1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
3
|
Parvaz N, Jalali Z. Molecular evolution of PCSK family: Analysis of natural selection rate and gene loss. PLoS One 2021; 16:e0259085. [PMID: 34710160 PMCID: PMC8553125 DOI: 10.1371/journal.pone.0259085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Proprotein convertases subtilisin kexins are serine endoproteases, playing critical roles in the biological functions, including lipid, glucose, and bile acid metabolism, as well as cell proliferation, migration, and metastasis. Experimental studies have demonstrated the physiological functions of PCSKs and their association with diseases; however, studies on the evolutionary history and diversification of these proteins are missing. In the present research, a bioinformatics study was conducted on the molecular evolution of several PCSKs family members and gene loss events across placental mammalian. In order to detect evolutionary constraints and positive selection, the CodeML program of the PAML package was used. The results showed the positive selection to occur in PCSK1, PCSK3, PCSK5, and PCSK7. A decelerated rate of evolution was observed in PCSK7, PCSK3, and MBTPS1 in Carnivores compared to the rest of phylogeny, and an accelerated evolution of PCSK1, PCSK7, and MBTPS1 in Muridae family of rodents was found. Additionally, our results indicated pcsk9 gene loss in 12 species comprising Carnivores and bats (Chiroptera). Future studies are required to evaluate the functional relevance and selective evolutionary advantages associated with these modifications in PCSK proteins during evolution.
Collapse
Affiliation(s)
- Najmeh Parvaz
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- * E-mail:
| |
Collapse
|
4
|
Asadi F, Dhanvantari S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front Endocrinol (Lausanne) 2021; 12:726368. [PMID: 34659118 PMCID: PMC8511682 DOI: 10.3389/fendo.2021.726368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
- Imaging Research Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
5
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
7
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
8
|
Tong X, Kono T, Anderson-Baucum EK, Yamamoto W, Gilon P, Lebeche D, Day RN, Shull GE, Evans-Molina C. SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity. Diabetes 2016; 65:3039-52. [PMID: 27489309 PMCID: PMC5033263 DOI: 10.2337/db16-0084] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
The sarcoendoplasmic reticulum (ER) Ca(2+) ATPase 2 (SERCA2) pump is a P-type ATPase tasked with the maintenance of ER Ca(2+) stores. Whereas β-cell SERCA2 expression is reduced in diabetes, the role of SERCA2 in the regulation of whole-body glucose homeostasis has remained uncharacterized. To this end, SERCA2 heterozygous mice (S2HET) were challenged with a high-fat diet (HFD) containing 45% of kilocalories from fat. After 16 weeks of the HFD, S2HET mice were hyperglycemic and glucose intolerant, but adiposity and insulin sensitivity were not different between HFD-fed S2HET mice and HFD-fed wild-type controls. Consistent with a defect in β-cell function, insulin secretion, glucose-induced cytosolic Ca(2+) mobilization, and the onset of steady-state glucose-induced Ca(2+) oscillations were impaired in HFD-fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited reduced β-cell mass and proliferation, altered insulin production and proinsulin processing, and increased islet ER stress and death. In contrast, SERCA2 activation with a small molecule allosteric activator increased ER Ca(2+) storage and rescued tunicamycin-induced β-cell death. In aggregate, these data suggest a critical role for SERCA2 and the regulation of ER Ca(2+) homeostasis in the β-cell compensatory response to diet-induced obesity.
Collapse
Affiliation(s)
- Xin Tong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Tatsuyoshi Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Wataru Yamamoto
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Djamel Lebeche
- Cardiovascular Research Institute and Diabetes Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Richard N Day
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Carmella Evans-Molina
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN Department of Medicine, Indiana University School of Medicine, Indianapolis, IN Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
9
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
10
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ramos-Molina B, Martin MG, Lindberg I. PCSK1 Variants and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:47-74. [PMID: 27288825 DOI: 10.1016/bs.pmbts.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PCSK1, encoding prohormone convertase 1/3 (PC1/3), was one of the first genes linked to monogenic early-onset obesity. PC1/3 is a protease involved in the biosynthetic processing of a variety of neuropeptides and prohormones in endocrine tissues. PC1/3 activity is essential for the activating cleavage of many peptide hormone precursors implicated in the regulation of food ingestion, glucose homeostasis, and energy homeostasis, for example, proopiomelanocortin, proinsulin, proglucagon, and proghrelin. A large number of genome-wide association studies in a variety of different populations have now firmly established a link between three PCSK1 polymorphisms frequent in the population and increased risk of obesity. Human subjects with PC1/3 deficiency, a rare autosomal-recessive disorder caused by the presence of loss-of-function mutations in both alleles, are obese and display a complex set of endocrinopathies. Increasing numbers of genetic diagnoses of infants with persistent diarrhea has recently led to the finding of many novel PCSK1 mutations. PCSK1-deficient infants experience severe intestinal malabsorption during the first years of life, requiring controlled nutrition; these children then become hyperphagic, with associated obesity. The biochemical characterization of novel loss-of-function PCSK1 mutations has resulted in the discovery of new pathological mechanisms affecting the cell biology of the endocrine cell beyond simple loss of enzyme activity, for example, dominant-negative effects of certain mutants on wild-type PC1/3 protein, and activation of the cellular unfolded protein response by endoplasmic reticulum-retained mutants. A better understanding of these molecular and cellular pathologies may illuminate possible treatments for the complex endocrinopathy of PCSK1 deficiency, including obesity.
Collapse
Affiliation(s)
- B Ramos-Molina
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - I Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, United States of America.
| |
Collapse
|
12
|
Blanco EH, Ramos-Molina B, Lindberg I. Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants. Endocrinology 2015; 156. [PMID: 26207343 PMCID: PMC4588832 DOI: 10.1210/en.2015-1068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.
Collapse
Affiliation(s)
- Elias H Blanco
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
13
|
Gan KJ, Morihara T, Silverman MA. Atlas stumbled: Kinesin light chain-1 variant E triggers a vicious cycle of axonal transport disruption and amyloid-β generation in Alzheimer's disease. Bioessays 2014; 37:131-41. [DOI: 10.1002/bies.201400131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kathlyn J. Gan
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
| | - Takashi Morihara
- Department of Psychiatry; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Michael A. Silverman
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
- Department of Biological Sciences; Simon Fraser University; Burnaby BC Canada
- Brain Research Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
14
|
Blanco EH, Peinado JR, Martín MG, Lindberg I. Biochemical and cell biological properties of the human prohormone convertase 1/3 Ser357Gly mutation: a PC1/3 hypermorph. Endocrinology 2014; 155:3434-47. [PMID: 24932808 PMCID: PMC4138575 DOI: 10.1210/en.2013-2151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Satiety and appetite signaling are accomplished by circulating peptide hormones. These peptide hormones require processing from larger precursors to become bioactive, often by the proprotein convertase 1/3 (PC1/3). Several subcellular maturation steps are necessary for PC1/3 to achieve its optimal enzymatic activity. Certain PC1/3 variants found in the general population slightly attenuate its enzymatic activity and are associated with obesity and diabetes. However, mutations that increase PC1/3 activity and/or affect its specificity could also have physiological consequences. We here present data showing that the known human Ser357Gly PC1/3 mutant (PC1/3(S357G)) represents a PC1/3 hypermorph. Conditioned media from human embryonic kidney-293 cells transfected with PC1/3(WT) and PC1/3(S357G) were collected and enzymatic activity characterized. PC1/3(S357G) exhibited a lower calcium dependence; a higher pH optimum (neutral); and a higher resistance to peptide inhibitors than the wild-type enzyme. PC1/3(S357G) exhibited increased cleavage to the C-terminally truncated form, and kinetic parameters of the full-length and truncated mutant enzymes were also altered. Lastly, the S357G mutation broadened the specificity of the enzyme; we detected PC2-like specificity on the substrate proCART, the precursor of the cocaine- and amphetamine regulated transcript neuropeptide known to be associated with obesity. The production of another anorexigenic peptide normally synthesized only by PC2, αMSH, was increased when proopiomelanocortin was coexpressed with PC1/3(S357G). Considering the aberrant enzymatic profile of PC1/3(S357G), we hypothesize that this enzyme possesses unusual processing activity that may significantly change the profile of circulating peptide hormones.
Collapse
Affiliation(s)
- Elias H Blanco
- Department of Anatomy and Neurobiology (E.H.B., J.R.P., I.L.), University of Maryland Medical School, Baltimore, Maryland 21201; and Department of Pediatrics (M.G.M.), Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | | | | | | |
Collapse
|
15
|
Dhanvantari S. The genetics of obesity meets basic cell biology through prohormone convertase 1/3. Endocrinology 2014; 155:2343-5. [PMID: 24950989 DOI: 10.1210/en.2014-1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Ailion M, Hannemann M, Dalton S, Pappas A, Watanabe S, Hegermann J, Liu Q, Han HF, Gu M, Goulding MQ, Sasidharan N, Schuske K, Hullett P, Eimer S, Jorgensen EM. Two Rab2 interactors regulate dense-core vesicle maturation. Neuron 2014; 82:167-80. [PMID: 24698274 DOI: 10.1016/j.neuron.2014.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 12/14/2022]
Abstract
Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network.
Collapse
Affiliation(s)
- Michael Ailion
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Washington, Seattle WA, 98195, USA.
| | - Mandy Hannemann
- European Neuroscience Institute, 37077 Göttingen, Germany; International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Susan Dalton
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrea Pappas
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jan Hegermann
- European Neuroscience Institute, 37077 Göttingen, Germany; DFG research Center for Molecular Physiology of the Brain (CMPB), 37077 Göttingen, Germany
| | - Qiang Liu
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Hsiao-Fen Han
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingyu Gu
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Morgan Q Goulding
- Department of Biochemistry, University of Washington, Seattle WA, 98195, USA
| | | | - Kim Schuske
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick Hullett
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stefan Eimer
- European Neuroscience Institute, 37077 Göttingen, Germany; DFG research Center for Molecular Physiology of the Brain (CMPB), 37077 Göttingen, Germany
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Guizzetti L, McGirr R, Dhanvantari S. Two dipolar α-helices within hormone-encoding regions of proglucagon are sorting signals to the regulated secretory pathway. J Biol Chem 2014; 289:14968-80. [PMID: 24727476 DOI: 10.1074/jbc.m114.563684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Proglucagon is expressed in pancreatic α cells, intestinal L cells, and some hypothalamic and brainstem neurons. Tissue-specific processing of proglucagon yields three major peptide hormones as follows: glucagon in the α cells and glucagon-like peptides (GLP)-1 and -2 in the L cells and neurons. Efficient sorting and packaging into the secretory granules of the regulated secretory pathway in each cell type are required for nutrient-regulated secretion of these proglucagon-derived peptides. Our previous work suggested that proglucagon is directed into granules by intrinsic sorting signals after initial processing to glicentin and major proglucagon fragment (McGirr, R., Guizzetti, L., and Dhanvantari, S. (2013) J. Endocrinol. 217, 229-240), leading to the hypothesis that sorting signals may be present in multiple domains. In the present study, we show that the α-helices within glucagon and GLP-1, but not GLP-2, act as sorting signals by efficiently directing a heterologous secretory protein to the regulated secretory pathway. Biophysical characterization of these peptides revealed that glucagon and GLP-1 each encode a nonamphipathic, dipolar α-helix, whereas the helix in GLP-2 is not dipolar. Surprisingly, glicentin and major proglucagon fragment were sorted with different efficiencies, thus providing evidence that proglucagon is first sorted to granules prior to processing. In contrast to many other prohormones in which sorting is directed by ordered prodomains, the sorting determinants of proglucagon lie within the ordered hormone domains of glucagon and GLP-1, illustrating that each prohormone has its own sorting "signature."
Collapse
Affiliation(s)
| | - Rebecca McGirr
- the Metabolism/Diabetes and Imaging Programs, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Savita Dhanvantari
- From the Departments of Medical Biophysics, the Metabolism/Diabetes and Imaging Programs, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada Pathology, and Medicine, University of Western Ontario, London, Ontario N6A 3K7 and
| |
Collapse
|
18
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
19
|
Cawley NX, Sridhar M, Hong H, Loh P. Exploring the membrane topology of prohormone convertase 1 in AtT20 Cells: in situ analysis by immunofluorescence microscopy. F1000Res 2012; 1:9. [PMID: 24163733 PMCID: PMC3799554 DOI: 10.12688/f1000research.1-9.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 11/20/2022] Open
Abstract
Prohormone convertase 1 (PC1) was previously characterized as a partially transmembrane protein in purified chromaffin granules of bovine adrenal medulla1. This was challenged with experiments on transfected PC1 in COS1 cells, a non-endocrine cell line2. To address this issue, we undertook to analyze its extraction properties in vitro and its immunocytochemical localization in situ in AtT20 cells, an endocrine cell line that expresses PC1. Most of the 87 kDa form of PC1 was resistant to carbonate extraction suggesting that it had properties of a transmembrane protein. Under semi-permeabilized conditions whereby only the plasma membrane was permeabilized, the carboxy-terminus of PC1 was specifically immunostained whereas the amino-terminus was not. These results indicate that the amino-terminus of PC1 was within the lumen of the Golgi and granules, and some of the C-terminus was exposed to the cytosol. Thus, endogenous PC1 can assume a transmembrane orientation in situ in AtT20 cells.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Shriver Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA ; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
20
|
Abstract
The proprotein convertases (PCs) are secretory mammalian serine proteinases related to bacterial subtilisin-like enzymes. The family of PCs comprises nine members, PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 (Fig. 3.1). While the first seven PCs cleave after single or paired basic residues, the last two cleave at non-basic residues and the last one PCSK9 only cleaves one substrate, itself, for its activation. The targets and substrates of these convertases are very varied covering many aspects of cellular biology and communication. While it took more than 22 years to begin to identify the first member in 1989-1990, in less than 14 years they were all characterized. So where are we 20 years later in 2011? We have now reached a level of maturity needed to begin to unravel the mechanisms behind the complex physiological functions of these PCs both in health and disease states. We are still far away from comprehensively understanding the various ramifications of their roles and to identify their physiological substrates unequivocally. How do these enzymes function in vivo? Are there other partners to be identified that would modulate their activity and/or cellular localization? Would non-toxic inhibitors/silencers of some PCs provide alternative therapies to control some pathologies and improve human health? Are there human SNPs or mutations in these PCs that correlate with disease, and can these help define the finesses of their functions and/or cellular sorting? The more we know about a given field, the more questions will arise, until we are convinced that we have cornered the important angles. And yet the future may well reserve for us many surprises that may allow new leaps in our understanding of the fascinating biology of these phylogenetically ancient eukaryotic proteases (Fig. 3.2) implicated in health and disease, which traffic through the cells via multiple sorting pathways (Fig. 3.3).
Collapse
Affiliation(s)
- Nabil G Seidah
- Biochemical Neuroendocrinology Laboratory, Clinical Research Institute of Montreal, Montreal, QC, Canada H2W 1R7.
| |
Collapse
|
21
|
Refaie S, Gagnon S, Gagnon H, Desjardins R, D'Anjou F, D'Orléans-Juste P, Zhu X, Steiner DF, Seidah NG, Lazure C, Salzet M, Day R. Disruption of proprotein convertase 1/3 (PC1/3) expression in mice causes innate immune defects and uncontrolled cytokine secretion. J Biol Chem 2012; 287:14703-17. [PMID: 22396549 DOI: 10.1074/jbc.m111.323220] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The proprotein convertase 1/3 is expressed in the regulated secretory pathway of neural and endocrine cells. Its major function is in the post-translational processing and activation of precursor proteins. The PC1/3 knock-out (KO) mouse model has allowed us to elucidate its physiological functions in studies focused primarily on neuroendocrine tissues. However, PC1/3 is also expressed in cells of the immune system, mainly in macrophages. The present study explores the effects of innate immune challenge in the PC1/3 KO mouse. PC1/3 KO mice have an enlarged spleen with marked disorganization of the marginal zone and red pulp. Immunohistochemical studies using various markers demonstrate a depletion of dendritic cells in PC1/3 KO spleens. When challenged with lipopolysaccharide, PC1/3 KO mice are more susceptible to septic shock than wild-type controls or other PC KO mice, such as PC2 and PC7 null mice. Plasma levels of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) were very significantly elevated in PC1/3 KO mice, consistent with a hypercytokinemia, i.e. indicative of a major systemic uncontrolled inflammatory response or cytokine storm. Peritoneal macrophages isolated from PC1/3 KO mice also demonstrate elevated cytokine secretion when treated with LPS. Electron micrographs show morphological features indicating a prolonged activation of these cells following LPS stimulation. We also present evidence that the proinflammatory T(h)1 pathway is dominant in the PC1/3 KO mouse model. We conclude that aside from its important role in neuroendocrine functions PC1/3 also has an important role in the regulation of the innate immune system, most likely through the regulation of cytokine secretion in macrophages.
Collapse
Affiliation(s)
- Sarah Refaie
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Vázquez-Martínez R, Díaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, Malagón MM. Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 2012; 175:1-9. [PMID: 21907200 DOI: 10.1016/j.ygcen.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway is a hallmark of endocrine and neuroendocrine cells. This process comprises different sequential steps, including ER-associated protein synthesis, ER-to-Golgi protein transport, Golgi-associated posttranslational modification, sorting and packing of secretory proteins into carrier granules, cytoskeleton-based granule transport towards the plasma membrane and tethering, docking and fusion of granules with specialized releasing zones in the plasma membrane. Each one of these steps is tightly regulated by a large number of factors that function in a spatially and temporarily coordinated fashion. During the past three decades, much effort has been devoted to characterize the precise role of the yet-known proteins participating in the different steps of this process and to identify new regulatory factors in order to obtain a unifying picture of the secretory pathway. In spite of this and given the enormous complexity of the process, certain steps are not fully understood yet and many players remain to be identified. In this review, we offer a summary of the current knowledge on the main molecular mechanisms that govern and ensure the correct release of secretory proteins. In addition, we have integrated the advance on the field made possible by studies carried out in non-mammalian vertebrates, which, although not very numerous, have substantially contributed to acquire a mechanistic understanding of the regulated secretory pathway.
Collapse
Affiliation(s)
- Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica, University of Córdoba, 14014-Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Venkatesh SG, Goyal D, Carenbauer AL, Darling DS. Parotid secretory protein binds phosphatidylinositol (3,4) bisphosphate. J Dent Res 2011; 90:1085-90. [PMID: 21628641 DOI: 10.1177/0022034511410699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Molecular interactions that direct trafficking of secreted proteins are not well-described in salivary glands. Here, we report that the soluble cargo protein Parotid Secretory Protein (PSP) is bound to the membranes of secretory granules isolated from rat parotids. This is apparently due to specific interaction with phosphatidylinositol phosphates (PtdInsP). PSP binds PtdIns(3,4)P(2), 10-fold greater than PtdIns(3,5)P(2) or PtdIns(4)P, and does not bind PtdIns(3)P or PtdIns(5)P. Human PSP synthesized in vitro also binds PtdIns(3,4)P(2). Bacterially expressed rat PSP binds PtdIns(3,4)P(2) with a K(d) of 2.4 x 10(-11) M. Other major secretory proteins (amylase, proline-rich protein) are not bound to isolated granule membranes and do not bind phosphatidylinositol phosphates. Immunofluorescence shows PtdIns(3,4)P(2) at the secretory granules, and fluorescent PtdIns(3,4)P(2) can flip from the outer leaflet to the inner leaflet of the membrane. Binding of PSP to PtdInsPs may contribute to sorting during the formation of the secretory granules, or sorting by retention during maturation of the granules.
Collapse
Affiliation(s)
- S G Venkatesh
- Center for Oral Health and Systemic Disease, School of Dentistry, 501 South Preston Street, Room 331, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
25
|
Gaji RY, Flammer HP, Carruthers VB. Forward targeting of Toxoplasma gondii proproteins to the micronemes involves conserved aliphatic amino acids. Traffic 2011; 12:840-53. [PMID: 21438967 DOI: 10.1111/j.1600-0854.2011.01192.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like other apicomplexan parasites, Toxoplasma gondii actively invades host cells using a combination of secretory proteins and an acto-myosin motor system. Micronemes are the first set of proteins secreted during invasion that play an essential role in host cell entry. Many microneme proteins (MICs) function in protein complexes, and each complex contains at least one protein that displays a cleavable propeptide. Although MIC propeptides have been implicated in forward targeting to micronemes, the specific amino acids involved have not been identified. It was also not known if the propeptide has a general function in MICs trafficking in T. gondii and other apicomplexans. Here we show that propeptide domains are extensively interchangeable between T. gondii MICs and also with that of Eimeria tenella MIC5 (EtMIC5), suggesting a common mechanism of function. We also performed N-terminal deletion and mutational analysis of M2AP and MIC5 propeptides to show that a valine at position +3 (relative to signal peptidase cleavage) of proM2AP and a leucine at position +1 of proMIC5 are crucial for targeting to micronemes. Valine and leucine are closely related amino acids with similar side chains, implying a similar mode of function, a notion that was confirmed by correct trafficking of TgM2AP-V/L and TgMIC5-L/V substitution mutants. Propeptides of AMA1, MIC3 and EtMIC5 have valine or leucine at or near the N-termini and mutagenesis of these conserved residues validated their role in microneme trafficking. Collectively, our findings suggest that discrete, aliphatic residues at the extreme N-termini of proMICs facilitate trafficking to the micronemes.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
26
|
Saito N, Takeuchi T, Kawano A, Hosaka M, Hou N, Torii S. Luminal interaction of phogrin with carboxypeptidase E for effective targeting to secretory granules. Traffic 2011; 12:499-506. [PMID: 21210912 DOI: 10.1111/j.1600-0854.2011.01159.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phogrin, a receptor tyrosine phosphatase-like protein, is localized to dense-core secretory granules (SGs) in various neuroendocrine cells. A previous report showed that the N-terminal luminal domain mediates targeting of this protein to SGs in AtT-20 cells. Here, we show that the luminal domain specifically interacts with carboxypeptidase E (CPE), one of the key proteins involved in peptide hormone sorting, in a weakly acidic condition. The luminal domain consists of pro-sequence domain (pro) and subsequent N-side mature domain and the pro domain was preferentially required for phogrin interaction with CPE and for its targeting to SGs. Small interfering RNA-directed reduction of the CPE protein level resulted in an improper accumulation of phogrin at the trans-Golgi network in AtT-20 cells. This finding indicates that CPE is involved in the sorting process of phogrin to SGs. However, SG localization of CPE was hindered by overexpression of the phogrin mutants that lack the transport motif of binding to clathrin adaptor complexes. Phogrin-depleted AtT-20 cells also exhibited reduced CPE targeting and increased CPE degradation. Our results suggest that the luminal interaction between phogrin and CPE contributes to their targeting to SGs in a cooperative manner in neuroendocrine cells.
Collapse
Affiliation(s)
- Naoya Saito
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Elias S, Delestre C, Courel M, Anouar Y, Montero-Hadjadje M. Chromogranin A as a crucial factor in the sorting of peptide hormones to secretory granules. Cell Mol Neurobiol 2010; 30:1189-95. [PMID: 21046450 PMCID: PMC11498877 DOI: 10.1007/s10571-010-9595-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a "granulogenic protein" that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.
Collapse
Affiliation(s)
- Salah Elias
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of Rouen, Mont-St-Aignan Cedex, France
| | - Charlène Delestre
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of Rouen, Mont-St-Aignan Cedex, France
| | - Maite Courel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of Rouen, Mont-St-Aignan Cedex, France
| | - Youssef Anouar
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of Rouen, Mont-St-Aignan Cedex, France
| | - Maite Montero-Hadjadje
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of Rouen, Mont-St-Aignan Cedex, France
| |
Collapse
|
28
|
Ozawa A, Peinado JR, Lindberg I. Modulation of prohormone convertase 1/3 properties using site-directed mutagenesis. Endocrinology 2010; 151:4437-45. [PMID: 20610561 PMCID: PMC2940488 DOI: 10.1210/en.2010-0296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prohormone convertase (PC)1/3 and PC2 cleave active peptide hormones and neuropeptides from precursor proteins. Compared with PC2, recombinant PC1/3 exhibits a very low specific activity against both small fluorogenic peptides and recombinant precursors, even though the catalytic domains in mouse PC1/3 and PC2 share 56% amino acid sequence identity. In this report, we have designed PC2-specific mutations into the catalytic domain of PC1/3 in order to investigate the molecular contributions of these sequences to PC1/3-specific properties. The exchange of residues RQG(314) with the SY sequence present in the same location within PC2 paradoxically shifted the pH optimum of PC1/3 upward into the neutral range; other mutations in the catalytic domain had no effect. Although none of the full-length PC1/3 mutants examined exhibited increased specific activity, the 66-kDa form of the RQG(314)SY mutant was two to four times more active than the 66-kDa form of wild-type PC1/3. However, stable transfection of RQG(314)SY into PC12 cells did not result in greater activity against the endogenous substrate proneurotensin, implying unknown cellular controls of PC1/3 activity. Mutation of GIVTDA(243-248) to QPFMTDI, a molecular determinant of 7B2 binding, resulted in increased zymogen expression but no propeptide cleavage or secretion, suggesting that this mutant is trapped in the endoplasmic reticulum due to an inability to cleave its own propeptide. We conclude that many convertase-specific properties are attributable less to convertase-specific catalytic cleft residues than to convertase-specific domain interactions.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn Street, Health Sciences Facility II Room S251, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
29
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|