1
|
Klaysubun C, Chaichana N, Suwannasin S, Singkhamanan K, Yaikhan T, Kantachote D, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Insights and Comparative Analysis of Novel Rhodopseudomonas Species: A Purple Non-Sulfur Bacterium Isolated from Latex Rubber Sheet Wastewater. Life (Basel) 2025; 15:754. [PMID: 40430182 PMCID: PMC12113291 DOI: 10.3390/life15050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Rhodopseudomonas is recognized for its versatile metabolic capabilities that enable it to effectively degrade pollutants and survive various environmental stresses. In this study, we conducted a genome analysis of Rhodopseudomonas sp. P1 to investigate its genetic potential for wastewater treatment processes. Phylogenetic and genome-relatedness analyses confirmed that strain P1 is genetically distinct from other species within the Rhodopseudomonas genus, establishing it as a novel species. The genome sequences obtained and analyzed focused on genes related to carbon and nutrient removal, photosynthetic capabilities, nitrate and nitrite reduction, and the biodegradation of common wastewater pollutants. The identification of wastewater treatment-related genes followed an extensive review of the existing literature that helped in selecting genes involved in various wastewater treatment mechanisms. The genome of Rhodopseudomonas sp. P1 contains a diverse array of genes involved in carbon and nutrient cycling, pollutant biodegradation, and metal resistance, all of which are crucial for its survival in the complex wastewater environment. Specifically, the strain contains genes responsible for the denitrification, nitrogen fixation, sulfur cycling, and detoxification of toxic metals such as copper and arsenic. These findings highlight the potential application of Rhodopseudomonas sp. P1 in wastewater treatment, particularly in environments contaminated with organic pollutants and heavy metals. However, while the genomic features indicate significant promise, the practical implementation of Rhodopseudomonas sp. P1 in real-world wastewater treatment systems will require further investigation, optimization, and validation to fully harness its potential for sustainable and efficient wastewater treatment.
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Oda Y, Nelson WC, Alexander WG, Nguyen S, Egbert RG, Harwood CS. A Rhodopseudomonas strain with a substantially smaller genome retains the core metabolic versatility of its genus. Appl Environ Microbiol 2025; 91:e0205624. [PMID: 40062894 PMCID: PMC12016538 DOI: 10.1128/aem.02056-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/14/2025] [Indexed: 04/24/2025] Open
Abstract
Rhodopseudomonas are a group of phototrophic microbes with a marked metabolic versatility and flexibility that underpins their potential use in the production of value-added products, bioremediation, and plant growth promotion. Members of this group have an average genome size of about 5.5 Mb, but two closely related strains have genome sizes of about 4.0 Mb. To identify the types of genes missing in a reduced genome strain, we compared strain DSM127 with other Rhodopseudomonas isolates at the genomic and phenotypic levels. We found that DSM127 can grow as well as other members of the Rhodopseudomonas genus and retains most of their metabolic versatility, but it has many fewer genes associated with high-affinity transport of nutrients, iron uptake, nitrogen metabolism, and biodegradation of aromatic compounds. This analysis indicates genes that can be deleted in genome reduction campaigns and suggests that DSM127 could be a favorable choice for biotechnology applications using Rhodopseudomonas or as a strain that can be engineered further to reside in a specialized natural environment.IMPORTANCERhodopseudomonas are a cohort of phototrophic bacteria with broad metabolic versatility. Members of this group are present in diverse soil and water environments, and some strains are found associated with plants and have plant growth-promoting activity. Motivated by the idea that it may be possible to design bacteria with reduced genomes that can survive well only in a specific environment or that may be more metabolically efficient, we compared Rhodopseudomonas strains with typical genome sizes of about 5.5 Mb to a strain with a reduced genome size of 4.0 Mb. From this, we concluded that metabolic versatility is part of the identity of the Rhodopseudomonas group, but high-affinity transport genes and genes of apparent redundant function can be dispensed with.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - William C. Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Stella Nguyen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Robert G. Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Haq IU, Christensen A, Fixen KR. Evolution of Rhodopseudomonas palustris to degrade halogenated aromatic compounds involves changes in pathway regulation and enzyme specificity. Appl Environ Microbiol 2024; 90:e0210423. [PMID: 38206012 PMCID: PMC10880631 DOI: 10.1128/aem.02104-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Annika Christensen
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kathryn R. Fixen
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
4
|
LaSarre B, Morlen R, Neumann GC, Harwood CS, McKinlay JB. Nitrous oxide reduction by two partial denitrifying bacteria requires denitrification intermediates that cannot be respired. Appl Environ Microbiol 2024; 90:e0174123. [PMID: 38078768 PMCID: PMC10807417 DOI: 10.1128/aem.01741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 01/25/2024] Open
Abstract
Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ryan Morlen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Gina C. Neumann
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Chuang YC, Haas NW, Pepin R, Behringer MG, Oda Y, LaSarre B, Harwood CS, McKinlay JB. Bacterial adenine cross-feeding stems from a purine salvage bottleneck. THE ISME JOURNAL 2024; 18:wrae034. [PMID: 38452196 PMCID: PMC10976475 DOI: 10.1093/ismejo/wrae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
- Biochemistry Program, Indiana University, Bloomington, IN 47405, United States
| | - Nicholas W Haas
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, United States
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
6
|
Chuang YC, Haas NW, Pepin R, Behringer M, Oda Y, LaSarre B, Harwood CS, McKinlay JB. A purine salvage bottleneck leads to bacterial adenine cross-feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562681. [PMID: 37904951 PMCID: PMC10614841 DOI: 10.1101/2023.10.17.562681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we fortuitously discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue growth of an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational models suggested that adenine externalization occurs via passive diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that accumulation and externalization of adenine stems from an adenine salvage bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 15 of the strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt orientation, but apt orientation alone could not explain adenine externalization in some strains. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN
- Biochemistry Program, Indiana University, Bloomington, IN
| | | | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Megan Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, WA
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN
| | | | | |
Collapse
|
7
|
Avontuur JR, Wilken PM, Palmer M, Coetzee MPA, Stępkowski T, Venter SN, Steenkamp ET. Complex evolutionary history of photosynthesis in Bradyrhizobium. Microb Genom 2023; 9:001105. [PMID: 37676703 PMCID: PMC10569730 DOI: 10.1099/mgen.0.001105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Bradyrhizobium comprises a diverse group of bacteria with various lifestyles. Although best known for their nodule-based nitrogen-fixation in symbiosis with legumes, a select group of bradyrhizobia are also capable of photosynthesis. This ability seems to be rare among rhizobia, and its origin and evolution in these bacteria remain a subject of substantial debate. Therefore, our aim here was to investigate the distribution and evolution of photosynthesis in Bradyrhizobium using comparative genomics and representative genomes from closely related taxa in the families Nitrobacteraceae, Methylobacteriaceae, Boseaceae and Paracoccaceae . We identified photosynthesis gene clusters (PGCs) in 25 genomes belonging to three different Bradyrhizobium lineages, notably the so-called Photosynthetic, B. japonicum and B. elkanii supergroups. Also, two different PGC architectures were observed. One of these, PGC1, was present in genomes from the Photosynthetic supergroup and in three genomes from a species in the B. japonicum supergroup. The second cluster, PGC2, was also present in some strains from the B. japonicum supergroup, as well as in those from the B. elkanii supergroup. PGC2 was largely syntenic to the cluster found in Rhodopseudomonas palustris and Tardiphaga . Bayesian ancestral state reconstruction unambiguously showed that the ancestor of Bradyrhizobium lacked a PGC and that it was acquired horizontally by various lineages. Maximum-likelihood phylogenetic analyses of individual photosynthesis genes also suggested multiple acquisitions through horizontal gene transfer, followed by vertical inheritance and gene losses within the different lineages. Overall, our findings add to the existing body of knowledge on Bradyrhizobium ’s evolution and provide a meaningful basis from which to explore how these PGCs and the photosynthesis itself impact the physiology and ecology of these bacteria.
Collapse
Affiliation(s)
- Juanita R. Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Guardia AE, Wagner A, Busalmen JP, Di Capua C, Cortéz N, Beligni MV. The draft genome of Andean Rhodopseudomonas sp. strain AZUL predicts genome plasticity and adaptation to chemical homeostasis. BMC Microbiol 2022; 22:297. [PMID: 36494611 PMCID: PMC9733117 DOI: 10.1186/s12866-022-02685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Rhodopseudomonas comprises purple non-sulfur bacteria with extremely versatile metabolisms. Characterization of several strains revealed that each is a distinct ecotype highly adapted to its specific micro-habitat. Here we present the sequencing, genomic comparison and functional annotation of AZUL, a Rhodopseudomonas strain isolated from a high altitude Andean lagoon dominated by extreme conditions and fluctuating levels of chemicals. Average nucleotide identity (ANI) analysis of 39 strains of this genus showed that the genome of AZUL is 96.2% identical to that of strain AAP120, which suggests that they belong to the same species. ANI values also show clear separation at the species level with the rest of the strains, being more closely related to R. palustris. Pangenomic analyses revealed that the genus Rhodopseudomonas has an open pangenome and that its core genome represents roughly 5 to 12% of the total gene repertoire of the genus. Functional annotation showed that AZUL has genes that participate in conferring genome plasticity and that, in addition to sharing the basal metabolic complexity of the genus, it is also specialized in metal and multidrug resistance and in responding to nutrient limitation. Our results also indicate that AZUL might have evolved to use some of the mechanisms involved in resistance as redox reactions for bioenergetic purposes. Most of those features are shared with strain AAP120, and mainly involve the presence of additional orthologs responsible for the mentioned processes. Altogether, our results suggest that AZUL, one of the few bacteria from its habitat with a sequenced genome, is highly adapted to the extreme and changing conditions that constitute its niche.
Collapse
Affiliation(s)
- Aisha E. Guardia
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Agustín Wagner
- grid.10814.3c0000 0001 2097 3211Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Juan P. Busalmen
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Cecilia Di Capua
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Néstor Cortéz
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - María V. Beligni
- grid.412221.60000 0000 9969 0902Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
9
|
Provorov NA, Andronov EE, Kimeklis AK, Onishchuk OP, Igolkina AA, Karasev ES. Microevolution, speciation and macroevolution in rhizobia: Genomic mechanisms and selective patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:1026943. [PMID: 36388581 PMCID: PMC9640933 DOI: 10.3389/fpls.2022.1026943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Nodule bacteria (rhizobia), N2-fixing symbionts of leguminous plants, represent an excellent model to study the fundamental issues of evolutionary biology, including the tradeoff between microevolution, speciation, and macroevolution, which remains poorly understood for free-living organisms. Taxonomically, rhizobia are extremely diverse: they are represented by nearly a dozen families of α-proteobacteria (Rhizobiales) and by some β-proteobacteria. Their genomes are composed of core parts, including house-keeping genes (hkg), and of accessory parts, including symbiotically specialized (sym) genes. In multipartite genomes of evolutionary advanced fast-growing species (Rhizobiaceae), sym genes are clustered on extra-chromosomal replicons (megaplasmids, chromids), facilitating gene transfer in plant-associated microbial communities. In this review, we demonstrate that in rhizobia, microevolution and speciation involve different genomic and ecological mechanisms: the first one is based on the diversification of sym genes occurring under the impacts of host-induced natural selection (including its disruptive, frequency-dependent and group forms); the second one-on the diversification of hkgs under the impacts of unknown factors. By contrast, macroevolution represents the polyphyletic origin of super-species taxa, which are dependent on the transfer of sym genes from rhizobia to various soil-borne bacteria. Since the expression of newly acquired sym genes on foreign genomic backgrounds is usually restricted, conversion of resulted recombinants into the novel rhizobia species involves post-transfer genetic changes. They are presumably supported by host-induced selective processes resulting in the sequential derepression of nod genes responsible for nodulation and of nif/fix genes responsible for symbiotic N2 fixation.
Collapse
Affiliation(s)
- Nikolay A. Provorov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
| | - Evgeny E. Andronov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
- Laboratory of Soil Biology and Biochemistry, V.V. Dokuchaev Soil Science Institute, Moscow, Russia
| | - Anastasiia K. Kimeklis
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
- Department of Applied Ecology, St. Petersburg State University, Saint-Petersburg, Russia
| | - Olga P. Onishchuk
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
| | - Anna A. Igolkina
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Evgeny S. Karasev
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
| |
Collapse
|
10
|
Neu J, Shipps CC, Guberman-Pfeffer MJ, Shen C, Srikanth V, Spies JA, Kirchhofer ND, Yalcin SE, Brudvig GW, Batista VS, Malvankar NS. Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires. Nat Commun 2022; 13:5150. [PMID: 36071037 PMCID: PMC9452534 DOI: 10.1038/s41467-022-32659-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms of Geobacter sulfurreducens use nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis. Despite enormous potential of solar-driven biocatalysis, most living systems lack photoactive proteins and require toxic and expensive synthetic materials limiting the performance. Here, a class of natural photoconductors is demonstrated through sub-picosecond heme-to-heme electron transfer in bacteria-produced protein nanowires.
Collapse
Affiliation(s)
- Jens Neu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Catharine C Shipps
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Matthew J Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Cong Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Vishok Srikanth
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Jacob A Spies
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
11
|
Haas NW, Jain A, Hying Z, Arif SJ, Niehaus TD, Gralnick JA, Fixen KR. PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield. Appl Environ Microbiol 2022; 88:e0097422. [PMID: 35862670 PMCID: PMC9361825 DOI: 10.1128/aem.00974-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023] Open
Abstract
Microorganisms that carry out Fe(II) oxidation play a major role in biogeochemical cycling of iron in environments with low oxygen. Fe(II) oxidation has been largely studied in the context of autotrophy. Here, we show that the anoxygenic phototroph, Rhodopseudomonas palustris CGA010, carries out Fe(II) oxidation during photoheterotrophic growth with an oxidized carbon source, malate, leading to an increase in cell yield and allowing more carbon to be directed to cell biomass. We probed the regulatory basis for this by transcriptome sequencing (RNA-seq) and found that the expression levels of the known pioABC Fe(II) oxidation genes in R. palustris depended on the redox-sensing two-component system, RegSR, and the oxidation state of the carbon source provided to cells. This provides the first mechanistic demonstration of mixotrophic growth involving reducing power generated from both Fe(II) oxidation and carbon assimilation. IMPORTANCE The simultaneous use of carbon and reduced metals such as Fe(II) by bacteria is thought to be widespread in aquatic environments, and a mechanistic description of this process could improve our understanding of biogeochemical cycles. Anoxygenic phototrophic bacteria like Rhodopseudomonas palustris typically use light for energy and organic compounds as both a carbon and an electron source. They can also use CO2 for carbon by carbon dioxide fixation when electron-rich compounds like H2, thiosulfate, and Fe(II) are provided as electron donors. Here, we show that Fe(II) oxidation can be used in another context to promote higher growth yields of R. palustris when the oxidized carbon compound malate is provided. We further established the regulatory mechanism underpinning this observation.
Collapse
Affiliation(s)
- Nicholas W. Haas
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Abhiney Jain
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Zachary Hying
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Sabrina J. Arif
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas D. Niehaus
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Kathryn R. Fixen
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
12
|
Genetic Characteristics and Enzymatic Activities of Bacillus velezensis KS04AU as a Stable Biocontrol Agent against Phytopathogens. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacillus velezensis has a broad application in the agricultural and industrial sectors for its biocontrol properties and its potential active secondary metabolites. The defined phenotypic characteristics of a strain vary according to its ecosystem. We report the complete genomic analysis of B. velezensis KS04AU compared to four strains of B. velezensis (SRCM102752, ONU-553, FZB42, and JS25R) and two closely related Bacillus amyloliquefaciens (LL3 and IT-45). A total of 4771 protein coding genes comprises the KS04AU genome, in comparison with 3334 genes core genes found in the six other strains and the remaining 1437 shell genes. Average nucleotide identity of the target strain to the six other strains showed 99.65% to B. velezensis ONU-553, sharing 60 orthologous genes. Secondary metabolite gene cluster analysis of all strains showed that KS04AU has a mersacidin cluster gene, which is absent in the genome of the other strains. PHASTER analysis also showed KS04AU harboring two phages (Aeribacllus AP45 NC_048651 and Paenibacillus_Tripp NC_028930), which were also unique in comparison with the other strains. Analysis on anti-microbial resistance genes showed no difference in the genome of KS04AU to any of the other genomes, with the exception of B. amyloliquefaciens IT-45 which had one unique small multidrug-resistance antibiotic efflux-pump gene (qacJ). The CRISPR-Cas systems in the strains were also compared showing one CRISPR gene found only in KS04AU. Hydrolytic activity, antagonistic activity against phytopathogens (Fusarium oxysporum, Fusarium graminearum, Alternaria alternata and Pseudomonas syringae) and biocontrol against tomato foot and root rot experiments were carried out. B. velezensis KS04AU inhibits the growth of all phytopathogens tested, produces hydrolytic activity, and reduces Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407 lesions up to 46.02 ± 0.12%. The obtained results confirm B. velezensis KS04AU as a potential biocontrol strain for plant protection.
Collapse
|
13
|
Luxem KE, Kraepiel AML, Zhang L, Waldbauer JR, Zhang X. Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation. Environ Microbiol 2022; 24:2170-2176. [PMID: 35478483 PMCID: PMC9175542 DOI: 10.1111/1462-2920.16001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Mou Z, Yang Y, Hall AB, Jiang X. The taxonomic distribution of histamine-secreting bacteria in the human gut microbiome. BMC Genomics 2021; 22:695. [PMID: 34563136 PMCID: PMC8465708 DOI: 10.1186/s12864-021-08004-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biogenic histamine plays an important role in immune response, neurotransmission, and allergic response. Although endogenous histamine production has been extensively studied, the contributions of histamine produced by the human gut microbiota have not been explored due to the absence of a systematic annotation of histamine-secreting bacteria. RESULTS To identify the histamine-secreting bacteria from in the human gut microbiome, we conducted a systematic search for putative histamine-secreting bacteria in 36,554 genomes from the Genome Taxonomy Database and Unified Human Gastrointestinal Genome catalog. Using bioinformatic approaches, we identified 117 putative histamine-secreting bacteria species. A new three-component decarboxylation system including two colocalized decarboxylases and one transporter was observed in histamine-secreting bacteria among three different phyla. We found significant enrichment of histamine-secreting bacteria in patients with inflammatory bowel disease but not in patients with colorectal cancer suggesting a possible association between histamine-secreting bacteria and inflammatory bowel disease. CONCLUSIONS The findings of this study expand our knowledge of the taxonomic distribution of putative histamine-secreting bacteria in the human gut.
Collapse
Affiliation(s)
- Zhongyu Mou
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yiyan Yang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - A Brantley Hall
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaofang Jiang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Zhang B, Cheng HY, Wang A. Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens. Bioelectrochemistry 2020; 138:107683. [PMID: 33421898 DOI: 10.1016/j.bioelechem.2020.107683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
Dissimilatory metal-reducing bacteria (DMRB) have a variety of c-type cytochromes (OM c-cyts) intercalated in their outer membrane, and this structure serves as the physiological basis for DMRB to carry out the extracellular electron transfer processes. Using Geobacter sulfurreducens as a model DMRB, we demonstrated that visible-light illumination could alter the electronic state of OM c-cyts from the ground state to the excited state in vivo. The existence of excited-state OM c-cyts in vivo was confirmed by spectroscopy. More importantly, excited-state OM c-cyts had a more negative potential compared to their ground-state counterparts, conferring DMRB with an extra pathway to transfer electrons to semi-conductive electron acceptors. To demonstrate this, using a TiO2-coated electrode as an electron acceptor, we showed that G. sulfurreducens could directly utilise the conduction band of TiO2 as an electron acceptor under visible-light illumination (λ > 420 nm) without causing TiO2 charge separation. When G. sulfurreducens was subject to visible-light illumination, the rate of extracellular electron transfer (EET) to TiO2 accelerated by over 8-fold compared to that observed under dark conditions. Results of additional electrochemical tests provided complementary evidence to support that G. sulfurreducens utilised excited-state OM c-cyts to enhance EET to TiO2.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao-Yi Cheng
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijie Wang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
16
|
Guardia AE, Beligni MV, Cortéz N, Busalmen J. Electrochemistry of R. palustris Azul during phototrophic growth. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Abstract
The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.
Collapse
Affiliation(s)
- Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
18
|
du Toit JP, Pott RWM. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:105. [PMID: 32536970 PMCID: PMC7285740 DOI: 10.1186/s13068-020-01743-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/01/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phototrophic purple non-sulfur bacteria (PNSB) have gained attention for their ability to produce a valuable clean energy source in the form biohydrogen via photofermentation of a wide variety of organic wastes. For maturation of these phototrophic bioprocesses towards commercial feasibility, development of suitable immobilisation materials is required to allow continuous production from a stable pool of catalytic biomass in which energy is not diverted towards biomass accumulation, and optimal hydrogen production rates are realised. Here, the application of transparent polyvinyl-alcohol (PVA) cryogel beads to immobilisation of Rhodopseudomonas palustris for long-term hydrogen production is described. PVA cryogel properties are characterised and demonstrated to be well suited to the purpose of continuous photofermentation. Finally, analysis of the long-term biocompatibility of the material is illustrated. RESULTS The addition of glycerol co-solvent induces favourable light transmission properties in normally opaque PVA cryogels, especially well-suited to the near-infrared light requirements of PNSB. Material characterisation showed high mechanical resilience, low resistance to diffusion of substrates and high biocompatibility of the material and immobilisation process. The glycerol co-solvent in transparent cryogels offered additional benefit by reinforcing physical interactions to the extent that only a single freeze-thaw cycle was required to form durable cryogels, extending utility beyond only phototrophic bioprocesses. In contrast, conventional PVA cryogels require multiple cycles which compromise viability of entrapped organisms. Hydrogen production studies of immobilised Rhodopseudomonas palustris in batch photobioreactors showed higher specific hydrogen production rates which continued longer than planktonic cultures. Continuous cultivation yielded hydrogen production for at least 67 days from immobilised bacteria, demonstrating the suitability of PVA cryogel immobilisation for long-term phototrophic bioprocesses. Imaged organisms immobilised in cryogels showed a monolithic structure to PVA cryogels, and demonstrated a living, stable, photofermentative population after long-term immobilisation. CONCLUSION Transparent PVA cryogels offer ideal properties as an immobilisation matrix for phototrophic bacteria and present a low-cost photobioreactor technology for the further advancement of biohydrogen from waste as a sustainable energy source, as well as development of alternative photo-bioprocesses exploiting the unique capabilities of purple non-sulfur bacteria.
Collapse
Affiliation(s)
- Jan-Pierre du Toit
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, South Africa
| | - Robert W. M. Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, South Africa
| |
Collapse
|
19
|
Provorov NA, Andronov EE, Kimeklis AK, Chirak ER, Karasev ES, Aksenova TS, Kopat VV. Evolutionary Geography of Root Nodule Bacteria: Speciation Directed by the Host Plants. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Abstract
The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change in the composition of the photosystem, little is understood about how R. palustris senses and responds to low light intensity. On the basis of the results of transcription analysis of 17 R. palustris strains grown in low light, we found that R. palustris strains downregulate many genes involved in iron transport and homeostasis. The only operon upregulated in the majority of R. palustris exposed to low light intensity was pucBAd, which encodes LH4. In previous work, pucBAd expression was shown to be modulated in response to light quality by bacteriophytochromes that are part of a low-light signal transduction system. Here we found that this signal transduction system also includes a redox-sensitive protein, LhfE, and that its redox sensitivity is required for LH4 synthesis in response to low light. Our results suggest that R. palustris upregulates its LH4 system when the cellular redox state is relatively oxidized. Consistent with this, we found that LH4 synthesis was upregulated under high light intensity when R. palustris was grown semiaerobically or under nitrogen-fixing conditions. Thus, changes in the LH4 system in R. palustris are not dependent on light intensity per se but rather on cellular redox changes that occur as a consequence of changes in light intensity.IMPORTANCE An essential aspect of the physiology of phototrophic bacteria is their ability to adjust the amount and composition of their light-harvesting apparatus in response to changing environmental conditions. The phototrophic purple bacterium R. palustris adapts its photosystem to a range of light intensities by altering the amount and composition of its peripheral LH complexes. Here we found that R. palustris regulates its LH4 complex in response to the cellular redox state rather than in response to light intensity per se Relatively oxidizing conditions, including low light, semiaerobic growth, and growth under nitrogen-fixing conditions, all stimulated a signal transduction system to activate LH4 expression. By understanding how LH composition is regulated in R. palustris, we will gain insight into how and why a photosynthetic organism senses and adapts its photosystem to multiple environmental cues.
Collapse
|
21
|
Modeling the Interplay between Photosynthesis, CO 2 Fixation, and the Quinone Pool in a Purple Non-Sulfur Bacterium. Sci Rep 2019; 9:12638. [PMID: 31477760 PMCID: PMC6718658 DOI: 10.1038/s41598-019-49079-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris CGA009 is a purple non-sulfur bacterium that can fix carbon dioxide (CO2) and nitrogen or break down organic compounds for its carbon and nitrogen requirements. Light, inorganic, and organic compounds can all be used for its source of energy. Excess electrons produced during its metabolic processes can be exploited to produce hydrogen gas or biodegradable polyesters. A genome-scale metabolic model of the bacterium was reconstructed to study the interactions between photosynthesis, CO2 fixation, and the redox state of the quinone pool. A comparison of model-predicted flux values with available Metabolic Flux Analysis (MFA) fluxes yielded predicted errors of 5–19% across four different growth substrates. The model predicted the presence of an unidentified sink responsible for the oxidation of excess quinols generated by the TCA cycle. Furthermore, light-dependent energy production was found to be highly dependent on the quinol oxidation rate. Finally, the extent of CO2 fixation was predicted to be dependent on the amount of ATP generated through the electron transport chain, with excess ATP going toward the energy-demanding Calvin-Benson-Bassham (CBB) pathway. Based on this analysis, it is hypothesized that the quinone redox state acts as a feed-forward controller of the CBB pathway, signaling the amount of ATP available.
Collapse
|
22
|
Boynton PJ, Kowallik V, Landermann D, Stukenbrock EH. Quantifying the efficiency and biases of forest Saccharomyces sampling strategies. Yeast 2019; 36:657-668. [PMID: 31348543 DOI: 10.1002/yea.3435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Saccharomyces yeasts are emerging as model organisms for ecology and evolution, and researchers need environmental Saccharomyces isolates to test ecological and evolutionary hypotheses. However, methods for isolating Saccharomyces from nature have not been standardized, and isolation methods may influence the genotypes and phenotypes of studied strains. We compared the effectiveness and potential biases of an established enrichment culturing method against a newly developed direct plating method for isolating forest floor Saccharomyces spp. In a European forest, enrichment culturing was both less successful at isolating Saccharomyces paradoxus per sample collected and less labour intensive per isolated S. paradoxus colony than direct isolation. The two methods sampled similar S. paradoxus diversity: The number of unique genotypes sampled (i.e., genotypic diversity) per S. paradoxus isolate and average growth rates of S. paradoxus isolates did not differ between the two methods, and growth rate variances (i.e., phenotypic diversity) only differed in one of three tested environments. However, enrichment culturing did detect rare Saccharomyces cerevisiae in the forest habitat and also found two S. paradoxus isolates with outlier phenotypes. Our results validate the historically common method of using enrichment culturing to isolate representative collections of environmental Saccharomyces. We recommend that researchers choose a Saccharomyces sampling method based on resources available for sampling and isolate screening. Researchers interested in discovering new Saccharomyces phenotypes or rare Saccharomyces species from natural environments may also have more success using enrichment culturing. We include step-by-step sampling protocols in the supplemental materials.
Collapse
Affiliation(s)
- Primrose J Boynton
- Environmental Genomics Research Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Vienna Kowallik
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Doreen Landermann
- Environmental Genomics Research Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics Research Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany.,Botanisches Institut, Christian-Albrechts Universität, Botanisches Institut, Kiel, Germany
| |
Collapse
|
23
|
Cavalca L, Zecchin S, Zaccheo P, Abbas B, Rotiroti M, Bonomi T, Muyzer G. Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Front Microbiol 2019; 10:1480. [PMID: 31312188 PMCID: PMC6614289 DOI: 10.3389/fmicb.2019.01480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenic contamination of groundwater aquifers is an issue of global concern. Among the affected sites, in several Italian groundwater aquifers arsenic levels above the WHO limits for drinking water are present, with consequent issues of public concern. In this study, for the first time, the role of microbial communities in metalloid cycling in groundwater samples from Northern Italy lying on Pleistocene sediments deriving from Alps mountains has been investigated combining environmental genomics and cultivation approaches. 16S rRNA gene libraries revealed a high number of yet uncultured species, which in some of the study sites accounted for more of the 50% of the total community. Sequences related to arsenic-resistant bacteria (arsenate-reducing and arsenite-oxidizing) were abundant in most of the sites, while arsenate-respiring bacteria were negligible. In some of the sites, sulfur-oxidizing bacteria of the genus Sulfuricurvum accounted for more than 50% of the microbial community, whereas iron-cycling bacteria were less represented. In some aquifers, arsenotrophy, growth coupled to autotrophic arsenite oxidation, was suggested by detection of arsenite monooxygenase (aioA) and 1,5-ribulose bisphosphate carboxylase (RuBisCO) cbbL genes of microorganisms belonging to Rhizobiales and Burkholderiales. Enrichment cultures established from sampled groundwaters in laboratory conditions with 1.5 mmol L-1 of arsenite as sole electron donor were able to oxidize up to 100% of arsenite, suggesting that this metabolism is active in groundwaters. The presence of heterotrophic arsenic resistant bacteria was confirmed by enrichment cultures in most of the sites. The overall results provided a first overview of the microorganisms inhabiting arsenic-contaminated aquifers in Northern Italy and suggested the importance of sulfur-cycling bacteria in the biogeochemistry of arsenic in these ecosystems. The presence of active arsenite-oxidizing bacteria indicates that biological oxidation of arsenite, in combination with arsenate-adsorbing materials, could be employed for metalloid removal.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milan, Italy
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Phototrophic Lactate Utilization by Rhodopseudomonas palustris Is Stimulated by Coutilization with Additional Substrates. Appl Environ Microbiol 2019; 85:AEM.00048-19. [PMID: 30902855 DOI: 10.1128/aem.00048-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
The phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris is known for its metabolic versatility and is of interest for various industrial and environmental applications. Despite decades of research on R. palustris growth under diverse conditions, patterns of R. palustris growth and carbon utilization with mixtures of carbon substrates remain largely unknown. R. palustris readily utilizes most short-chain organic acids but cannot readily use lactate as a sole carbon source. Here we investigated the influence of mixed-substrate utilization on phototrophic lactate consumption by R. palustris We found that lactate was simultaneously utilized with a variety of other organic acids and glycerol in time frames that were insufficient for R. palustris growth on lactate alone. Thus, lactate utilization by R. palustris was expedited by its coutilization with additional substrates. Separately, experiments using carbon pairs that did not contain lactate revealed acetate-mediated inhibition of glycerol utilization in R. palustris This inhibition was specific to the acetate-glycerol pair, as R. palustris simultaneously utilized acetate or glycerol when either was paired with succinate or lactate. Overall, our results demonstrate that (i) R. palustris commonly employs simultaneous mixed-substrate utilization, (ii) mixed-substrate utilization expands the spectrum of readily utilized organic acids in this species, and (iii) R. palustris has the capacity to exert carbon catabolite control in a substrate-specific manner.IMPORTANCE Bacterial carbon source utilization is frequently assessed using cultures provided single carbon sources. However, the utilization of carbon mixtures by bacteria (i.e., mixed-substrate utilization) is of both fundamental and practical importance; it is central to bacterial physiology and ecology, and it influences the utility of bacteria as biotechnology. Here we investigated mixed-substrate utilization by the model organism Rhodopseudomonas palustris Using mixtures of organic acids and glycerol, we show that R. palustris exhibits an expanded range of usable carbon substrates when provided substrates in mixtures. Specifically, coutilization enabled the prompt consumption of lactate, a substrate that is otherwise not readily used by R. palustris Additionally, we found that R. palustris utilizes acetate and glycerol sequentially, revealing that this species has the capacity to use some substrates in a preferential order. These results provide insights into R. palustris physiology that will aid the use of R. palustris for industrial and commercial applications.
Collapse
|
25
|
Omae K, Fukuyama Y, Yasuda H, Mise K, Yoshida T, Sako Y. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan. Arch Microbiol 2019; 201:969-982. [PMID: 31030239 PMCID: PMC6687684 DOI: 10.1007/s00203-019-01661-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
In hydrothermal environments, carbon monoxide (CO) utilisation by thermophilic hydrogenogenic carboxydotrophs may play an important role in microbial ecology by reducing toxic levels of CO and providing H2 for fuelling microbial communities. We evaluated thermophilic hydrogenogenic carboxydotrophs by microbial community analysis. First, we analysed the correlation between carbon monoxide dehydrogenase (CODH)–energy-converting hydrogenase (ECH) gene cluster and taxonomic affiliation by surveying an increasing genomic database. We identified 71 genome-encoded CODH–ECH gene clusters, including 46 whose owners were not reported as hydrogenogenic carboxydotrophs. We identified 13 phylotypes showing > 98.7% identity with these taxa as potential hydrogenogenic carboxydotrophs in hot springs. Of these, Firmicutes phylotypes such as Parageobacillus, Carboxydocella, Caldanaerobacter, and Carboxydothermus were found in different environmental conditions and distinct microbial communities. The relative abundance of the potential thermophilic hydrogenogenic carboxydotrophs was low. Most of them did not show any symbiotic networks with other microbes, implying that their metabolic activities might be low.
Collapse
Affiliation(s)
- Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Hisato Yasuda
- Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenta Mise
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan.
| |
Collapse
|
26
|
Afroz H, Su S, Carey M, Meharg AA, Meharg C. Inhibition of Microbial Methylation via arsM in the Rhizosphere: Arsenic Speciation in the Soil to Plant Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3451-3463. [PMID: 30875469 DOI: 10.1021/acs.est.8b07008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interplay between rice roots and manuring with respect to arsenic speciation, subsequent assimilation into roots, and translocation to shoots in paddy soil was investigated, alongside bacterial diversity characterization. Planting increased soil Eh and decreased soil solution arsenic species: inorganic arsenic, monomethylarsonic acid, trimethylarsenic oxide, and dimethylarsinic acid. Presence of plant roots increased the copy number of Clostridium and Tumebacillus 16S rRNA as well as Streptomyces arsenic methylating gene ( arsM), but decreased Acidobacteria_GP1 16S rRNA and Rhodopseudomonas. palustris BisB5 arsM. Sum of arsenic species decreased under root influence due to the interplay of inorganic arsenic mobilization in bulk soil under anaerobic and immobilization under oxygenated rhizospheric conditions. Manuring increased all soil solution arsenic species (>90%), shoot total arsenic (60%), copy number of Geobacter 16S rRNA, and R. palustris TIE-1 arsM, indicative of a shift towards microbes with iron reduction and oxidation as well as arsenic methylation capabilities.
Collapse
Affiliation(s)
- Hasina Afroz
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Manus Carey
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| | - Andy A Meharg
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| | - Caroline Meharg
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| |
Collapse
|
27
|
Petushkova E, Iuzhakov S, Tsygankov A. Differences in possible TCA cycle replenishing pathways in purple non-sulfur bacteria possessing glyoxylate pathway. PHOTOSYNTHESIS RESEARCH 2019; 139:523-537. [PMID: 30219941 DOI: 10.1007/s11120-018-0581-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Pathways replenishing tricarboxylic acid cycle were divided into four major groups based on metabolite serving as source for oxaloacetic acid or other tricarboxylic acid cycle component synthesis. Using this metabolic map, the analysis of genetic potential for functioning of tricarboxylic acid cycle replenishment pathways was carried out for seven strains of purple non-sulfur bacterium Rhodopseudomonas palustris. The results varied from strain to strain. Published microarray data for phototrophic acetate cultures of Rps. palustris CGA009 were analyzed to validate activity of the putative pathways. All the results were compared with the results for another purple non-sulfur bacterium, Rhodobacter capsulatus SB1003 and species-specific differences were clarified.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya Str, Pushchino, Moscow Region, Russia, 142290
| | - Sergei Iuzhakov
- Faculty of Biotechnology, Lomonosov Moscow State University, Leninskiye Gory 1, bld. 51, Moscow, Russia, 119991
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya Str, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
28
|
Lo KJ, Lin SS, Lu CW, Kuo CH, Liu CT. Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Sci Rep 2018; 8:12769. [PMID: 30143697 PMCID: PMC6109142 DOI: 10.1038/s41598-018-31128-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Abstract
Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816 bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Chia-Wei Lu
- Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 115, Taiwan. .,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan.
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
29
|
Liao L, Schaefer AL, Coutinho BG, Brown PJB, Greenberg EP. An aryl-homoserine lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium. Proc Natl Acad Sci U S A 2018; 115:7587-7592. [PMID: 29967162 PMCID: PMC6055194 DOI: 10.1073/pnas.1808351115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many species of Proteobacteria produce acyl-homoserine lactone (AHL) compounds as quorum-sensing (QS) signals for cell density-dependent gene regulation. Most known AHL synthases, LuxI-type enzymes, produce fatty AHLs, and the fatty acid moiety is derived from an acyl-acyl carrier protein (ACP) intermediate in fatty acid biosynthesis. Recently, a class of LuxI homologs has been shown to use CoA-linked aromatic or amino acid substrates for AHL synthesis. By using an informatics approach, we found the CoA class of LuxI homologs exists primarily in α-Proteobacteria. The genome of Prosthecomicrobium hirschii, a dimorphic prosthecate bacterium, possesses a luxI-like AHL synthase gene that we predicted to encode a CoA-utilizing enzyme. We show the P. hirschii LuxI homolog catalyzes synthesis of phenylacetyl-homoserine lactone (PA-HSL). Our experiments show P. hirschii obtains phenylacetate from its environment and uses a CoA ligase to produce the phenylacetyl-CoA substrate for the LuxI homolog. By using an AHL degrading enzyme, we showed that PA-HSL controls aggregation, biofilm formation, and pigment production in P. hirschii These findings advance a limited understanding of the CoA-dependent AHL synthases. We describe how to identify putative members of the class, we describe a signal synthesized by using an environmental aromatic acid, and we identify phenotypes controlled by the aryl-HSL.
Collapse
Affiliation(s)
- Lisheng Liao
- Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, People's Republic of China
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Bruna G Coutinho
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - E Peter Greenberg
- Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, People's Republic of China;
- Department of Microbiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
30
|
LaSarre B, Kysela DT, Stein BD, Ducret A, Brun YV, McKinlay JB. Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria. mBio 2018; 9:e00780-18. [PMID: 29970460 PMCID: PMC6030561 DOI: 10.1128/mbio.00780-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/06/2018] [Indexed: 01/18/2023] Open
Abstract
In bacteria and eukaryotes alike, proper cellular physiology relies on robust subcellular organization. For the phototrophic purple nonsulfur bacteria (PNSB), this organization entails the use of a light-harvesting, membrane-bound compartment known as the intracytoplasmic membrane (ICM). Here we show that ICMs are spatially and temporally localized in diverse patterns among PNSB. We visualized ICMs in live cells of 14 PNSB species across nine genera by exploiting the natural autofluorescence of the photosynthetic pigment bacteriochlorophyll (BChl). We then quantitatively characterized ICM localization using automated computational analysis of BChl fluorescence patterns within single cells across the population. We revealed that while many PNSB elaborate ICMs along the entirety of the cell, species across as least two genera restrict ICMs to discrete, nonrandom sites near cell poles in a manner coordinated with cell growth and division. Phylogenetic and phenotypic comparisons established that ICM localization and ICM architecture are not strictly interdependent and that neither trait fully correlates with the evolutionary relatedness of the species. The natural diversity of ICM localization revealed herein has implications for both the evolution of phototrophic organisms and their light-harvesting compartments and the mechanisms underpinning spatial organization of bacterial compartments.IMPORTANCE Many bacteria organize their cellular space by constructing subcellular compartments that are arranged in specific, physiologically relevant patterns. The purple nonsulfur bacteria (PNSB) utilize a membrane-bound compartment known as the intracytoplasmic membrane (ICM) to harvest light for photosynthesis. It was previously unknown whether ICM localization within cells is systematic or irregular and if ICM localization is conserved among PNSB. Here we surveyed ICM localization in diverse PNSB and show that ICMs are spatially organized in species-specific patterns. Most strikingly, several PNSB resolutely restrict ICMs to regions near the cell poles, leaving much of the cell devoid of light-harvesting machinery. Our results demonstrate that bacteria of a common lifestyle utilize unequal portions of their intracellular space to harvest light, despite light harvesting being a process that is intuitively influenced by surface area. Our findings therefore raise fundamental questions about ICM biology and evolution.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David T Kysela
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Barry D Stein
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Adrien Ducret
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
31
|
Marchetti R, Bedini E, Gully D, Lanzetta R, Giraud E, Molinaro A, Silipo A. Rhodopseudomonas palustris Strain CGA009 Produces an O-Antigen Built up by a C-4-Branched Monosaccharide: Structural and Conformational Studies. Org Lett 2018; 20:3656-3660. [PMID: 29874087 DOI: 10.1021/acs.orglett.8b01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, the analysis of the peculiar homopolymeric O-chain, isolated from the lipopolysaccharide (LPS) of Rhodopseudomonas palustris strain CGA009, is reported. The O-chain is built up of a novel 4-C-branched sugar (12-deoxy-4- C-(d- altro-5,7,8,9-tetrahydroxyhexyl))-3- O-methyl-d-galactopyranose)) whose structure, absolute configuration, and conformational features were deduced by 2D NMR spectroscopy, optical rotation measurements, and molecular dynamics simulations.
Collapse
Affiliation(s)
- Roberta Marchetti
- Dipartimento di Scienze Chimiche , Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II , Via Cintia 4 , I-80126 Napoli , Italy
| | - Emiliano Bedini
- Dipartimento di Scienze Chimiche , Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II , Via Cintia 4 , I-80126 Napoli , Italy
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) , UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J - Campus de Baillarguet , Montpellier 34398 Cedex 5 , France
| | - Rosa Lanzetta
- Dipartimento di Scienze Chimiche , Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II , Via Cintia 4 , I-80126 Napoli , Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) , UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J - Campus de Baillarguet , Montpellier 34398 Cedex 5 , France
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche , Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II , Via Cintia 4 , I-80126 Napoli , Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche , Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II , Via Cintia 4 , I-80126 Napoli , Italy
| |
Collapse
|
32
|
Cogo C, Pérez-Giménez J, Rajeswari CB, Luna MF, Lodeiro AR. Induction by Bradyrhizobium diazoefficiens of Different Pathways for Growth in D-mannitol or L-arabinose Leading to Pronounced Differences in CO 2 Fixation, O 2 Consumption, and Lateral-Flagellum Production. Front Microbiol 2018; 9:1189. [PMID: 29922265 PMCID: PMC5996035 DOI: 10.3389/fmicb.2018.01189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium’s carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source. Among 3,334 proteins identified, 266 were overproduced in D-mannitol and 237 in L-arabinose, but among these, only 22% from D-mannitol cultures and 35% from L-arabinose cultures were annotated with well defined functions. In the D-mannitol-differential pool we found 19 enzymes of the pentose-phosphate and Calvin–Benson–Bassham pathways and accordingly observed increased extracellular-polysaccharide production by D-mannitol grown bacteria in a CO2-enriched atmosphere. Moreover, poly-3-hydroxybutyrate biosynthesis was increased, suggesting a surplus of reducing power. In contrast, the L-arabinose-differential pool contained 11 enzymes of the L-2-keto-3-deoxyarabonate pathway, 4 enzymes for the synthesis of nicotinamide-adenine dinucleotide from aspartate, with those cultures having a threefold higher O2-consumption rate than the D-mannitol cultures. The stoichiometric balances deduced from the modeled pathways, however, resulted in similar O2 consumptions and ATP productions per C-mole of substrate. These results suggested higher maintenance-energy demands in L-arabinose, which energy may be used partly for flagella-driven motility. Since B. diazoefficiens produces the lateral-flagella system in only L-arabinose, we calculated the O2-consumption rates of a lafR::Km mutant devoid of lateral flagella cultured in L-arabinose or D-mannitol. Contrary to that of the wild-type, the O2-consumption rate of this mutant was similar on both C-sources, and accordingly outcompeted the wild-type in coculture, suggesting that the lateral flagella behaved as parasitic structures under these conditions. Proteomic data are available via ProteomeXchange with identifier PXD008263.
Collapse
Affiliation(s)
- Carolina Cogo
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina.,Departamento de Ciencias Básicas, Facultad de Ingeniería-UNLP, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Chandrasekar B Rajeswari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - María F Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
33
|
Thiel V, Tank M, Bryant DA. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:21-49. [PMID: 29505738 DOI: 10.1146/annurev-arplant-042817-040500] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
34
|
Baars O, Morel FMM, Zhang X. The purple non-sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin-related siderophores under aerobic and anaerobic conditions. Environ Microbiol 2018; 20:1667-1676. [PMID: 29473283 DOI: 10.1111/1462-2920.14078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/20/2018] [Accepted: 02/17/2018] [Indexed: 11/28/2022]
Abstract
Many bacteria produce siderophores to bind and take up Fe(III), an essential trace metal with extremely low solubility in oxygenated environments at circumneutral pH. The purple non-sulfur bacterium Rhodopseudomonas palustris str. CGA009 is a metabolically versatile model organism with high iron requirements that is able to grow under aerobic and anaerobic conditions. Siderophore biosynthesis has been predicted by genomic analysis, however, siderophore structures were not identified. Here, we elucidate the structure of two novel siderophores from R. palustris: rhodopetrobactin A and B. Rhodopetrobactins are structural analogues of the known siderophore petrobactin in which the Fe chelating moieties are conserved, including two 3,4-dihydroxybenzoate and a citrate substructure. In the place of two spermidine linker groups in petrobactin, rhodopetrobactins contain two 4,4'-diaminodibutylamine groups of which one or both are acetylated at the central amine. We analyse siderophore production under different growth modes and show that rhodopetrobactins are produced in response to Fe limitation under aerobic as well as under anaerobic conditions. Evaluation of the chemical characteristics of rhodopetrobactins indicates that they are well suited to support Fe acquisition under variable oxygen and light conditions.
Collapse
Affiliation(s)
- Oliver Baars
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - François M M Morel
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
35
|
Yang J, Yin L, Lessner FH, Nakayasu ES, Payne SH, Fixen KR, Gallagher L, Harwood CS. Genes essential for phototrophic growth by a purple alphaproteobacterium. Environ Microbiol 2017; 19:3567-3578. [PMID: 28677146 DOI: 10.1111/1462-2920.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 12/01/2022]
Abstract
Tn-seq was used to identify genes essential for phototrophic growth by the purple bacterium Rhodopseudomonas palustris. About 167 genes required for anaerobic growth on acetate in light were identified, 35 of which are annotated as photosynthesis genes. The essentiality of many of these genes by analysing the phenotypes of independently generated mutants that had altered pigmentation was verified. Three genes were identified, two possibly involved in biogenesis of the membrane-bound photosynthetic apparatus and one for phosphatidylcholine biosynthesis, that were not known to be essential for phototrophic growth. Site-directed mutagenesis was used to show that the NADH:quinone oxidoreductase complex IE was essential for phototrophic growth under strictly anaerobic conditions and appeared to play a role in reverse electron transport to generate NADH. A homologous NADH:quinone oxidoreductase complex IA likely operates in the opposite direction to oxidize NADH. The operation of the two enzymes in opposition would allow R. palustris to maintain redox balance. As a complement to the genetic data, proteomics experiments were carried out in which it was found that 408 proteins were present in significantly higher amounts in cells grown anaerobically in light compared with aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.
Collapse
Affiliation(s)
- Jianming Yang
- Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Liang Yin
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Faith H Lessner
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Samuel H Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kathryn R Fixen
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Larry Gallagher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
36
|
Kurth D, Amadio A, Ordoñez OF, Albarracín VH, Gärtner W, Farías ME. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 2017; 7:1024. [PMID: 28432307 PMCID: PMC5430908 DOI: 10.1038/s41598-017-00896-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022] Open
Abstract
Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.
Collapse
Affiliation(s)
- Daniel Kurth
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Ariel Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Omar F Ordoñez
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Virginia H Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina.
| |
Collapse
|
37
|
McRose DL, Zhang X, Kraepiel AML, Morel FMM. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments. Front Microbiol 2017; 8:267. [PMID: 28293220 PMCID: PMC5328986 DOI: 10.3389/fmicb.2017.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4+, occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient 'canonical' Mo-nitrogenase, whereas Fe-only and V-('alternative') nitrogenases are often considered 'backup' enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation.
Collapse
Affiliation(s)
- Darcy L McRose
- Department of Geosciences, Princeton University, Princeton NJ, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton NJ, USA
| | | | | |
Collapse
|
38
|
Hülsen T, Barry EM, Lu Y, Puyol D, Batstone DJ. Low temperature treatment of domestic wastewater by purple phototrophic bacteria: Performance, activity, and community. WATER RESEARCH 2016; 100:537-545. [PMID: 27235774 DOI: 10.1016/j.watres.2016.05.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Low wastewater temperatures affect microbial growth rates and microbial populations, as well as physical chemical characteristics of the wastewater. Wastewater treatment plant design needs to accommodate changing temperatures, and somewhat limited capacity is a key criticism of low strength anaerobic treatment such as Anaerobic Membrane Bioreactors (AnMBR). This study evaluates the applicability of an alternative platform utilizing purple phototrophic bacteria for low temperature domestic wastewater treatment. Two photo-anaerobic membrane bioreactors (PAnMBR) at ambient (22 °C) and low temperatures (10 °C) were compared to fully evaluate temperature response of critical processes. The results show good functionality at 10 °C in comparison with ambient operation. This enabled operation at 10 °C to discharge limits (TCOD < 100 mg L(-1); TN < 10 mg L(-1) and TP < 1 mg L(-1)) at a HRT < 1 d. While capacity of the system was not limited, microbial community showed a strong shift to a far narrower diversity, almost complete dominance by PPB, and of a single Rhodobacter spp. compared to a more diverse community in the ambient reactor. The outcomes of the current work enable applicability of PPB for domestic wastewater treatment to a broad range of regions.
Collapse
Affiliation(s)
- Tim Hülsen
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia.
| | - Edward M Barry
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia
| | - Yang Lu
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia
| | - Daniel Puyol
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia; Group of Chemical and Environmental Engineering (GIQA), University Rey Juan Carlos, Madrid, Spain
| | - Damien J Batstone
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia
| |
Collapse
|
39
|
Fixen KR, Harwood CS. A polymorphism in the oxygen-responsive repressor PpsR2 confers a growth advantage to Rhodopseudomonas palustris under low light. PHOTOSYNTHESIS RESEARCH 2016; 129:199-204. [PMID: 27344652 DOI: 10.1007/s11120-016-0288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
The purple nonsulfur bacterium Rhodopseudomonas palustris grows aerobically using oxidative phosphorylation or anaerobically using photophosphorylation. The oxygen-responsive transcription regulator, PpsR2, regulates the transition to a phototrophic lifestyle by repressing transcription of photosynthesis genes during aerobic growth. Whereas most R. palustris strains have an arginine (Arg) at position 439 in the helix-turn-helix DNA-binding domain of this protein, some strains, including the well-studied strain CGA009, have a cysteine (Cys) at this position. Using allelic exchange, we found that the Cys439 in PpsR2 resulted in increased pigmentation and photosynthetic gene expression under both aerobic and anaerobic conditions. The Cys439 substitution also conferred a growth advantage to R. palustris at low light intensities. This indicates that variation in the PpsR2 protein results in R. palustris strains that have two different thresholds for derepressing photosynthesis genes in response to oxygen and light.
Collapse
Affiliation(s)
- Kathryn R Fixen
- Department of Microbiology, University of Washington, Box 375573, HSB K-340B, 1705 NE Pacific Street, Seattle, WA, 98195, USA
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Box 375573, HSB K-340B, 1705 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
40
|
Provorov NA, Andronov EE. Evolution of root nodule bacteria: Reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716020156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems. Sci Rep 2016; 6:23841. [PMID: 27053439 PMCID: PMC4823718 DOI: 10.1038/srep23841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.
Collapse
|
42
|
Munday SD, Maddigan NK, Young RJ, Bell SG. Characterisation of two self-sufficient CYP102 family monooxygenases from Ktedonobacter racemifer DSM44963 which have new fatty acid alcohol product profiles. Biochim Biophys Acta Gen Subj 2016; 1860:1149-62. [PMID: 26825771 DOI: 10.1016/j.bbagen.2016.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Two self-sufficient CYP102 family encoding genes (Krac_0936 and Krac_9955) from the bacterium Ktedonobacter racemifer DSM44963, which possesses one of the largest bacterial genomes, have been identified. METHODS Phylogenetic analysis of both the encoded cytochrome P450 enzymes, Krac0936 and Krac9955. Both enzymes were produced and their turnovers with fatty acid substrates assessed in vitro and using a whole-cell oxidation system. RESULTS Krac0936 hydroxylated straight chain, saturated fatty acids predominantly at the ω-1 and ω-2 positions using NADPH as the cofactor. Krac0936 was less active towards shorter unsaturated fatty acids but longer unsaturated acids were efficiently oxidised. cis,cis-9,12-Octadecadienoic and pentadecanoic acids were the most active substrates tested with Krac0936. Unusually Krac9955 showed very low levels of NAD(P)H oxidation activity though coupling of the reducing equivalents to product formation was high. The product distribution of tridecanoic, tetradecanoic and pentadecanoic acid oxidation by Krac9955 favoured oxidation at the ω-4, ω-5 and ω-6 positions, respectively. CONCLUSION Krac0936 and Krac9955 are self-sufficient P450 monooxygenases. Krac0936 has a preference for pentadecanoic acid over other straight chain fatty acids and showed little or no activity with dodecanoic or octadecanoic acids. Krac9955 preferably oxidised shorter fatty acids compared to Krac0936 with tridecanoic having the highest levels of product formation. Unlike Krac0936 and P450Bm3, Krac9995 showed lower activities with unsaturated fatty acids. GENERAL SIGNIFICANCE In this study of two of the CYP enzymes from K. racemifer we have shown that this bacterium from the Chloroflexi phylum contains genes which encode new proteins with novel activity.
Collapse
Affiliation(s)
- Samuel D Munday
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | | | - Rosemary J Young
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
43
|
Wang X, Xu G, Wan C, Ren Y, Tian E. Improved biomass production by humic analog anthraquinone-2-sulfonate from kitchen waste in a two-phase system. RSC Adv 2016. [DOI: 10.1039/c5ra18240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The volatile fatty acids from kitchen waste were used as substrates of anoxygenic photosynthetic bacteria (APB) in a dark-photo fermentation reactor, and anthraquinone-2-sulfonate (AQS) was firstly applied to boost the biomass yield.
Collapse
Affiliation(s)
- Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Guihua Xu
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Chunli Wan
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Enling Tian
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| |
Collapse
|
44
|
Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris. J Bacteriol 2015; 198:867-76. [PMID: 26712940 DOI: 10.1128/jb.00771-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhodopseudomonas palustris is an alphaproteobacterium that has served as a model organism for studies of photophosphorylation, regulation of nitrogen fixation, production of hydrogen as a biofuel, and anaerobic degradation of aromatic compounds. This bacterium is able to transition between anaerobic photoautotrophic growth, anaerobic photoheterotrophic growth, and aerobic heterotrophic growth. As a starting point to explore the genetic basis for the metabolic versatility of R. palustris, we used transposon mutagenesis and Tn-seq to identify 552 genes as essential for viability in cells growing aerobically on semirich medium. Of these, 323 have essential gene homologs in the alphaproteobacterium Caulobacter crescentus, and 187 have essential gene homologs in Escherichia coli. There were 24 R. palustris genes that were essential for viability under aerobic growth conditions that have low sequence identity but are likely to be functionally homologous to essential E. coli genes. As expected, certain functional categories of essential genes were highly conserved among the three organisms, including translation, ribosome structure and biogenesis, secretion, and lipid metabolism. R. palustris cells divide by budding in which a sessile cell gives rise to a motile swarmer cell. Conserved cell cycle genes required for this developmental process were essential in both C. crescentus and R. palustris. Our results suggest that despite vast differences in lifestyles, members of the alphaproteobacteria have a common set of essential genes that is specific to this group and distinct from that of gammaproteobacteria like E. coli. IMPORTANCE Essential genes in bacteria and other organisms are those absolutely required for viability. Rhodopseudomonas palustris has served as a model organism for studies of anaerobic aromatic compound degradation, hydrogen gas production, nitrogen fixation, and photosynthesis. We used the technique of Tn-seq to determine the essential genes of R. palustris grown under heterotrophic aerobic conditions. The transposon library generated in this study will be useful for future studies to identify R. palustris genes essential for viability under specialized growth conditions and also for survival under conditions of stress.
Collapse
|
45
|
Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression. mSystems 2015; 1:mSystems00006-15. [PMID: 27822511 PMCID: PMC5069747 DOI: 10.1128/msystems.00006-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Rhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications. Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacterium Rhodopseudomonas palustris produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiple pucBA operons that encode the α and β peptides that make up these complexes. However, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of different pucBA operons to the composition and function of different LH complexes. It was also unclear how much diversity of LH complexes exists in R. palustris and affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in their pucBA gene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of the pucBA operons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression in Rhodopseudomonas strains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. IMPORTANCERhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.
Collapse
|
46
|
Degli Esposti M. Genome Analysis of Structure-Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme. Genome Biol Evol 2015; 8:126-47. [PMID: 26615219 PMCID: PMC4758237 DOI: 10.1093/gbe/evv239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni-Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure-function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genova, Italy Center for Genomic Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
47
|
Heiniger EK, Harwood CS. Posttranslational modification of a vanadium nitrogenase. Microbiologyopen 2015; 4:597-603. [PMID: 26097040 PMCID: PMC4554455 DOI: 10.1002/mbo3.265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/11/2022] Open
Abstract
In microbes that fix nitrogen, nitrogenase catalyzes the conversion of N2 to ammonia in an ATP-demanding reaction. To help conserve energy some bacteria inhibit nitrogenase activity upon exposure to ammonium. The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 can synthesize three functional nitrogenase isoenzymes: a molybdenum nitrogenase, a vanadium nitrogenase, and an iron nitrogenase. Previous studies showed that in some alphaproteobacteria, including R. palustris, molybdenum nitrogenase activity is inhibited by ADP-ribosylation when cells are exposed to ammonium. Some iron nitrogenases are also posttranslationally modified. However, the posttranslational modification of vanadium nitrogenase has not been reported. Here, we investigated the regulation of the alternative nitrogenases of R. palustris and determined that both its vanadium nitrogenase and its iron nitrogenase activities were inhibited and posttranslationally modified when cells are exposed to ammonium. Vanadium nitrogenase is not found in all strains of R. palustris, suggesting that it may have been acquired by horizontal gene transfer. Also, phylogenetic analyses of the three nitrogenases suggest that VnfH, the target of ADP-ribosylation, may be the product of a gene duplication of nifH, the molybdenum nitrogenase homolog.
Collapse
Affiliation(s)
- Erin K Heiniger
- Department of Microbiology, University of Washington, Seattle, Washington, 98195
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
48
|
Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers. Appl Environ Microbiol 2015; 81:5917-26. [PMID: 26092466 DOI: 10.1128/aem.01103-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.
Collapse
|
49
|
Kamanda Ngugi D, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H, Bajic V, Stingl U. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. THE ISME JOURNAL 2015; 9:396-411. [PMID: 25105904 PMCID: PMC4303633 DOI: 10.1038/ismej.2014.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 02/05/2023]
Abstract
The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Intikhab Alam
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mamoon Rashid
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wail Ba-Alawi
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guishan Zhang
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tyas Hikmawan
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yue Guan
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andre Antunes
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rania Siam
- Department of Biology, American University in Cairo, Cairo, Egypt
| | - Hamza El Dorry
- Department of Biology, American University in Cairo, Cairo, Egypt
| | - Vladimir Bajic
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ulrich Stingl
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
50
|
Ritchie RJ, Mekjinda N. Measurement of Photosynthesis Using PAM Technology in a Purple Sulfur BacteriumThermochromatium tepidum(Chromatiaceae). Photochem Photobiol 2015; 91:350-8. [DOI: 10.1111/php.12413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Raymond J. Ritchie
- Tropical Plant Biology Unit; Faculty of Technology and Environment; Prince of Songkla University-Phuket; Kathu Thailand
| | - Nutsara Mekjinda
- Tropical Plant Biology Unit; Faculty of Technology and Environment; Prince of Songkla University-Phuket; Kathu Thailand
| |
Collapse
|