and out of the osseous matrix. Even if they sustain the terminal steps of osteoformation and osteoresorption, they have been the object of very little attention in the last several years. Members of the cation-Cl- cotransporter (CCC) family are among the systems at work as they are expressed in bone cells, are known to affect the activity of Ca2+ -, PO4 2- -, and H+ -dependent transport systems and have been linked to bone mass density variation in human. In this review, the roles played by the CCCs in bone remodeling will be discussed in light of recent developments and their potential relevance in the treatment of skeletal disorders.
Collapse
Affiliation(s)
- Alexandre P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada.,Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, Inserm U1151, Université Paris Cité, rue de Sèvres, Paris, France
| | - Samira Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Ludwig Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | | | | | - Mathilde M Lavoie
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Laurence E Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Marie-Jeanne Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Fabrice Mac-Way
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Paul Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| |
Collapse
|
7
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
8
|
Xue JY, Grigelioniene G, Wang Z, Nishimura G, Iida A, Matsumoto N, Tham E, Miyake N, Ikegawa S, Guo L. SLC4A2 Deficiency Causes a New Type of Osteopetrosis. J Bone Miner Res 2022; 37:226-235. [PMID: 34668226 DOI: 10.1002/jbmr.4462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
Osteopetrosis is a group of rare inherited skeletal disorders characterized by a marked increase in bone density due to deficient bone resorption. Pathogenic variants in several genes involved in osteoclast differentiation and/or function have been reported to cause osteopetrosis. Solute carrier family 4 member 2 (SLC4A2, encoding anion exchanger 2) plays an important role in osteoclast differentiation and function by exchange of Cl- with HCO3- . Biallelic Slc4a2 loss-of-function mutations in mice and cattle lead to osteopetrosis with osteoclast deficiency; however, pathogenic SLC4A2 variants in humans have not been reported. In this study, we describe a patient with autosomal recessive osteopetrosis due to biallelic pathogenic variants in SLC4A2. We identified novel compound heterozygous variants in SLC4A2 (NM_003040.4: c.556G>A [p.A186T] and c.1658T>C [p.V553A]) by exome sequencing. The measurement of intracellular Cl- showed that the variants decrease the anion exchange activity of SLC4A2. The impact of the variants on osteoclast differentiation was assessed by a gene knockout-rescue system using a mouse macrophage cell line, RAW 264.7. The Slc4a2-knockout cells show impaired osteoclastogenesis, which was rescued by the wild-type SLC4A2, but not by the mutant SLC4A2s. Immunofluorescence and pit assay revealed that the mutant SLC4A2s leads to abnormal podosome belt formation with impaired bone absorption. This is the first report on an individual affected by SLC4A2-associated osteopetrosis (osteopetrosis, Ikegawa type). With functional studies, we prove that the variants lead to SLC4A2 dysfunction, which altogether supports the importance of SLC4A2 in human osteoclast differentiation. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Medical Genetics, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gen Nishimura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Aritoshi Iida
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
9
|
Schnyder D, Albano G, Kucharczyk P, Dolder S, Siegrist M, Anderegg M, Pathare G, Hofstetter W, Baron R, Fuster DG. Deletion of the sodium/hydrogen exchanger 6 causes low bone volume in adult mice. Bone 2021; 153:116178. [PMID: 34508879 DOI: 10.1016/j.bone.2021.116178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/18/2022]
Abstract
The sodium/hydrogen exchanger 6 (NHE6) localizes to recycling endosomes, where it mediates endosomal alkalinization through K+/H+ exchange. Mutations in the SLC9A6 gene encoding NHE6 cause severe X-linked mental retardation, epilepsy, autism and corticobasal degeneration in humans. Patients with SLC9A6 mutations exhibit skeletal malformations, and a previous study suggested a key role of NHE6 in osteoblast-mediated mineralization. The goal of this study was to explore the role of NHE6 in bone homeostasis. To this end, we studied the bone phenotype of NHE6 knock-out mice by microcomputed tomography, quantitative histomorphometry and complementary ex vivo and in vitro studies. We detected NHE6 transcript and protein in both differentiated osteoclasts and mineralizing osteoblasts. In vitro studies with osteoclasts and osteoblasts derived from NHE6 knock-out mice demonstrated normal osteoclast differentiation and osteoblast proliferation without an impairment in mineralization capacity. Microcomputed tomography and bone histomorphometry studies showed a significantly reduced bone volume and trabecular number as well as an increased trabecular space at lumbar vertebrae of 6 months old NHE6 knock-out mice. The bone degradation marker c-terminal telopeptides of type I collagen was unaltered in NHE6 knock-out mice. However, we observed a reduction of the bone formation marker procollagen type 1 N-terminal propeptide, and increased circulating sclerostin levels in NHE6 knock-out mice. Subsequent studies revealed a significant upregulation of sclerostin transcript expression in both primary calvarial cultures and femora derived from NHE6 knock-out mice. Thus, loss of NHE6 in mice causes an increase of sclerostin expression associated with reduced bone formation and low bone volume.
Collapse
Affiliation(s)
- Daniela Schnyder
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Giuseppe Albano
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Patrycja Kucharczyk
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Silvia Dolder
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mark Siegrist
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manuel Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ganesh Pathare
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Roland Baron
- Division of Bone and Mineral Research, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA, USA
| | - Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nat Commun 2021; 12:3408. [PMID: 34099702 PMCID: PMC8184749 DOI: 10.1038/s41467-021-23649-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics. Osteoporosis GWAS faces two challenges, causal gene discovery and a lack of phenotypic diversity. Here, the authors use the Diversity Outbred mouse population to inform human GWAS using networks and map genetic loci for 55 bone traits, identifying new potential bone strength genes.
Collapse
|
11
|
Ribet ABP, Ng PY, Pavlos NJ. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front Cell Dev Biol 2021; 9:644986. [PMID: 33718388 PMCID: PMC7952445 DOI: 10.3389/fcell.2021.644986] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
During bone resorption, the osteoclast must sustain an extraordinarily low pH environment, withstand immense ionic pressures, and coordinate nutrient and waste exchange across its membrane to sustain its unique structural and functional polarity. To achieve this, osteoclasts are equipped with an elaborate set of membrane transport proteins (pumps, transporters and channels) that serve as molecular ‘gatekeepers’ to regulate the bilateral exchange of ions, amino acids, metabolites and macromolecules across the ruffled border and basolateral domains. Whereas the importance of the vacuolar-ATPase proton pump and chloride voltage-gated channel 7 in osteoclasts has long been established, comparatively little is known about the contributions of other membrane transport proteins, including those categorized as secondary active transporters. In this Special Issue review, we provide a contemporary update on the ‘ins and outs’ of membrane transport proteins implicated in osteoclast differentiation, function and bone homeostasis and discuss their therapeutic potential for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Amy B P Ribet
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
12
|
Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 2021; 22:57. [PMID: 33451291 PMCID: PMC7811220 DOI: 10.1186/s12864-020-07341-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. Results A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. Conclusions The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07341-z.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
13
|
Qian F, Wang X, Yin Z, Xie G, Yuan H, Liu D, Chai R. The slc4a2b gene is required for hair cell development in zebrafish. Aging (Albany NY) 2020; 12:18804-18821. [PMID: 33044947 PMCID: PMC7732325 DOI: 10.18632/aging.103840] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Hair cells (HCs) function as important sensory receptors that can detect movement in their immediate environment. HCs in the inner ear can sense acoustic signals, while in aquatic vertebrates HCs can also detect movements, vibrations, and pressure gradients in the surrounding water. Many genes are responsible for the development of HCs, and developmental defects in HCs can lead to hearing loss and other sensory dysfunctions. Here, we found that the solute carrier family 4, member 2b (slc4a2b) gene, which is a member of the anion-exchange family, is expressed in the otic vesicles and lateral line neuromasts in developing zebrafish embryos. An in silico analysis showed that the slc4a2b is evolutionarily conserved, and we found that loss of function of slc4a2b resulted in a decreased number of HCs in zebrafish neuromasts due to increased HC apoptosis. Taken together, we conclude that slc4a2b plays a critical role in the development of HCs in zebrafish.
Collapse
Affiliation(s)
- Fuping Qian
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhenhua Yin
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226019, China
| | - Huijun Yuan
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Liu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China,School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
15
|
Soysa NS, Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep 2019; 11:100225. [PMID: 31720316 PMCID: PMC6838739 DOI: 10.1016/j.bonr.2019.100225] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Survival and apoptosis are of major importance in the osteoclast life cycle. As osteoclasts have short lifespan, any alteration that prolongs their viability may cause enhanced osteoclast activity. Hence, the regulation of OC apoptosis has been recognized as a critical factor in bone remodeling. An imbalance in bone remodeling due to increased osteoclast activity leads to most adult bone diseases such as osteoporosis, rheumatoid arthritis and multiple myeloma. Therefore, manipulating osteoclast death would be a viable therapeutic approach in ameliorating bone diseases, with accelerated resorption. Over the last few decades we have witnessed the unraveling of many of the intracellular mechanisms responsible for osteoclast apoptosis. Thus, an understanding of the underlying mechanisms by which osteoclasts undergo programmed cell death and the regulators that modulate that activity will undoubtedly provide an insight into the development of pharmacological agents to treat such pathological bone diseases.
Collapse
Affiliation(s)
- Niroshani Surangika Soysa
- Division of Pharmacology, Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
| |
Collapse
|
16
|
Garneau AP, Slimani S, Tremblay LE, Fiola MJ, Marcoux AA, Isenring P. K +-Cl - cotransporter 1 (KCC1): a housekeeping membrane protein that plays key supplemental roles in hematopoietic and cancer cells. J Hematol Oncol 2019; 12:74. [PMID: 31296230 PMCID: PMC6624878 DOI: 10.1186/s13045-019-0766-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
During the 1970s, a Na+-independent, ouabain-insensitive, N-ethylmaleimide-stimulated K+-Cl- cotransport mechanism was identified in red blood cells for the first time and in a variety of cell types afterward. During and just after the mid-1990s, three closely related isoforms were shown to account for this mechanism. They were termed K+-Cl- cotransporter 1 (KCC1), KCC3, and KCC4 according to the nomenclature of Gillen et al. (1996) who had been the first research group to uncover the molecular identity of a KCC, that is, of KCC1 in rabbit kidney. Since then, KCC1 has been found to be the most widely distributed KCC isoform and considered to act as a housekeeping membrane protein. It has perhaps received less attention than the other isoforms for this reason, but as will be discussed in the following review, there is probably more to KCC1 than meets the eye. In particular, the so-called housekeeping gene also appears to play crucial and specific roles in normal as well as pathological hematopoietic and in cancer cells.
Collapse
Affiliation(s)
- A P Garneau
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, 900, rue Saint-Denis, Montréal (Qc), H2X 0A9, Canada
| | - S Slimani
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - L E Tremblay
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - M J Fiola
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - A A Marcoux
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - P Isenring
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada.
- L'Hôtel-Dieu de Québec Institution, 10, rue McMahon, Québec (Qc), G1R 2J6, Canada.
| |
Collapse
|
17
|
Wu C, Liu X, Sun R, Qin Y, Liu Z, Yang S, Tang T, Zhu Z, Yu D, Liu F. Targeting Anion Exchange of Osteoclast, a New Strategy for Preventing Wear Particles Induced- Osteolysis. Front Pharmacol 2018; 9:1291. [PMID: 30459624 PMCID: PMC6232501 DOI: 10.3389/fphar.2018.01291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
Joint replacement is essential for the treatment of serious joint disease. However, prosthetic failure remains an important clinical issue, with periprosthesis osteolysis (PO), caused by osteoclastic bone resorption induced by wear particles, being the leading cause of failure. Nuclear factor of activated T cells c1 (NFATc1) appears to play an important role in wear particle-induced osteoclastogenesis, with bicarbonate/chloride exchanger, solute carrier family 4, anion exchanger, member 2, (SLC4A2) being upregulated during osteoclastogenesis in an NFATc1-dependent manner. Anion exchange mediated by SLC4A2 in osteoclasts could affect the bone resorption activity by regulating pHi. This study investigated the role and mechanism of SLC4A2 in wear particle-induced osteoclast differentiation and function in vitro. The use of 4, 4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), an anion exchange inhibitor, suppressed wear particle-induced PO in vivo. Furthermore, controlled release of DIDS from chitosan microspheres can strengthen the PO therapy effect. Therefore, anion exchange mediated by osteoclastic SLC4A2 may be a potential therapeutic target for the treatment of aseptic loosening of artificial joints.
Collapse
Affiliation(s)
- Chuanlong Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqiang Liu
- Department of Orthopaedics, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhao Qin
- Department of Orthopaedics, Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqing Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenan Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Degang Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiang Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
|
19
|
Parker MD. Mouse models of SLC4-linked disorders of HCO 3--transporter dysfunction. Am J Physiol Cell Physiol 2018; 314:C569-C588. [PMID: 29384695 DOI: 10.1152/ajpcell.00301.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SLC4 family Cl-/[Formula: see text] cotransporters (NBCe1, NBCe2, NBCn1, and NBCn2) contribute to a variety of vital physiological processes including pH regulation and epithelial fluid secretion. Accordingly, their dysfunction can have devastating effects. Disorders such as epilepsy, hemolytic anemia, glaucoma, hearing loss, osteopetrosis, and renal tubular acidosis are all genetically linked to SLC4-family gene loci. This review summarizes how studies of Slc4-modified mice have enhanced our understanding of the etiology of SLC4-linked pathologies and the interpretation of genetic linkage studies. The review also surveys the novel disease signs exhibited by Slc4-modified mice which could either be considered to presage their description in humans, or to highlight interspecific differences. Finally, novel Slc4-modified mouse models are proposed, the study of which may further our understanding of the basis and treatment of SLC4-linked disorders of [Formula: see text]-transporter dysfunction.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo , Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York , Buffalo, New York.,State University of New York Eye Institutes, University at Buffalo: The State University of New York , Buffalo, New York
| |
Collapse
|
20
|
Grössinger EM, Kang M, Bouchareychas L, Sarin R, Haudenschild DR, Borodinsky LN, Adamopoulos IE. Ca 2+-Dependent Regulation of NFATc1 via KCa3.1 in Inflammatory Osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2017; 200:749-757. [PMID: 29246953 DOI: 10.4049/jimmunol.1701170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
In inflammatory arthritis, the dysregulation of osteoclast activity by proinflammatory cytokines, including TNF, interferes with bone remodeling during inflammation through Ca2+-dependent mechanisms causing pathological bone loss. Ca2+-dependent CREB/c-fos activation via Ca2+-calmodulin kinase IV (CaMKIV) induces transcriptional regulation of osteoclast-specific genes via NFATc1, which facilitate bone resorption. In leukocytes, Ca2+ regulation of NFAT-dependent gene expression oftentimes involves the activity of the Ca2+-activated K+ channel KCa3.1. In this study, we evaluate KCa3.1 as a modulator of Ca2+-induced NFAT-dependent osteoclast differentiation in inflammatory bone loss. Microarray analysis of receptor activator of NF-κB ligand (RANKL)-activated murine bone marrow macrophage (BMM) cultures revealed unique upregulation of KCa3.1 during osteoclastogenesis. The expression of KCa3.1 in vivo was confirmed by immunofluorescence staining on multinucleated cells at the bone surface of inflamed mouse joints. Experiments on in vitro BMM cultures revealed that KCa3.1-/- and TRAM-34 treatment significantly reduced the expression of osteoclast-specific genes (p < 0.05) alongside decreased osteoclast formation (p < 0.0001) in inflammatory (RANKL+TNF) and noninflammatory (RANKL) conditions. In particular, live cell Ca2+ imaging and Western blot analysis showed that TRAM-34 pretreatment decreased transient RANKL-induced Ca2+ amplitudes in BMMs by ∼50% (p < 0.0001) and prevented phosphorylation of CaMKIV. KCa3.1-/- reduced RANKL+/-TNF-stimulated phosphorylation of CREB and expression of c-fos in BMMs (p < 0.01), culminating in decreased NFATc1 protein expression and transcriptional activity (p < 0.01). These data indicate that KCa3.1 regulates Ca2+-dependent NFATc1 expression via CaMKIV/CREB during inflammatory osteoclastogenesis in the presence of TNF, corroborating its role as a target candidate for the treatment of bone erosion in inflammatory arthritis.
Collapse
Affiliation(s)
- Eva M Grössinger
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Mincheol Kang
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Laura Bouchareychas
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Ritu Sarin
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | | | - Laura N Borodinsky
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616; and.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children - Northern California, Sacramento, CA 95817
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616; .,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children - Northern California, Sacramento, CA 95817
| |
Collapse
|
21
|
Tatapudy S, Aloisio F, Barber D, Nystul T. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep 2017; 18:2105-2118. [PMID: 29158350 DOI: 10.15252/embr.201744816] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
Understanding how cell fate decisions are regulated is a fundamental goal of developmental and stem cell biology. Most studies on the control of cell fate decisions address the contributions of changes in transcriptional programming, epigenetic modifications, and biochemical differentiation cues. However, recent studies have found that other aspects of cell biology also make important contributions to regulating cell fate decisions. These cues can have a permissive or instructive role and are integrated into the larger network of signaling, functioning both upstream and downstream of developmental signaling pathways. Here, we summarize recent insights into how cell fate decisions are influenced by four aspects of cell biology: metabolism, reactive oxygen species (ROS), intracellular pH (pHi), and cell morphology. For each topic, we discuss how these cell biological cues interact with each other and with protein-based mechanisms for changing gene transcription. In addition, we highlight several questions that remain unanswered in these exciting and relatively new areas of the field.
Collapse
Affiliation(s)
- Sumitra Tatapudy
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Aloisio
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Diane Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Todd Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Urso K, Charles JF, Shull GE, Aliprantis AO, Balestrieri B. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans. PLoS One 2016; 11:e0158893. [PMID: 27391897 PMCID: PMC4938408 DOI: 10.1371/journal.pone.0158893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.
Collapse
Affiliation(s)
- Katia Urso
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julia F. Charles
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary E. Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Scarpa JR, Jiang P, Losic B, Readhead B, Gao VD, Dudley JT, Vitaterna MH, Turek FW, Kasarskis A. Systems Genetic Analyses Highlight a TGFβ-FOXO3 Dependent Striatal Astrocyte Network Conserved across Species and Associated with Stress, Sleep, and Huntington's Disease. PLoS Genet 2016; 12:e1006137. [PMID: 27390852 PMCID: PMC4938493 DOI: 10.1371/journal.pgen.1006137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFβ-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.
Collapse
Affiliation(s)
- Joseph R. Scarpa
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Bojan Losic
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ben Readhead
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Vance D. Gao
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joel T. Dudley
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Andrew Kasarskis
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
24
|
Wilkerson JL, Ghosh S, Bagdas D, Mason BL, Crowe MS, Hsu KL, Wise LE, Kinsey SG, Damaj MI, Cravatt BF, Lichtman AH. Diacylglycerol lipase β inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br J Pharmacol 2016; 173:1678-92. [PMID: 26915789 DOI: 10.1111/bph.13469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of diacylglycerol lipase (DGL)β prevents LPS-induced pro-inflammatory responses in mouse peritoneal macrophages. Thus, the present study tested whether DGLβ inhibition reverses allodynic responses of mice in the LPS model of inflammatory pain, as well as in neuropathic pain models. EXPERIMENTAL APPROACH Initial experiments examined the cellular expression of DGLβ and inflammatory mediators within the LPS-injected paw pad. DAGL-β (-/-) mice or wild-type mice treated with the DGLβ inhibitor KT109 were assessed in the LPS model of inflammatory pain. Additional studies examined the locus of action for KT109-induced antinociception, its efficacy in chronic constrictive injury (CCI) of sciatic nerve and chemotherapy-induced neuropathic pain (CINP) models. KEY RESULTS Intraplantar LPS evoked mechanical allodynia that was associated with increased expression of DGLβ, which was co-localized with increased TNF-α and prostaglandins in paws. DAGL-β (-/-) mice or KT109-treated wild-type mice displayed reductions in LPS-induced allodynia. Repeated KT109 administration prevented the expression of LPS-induced allodynia, without evidence of tolerance. Intraplantar injection of KT109 into the LPS-treated paw, but not the contralateral paw, reversed the allodynic responses. However, i.c.v. or i.t. administration of KT109 did not alter LPS-induced allodynia. Finally, KT109 also reversed allodynia in the CCI and CINP models and lacked discernible side effects (e.g. gross motor deficits, anxiogenic behaviour or gastric ulcers). CONCLUSIONS AND IMPLICATIONS These findings suggest that local inhibition of DGLβ at the site of inflammation represents a novel avenue to treat pathological pain, with no apparent untoward side effects.
Collapse
Affiliation(s)
- J L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S Ghosh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - D Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - B L Mason
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - K L Hsu
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - L E Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - B F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Wigerblad G, Bas DB, Fernades-Cerqueira C, Krishnamurthy A, Nandakumar KS, Rogoz K, Kato J, Sandor K, Su J, Jimenez–Andrade JM, Finn A, Bersellini Farinotti A, Amara K, Lundberg K, Holmdahl R, Jakobsson PJ, Malmström V, Catrina AI, Klareskog L, Svensson CI. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann Rheum Dis 2016; 75:730-8. [PMID: 26613766 PMCID: PMC4819624 DOI: 10.1136/annrheumdis-2015-208094] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/24/2015] [Accepted: 10/18/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE An interesting and so far unexplained feature of chronic pain in autoimmune disease is the frequent disconnect between pain and inflammation. This is illustrated well in rheumatoid arthritis (RA) where pain in joints (arthralgia) may precede joint inflammation and persist even after successful anti-inflammatory treatment. In the present study, we have addressed the possibility that autoantibodies against citrullinated proteins (ACPA), present in RA, may be directly responsible for the induction of pain, independent of inflammation. METHODS Antibodies purified from human patients with RA, healthy donors and murinised monoclonal ACPA were injected into mice. Pain-like behaviour was monitored for up to 28 days, and tissues were analysed for signs of pathology. Mouse osteoclasts were cultured and stimulated with antibodies, and supernatants analysed for release of factors. Mice were treated with CXCR1/2 (interleukin (IL) 8 receptor) antagonist reparixin. RESULTS Mice injected with either human or murinised ACPA developed long-lasting pronounced pain-like behaviour in the absence of inflammation, while non-ACPA IgG from patients with RA or control monoclonal IgG were without pronociceptive effect. This effect was coupled to ACPA-mediated activation of osteoclasts and release of the nociceptive chemokine CXCL1 (analogue to human IL-8). ACPA-induced pain-like behaviour was reversed with reparixin. CONCLUSIONS The data suggest that CXCL1/IL-8, released from osteoclasts in an autoantibody-dependent manner, produces pain by activating sensory neurons. The identification of this new pain pathway may open new avenues for pain treatment in RA and also in other painful diseases associated with autoantibody production and/or osteoclast activation.
Collapse
Affiliation(s)
- Gustaf Wigerblad
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Duygu B Bas
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Cátia Fernades-Cerqueira
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katarzyna Rogoz
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jungo Kato
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jie Su
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Miguel Jimenez–Andrade
- Department of Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Anja Finn
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alex Bersellini Farinotti
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Khaled Amara
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Lundberg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anca I Catrina
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Camilla I Svensson
- Molecular Pain Research, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Morethson P. Extracellular fluid flow and chloride content modulate H(+) transport by osteoclasts. BMC Cell Biol 2015; 16:20. [PMID: 26271334 PMCID: PMC4536797 DOI: 10.1186/s12860-015-0066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Background Bone resorption takes place within the basic multicellular units (BMU), and the surface to be resorbed is isolated from adjacent bone surfaces by a sealing zone between osteoclast membrane and bone matrix, which defines the limits of the resorption lacuna. Considering that the extracellular fluid (ECF) in both BMU and the resorption lacuna can be isolated from its surroundings, I hypothesize that flow and ion composition of the bone ECF in these sites might contribute to the regulation of osteoclast H+ secretion. To investigate this hypothesis, I evaluated the H+ secretion properties of individual osteoclasts and osteoclast-like cells (OCL-cells) and investigated whether changes in flow or chloride content of the extracellular solution modify the H+ secretion properties in vitro. Results The results show that 1) osteoclasts are unable to secrete H+ and regulate intracellular pH (pHi) under continuous flow conditions and exhibit progressive intracellular acidification; 2) the cessation of flow coincides with the onset of H+ secretion and subsequent progressive intracellular alkalinization of osteoclasts and OCL-cells; 3) osteoclasts exhibit spontaneous rhythmic oscillations of pHi in non-flowing ECF, 4) pHi oscillations are not abolished by concanamycin, NPPB, or removal of extracellular Na+ or Cl−; 5) extracellular Cl− removal modifies the pattern of oscillations, by diminishing H+ secretion; 6) pHi oscillations are abolished by continuous flowing of ECF over osteoclasts and OCL-cells. Conclusions The data suggest, for the first time, that ECF flow and Cl− content have direct effects on osteoclast H+ secretion and could be part of a mechanism determining the onset of osteoclast H+ secretion required for bone resorption. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0066-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priscilla Morethson
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Department of Biosciences, Federal University of São Paulo - Unifesp, R. Silva Jardim 136 Vila Mathias, Santos, 11065-201, SP, Brazil.
| |
Collapse
|
27
|
Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption. PLoS Genet 2015; 11:e1005057. [PMID: 25811986 PMCID: PMC4374855 DOI: 10.1371/journal.pgen.1005057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/07/2015] [Indexed: 12/26/2022] Open
Abstract
Mutations in sorting nexin 10 (Snx10) have recently been found to account for roughly 4% of all human malignant osteopetrosis, some of them fatal. To study the disease pathogenesis, we investigated the expression of Snx10 and created mouse models in which Snx10 was knocked down globally or knocked out in osteoclasts. Endocytosis is severely defective in Snx10-deficient osteoclasts, as is extracellular acidification, ruffled border formation, and bone resorption. We also discovered that Snx10 is highly expressed in stomach epithelium, with mutations leading to high stomach pH and low calcium solubilization. Global Snx10-deficiency in mice results in a combined phenotype: osteopetrosis (due to osteoclast defect) and rickets (due to high stomach pH and low calcium availability, resulting in impaired bone mineralization). Osteopetrorickets, the paradoxical association of insufficient mineralization in the context of a positive total body calcium balance, is thought to occur due to the inability of the osteoclasts to maintain normal calcium-phosphorus homeostasis. However, osteoclast-specific Snx10 knockout had no effect on calcium balance, and therefore led to severe osteopetrosis without rickets. Moreover, supplementation with calcium gluconate rescued mice from the rachitic phenotype and dramatically extended life span in global Snx10-deficient mice, suggesting that this may be a life-saving component of the clinical approach to Snx10-dependent human osteopetrosis that has previously gone unrecognized. We conclude that tissue-specific effects of Snx10 mutation need to be considered in clinical approaches to this disease entity. Reliance solely on hematopoietic stem cell transplantation can leave hypocalcemia uncorrected with sometimes fatal consequences. These studies established an essential role for Snx10 in bone homeostasis and underscore the importance of gastric acidification in calcium uptake.
Collapse
|
28
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
29
|
Potter-Baker KA, Ravikumar M, Burke AA, Meador WD, Householder KT, Buck AC, Sunil S, Stewart WG, Anna JP, Tomaszewski WH, Capadona JR. A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials 2014; 35:5637-46. [PMID: 24755527 PMCID: PMC4071936 DOI: 10.1016/j.biomaterials.2014.03.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Rat models have emerged as a common tool to study neuroinflammation to intracortical microelectrodes. While a number of studies have attempted to understand the factors resulting in neuroinflammation using rat models, a complete understanding of key mechanistic pathways remains elusive. Transgenic mouse models, however, could facilitate a deeper understanding of mechanistic pathways due to an ease of genetic alteration. Therefore, the goal of the present study is to compare neuroinflammation following microelectrode implantation between the rat and the mouse model. Our study suggests that subtle differences in the classic neuroinflammatory markers exist between the animal models at both two and sixteen weeks post implantation. Most notably, neuronal densities surrounding microelectrodes were significantly lower in the rat model at two weeks, while similar densities were observed between the animal models at sixteen weeks. Physiological differences between the species and slight alterations in surgical methods are likely key contributors to the observed differences. Moving forward, we propose that differences in the time course of neuroinflammation between the animal models should be considered when trying to understand and prevent intracortical microelectrode failure.
Collapse
Affiliation(s)
- Kelsey A Potter-Baker
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| | - Madhumitha Ravikumar
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| | - Alan A Burke
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - William D Meador
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - Kyle T Householder
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| | - Amy C Buck
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| | - Smrithi Sunil
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| | - Wade G Stewart
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - Jake P Anna
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - William H Tomaszewski
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA.
| |
Collapse
|
30
|
Liu FX, Wu CL, Zhu ZA, Li MQ, Mao YQ, Liu M, Wang XQ, Yu DG, Tang TT. Calcineurin/NFAT pathway mediates wear particle-induced TNF-α release and osteoclastogenesis from mice bone marrow macrophages in vitro. Acta Pharmacol Sin 2013; 34:1457-66. [PMID: 24056707 DOI: 10.1038/aps.2013.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022]
Abstract
AIM To investigate the roles of the calcineurin/nuclear factor of activated T cells (NFAT) pathway in regulation of wear particles-induced cytokine release and osteoclastogenesis from mouse bone marrow macrophages in vitro. METHODS Osteoclasts were induced from mouse bone marrow macrophages (BMMs) in the presence of 100 ng/mL receptor activator of NF-κB ligand (RANKL). Acridine orange staining and MTT assay were used to detect the cell viability. Osteoclastogenesis was determined using TRAP staining and RT-PCR. Bone pit resorption assay was used to examine osteoclast phenotype. The expression and cellular localization of NFATc1 were examined using RT-PCR and immunofluorescent staining. The production of TNFα was analyzed with ELISA. RESULTS Titanium (Ti) or polymethylmethacrylate (PMMA) particles (0.1 mg/mL) did not significantly change the viability of BMMs, but twice increased the differentiation of BMMs into mature osteoclasts, and markedly increased TNF-α production. The TNF-α level in the PMMA group was significantly higher than in the Ti group (96 h). The expression of NFATc1 was found in BMMs in the presence of the wear particles and RANKL. In bone pit resorption assay, the wear particles significantly increased the resorption area and total number of resorption pits in BMMs-seeded ivory slices. Addition of 11R-VIVIT peptide (a specific inhibitor of calcineurin-mediated NFAT activation, 2.0 μmol/L) did not significantly affect the viability of BMMs, but abolished almost all the wear particle-induced alterations in BMMs. Furthermore, VIVIT reduced TNF-α production much more efficiently in the PMMA group than in the Ti group (96 h). CONCLUSION Calcineurin/NFAT pathway mediates wear particles-induced TNF-α release and osteoclastogenesis from BMMs. Blockade of this signaling pathway with VIVIT may provide a promising therapeutic modality for the treatment of periprosthetic osteolysis.
Collapse
|
31
|
Sartelet A, Stauber T, Coppieters W, Ludwig CF, Fasquelle C, Druet T, Zhang Z, Ahariz N, Cambisano N, Jentsch TJ, Charlier C. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle. Dis Model Mech 2013; 7:119-28. [PMID: 24159188 PMCID: PMC3882054 DOI: 10.1242/dmm.012500] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chloride-proton exchange by the lysosomal anion transporter ClC-7/Ostm1 is of pivotal importance for the physiology of lysosomes and bone resorption. Mice lacking either ClC-7 or Ostm1 develop a lysosomal storage disease and mutations in either protein have been found to underlie osteopetrosis in mice and humans. Some human disease-causing CLCN7 mutations accelerate the usually slow voltage-dependent gating of ClC-7/Ostm1. However, it has remained unclear whether the fastened kinetics is indeed causative for the disease. Here we identified and characterized a new deleterious ClC-7 mutation in Belgian Blue cattle with a severe symptomatology including perinatal lethality and in most cases gingival hamartomas. By autozygosity mapping and genome-wide sequencing we found a handful of candidate variants, including a cluster of three private SNPs causing the substitution of a conserved tyrosine in the CBS2 domain of ClC-7 by glutamine. The case for ClC-7 was strengthened by subsequent examination of affected calves that revealed severe osteopetrosis. The Y750Q mutation largely preserved the lysosomal localization and assembly of ClC-7/Ostm1, but drastically accelerated its activation by membrane depolarization. These data provide first evidence that accelerated ClC-7/Ostm1 gating per se is deleterious, highlighting a physiological importance of the slow voltage-activation of ClC-7/Ostm1 in lysosomal function and bone resorption.
Collapse
Affiliation(s)
- Arnaud Sartelet
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, 4000-Liège (Sart Tilman), Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
33
|
SLC4A2-mediated Cl-/HCO3- exchange activity is essential for calpain-dependent regulation of the actin cytoskeleton in osteoclasts. Proc Natl Acad Sci U S A 2013; 110:2163-8. [PMID: 23341620 DOI: 10.1073/pnas.1206392110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bone remodeling requires osteoclasts to generate and maintain an acidified resorption compartment between the apical membrane and the bone surface to solubilize hydroxyapatite crystals within the bone matrix. This acidification process requires (i) apical proton secretion by a vacuolar H(+)-ATPase, (ii) actin cytoskeleton reorganization into a podosome belt that forms a gasket to restrict lacunar acid leakage, and (iii) basolateral chloride uptake and bicarbonate extrusion by an anion exchanger to provide Cl(-) permissive for apical acid secretion while preventing cytoplasmic alkalinization. Here we show that osteoclast-targeted deletion in mice of solute carrier family 4 anion exchanger member 2 (Slc4a2) results in osteopetrosis. We further demonstrate a previously unrecognized consequence of SLC4A2 loss of function in the osteoclast: dysregulation of calpain-dependent podosome disassembly, leading to abnormal actin belt formation, cell spreading, and migration. Rescue of SLC4A2-deficient osteoclasts with functionally defined mutants of SLC4A2 indicates regulation of actin cytoskeletal reorganization by anion-exchange activity and intracellular pH, independent of SLC4A2's long N-terminal cytoplasmic domain. These data suggest that maintenance of intracellular pH in osteoclasts through anion exchange regulates the actin superstructures required for bone resorption.
Collapse
|
34
|
Doncel-Pérez E, García-Álvarez I, Fernández-Mayoralas A, Nieto-Sampedro M. Synthetic glycolipids for glioma growth inhibition developed from neurostatin and NF115 compound. Bioorg Med Chem Lett 2013; 23:435-9. [DOI: 10.1016/j.bmcl.2012.11.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/17/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
|
35
|
Reimold FR, Stewart AK, Stolpe K, Heneghan JF, Shmukler BE, Alper SL. Substitution of transmembrane domain Cys residues alters pH(o)-sensitive anion transport by AE2/SLC4A2 anion exchanger. Pflugers Arch 2012; 465:839-51. [PMID: 23271450 DOI: 10.1007/s00424-012-1196-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
AE2/SLC4A2 is the most widely expressed of the Na(+)-independent SLC4 Cl(-)/HCO3 (-) exchangers and is essential for postnatal survival, but its structure remains unknown. We have generated and expressed a mouse AE2 construct devoid of transmembrane domain cysteine (Cys) residues, mAE2Cys-less, to enhance the utility of Cys-substitution mutagenesis for structural and structure-function studies of mAE2. mAE2Cys-less expressed in Xenopus oocytes exhibited partial reduction of stilbene disulfonate-sensitive anion exchange activity. This activity was independent of the mAE2 N-terminal cytosolic domain and was accompanied by near-normal surface expression, without change in K 1/2 for extracellular Cl(-). mAE2Cys-less exhibited wildtype activation of anion exchange by hypertonicity and by NH4Cl, and wildtype inhibition of anion exchange by acidic intracellular pH (pHi) in the absence of NH4 (+). However, inhibition of anion exchange by extracellular pH (pHo) exhibited an alkaline shifted pHo(50) value of at least 0.6-0.7 pH units. Although SO4 (2-) transport by mAE2Cys-less resembled wildtype mAE2 in its stimulation by acidic pHo, the absence of transmembrane domain Cys residues abrogated activation of oxalate transport by acidic pHo. The contrasting enhancement of SO4 (2-) transport by alkaline pHo in the mAE1 anion translocation pathway mutant E699Q (Am J Physiol Cell Physiol 295: C302) was phenocopied by the corresponding mutant E1007Q in both AE2 and AE2Cys-less. However, the absence of transmembrane domain Cys residues exacerbated the reduced basal anion transport function exhibited by this and other missense substitutions at AE2 residue E1007. AE2Cys-less will be a valuable experimental tool for structure-function studies of the SLC4 gene family, but its utility for studies of AE2 regulation by extracellular pH must be evaluated in the context of its alkaline-shifted pHo sensitivity, resembling that of AE2 gastric parietal cell variant AE2c1.
Collapse
Affiliation(s)
- Fabian R Reimold
- Renal Division and Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, RN-380F, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
36
|
Charles JF, Coury F, Sulyanto R, Sitara D, Wu J, Brady N, Tsang K, Sigrist K, Tollefsen DM, He L, Storm D, Aliprantis AO. The collection of NFATc1-dependent transcripts in the osteoclast includes numerous genes non-essential to physiologic bone resorption. Bone 2012; 51:902-12. [PMID: 22985540 PMCID: PMC3457000 DOI: 10.1016/j.bone.2012.08.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 01/15/2023]
Abstract
Osteoclasts are specialized secretory cells of the myeloid lineage important for normal skeletal homeostasis as well as pathologic conditions of bone including osteoporosis, inflammatory arthritis and cancer metastasis. Differentiation of these multinucleated giant cells from precursors is controlled by the cytokine RANKL, which through its receptor RANK initiates a signaling cascade culminating in the activation of transcriptional regulators which induce the expression of the bone degradation machinery. The transcription factor nuclear factor of activated T-cells c1 (NFATc1) is the master regulator of this process and in its absence osteoclast differentiation is aborted both in vitro and in vivo. Differential mRNA expression analysis by microarray is used to identify genes of potential physiologic relevance across nearly all biologic systems. We compared the gene expression profile of murine wild-type and NFATc1-deficient osteoclast precursors stimulated with RANKL and identified that the majority of the known genes important for osteoclastic bone resorption require NFATc1 for induction. Here, five novel RANKL-induced, NFATc1-dependent transcripts in the osteoclast are described: Nhedc2, Rhoc, Serpind1, Adcy3 and Rab38. Despite reasonable hypotheses for the importance of these molecules in the bone resorption pathway and their dramatic induction during differentiation, the analysis of mice with mutations in these genes failed to reveal a function in osteoclast biology. Compared to littermate controls, none of these mutants demonstrated a skeletal phenotype in vivo or alterations in osteoclast differentiation or function in vitro. These data highlight the need for rigorous validation studies to complement expression profiling results before functional importance can be assigned to highly regulated genes in any biologic process.
Collapse
Affiliation(s)
- Julia F. Charles
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Fabienne Coury
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Rosalyn Sulyanto
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- OCC Dentistry, Columbus, OH, USA
| | - Despina Sitara
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- New York University College of Dentistry, New York, NY, USA
| | - Jing Wu
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- China Novartis Institutes for BioMedical Research Co., Shanghai 201203, China
| | - Nicholas Brady
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kelly Tsang
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Kirsten Sigrist
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Douglas M. Tollefsen
- Division of Hematology, Washington University School of Medicine, St. Louis, MO, USA
| | - Li He
- Division of Hematology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Storm
- Department of Pharmacology, University of Washington Medical School, Seattle, WA, USA
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Huang J, Shan J, Kim D, Liao J, Evagelidis A, Alper SL, Hanrahan JW. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 2012; 590:5299-316. [PMID: 22802585 DOI: 10.1113/jphysiol.2012.236919] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl(-)/HCO(3)(-) exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (I(sc)). We have studied the role of AE2 in Cl(-) and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced 90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter) or NBCe1 (Na(+)-nHCO(3)(-) cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO(3)(-)] as compared with the control lines. Unstimulated equivalent short-circuit current (I(eq)) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both I(eq) and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl(-)/HCO(3)(-) exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl(-) removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl(-) loading during cAMP-stimulated secretion of Cl(-) and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway submucosal glands and some other epithelia.
Collapse
Affiliation(s)
- Junwei Huang
- Department of Physiology, McGill University, Montr´eal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Zou W, Greenblatt MB, Shim JH, Kant S, Zhai B, Lotinun S, Brady N, Hu DZ, Gygi SP, Baron R, Davis RJ, Jones D, Glimcher LH. MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J Clin Invest 2011; 121:4383-92. [PMID: 21965325 PMCID: PMC3204846 DOI: 10.1172/jci59041] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/24/2011] [Indexed: 12/28/2022] Open
Abstract
Mutations in human FYVE, RhoGEF, and PH domain-containing 1 (FGD1) cause faciogenital dysplasia (FGDY; also known as Aarskog syndrome), an X-linked disorder that affects multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase CDC42. However, the mechanisms by which mutations in FGD1 affect skeletal development are unknown. Here, we describe what we believe to be a novel signaling pathway in osteoblasts initiated by FGD1 that involves the MAP3K mixed-lineage kinase 3 (MLK3). We observed that MLK3 functions downstream of FGD1 to regulate ERK and p38 MAPK, which in turn phosphorylate and activate the master regulator of osteoblast differentiation, Runx2. Mutations in FGD1 found in individuals with FGDY ablated its ability to activate MLK3. Consistent with our description of this pathway and the phenotype of patients with FGD1 mutations, mice with a targeted deletion of Mlk3 displayed multiple skeletal defects, including dental abnormalities, deficient calvarial mineralization, and reduced bone mass. Furthermore, mice with knockin of a mutant Mlk3 allele that is resistant to activation by FGD1/CDC42 displayed similar skeletal defects, demonstrating that activation of MLK3 specifically by FGD1/CDC42 is important for skeletal mineralization. Thus, our results provide a putative biochemical mechanism for the skeletal defects in human FGDY and suggest that modulating MAPK signaling may benefit these patients.
Collapse
MESH Headings
- Animals
- Bone Development/genetics
- Bone Development/physiology
- Disease Models, Animal
- Dwarfism/genetics
- Dwarfism/pathology
- Dwarfism/physiopathology
- Enzyme Activation
- Face/abnormalities
- Face/pathology
- Face/physiopathology
- Female
- Gene Knock-In Techniques
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- Genetic Diseases, X-Linked/physiopathology
- Genitalia, Male/abnormalities
- Genitalia, Male/pathology
- Genitalia, Male/physiopathology
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/physiology
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/pathology
- Hand Deformities, Congenital/physiopathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Humans
- MAP Kinase Kinase Kinases/deficiency
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/physiology
- MAP Kinase Signaling System
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Osteoblasts/pathology
- Osteoblasts/physiology
- Proteins/genetics
- Proteins/physiology
- cdc42 GTP-Binding Protein/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinase Kinase Kinase 11
Collapse
Affiliation(s)
- Weiguo Zou
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Matthew B. Greenblatt
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Jae-Hyuck Shim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Shashi Kant
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Bo Zhai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Sutada Lotinun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Nicholas Brady
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Dorothy Zhang Hu
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Steven P. Gygi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Roger J. Davis
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Dallas Jones
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Embree M, Ono M, Kilts T, Walker D, Langguth J, Mao J, Bi Y, Barth JL, Young M. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J Dent Res 2011; 90:1331-8. [PMID: 21917603 DOI: 10.1177/0022034511421930] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease that affects both cartilage and subchondral bone. We used microarray to identify changes in gene expression levels in the TMJ during early stages of the disease, using an established TMJ OA genetic mouse model deficient in 2 extracellular matrix proteins, biglycan and fibromodulin (bgn(-/0)fmod(-/-)). Differential gene expression analysis was performed with RNA extracted from 3-week-old WT and bgn(-/0)fmod(-/-) TMJs with an intact cartilage/subchondral bone interface. In total, 22 genes were differentially expressed in bgn(-/0)fmod(-/-) TMJs, including 5 genes involved in osteoclast activity/differentiation. The number of TRAP-positive cells were three-fold higher in bgn(-/0)fmod(-/-) TMJs than in WT. Quantitative RT-PCR showed up-regulation of RANKL and OPG, with a 128% increase in RANKL/OPG ratio in bgn(-/0)fmod(-/-) TMJs. Histology and immunohistochemistry revealed tissue disorganization and reduced type I collagen in bgn(-/0)fmod(-/-) TMJ subchondral bone. Early changes in gene expression and tissue defects in young bgn(-/0)fmod(-/-) TMJ subchondral bone are likely attributed to increased osteoclast activity. Analysis of these data shows that biglycan and fibromodulin are critical for TMJ subchondral bone integrity and reveal a potential role for TMJ subchondral bone turnover during the initial early stages of TMJ OA disease in this model.
Collapse
Affiliation(s)
- M Embree
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
O'Toole D, Swist S, Steadman L, Johnson GC. Neuropathology and craniofacial lesions of osteopetrotic Red Angus calves. Vet Pathol 2011; 49:746-54. [PMID: 21768604 DOI: 10.1177/0300985811412621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inherited osteopetrosis was identified in cattle herds in Wyoming, Nebraska, and Missouri in 2008 to 2010. Ten affected Red Angus calves were examined to characterize lesions in brain, teeth, and skull. Six affected aborted or stillborn calves were homozygous for the recently characterized deletion mutation in SLC4A2. Four affected calves were heterozygous for the SLC4A2 mutation and survived 1 to 7 days after birth. Gross lesions were similar in all 10 calves. Brains were rectangular and dorsoventrally compressed, with concave depressions in the parietal cortex owing to thickened parietal bone. Cerebellar hemispheres were compressed with herniation of the cerebellar vermis into the foramen magnum. Moderate bilateral chromatolysis affected multiple cranial nerve nuclei and, in some calves, the red nucleus. There was loss of retinal ganglion cells with severe atrophy of optic nerves. Periventricular corpora amylacea were in the thalamus, caudate nucleus, and midbrain. Vessels and neuropil in the dorsomedial aspect of the thalamus were mineralized. Dysplastic change in premolar and molar teeth comprised intra-alveolar intermingling of dentin, enamel, cementum, and bone, contributing to dental ankylosis. Changes in the heads of osteopetrotic calves are similar to those in children with malignant forms of homozygous recessive osteopetrosis.
Collapse
Affiliation(s)
- D O'Toole
- Department of Veterinary Sciences, 1174 Snowy Range Road, University of Wyoming, Laramie, WY 82070, USA.
| | | | | | | |
Collapse
|
41
|
Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr Rev 2011; 32:31-63. [PMID: 20851921 DOI: 10.1210/er.2010-0006] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different subtypes depending on their location, genotype, and possibly in response to drug intervention. The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological, in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders; 3) pathological, as identified by different disorders; and 4) in drug-induced situations. The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population, namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are dependent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important for understanding cell-cell communication in the bone microenvironment, treatment effects, and ultimately bone quality.
Collapse
Affiliation(s)
- K Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
42
|
Hofstetter W, Siegrist M, Simonin A, Bonny O, Fuster DG. Sodium/hydrogen exchanger NHA2 in osteoclasts: subcellular localization and role in vitro and in vivo. Bone 2010; 47:331-40. [PMID: 20441802 DOI: 10.1016/j.bone.2010.04.605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 11/29/2022]
Abstract
NHA2 was recently identified as a novel sodium/hydrogen exchanger which is strongly upregulated during RANKL-induced osteoclast differentiation. Previous in vitro studies suggested that NHA2 is a mitochondrial transporter required for osteoclast differentiation and bone resorption. Due to the lack of suitable antibodies, NHA2 was studied only on RNA level thus far. To define the protein's role in osteoclasts in vitro and in vivo, we generated NHA2-deficient mice and raised several specific NHA2 antibodies. By confocal microscopy and subcellular fractionation studies, NHA2 was found to co-localize with the late endosomal and lysosomal marker LAMP1 and the V-ATPase a3 subunit, but not with mitochondrial markers. Immunofluorescence studies and surface biotinylation experiments further revealed that NHA2 was highly enriched in the plasma membrane of osteoclasts, localizing to the basolateral membrane of polarized osteoclasts. Despite strong upregulation of NHA2 during RANKL-induced osteoclast differentiation, however, structural parameters of bone, quantified by high-resolution microcomputed tomography, were not different in NHA2-deficient mice compared to wild-type littermates. In addition, in vitro RANKL stimulation of bone marrow cells isolated from wild-type and NHA2-deficient mice yielded no differences in osteoclast development and activity. Taken together, we show that NHA2 is a RANKL-induced plasmalemmal sodium/hydrogen exchanger in osteoclasts. However, our data from NHA2-deficient mice suggest that NHA2 is dispensable for osteoclast differentiation and bone resorption both in vitro and in vivo.
Collapse
Affiliation(s)
- Willy Hofstetter
- Group for Bone Biology and Orthopaedic Research, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O'Toole D, O'Connell JR, Beever JE, Sonstegard TS, Smith TPL. A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. BMC Genomics 2010; 11:337. [PMID: 20507629 PMCID: PMC2891616 DOI: 10.1186/1471-2164-11-337] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/27/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteopetrosis is a skeletal disorder of humans and animals characterized by the formation of overly dense bones, resulting from a deficiency in the number and/or function of bone-resorbing osteoclast cells. In cattle, osteopetrosis can either be induced during gestation by viral infection of the dam, or inherited as a recessive defect. Genetically affected calves are typically aborted late in gestation, display skull deformities and exhibit a marked reduction of osteoclasts. Although mutations in several genes are associated with osteopetrosis in humans and mice, the genetic basis of the cattle disorder was previously unknown. RESULTS We have conducted a whole-genome association analysis to identify the mutation responsible for inherited osteopetrosis in Red Angus cattle. Analysis of >54,000 SNP genotypes for each of seven affected calves and nine control animals localized the defective gene to the telomeric end of bovine chromosome 4 (BTA4). Homozygosity analysis refined the interval to a 3.4-Mb region containing the SLC4A2 gene, encoding an anion exchanger protein necessary for proper osteoclast function. Examination of SLC4A2 from normal and affected animals revealed a approximately 2.8-kb deletion mutation in affected calves that encompasses exon 2 and nearly half of exon 3, predicted to prevent normal protein function. Analysis of RNA from a proven heterozygous individual confirmed the presence of transcripts lacking exons 2 and 3, in addition to normal transcripts. Genotyping of additional animals demonstrated complete concordance of the homozygous deletion genotype with the osteopetrosis phenotype. Histological examination of affected tissues revealed scarce, morphologically abnormal osteoclasts displaying evidence of apoptosis. CONCLUSIONS These results indicate that a deletion mutation within bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. Loss of SLC4A2 function appears to induce premature cell death, and likely results in cytoplasmic alkalinization of osteoclasts which, in turn, may disrupt acidification of resorption lacunae.
Collapse
Affiliation(s)
- Stacey N Meyers
- Laboratory of Molecular Genetics, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tara G McDaneld
- U.S. Meat Animal Research Center, USDA, ARS, Clay Center, Nebraska, USA
| | - Shannon L Swist
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Brandy M Marron
- Laboratory of Molecular Genetics, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Steffen
- Department of Veterinary and Biomedical Sciences, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, NE 68583, USA
| | - Donal O'Toole
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | | | - Jonathan E Beever
- Laboratory of Molecular Genetics, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tad S Sonstegard
- Bovine Functional Genomics Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - Timothy PL Smith
- U.S. Meat Animal Research Center, USDA, ARS, Clay Center, Nebraska, USA
| |
Collapse
|
44
|
Abstract
Osteoporosis and arthritis are highly prevalent diseases and a significant cause of morbidity and mortality worldwide. These diseases result from aberrant tissue remodeling leading to weak, fracture-prone bones or painful, dysfunctional joints. The nuclear factor of activated T cells (NFAT) transcription factor family controls diverse biologic processes in vertebrates. Here, we review the scientific evidence that links NFAT-regulated gene transcription to bone and joint pathology. A particular emphasis is placed on the role of NFATs in bone resorption and formation by osteoclasts and osteoblasts, respectively. In addition, emerging data that connect NFATs with cartilage biology, angiogenesis, nociception, and neurogenic inflammation are explored. The goal of this article is to highlight the importance of tissue remodeling in musculoskeletal disease and situate NFAT-driven cellular responses within this context to inspire future research endeavors.
Collapse
Affiliation(s)
- Despina Sitara
- Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Tashima I, Arita K, Asada Y. Genetic study of gutter-shaped root (GSR) in AKXL RI mouse strains using QTL analysis. J Oral Sci 2010; 52:213-20. [DOI: 10.2334/josnusd.52.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
46
|
Abstract
PURPOSE OF REVIEW Bone cells such as osteoclasts, osteoblasts, and osteocytes 'talk' to each other throughout adult life to maintain bone integrity. This review highlights frontier areas of research on intercellular communication among bone cells. RECENT FINDINGS Bone cells communicate to regulate the balance between bone resorption and bone formation. Recent findings have suggested that bone remodeling compartment is critical for osteoclast-osteoblast communication during bone remodeling. New molecules and mechanisms for bone cell communication, including 'coupling' of bone formation to resorption, have been revealed. Osteoclastic regulation of pH within the bone remodeling compartment is a mechanism that has been posited to rapidly activate osteoblastic bone formation, whereas osteocytes in the bone matrix regulate osteoclasts and osteoblasts on the bone surface through the lacuno-canaliculi network. SUMMARY Differentiation, activation, and apoptosis of bone cells are often dependent on the status of other types of bone cells. Bone cells in different lineages achieve intercellular communication not only by ligand-receptor interactions but also by molecules and ions traveling in the extracellular space or across gap junctions, processes that depend profoundly on the four-dimensional (space and time) architecture of bone tissue.
Collapse
|
47
|
Jansen IDC, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, Schoenmaker T, Ravesloot JH, van Borren MMGJ, van Eijden TM, Bronckers ALJJ, Kellokumpu S, Medina JF, Everts V, Oude Elferink RPJ. Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J 2009; 23:3470-81. [PMID: 19564250 DOI: 10.1096/fj.08-122598] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular acidification by osteoclasts is essential to bone resorption. During proton pumping, intracellular pH (pH(i)) is thought to be kept at a near-neutral level by chloride/bicarbonate exchange. Here we show that the Na(+)-independent chloride/bicarbonate anion exchanger 2 (Ae2) is relevant for this process in the osteoclasts from the long bones of Ae2(a,b)(-/-) mice (deficient in the main isoforms Ae2a, Ae2b(1), and Ae2b(2)). Although the long bones of these mice had normal numbers of multinucleated osteoclasts, these cells lacked a ruffled border and displayed impaired bone resorption activity, resulting in an osteopetrotic phenotype of long bones. Moreover, in vitro osteoclastogenesis assays using long-bone marrow cells from Ae2(a,b)(-/-) mice suggested a role for Ae2 in osteoclast formation, as fusion of preosteoclasts for the generation of active multinucleated osteoclasts was found to be slightly delayed. In contrast to the abnormalities observed in the long bones, the skull of Ae2(a,b)(-/-) mice showed no alterations, indicating that calvaria osteoclasts may display normal resorptive activity. Microfluorimetric analysis of osteoclasts from normal mice showed that, in addition to Ae2 activity, calvaria osteoclasts--but not long-bone osteoclasts--possess a sodium-dependent bicarbonate transporting activity. Possibly, this might compensate for the absence of Ae2 in calvaria osteoclasts of Ae2(a,b)(-/-) mice.
Collapse
Affiliation(s)
- Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam, van der Boechorststraat 7, Amsterdam, Netherlands 1081 BT.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212:1672-83. [PMID: 19448077 PMCID: PMC2683012 DOI: 10.1242/jeb.029454] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Plasmalemmal Cl(-)/HCO(3)(-) exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl(-)] and cell volume. The Cl(-)/HCO(3)(-) exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid-base equivalents and Cl(-). This review focuses on Na(+)-independent electroneutral Cl(-)/HCO(3)(-) exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2(-/-) mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2(-/-) mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3(-/-) mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl(-)/anion exchange, but trout erythroid Ae1 also mediates Cl(-) conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl(-) conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO(4)(2-)/Cl(-) exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure-function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|