1
|
Leung JY, Chiu HY, Taneja R. Role of epigenetics in paediatric cancer pathogenesis & drug resistance. Br J Cancer 2025; 132:757-769. [PMID: 40055485 PMCID: PMC12041283 DOI: 10.1038/s41416-025-02961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 05/01/2025] Open
Abstract
Paediatric oncogenesis is tightly intertwined with errors in developmental processes involving cell specification and differentiation, which are governed by intricate temporal epigenetic signals. As paediatric cancers are characterised by a low number of somatic mutations, dysregulated chromatin landscapes are believed to be key drivers of oncogenesis. Epigenetic dysregulation is induced by mutations and aberrant expression of histones and epigenetic regulatory genes, to altered DNA methylation patterns and dysregulated noncoding RNA expression. In this review, we discuss epigenetic alterations in paediatric cancer oncogenesis and recurrence, and their potential as diagnostic biomarkers. We also discuss various epigenetic drugs that have entered clinical trials for aggressive paediatric cancers. Targeting paediatric-specific epigenetic vulnerabilities may improve recurrence-free survival in high-risk cancers.
Collapse
Affiliation(s)
- Jia Yu Leung
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), National University Hospital (NUH), 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore.
| |
Collapse
|
2
|
Hamidi F, Taghipour N. miRNA, New Perspective to World of Intestinal Protozoa and Toxoplasma. Acta Parasitol 2024; 69:1690-1703. [PMID: 39158784 DOI: 10.1007/s11686-024-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND miRNAs are known as non-coding RNAs that can regulate gene expression. They are reported in many microorganisms and their host cells. Parasite infection can change or shift host miRNAs expression, which can aim at both parasite eradication and infection. PURPOSE This study dealt with examination of miRNA expressed in intestinal protozoan, coccidia , as well as profile changes in host cell miRNA after parasitic infection and their role in protozoan clearance/ survival. METHODS The authors searched ISI Web of Sciences, Pubmed, Scholar, Scopus, another databases and articles published up to 2024 were included. The keywords of miRNA, intestinal protozoa, toxoplasma and some words associated with topics were used in this search. RESULTS Transfection of miRNA mimics or inhibitors can control parasitic diseases, and be introduced as a new therapeutic option in parasitology. CONCLUSION This review can be used to provide up-to date knowledge for future research on these issues.
Collapse
Affiliation(s)
- Faezeh Hamidi
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Suszynska M, Machowska M, Fraszczyk E, Michalczyk M, Philips A, Galka-Marciniak P, Kozlowski P. CMC: Cancer miRNA Census - a list of cancer-related miRNA genes. Nucleic Acids Res 2024; 52:1628-1644. [PMID: 38261968 PMCID: PMC10899758 DOI: 10.1093/nar/gkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
A growing body of evidence indicates an important role of miRNAs in cancer; however, there is no definitive, convenient-to-use list of cancer-related miRNAs or miRNA genes that may serve as a reference for analyses of miRNAs in cancer. To this end, we created a list of 165 cancer-related miRNA genes called the Cancer miRNA Census (CMC). The list is based on a score, built on various types of functional and genetic evidence for the role of particular miRNAs in cancer, e.g. miRNA-cancer associations reported in databases, associations of miRNAs with cancer hallmarks, or signals of positive selection of genetic alterations in cancer. The presence of well-recognized cancer-related miRNA genes, such as MIR21, MIR155, MIR15A, MIR17 or MIRLET7s, at the top of the CMC ranking directly confirms the accuracy and robustness of the list. Additionally, to verify and indicate the reliability of CMC, we performed a validation of criteria used to build CMC, comparison of CMC with various cancer data (publications and databases), and enrichment analyses of biological pathways and processes such as Gene Ontology or DisGeNET. All validation steps showed a strong association of CMC with cancer/cancer-related processes confirming its usefulness as a reference list of miRNA genes associated with cancer.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Magdalena Machowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Eliza Fraszczyk
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Maciej Michalczyk
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
4
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
7
|
Peng KL, Vasudevan HN, Lockney DT, Baum R, Hendrickson RC, Raleigh DR, Schmitt AM. Miat and interacting protein Metadherin maintain a stem-like niche to promote medulloblastoma tumorigenesis and treatment resistance. Proc Natl Acad Sci U S A 2022; 119:e2203738119. [PMID: 36067288 PMCID: PMC9478675 DOI: 10.1073/pnas.2203738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play essential roles in the development and progression of many cancers. However, the contributions of lncRNAs to medulloblastoma (MB) remain poorly understood. Here, we identify Miat as an lncRNA enriched in the sonic hedgehog group of MB that is required for maintenance of a treatment-resistant stem-like phenotype in the disease. Loss of Miat results in the differentiation of tumor-initiating, stem-like MB cells and enforces the differentiation of tumorigenic stem-like MB cells into a nontumorigenic state. Miat expression in stem-like MB cells also facilitates treatment resistance by down-regulating p53 signaling and impairing radiation-induced cell death, which can be reversed by therapeutic inhibition of Miat using antisense oligonucleotides. Mechanistically, the RNA binding protein Metadherin (Mtdh), previously linked to resistance to cytotoxic therapy in cancer, binds to Miat in stem-like MB cells. Like the loss of Miat, the loss of Mtdh reduces tumorigenicity and increases sensitivity to radiation-induced death in stem-like MB cells. Moreover, Miat and Mtdh function to regulate the biogenesis of several microRNAs and facilitate tumorigenesis and treatment resistance. Taken together, these data reveal an essential role for the lncRNA Miat in sustaining a treatment-resistant pool of tumorigenic stem-like MB cells.
Collapse
Affiliation(s)
- Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Harish N. Vasudevan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Department of Radiation Oncology, University of California San Francisco, CA, 94143
| | - Dennis T. Lockney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Rachel Baum
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - David R. Raleigh
- Department of Radiation Oncology, University of California San Francisco, CA, 94143
- Department of Neurological Surgery, University of California San Francisco, CA, 94143
| | - Adam M. Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
8
|
Burgos CF, Cikutovic R, Alarcón M. MicroRNA expression in male infertility. Reprod Fertil Dev 2022; 34:805-818. [PMID: 35760398 DOI: 10.1071/rd21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Male infertility is a multifactorial disorder that involves different physiopathological mechanisms and multiple genes. In this sense, we analyse the role of miRNAs in this pathology. Gene expression analysis can provide relevant information to detect biomarkers, signalling pathways, pathologic mechanisms, and potential therapeutic targets for the disease. In this review, we describe four miRNA microarrays related to patients who present infertility diseases, including azoospermia, asthenozoospermia, and oligoasthenozoospermic. We selected 13 miRNAs with altered expressions in testis tissue (hsa-miR-122-5p, hsa-miR-145-5p, hsa-miR-16-5p, hsa-miR-193a-3p, hsa-miR-19a-3p, hsa-miR-23a-3p, hsa-miR-30b-5p, hsa-miR-34b-5p, hsa-miR-34c-5p, hsa-miR-374b-5p, hsa-miR-449a, hsa-miR-574-3p and hsa-miR-92a-3p), and systematically examine the mechanisms of four relevant miRNAs (hsa-miR-16-5p, hsa-miR-19a-3p, hsa-miR-92a-3p and hsa-miR-30b-5p) which we found that regulated a large number of proteins. An interaction network was generated, and its connections allowed us to identify signalling pathways and interactions between proteins associated with male infertility. In this way, we confirm that the most affected and relevant pathway is the PI3K-Akt signalling.
Collapse
Affiliation(s)
- C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepcion, Chile
| | - R Cikutovic
- Universidad de Talca, Talca, 360000 Maule, Chile
| | - M Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Huang W, Zhong W, He Q, Xu Y, Lin J, Ding Y, Zhao H, Zheng X, Zheng Y. Time-series expression profiles of mRNAs and lncRNAs during mammalian palatogenesis. Oral Dis 2022. [PMID: 35506257 DOI: 10.1111/odi.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Mammalian palatogenesis is a highly regulated morphogenetic process to form the intact roof of the oral cavity. Long noncoding RNAs (lncRNAs) and mRNAs participate in numerous biological and pathological processes, but their roles in palatal development and causing orofacial clefts (OFC) remain to be clarified. METHODS Palatal tissues were separated from ICR mouse embryos at four stages (E10.5, E13.5, E15, and E17). Then, RNA sequencing (RNA-seq) was used. Various analyses were performed to explore the results. Finally, hub genes were validated via qPCR and in situ hybridization. RESULTS Starting from E10.5, the expression of cell adhesion genes escalated in the following stages. Cilium assembly and ossification genes were both upregulated at E15 compared with E13.5. Besides, the expression of cilium assembly genes was also increased at E17 compared with E15. Expression patterns of three lncRNAs (H19, Malat1, and Miat) and four mRNAs (Cdh1, Irf6, Grhl3, Efnb1) detected in RNA-seq were validated. CONCLUSIONS This study provides a time-series expression landscape of mRNAs and lncRNAs during palatogenesis, which highlights the importance of processes such as cell adhesion and ossification. Our results will facilitate a deeper understanding of the complexity of gene expression and regulation during palatogenesis.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Wenjie Zhong
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yizhu Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowen Zheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
10
|
Wang W, Shiraishi R, Kawauchi D. Sonic Hedgehog Signaling in Cerebellar Development and Cancer. Front Cell Dev Biol 2022; 10:864035. [PMID: 35573667 PMCID: PMC9100414 DOI: 10.3389/fcell.2022.864035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The sonic hedgehog (SHH) pathway regulates the development of the central nervous system in vertebrates. Aberrant regulation of SHH signaling pathways often causes neurodevelopmental diseases and brain tumors. In the cerebellum, SHH secreted by Purkinje cells is a potent mitogen for granule cell progenitors, which are the most abundant cell type in the mature brain. While a reduction in SHH signaling induces cerebellar structural abnormalities, such as hypoplasia in various genetic disorders, the constitutive activation of SHH signaling often induces medulloblastoma (MB), one of the most common pediatric malignant brain tumors. Based on the existing literature on canonical and non-canonical SHH signaling pathways, emerging basic and clinical studies are exploring novel therapeutic approaches for MB by targeting SHH signaling at distinct molecular levels. In this review, we discuss the present consensus on SHH signaling mechanisms, their roles in cerebellar development and tumorigenesis, and the recent advances in clinical trials for MB.
Collapse
Affiliation(s)
- Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- *Correspondence: Daisuke Kawauchi,
| |
Collapse
|
11
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
12
|
ClustMMRA v2: A Scalable Computational Pipeline for the Identification of MicroRNA Clusters Acting Cooperatively on Tumor Molecular Subgroups. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:259-279. [DOI: 10.1007/978-3-031-08356-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Xue P, Huang S, Han X, Zhang C, Yang L, Xiao W, Fu J, Li H, Zhou Y. Exosomal miR-101-3p and miR-423-5p inhibit medulloblastoma tumorigenesis through targeting FOXP4 and EZH2. Cell Death Differ 2022; 29:82-95. [PMID: 34294888 PMCID: PMC8738741 DOI: 10.1038/s41418-021-00838-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Exosomal microRNAs (miRNAs) have been implicated in the development and progression of a variety of tumors; however, whether they contribute to medulloblastoma (MB) tumorigenesis remains to be elucidated. To address this, we first characterized the miRNA profiles of circulating exosomes by miRNA sequencing to identify miRNAs differentially expressed between children with MB and healthy controls. Then, we conducted in vitro and in vivo functional assays with the identified miRNAs and their predicted targets. We found that, compared with healthy controls, 35 miRNAs were upregulated and 5 downregulated in exosomes isolated from the plasma of MB patients. We further found that the expression of miR-101-3p and miR-423-5p was significantly higher in plasma exosomes from MB patients than in healthy controls in an expanded cohort and these exosomal miRNAs could be delivered to tumor cells via exosomes. An in vitro functional analysis of miR-101-3p and miR-423-5p showed that treating MB cells with the corresponding mimics significantly inhibited the proliferation, colony-forming ability, migratory ability, and invasive capacity of tumor cells, and promoted cell apoptosis. Additionally, miR-101-3p and miR-423-5p were found to act as tumor suppressors by directly targeting a common gene, FOXP4, which encodes a transcription factor with a vital role in embryonic development and tumorigenesis. Moreover, miR-101-3p also targeted EZH2, a histone methyltransferase, to reinforce its tumor inhibitory effects. Using a xenograft nude mouse model of MB, we further identified that the overexpression of miR-101-3p and miR-423-5p inhibited tumorigenesis in vivo. Our findings provide novel insights into the functions of exosomal miRNAs in mediating MB progression and suggest a potential therapeutic approach for the treatment of children with MB.
Collapse
Affiliation(s)
- Ping Xue
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Saihua Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, 201102, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, 201102, China
| | - Caiyan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenfeng Xiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jinrong Fu
- General Department, Children's Hospital of Fudan University, Shanghai, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China.
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, 201102, China.
| |
Collapse
|
14
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
15
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
17
|
Daher D, Shaghlil A, Sobh E, Hamie M, Hassan ME, Moumneh MB, Itani S, El Hajj R, Tawk L, El Sabban M, El Hajj H. Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases. Pathogens 2021; 10:pathogens10111351. [PMID: 34832507 PMCID: PMC8625914 DOI: 10.3390/pathogens10111351] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a prevalent protozoan parasite of medical and veterinary significance. It is the etiologic agent of toxoplasmosis, a neglected disease in which incidence and symptoms differ between patients and regions. In immunocompetent patients, toxoplasmosis manifests as acute and chronic forms. Acute toxoplasmosis presents as mild or asymptomatic disease that evolves, under the host immune response, into a persistent chronic disease in healthy individuals. Chronic toxoplasmosis establishes as latent tissue cysts in the brain and skeletal muscles. In immunocompromised patients, chronic toxoplasmosis may reactivate, leading to a potentially life-threatening condition. Recently, the association between toxoplasmosis and various diseases has been shown. These span primary neuropathies, behavioral and psychiatric disorders, and different types of cancer. Currently, a direct pre-clinical or clinical molecular connotation between toxoplasmosis and most of its associated diseases remains poorly understood. In this review, we provide a comprehensive overview on Toxoplasma-induced and associated diseases with a focus on available knowledge of the molecular players dictating these associations. We will also abridge the existing therapeutic options of toxoplasmosis and highlight the current gaps to explore the implications of toxoplasmosis on its associated diseases to advance treatment modalities.
Collapse
Affiliation(s)
- Darine Daher
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Ahmad Shaghlil
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Eyad Sobh
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Malika Elhage Hassan
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Mohamad Bahij Moumneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon;
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
18
|
Wang J, Cao Y, Lu X, Wang T, Li S, Kong X, Bo C, Li J, Wang X, Ma H, Li L, Zhang H, Ning S, Wang L. MicroRNAs and nervous system diseases: network insights and computational challenges. Brief Bioinform 2021; 21:863-875. [PMID: 30953059 DOI: 10.1093/bib/bbz032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
The nervous system is one of the most complex biological systems, and nervous system disease (NSD) is a major cause of disability and mortality. Extensive evidence indicates that numerous dysregulated microRNAs (miRNAs) are involved in a broad spectrum of NSDs. A comprehensive review of miRNA-mediated regulatory will facilitate our understanding of miRNA dysregulation mechanisms in NSDs. In this work, we summarized currently available databases on miRNAs and NSDs, star NSD miRNAs, NSD spectrum width, miRNA spectrum width and the distribution of miRNAs in NSD sub-categories by reviewing approximately 1000 studies. In addition, we characterized miRNA-miRNA and NSD-NSD interactions from a network perspective based on miRNA-NSD benchmarking data sets. Furthermore, we summarized the regulatory principles of miRNAs in NSDs, including miRNA synergistic regulation in NSDs, miRNA modules and NSD modules. We also discussed computational challenges for identifying novel miRNAs in NSDs. Elucidating the roles of miRNAs in NSDs from a network perspective would not only improve our understanding of the precise mechanism underlying these complex diseases, but also provide novel insight into the development, diagnosis and treatment of NSDs.
Collapse
Affiliation(s)
- Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolong Wang
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Heping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Carballo GB, Ribeiro JH, Lopes GPDF, Ferrer VP, Dezonne RS, Pereira CM, Spohr TCLDSE. GANT-61 Induces Autophagy and Apoptosis in Glioblastoma Cells despite their heterogeneity. Cell Mol Neurobiol 2021; 41:1227-1244. [PMID: 32504326 PMCID: PMC11448572 DOI: 10.1007/s10571-020-00891-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most common adult primary tumor of the CNS characterized by rapid growth and diffuse invasiveness into the brain parenchyma. The GBM resistance to chemotherapeutic drugs may be due to the presence of cancer stem cells (CSCs). The CSCs activate the same molecular pathways as healthy stem cells such as WNT, Sonic hedgehog (SHH), and Notch. Mutations or deregulations of those pathways play a key role in the proliferation and differentiation of their surrounding environment, leading to tumorigenesis. Here we investigated the effect of SHH signaling pathway inhibition in human GBM cells by using GANT-61, considering stem cell phenotype, cell proliferation, and cell death. Our results demonstrated that GANT-61 induces apoptosis and autophagy in GBM cells, by increasing the expression of LC3 II and cleaved caspase 3 and 9. Moreover, we observed that SHH signaling plays a crucial role in CSC phenotype maintenance, being also involved in the epithelial-mesenchymal transition (EMT) phenotype. We also noted that SHH pathway modulation can regulate cell proliferation as revealed through the analysis of Ki-67 and c-MYC expressions. We concluded that SHH signaling pathway inhibition may be a promising therapeutic approach to treat patients suffering from GBM refractory to traditional treatments.
Collapse
Affiliation(s)
- Gabriela Basile Carballo
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Jessica Honorato Ribeiro
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, Mol, Belgium
| | - Giselle Pinto de Faria Lopes
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Valéria Pereira Ferrer
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Romulo Sperduto Dezonne
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade Do Grande Rio, Duque de Caxias, Brazil
| | - Cláudia Maria Pereira
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade Do Grande Rio, Duque de Caxias, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil.
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Govindaraj V, Kar S. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Sandip Kar
- Department of Chemistry IIT Bombay Mumbai India
| |
Collapse
|
21
|
Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021; 43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.
Collapse
Affiliation(s)
- Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Virginia Fernández
- Neurobiology of miRNA, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Kaviya Chinnappa
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
22
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V, Khatua S. Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 2020; 150:35-46. [PMID: 32816225 DOI: 10.1007/s11060-020-03591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.
Collapse
Affiliation(s)
- Amanda R Haltom
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Toll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, USA
| | - Donghang Cheng
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
25
|
Das S, Mohamed IN, Teoh SL, Thevaraj T, Ku Ahmad Nasir KN, Zawawi A, Salim HH, Zhou DK. Micro-RNA and the Features of Metabolic Syndrome: A Narrative Review. Mini Rev Med Chem 2020; 20:626-635. [DOI: 10.2174/1389557520666200122124445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
The incidence of Metabolic Syndrome (MetS) has risen globally. MetS includes a combination
of features, i.e. blood glucose impairment, excess abdominal/body fat dyslipidemia and elevated
blood pressure. Other than conventional treatment with drugs, the main preventive approaches include
lifestyle changes, weight loss, diet control and adequate exercise also proves to be beneficial. MicroRNAs
(miRNAs) are small non-coding RNAs that play critical regulatory roles in most biological
and pathological processes. In the present review, we discuss various miRNAs which are related to
MetS by targeting various organs, including the pancreas, liver, skeletal muscles and adipose tissues.
These miRNAs have the effect on insulin production and secretion (miR-9, miR-124a, miR-130a,b,
miR152, miR-335, miR-375), insulin resistance (miR-29), adipogenesis (miR-143, miR148a) and lipid
metabolism (miR-192). We also discuss the miRNAs as potential biomarkers and future therapeutic
targets. This review may be beneficial for molecular biologists and clinicians dealing with MetS.
Collapse
Affiliation(s)
- Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Tarrsini Thevaraj
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | | | - Azwani Zawawi
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hazwan Hazrin Salim
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Dennis Kheng Zhou
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Mazzelli M, Maj C, Mariani N, Mora C, Begni V, Pariante CM, Riva MA, Cattaneo A, Cattane N. The Long-Term Effects of Early Life Stress on the Modulation of miR-19 Levels. Front Psychiatry 2020; 11:389. [PMID: 32499725 PMCID: PMC7243913 DOI: 10.3389/fpsyt.2020.00389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs), one of the major small non-coding RNA classes, have been proposed as regulatory molecules in neurodevelopment and stress response. Although alterations in miRNAs profiles have been implicated in several psychiatric and neurodevelopmental disorders, the contribution of individual miRNAs in brain development and function is still unknown. Recent studies have identified miR-19 as a key regulator of brain trajectories, since it drives the differentiation of neural stem cells into mature neurons. However, no findings are available on how vulnerability factors for these disorders, such as early life stress (ELS), can modulate the expression of miR-19 and its target genes. To reach our aim, we investigated miR-19 modulation in human hippocampal progenitor stem cells (HPCs) treated with cortisol during 3 days of proliferation and harvested immediately after the end of the treatment or after 20 days of differentiation into mature neurons. We also analyzed the long-term expression changes of miR-19 and of its validated target genes, involved in neurodevelopment and inflammation, in the hippocampus of adult rats exposed or not to prenatal stress (PNS). Interestingly, we observed a significant downregulation of miR-19 levels both in proliferating (FC = −1.59, p-value = 0.022 for miR-19a; FC = −1.79, p-value = 0.016 for miR-19b) as well as differentiated HPCs (FC = −1.28, p-value = 0.065 for miR-19a; FC = −1.75, p-value = 0.047 for miR-19b) treated with cortisol. Similarly, we found a long-term decrease of miR-19 levels in the hippocampus of adult PNS rats (FC = −1.35, p-value = 0.025 for miR-19a; FC = −1.43, p-value = 0.032 for miR-19b). Among all the validated target genes, we observed a significant increase of NRCAM (FC = 1.20, p-value = 0.027), IL4R (FC = 1.26, p-value = 0.046), and RAPGEF2 (FC = 1.23, p-value = 0.020).We suggest that ELS can cause a long-term downregulation of miR-19 levels, which may be responsible of alterations in neurodevelopmental pathways and in immune/inflammatory processes, leading to an enhanced risk for mental disorders later in life. Intervention strategies targeting miR-19 may prevent alterations in these pathways, reducing the ELS-related effects.
Collapse
Affiliation(s)
- Monica Mazzelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cristina Mora
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
27
|
Visani M, Marucci G, de Biase D, Giangaspero F, Buttarelli FR, Brandes AA, Franceschi E, Acquaviva G, Ciarrocchi A, Rhoden KJ, Tallini G, Pession A. miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children. Diagnostics (Basel) 2020; 10:265. [PMID: 32365560 PMCID: PMC7277606 DOI: 10.3390/diagnostics10050265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/05/2023] Open
Abstract
Medulloblastoma is a highly aggressive brain tumor that typically affects children, while in adults it represents ~1% of all brain tumors. Little is known about microRNA expression profile of the rare adult medulloblastoma. The main aim of this study was to identify peculiar differences in microRNA expression between childhood and adult medulloblastoma. Medulloblastomas were profiled for microRNA expression using the Exiqon Human miRNome panel (I + II) analyzing 752 microRNAs in a training set of six adult and six childhood cases. Then, the most differentially expressed microRNAs were validated in a total of 21 adult and 19 childhood cases. Eight microRNAs (miR-196b-5p, miR-183-5p, miR-200b-3p, miR-196a-5p, miR-193a-3p, miR-29c-3p, miR-33b-5p, and miR-200a-3p) were differentially expressed in medulloblastoma of adults and children. Analysis of the validation set confirmed that miR-196b-5p and miR-200b-3p were significantly overexpressed in medulloblastoma of adults as compared with those of children. We followed an in silico approach to investigate direct targets and the pathways involved for the two microRNAs (miR-196b and miR-200b) differently expressed between adult and childhood medulloblastoma. Adult and childhood medulloblastoma have different miRNA expression profiles. In particular, the differential dysregulation of miR-196b-5p and miR-200b-3p characterizes the miRNA profile of adult medulloblastoma and suggests potential targets for novel diagnostic, prognostic, or therapeutic strategies.
Collapse
Affiliation(s)
- Michela Visani
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Gianluca Marucci
- Anatomic Pathology Unit, Ospedale Bellaria AUSL-IRCCS of Bologna, 40139 Bologna, Italy;
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University School of Medicine, 00161 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli (Isernia), Italy
| | | | - Alba Ariela Brandes
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Enrico Franceschi
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Giorgia Acquaviva
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova AUSL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Kerry Jane Rhoden
- Department of Medical and Surgical Sciences, Medical Genetics Unit, University of Bologna School of Medicine, 40138 Bologna, Italy;
| | - Giovanni Tallini
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
28
|
Recent Trends of microRNA Significance in Pediatric Population Glioblastoma and Current Knowledge of Micro RNA Function in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21093046. [PMID: 32349263 PMCID: PMC7246719 DOI: 10.3390/ijms21093046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system tumors are a significant problem for modern medicine because of their location. The explanation of the importance of microRNA (miRNA) in the development of cancerous changes plays an important role in this respect. The first papers describing the presence of miRNA were published in the 1990s. The role of miRNA has been pointed out in many medical conditions such as kidney disease, diabetes, neurodegenerative disorder, arthritis and cancer. There are several miRNAs responsible for invasiveness, apoptosis, resistance to treatment, angiogenesis, proliferation and immunology, and many others. The research conducted in recent years analyzing this group of tumors has shown the important role of miRNA in the course of gliomagenesis. These particles seem to participate in many stages of the development of cancer processes, such as proliferation, angiogenesis, regulation of apoptosis or cell resistance to cytostatics.
Collapse
|
29
|
Van Ommeren R, Garzia L, Holgado BL, Ramaswamy V, Taylor MD. The molecular biology of medulloblastoma metastasis. Brain Pathol 2020; 30:691-702. [PMID: 31883407 DOI: 10.1111/bpa.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common primary malignant brain tumor of childhood and a significant contributor to pediatric morbidity and death. While metastatic dissemination is the predominant cause of morbidity and mortality for patients with this disease, most research efforts and clinical trials to date have focused on the primary tumor; this is due mostly to the paucity of metastatic tumor samples and lack of robust mouse models of MB dissemination. Most current insights into the molecular drivers of metastasis have been derived from comparative molecular studies of metastatic and non-metastatic primary tumors. However, small studies on matched primary and metastatic tissues and recently developed mouse models of dissemination have begun to uncover the molecular biology of MB metastasis more directly. With respect to anatomical routes of dissemination, a hematogenous route for MB metastasis has recently been demonstrated, opening new avenues of investigation. The tumor micro-environment of the primary and metastatic niches has also been increasingly scrutinized in recent years, and further investigation of these tumor compartments is likely to result in a better understanding of the molecular mediators of MB colonization and growth in metastatic compartments.
Collapse
Affiliation(s)
- Randy Van Ommeren
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Livia Garzia
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.,Senior Author
| |
Collapse
|
30
|
Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat Rev Cancer 2020; 20:42-56. [PMID: 31819232 PMCID: PMC9113832 DOI: 10.1038/s41568-019-0223-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Medulloblastoma, a malignant brain tumour primarily diagnosed during childhood, has recently been the focus of intensive molecular profiling efforts, profoundly advancing our understanding of biologically and clinically heterogeneous disease subgroups. Genomic, epigenomic, transcriptomic and proteomic landscapes have now been mapped for an unprecedented number of bulk samples from patients with medulloblastoma and, more recently, for single medulloblastoma cells. These efforts have provided pivotal new insights into the diverse molecular mechanisms presumed to drive tumour initiation, maintenance and recurrence across individual subgroups and subtypes. Translational opportunities stemming from this knowledge are continuing to evolve, providing a framework for improved diagnostic and therapeutic interventions. In this Review, we summarize recent advances derived from this continued molecular characterization of medulloblastoma and contextualize this progress towards the deployment of more effective, molecularly informed treatments for affected patients.
Collapse
Affiliation(s)
- Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C, Urban GA. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905311. [PMID: 31663165 DOI: 10.1002/adma.201905311] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Indexed: 05/17/2023]
Abstract
Noncoding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated with many different diseases, such as cancer, dementia, and cardiovascular conditions. The key for effective treatment is an accurate initial diagnosis at an early stage, improving the patient's survival chances. In this work, the first clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a-powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs is introduced. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a is realized without any nucleic acid amplification. With a readout time of 9 min and an overall process time of less than 4 h, a limit of detection of 10 pm is achieved, using a measuring volume of less than 0.6 µL. Furthermore, the feasibility of the biosensor platform to detect miR-19b in serum samples of children, suffering from brain cancer, is demonstrated. The validation of the obtained results with a standard quantitative real-time polymerase chain reaction method shows the ability of the electrochemical CRISPR-powered system to be a low-cost, easily scalable, and target amplification-free tool for nucleic acid based diagnostics.
Collapse
Affiliation(s)
- Richard Bruch
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, 79110, Freiburg, Germany
| | - Julia Baaske
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Claire Chatelle
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Mailin Meirich
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Molecular Neuro-Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, 79110, Freiburg, Germany
- Department of Bioengineering, Royal School of Mines, Imperial College London, SW7 2AZ, London, UK
| | - Gerald Anton Urban
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| |
Collapse
|
32
|
Mollashahi B, Aghamaleki FS, Movafagh A. The Roles of miRNAs in Medulloblastoma: A Systematic Review. J Cancer Prev 2019; 24:79-90. [PMID: 31360688 PMCID: PMC6619858 DOI: 10.15430/jcp.2019.24.2.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is considered one of the most threatening malignant brain tumors with an extremely high mortality rate in children. In the medulloblastoma, there are several genes and mutations found to work in an unregulated manner that works together to push the cells into a cancerous state. With the discovery of non-coding RNAs such as microRNAs (miRNAs), it has been shown that a different layer of gene regulations may be disrupted which would cause cancer. This fact led scientists to put their focus on the role of miRNAs in cancer. A mature miRNA contains a seed sequence which gives the miRNA to identify and attach to the interest mRNA; this attachment may lead degradation of mRNA or suppress of translation of the mRNA. The expression of miRNAs in medulloblastoma shows that some of these non-coding RNAs are overexpressed (OncomiRs) which help cells to proliferate and keep their stemness features. On the other hand, there are other forms of these miRNAs which normally inhibit cell proliferation and promote cell differentiation (tumor suppressor). These are down-regulated during cancer progression. In this systematic review, we attempted to gather several important studies on miRNAs’ role in medulloblastoma tumors and the importance of these non-coding RNAs in the future study of cancer.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Gallo A, Vella S, Tuzzolino F, Cuscino N, Cecchettini A, Ferro F, Mosca M, Alevizos I, Bombardieri S, Conaldi PG, Baldini C. MicroRNA-mediated Regulation of Mucin-type O-glycosylation Pathway: A Putative Mechanism of Salivary Gland Dysfunction in Sjögren Syndrome. J Rheumatol 2019; 46:1485-1494. [PMID: 30824638 DOI: 10.3899/jrheum.180549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate microRNA (miRNA) that is potentially implicated in primary Sjögren syndrome (pSS)-related salivary hypofunction in labial salivary glands and to study miRNA-mediated mechanisms underlying oral dryness and altered rheology, focusing on the mucin O-glycosylation pathway. METHODS We performed miRNA expression profiling in minor salivary gland samples of patients with pSS presenting a different impairment in their unstimulated salivary flow rate. A computational in silico analysis was performed to identify genes and pathways that might be modulated by the deregulated miRNA that we had identified. To confirm in silico analysis, expression levels of genes encoding for glycosyltransferases and glycan-processing enzymes were investigated using Human Glycosylation-RT2 Profiler PCR Array. RESULTS Among 754 miRNA analyzed, we identified 126 miRNA that were significantly deregulated in pSS compared to controls, with a trend that was inversely proportional with the impairment of salivary flow rates. An in silico approach pinpointed that several upregulated miRNA in patients with pSS target important genes in the mucin O-glycosylation. We confirmed this prediction by quantitative real-time PCR, highlighting the downregulation of some glycosyltransferase and glycosidase genes in pSS samples compared to controls, such as GALNT1, responsible for mucin-7 glycosylation. CONCLUSION Collectively, our data suggest that the expression of different predicted miRNA-target genes in the mucin type O-glycan biosynthesis pathway is altered in pSS patients with low salivary flow and that the miRNA expression profile could influence the glycosidase expression levels and consequently the rheology in pSS.
Collapse
Affiliation(s)
- Alessia Gallo
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Serena Vella
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Fabio Tuzzolino
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Nicola Cuscino
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Antonella Cecchettini
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Francesco Ferro
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Marta Mosca
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Ilias Alevizos
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Stefano Bombardieri
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Pier Giulio Conaldi
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Chiara Baldini
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA. .,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa.
| |
Collapse
|
34
|
Abstract
Epigenetics is the process by which gene expression is regulated by events other than alterations of the genome. This includes DNA methylation, histone modifications, chromatin remodeling, microRNAs, and long non-coding RNAs. Methylation of DNA, chromatin remodeling, and histone modifications regulate the chromatin and access of transcription factors to DNA and in turn gene transcription. Alteration of chromatin is now recognized to be deregulated in many cancers. Medulloblastoma is an embryonal tumor of the cerebellum and the most common malignant brain tumor in children, that occurs only rarely in adults. Medulloblastoma is characterized by four major molecularly and histopathologically distinct groups, wingless (WNT), sonic hedgehog (SHH), group 3 (G3), and group 4 (G4), that, except for WNT, are each now subdivided in several subgroups. Gene expression array, next-generation sequencing, and methylation profiling of several hundred primary tumors by several consortia and independent groups revealed that medulloblastomas harbor a paucity of mutations most of which occur in epigenetic regulators, genetic alterations in oncogenes and tumor suppressors, in addition to copy number alterations and chromosome gains and losses. Remarkably, some tumors have no reported mutations, suggesting that some genes required for oncogenesis might be regulated by epigenetic mechanisms which are still to be uncovered and validated. This review will highlight several epigenetic regulators focusing mainly on histone modifiers identified in medulloblastoma.
Collapse
Affiliation(s)
- Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jennifer L Stripay
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
35
|
Moyal L, Gorovitz‐Haris B, Yehezkel S, Jacob‐Hirsch J, Bershtein V, Barzilai A, Rotem C, Sherman S, Amitay‐Laish I, Feinmesser M, Hodak E. Unilesional mycosis fungoides is associated with increased expression of micro
RNA
‐17~92 and T helper 1 skewing. Br J Dermatol 2019; 180:1123-1134. [DOI: 10.1111/bjd.17425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- L. Moyal
- Laboratory for Molecular Dermatology Felsenstein Medical Research Center Petach Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - B. Gorovitz‐Haris
- Laboratory for Molecular Dermatology Felsenstein Medical Research Center Petach Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - S. Yehezkel
- Laboratory for Molecular Dermatology Felsenstein Medical Research Center Petach Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - J. Jacob‐Hirsch
- Cancer Research Center Sheba Medical Center Tel HashomerIsrael
| | - V. Bershtein
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - A. Barzilai
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology Sheba Medical Center Tel Hashomer Israel
| | - C. Rotem
- Laboratory for Molecular Dermatology Felsenstein Medical Research Center Petach Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - S. Sherman
- Laboratory for Molecular Dermatology Felsenstein Medical Research Center Petach Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - I. Amitay‐Laish
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| | - M. Feinmesser
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Institute of Pathology Rabin Medical Center – Beilinson Hospital Petach Tikva Israel
| | - E. Hodak
- Laboratory for Molecular Dermatology Felsenstein Medical Research Center Petach Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Dermatology and Rabin Medical Center – Beilinson Hospital Petach TikvaIsrael
| |
Collapse
|
36
|
Wang X, Holgado BL, Ramaswamy V, Mack S, Zayne K, Remke M, Wu X, Garzia L, Daniels C, Kenney AM, Taylor MD. miR miR on the wall, who's the most malignant medulloblastoma miR of them all? Neuro Oncol 2019; 20:313-323. [PMID: 28575493 DOI: 10.1093/neuonc/nox106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) have wide-ranging effects on large-scale gene regulation. As such, they play a vital role in dictating normal development, and their aberrant expression has been implicated in cancer. There has been a large body of research on the role of miRNAs in medulloblastoma, the most common malignant brain tumor of childhood. The identification of the 4 molecular subgroups with distinct biological, genetic, and transcriptional features has revolutionized the field of medulloblastoma research over the past 5 years. Despite this, the growing body of research on miRNAs in medulloblastoma has largely focused on the clinical entity of a single disease rather than the molecular subgroups. This review begins by highlighting the role of miRNAs in development and progresses to explore their myriad of implications in cancer. Medulloblastoma is characterized by increased proliferation, inhibition of apoptosis, and maintenance of stemness programs-features that are inadvertently regulated by altered expression patterns in miRNAs. This review aims to contextualize the large body of work on miRNAs within the framework of medulloblastoma subgroups. The goal of this review is to stimulate new areas of research, including potential therapeutics, within a rapidly growing field.
Collapse
Affiliation(s)
- Xin Wang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Borja L Holgado
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Haematology & Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Mack
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kory Zayne
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Marc Remke
- German Cancer Consortium, University of Düsseldorf, Düsseldorf, Germany
| | - Xiaochong Wu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Livia Garzia
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig Daniels
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anna M Kenney
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatric Oncology, Emory University, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Huang D, Peng Y, Ma K, Deng X, Tang L, Jing D, Shao Z. MiR-20a, a novel promising biomarker to predict prognosis in human cancer: a meta-analysis. BMC Cancer 2018; 18:1189. [PMID: 30497428 PMCID: PMC6267918 DOI: 10.1186/s12885-018-4907-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/08/2018] [Indexed: 02/09/2023] Open
Abstract
Background Recently, microRNA-20a (miR-20a) has been reported to influence the clinical features and may have prognostic value in human cancers. The present meta-analysis assessed the prognostic role of miR-20a in various carcinomas. Methods Literature searches of seven electronic databases were performed for eligible articles of the prognostic role of miR-20a in human cancers. Hazard ratios (HR) for overall survival (OS), disease free survival (DFS), progression-free survival (PFS) as well as their 95% confidence intervals (95%CIs) were used to assess the influence of miR-20a expression on patient prognosis. Odds ratio (OR) and 95%CIs were applied to evaluate the correlation between miR-20a expression and clinicopathological characteristics. Results Based on the OS analyzed by log rank tests, there was a significant association between miR-20a levels and OS by fixed effects model. By subgroup analyses, the significance was also observed in the studies of specimen derived from blood and gastrointestinal cancer group. The independent prognostic role of miR-20a expression for the OS was observed significantly by fixed effects model. In addition, we observed significant association between miR-20a expression levels and DFS of log rank tests, DFS of cox regression. Significant relation of gender/differentiation and the expression level of miR-20a was identified. Conclusions Base on the findings, the elevated miR-20a expression level is related to poor prognosis of gastrointestinal cancer patients. As for other types of carcinomas, the results are still not stable and more studies are required to further identify miR-20a prognostic values. In addition, miR-20a expression level is relatively higher in women than that in men, and increased miR-20a expression level is linked to poor tumor differentiation.
Collapse
Affiliation(s)
- Donghua Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
38
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
39
|
Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2018; 52:85-102. [PMID: 28774835 DOI: 10.1016/j.semcancer.2017.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
Recent investments in research associated with the discovery of specific tumor biomarkers important for efficient diagnosis and prognosis are beginning to bear fruit. Key biomarkers could potentially outweigh traditional radiological or pathological methods by enabling specificity of early detection, when coupled with tumor molecular profiling and clinical associations. Only few biomarkers are approved by regulatory authorities for Central Nervous System Tumors (CNSTs), despite the evaluation of a large number of CNST related markers during clinical trials. Traditional CNSTs biomarkers include 1p/19q co-deletion, O6-Methylguanine-DNA Methyltransferase Methylation, and mutations in IDH1/IDH2. Recently tested CNSTs biomarkers include VEGFR-2, EGFRvIII, IL2, PDGFR, MMPs, BRAF, STAT3, PTEN, TERT, AKT, NF2, and BCL2. Additional studies have highlighted new and novel MicroRNAs, circular RNAs and long non-coding RNAs as promising biomarkers. Studies on microvesicles pinpoint exosomes as promising, less invasive biomarkers that could be isolated from the serum of cancer patients. Furthermore, Cancer Stem Cells (CSCs) related molecules, such as CD133, SOX2 and Nestin, utilized as CNST biomarkers, might enable efficient monitoring of cancer progression, and/or surveillance of emerging drug resistant cells. Approved protocols that implement novel molecular markers in diagnostics, prognostics and drug development will herald a new era of precision and personalized neuro-oncology. This review summarizes and discusses putative CNST biomarkers that are under clinical development, and are ready to move into diagnostic, prognostic and therapeutic applications. Data presented here is predicted to aid in streamlining the process of biomarker's research and development.
Collapse
Affiliation(s)
- Ishaq N Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Najeeb Ullah
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Kulvinder S Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India.
| |
Collapse
|
40
|
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks. Int J Mol Sci 2018; 19:ijms19082326. [PMID: 30096798 PMCID: PMC6121264 DOI: 10.3390/ijms19082326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.
Collapse
|
41
|
Quattrochi B, Gulvady A, Driscoll DR, Sano M, Klimstra DS, Turner CE, Lewis BC. MicroRNAs of the mir-17~92 cluster regulate multiple aspects of pancreatic tumor development and progression. Oncotarget 2018; 8:35902-35918. [PMID: 28415794 PMCID: PMC5482626 DOI: 10.18632/oncotarget.16277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterized by resistance to currently employed chemotherapeutic approaches. Members of the mir-17~92 cluster of microRNAs (miRNAs) are upregulated in PDAC, but the precise roles of these miRNAs in PDAC are unknown. Using genetically engineered mouse models, we show that loss of mir-17~92 reduces ERK pathway activation downstream of mutant KRAS and promotes the regression of KRASG12D-driven precursor pancreatic intraepithelial neoplasias (PanINs) and their replacement by normal exocrine tissue. In a PDAC model driven by concomitant KRASG12D expression and Trp53 heterozygosity, mir-17~92 deficiency extended the survival of mice that lacked distant metastasis. Moreover, mir-17~92-deficient PDAC cell lines display reduced invasion activity in transwell assays, form fewer invadopodia rosettes than mir-17~92-competent cell lines and are less able to degrade extracellular matrix. Specific inhibition of miR-19 family miRNAs with antagomirs recapitulates these phenotypes, suggesting that miR-19 family miRNAs are important mediators of PDAC cell invasion. Together these data demonstrate an oncogenic role for mir-17~92 at multiple stages of pancreatic tumorigenesis and progression; specifically, they link this miRNA cluster to ERK pathway activation and precursor lesion maintenance in vivo and identify a novel role for miR-19 family miRNAs in promoting cancer cell invasion.
Collapse
Affiliation(s)
- Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anushree Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical Center, Syracuse, NY 13210, USA
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Makoto Sano
- Division of Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical Center, Syracuse, NY 13210, USA
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
42
|
Gruszka R, Zakrzewska M. The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR-106b-25 and miR-106a-363 Clusters in Brain Tumors. Int J Mol Sci 2018; 19:ijms19030879. [PMID: 29547527 PMCID: PMC5877740 DOI: 10.3390/ijms19030879] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022] Open
Abstract
The fundamental function of ribonucleic acids is to transfer genetic information from DNA to protein during translation process, however, this is not the only way connecting active RNA sequences with essential biological processes. Up until now, many RNA subclasses of different size, structure, and biological function were identified. Among them, there are non-coding single-stranded microRNAs (miRNAs). This subclass comprises RNAs of 19–25 nucleotides in length that modulate the activity of well-defined coding RNAs and play a crucial role in many physiological and pathological processes. miRNA genes are located both in exons, introns, and also within non-translated regions. Several miRNAs that are transcribed from the adjacent miRNA genes are called cluster. One of the largest ones is miR-17-92 cluster known as OncomiR-1 due to its strong link to oncogenesis. Six miRNAs from the OncomiR-1 have been shown to play important roles in various physiological cellular processes but also through inhibition of cell death in many cancer-relevant processes. Due to the origin and similarity of the sequence, miR-17-92 cluster and paralogs, miR-106b-25 and miR-106a-363 clusters were defined. Here we discuss the oncogenic function of those miRNA subgroups found in many types of cancers, including brain tumors.
Collapse
Affiliation(s)
- Renata Gruszka
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
43
|
Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2018; 8:33375-33392. [PMID: 28380419 PMCID: PMC5464875 DOI: 10.18632/oncotarget.16498] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel diagnostic and prognostic significance for patients with malignant diseases. The lack of useful biomarkers is a crucial problem of bone and soft tissue sarcomas; therefore, we investigated the circulating miRNA signature and its clinical relevance in osteosarcoma. Methods Global miRNA profiling was performed using patient serum collected from a discovery cohort of osteosarcoma patients and controls and cell culture media. The secretion of the detected miRNAs from osteosarcoma cells and clinical relevance of serum miRNA levels were evaluated using in vitro and in vivo models and a validation patient cohort. Results Discovery screening identified 236 serum miRNAs that were highly expressed in osteosarcoma patients compared with controls, and eight among these were also identified in the cell culture media. Upregulated expression levels of miR-17-5p and miR-25-3p were identified in osteosarcoma cells, and these were abundantly secreted into the culture media in tumor-derived exosomes. Serum miR-25-3p levels were significantly higher in osteosarcoma patients than in control individuals in the validation cohort, with favorable sensitivity and specificity compared with serum alkaline phosphatase. Furthermore, serum miR-25-3p levels at diagnosis were correlated with patient prognosis and reflected tumor burden in both in vivo models and patients; these associations were more sensitive than those of serum alkaline phosphatase. Conclusions Serum-based circulating miR-25-3p may serve as a non-invasive blood-based biomarker for tumor monitoring and prognostic prediction in osteosarcoma patients.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Center of Innovative Medicine, Okayama University Hospital, Okayama, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Morita
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yutaka Nezu
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takenori Uehara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Takeda
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
44
|
Tanno B, Babini G, Leonardi S, Giardullo P, De Stefano I, Pasquali E, Ottolenghi A, Atkinson MJ, Saran A, Mancuso M. Ex vivo miRNome analysis in Ptch1+/- cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma. Oncotarget 2018; 7:68253-68269. [PMID: 27626168 PMCID: PMC5356552 DOI: 10.18632/oncotarget.11938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer. Patched1 heterozygous (Ptch1+/−) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs). The high sensitivity of neonatal Ptch1+/− mice to radiogenic MB is dependent on deregulation of the Ptch1 gene function. Ptch1 activates a growth and differentiation programme that is a strong candidate for regulation through the non-coding genome. Therefore we carried out miRNA next generation sequencing in ex vivo irradiated and control GCPs, isolated and purified from cerebella of neonatal WT and Ptch1+/− mice. We identified a subset of miRNAs, namely let-7 family and miR-17∼92 cluster members, whose expression is altered in GCPs by radiation alone, or by synergistic interaction of radiation with Shh-deregulation. The same miRNAs were further validated in spontaneous and radiation-induced MBs from Ptch1+/− mice, confirming persistent deregulation of these miRNAs in the pathogenesis of MB. Our results support the hypothesis that miRNAs dysregulation is associated with radiosensitivity of GCPs and their neoplastic transformation in vivo.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy.,Department of Sciences, Roma Tre University, Rome, Italy
| | - Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
45
|
Gershanov S, Toledano H, Michowiz S, Barinfeld O, Pinhasov A, Goldenberg-Cohen N, Salmon-Divon M. MicroRNA-mRNA expression profiles associated with medulloblastoma subgroup 4. Cancer Manag Res 2018; 10:339-352. [PMID: 29497332 PMCID: PMC5818864 DOI: 10.2147/cmar.s156709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Medulloblastoma (MB), the most common malignant brain tumor in children, is divided into four tumor subgroups: wingless-type (WNT), sonic hedgehog (SHH), Group 3, and Group 4. Ideally, clinical practice and treatment design should be subgroup specific. While WNT and SHH subgroups have well-defined biomarkers, distinguishing Group 3 from Group 4 is not straightforward. MicroRNAs (miRNAs), which regulate posttranscriptional gene expression, are involved in MB tumorigenesis. However, the miRNA–messenger RNA (mRNA) regulatory network in MB is far from being fully understood. Our aims were to investigate miRNA expression regulation in MB subgroups, to assess miRNA target relationships, and to identify miRNAs that can distinguish Group 3 from Group 4. Patients and methods With these aims, integrated transcriptome mRNA and miRNA expression analysis was performed on primary tumor samples collected from 18 children with MB, using miRNA sequencing (miRNA-seq), RNA sequencing (RNA-seq), and quantitative PCR. Results Of all the expressed miRNAs, 19 appeared to be significantly differentially expressed (DE) between Group 4 and non-Group 4 subgroups (false discovery rate [FDR] <0.05), including 10 miRNAs, which, for the first time, are reported to be in conjunction with MB. RNA-seq analysis identified 165 genes that were DE between Group 4 and the other subgroups (FDR <0.05), among which seven are predicted targets of five DE miRNAs and exhibit inverse expression pattern. Conclusion This study identified miRNA molecules that may be involved in Group 4 etiology, in general, and can distinguish between Group 3 and Group 4, in particular. In addition, understanding the involvement of miRNAs and their targets in MB may improve diagnosis and advance the development of targeted treatment for MB.
Collapse
Affiliation(s)
- Sivan Gershanov
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Michowiz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Neurosurgery, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Orit Barinfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petah Tikva, Tel Aviv, Israel
| | - Albert Pinhasov
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petah Tikva, Tel Aviv, Israel.,Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
46
|
Cui Y, Li J, Weng L, Wirbisky SE, Freeman JL, Liu J, Liu Q, Yuan X, Irudayaraj J. Regulatory landscape and clinical implication of MBD3 in human malignant glioma. Oncotarget 2018; 7:81698-81714. [PMID: 27835581 PMCID: PMC5340251 DOI: 10.18632/oncotarget.13173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022] Open
Abstract
In this article we inspect the roles and functions of the methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, to assess its potential as an epigenetic biomarker for prognosis. The regulatory effects of MBD3 on glioma transcriptome were first profiled by high-throughput microarray. Our results indicate that MBD3 is involved in both transcriptional activation and repression. Furthermore, MBD3 fine-controls a spectrum of proteins critical for cellular metabolism and proliferation, thereby contributing to an exquisite anti-glioma network. Specifically, the expression of MHC class II molecules was found to positively correlate with MBD3, which provides new insight into the immune escape of gliomagenesis. In addition, MBD3 participates in constraining a number of oncogenic non-coding RNAs whose over-activation could drive cells into excessive growth and higher malignancy. Having followed up a pilot cohort, we noted that the survival of malignant glioma patients was proportional to the content of MBD3 and 5-hydroxymethylcytosine (5hmC) in their tumor cells. The progression-free survival (PFS) and overall survival (OS) were relatively poor for patients with lower amount of MBD3 and 5hmC in the tissue biopsies. Taken together, this work enriches our understanding of the mechanistic involvement of MBD3 in malignant glioma.
Collapse
Affiliation(s)
- Yi Cui
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Biological Engineering and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,The Institute of Skull Base Surgery & Neuro-Oncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,The Institute of Skull Base Surgery & Neuro-Oncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Joseph Irudayaraj
- Biological Engineering and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Sengupta D, Govindaraj V, Kar S. Alteration in microRNA-17-92 dynamics accounts for differential nature of cellular proliferation. FEBS Lett 2018; 592:446-458. [PMID: 29331028 DOI: 10.1002/1873-3468.12974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs associated with the mir-17-92 cluster are crucial regulators of the mammalian cell cycle, as they inhibit transcription factors related to the E2F family that tightly control decision-making events for a cell to commit for active cellular proliferation. Intriguingly, in many solid cancers, these mir-17-92 cluster members are overexpressed, whereas in some hematopoietic cancers they are down-regulated. Our proposed model of the Myc/E2F/mir-17-92 network demonstrates that the differential expression pattern of mir-17-92 in different cell types can be conceived due to having a contrasting E2F dynamics induced by mir-17-92. The model predicts that by explicitly altering the mir-17-92-related part of the network, experimentally it is possible to control cellular proliferation in a cell type-dependent manner for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Sandip Kar
- Department of Chemistry, IIT Bombay, Mumbai, India
| |
Collapse
|
48
|
Chen YA, Wang KC, Liu DZ, Young TH, Tsai LK. The Proliferation Capacity of Cultured Neural Stem Cells Promoted by CSF Collected from SAH Patients Correlates to Clinical Outcome. Sci Rep 2018; 8:1109. [PMID: 29348677 PMCID: PMC5773507 DOI: 10.1038/s41598-018-19371-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/29/2017] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis from endogenous neural stem cells (NSCs) might contribute to functional recovery after stroke based on animal studies; however, the relationship between neurogenesis and post-stroke outcome has rarely been demonstrated in humans. We prospectively collected cerebrospinal fluid (CSF) from 36 patients with subarachnoid hemorrhage (SAH). The CSF was added to the culture medium of the rat NSCs to test the effects on proliferation (proliferation index [PI], percentage of Ki-67 immunoreactive cells). We correlated the PI with functional outcome based on the modified Rankin Scale at 3 months post-SAH. Treatment with the CSF samples collected from SAH patients showed a higher PI compared with those collected from patients with normal pressure hydrocephalus and untreated controls (20.3 ± 8.8 vs. 8.2 ± 5.1 and 7.8 ± 3.0, P < 0.001), indicating proliferation-promoting factors in CSF after SAH. The PI was positively correlated with SAH volume (p = 0.025). For patients with lower SAH volume, patients with favorable outcome had a higher PI than those with poor outcome (20.8 ± 6.9 vs. 14.6 ± 4.3, p = 0.047). Using multivariable logistic regression analysis, the PI was a positive determinant for favorable outcome (odds ratio, 1.17; 95% confidence interval, 1.00 to 1.36) that more proliferation-promoting factors in CSF was associated with better functional outcome in SAH patients.
Collapse
Affiliation(s)
- Yun-An Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chuan Wang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
| | - Li-Kai Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
49
|
Abstract
Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor.
Collapse
|
50
|
Kumar V, Kumar V, McGuire T, Coulter DW, Sharp JG, Mahato RI. Challenges and Recent Advances in Medulloblastoma Therapy. Trends Pharmacol Sci 2017; 38:1061-1084. [PMID: 29061299 DOI: 10.1016/j.tips.2017.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Medulloblastoma (MB) is the most common childhood brain tumor, which occurs in the posterior fossa. MB tumors are highly heterogeneous and have diverse genetic make-ups, with differential microRNA (miRNA) expression profiles and variable prognoses. MB can be classified into four subgroups, each with different origins, pathogenesis, and potential therapeutic targets. miRNA and small-molecule targeted therapies have emerged as a potential new therapeutic paradigm in MB treatment. However, the development of chemoresistance due to surviving cancer stem cells and dysregulation of miRNAs remains a challenge. Combination therapies using multiple drugs and miRNAs could be effective approaches. In this review we discuss various MB subtypes, barriers, and novel therapeutic options which may be less toxic than current standard treatments.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - John G Sharp
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|