1
|
Li S, Zou J, Wu J, He L, Tang C, Li F, Sun B, Zhao M, Li Q, Wang P, Huang L, Cheng Q, Tan H, Ma J. Removal of Sulfonamide Antibiotics in Peracetic Acid-Mediated Natural Polyphenol Systems via an Overlooked Polymerization Pathway: Role of ortho-Quinones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7747-7759. [PMID: 40223568 DOI: 10.1021/acs.est.4c13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Natural polyphenols can be oxidized into reactive quinones, which might play a key role in the removal of specific contaminants in natural polyphenol-related advanced oxidation processes (AOPs). In this study, peracetic acid (PAA) was employed in combination with natural protocatechuic acid (PCA) to remove sulfonamide antibiotics (SAs) from water. More than 95% removal of sulfamethoxazole (SMX) and other SAs was observed in the PCA/PAA system, and neutral pH conditions (5.0-8.0) were more conducive to the removal of SMX. The PCA/PAA system exhibited a great anti-interference ability against complex water matrices. ortho-Quinone, generated from the oxidation of PCA by PAA, played a dominant role in the SMX removal. Electrons tended to transfer from SMX to the generated ortho-quinones and form covalent bonds, resulting in the production of less toxic oligomers via the overlooked polymerization pathway. A reduction in the toxicity of the SMX solution was found following treatment with the PCA/PAA system. More interestingly, several polyphenols structurally related to PCA could also facilitate SMX removal using PAA as the oxidant. Overall, this study proposes a novel strategy for developing reactive quinones dominated AOPs with robust anti-interference performance, as well as enhances the understanding of contaminant removal via an overlooked polymerization pathway in natural polyphenol-related AOPs.
Collapse
Affiliation(s)
- Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chenyu Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Bo Sun
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Min Zhao
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Lengshen Huang
- Institute of Horticulture Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Haoqiang Tan
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
2
|
Wang L, Cao J, Wang P, Fu Y, Chen J, Wang Z. Hydroperoxide-Independent Generation of Spin Trapping Artifacts by Quinones and DMPO: Implications for Radical Identification in Quinone-Related Reactions. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:143-153. [PMID: 40012872 PMCID: PMC11851217 DOI: 10.1021/envhealth.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 02/28/2025]
Abstract
Quinones, as highly redox active molecules in biology, are believed to react with hydroperoxides to produce highly reactive •OH, assuming that radical adducts are exclusively formed by the addition of free radicals to the spin trap as detected by the electron paramagnetic resonance (EPR) methodology. Here, direct formation of the same DMPO adduct as that formed by genuine radical trapping of •OH is discovered, while quinones (i.e., 1,4-benzoquinone (BQ), methyl-BQ (2-Me-BQ, 2,5-Me-BQ, 2,6-Me-BQ), and chlorinated-BQ (2-Cl-BQ, 2,5-Cl-BQ, 2,6-Cl-BQ)) meet with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), independent of peroxides. According to differences in alcohol-derived adducts (e.g., DMPO-CH2OH or DMPO-OCH3) while alcohol is attacked by •OH or DMPO•+, a nonradical mechanism is proposed for the BQ/DMPO system. This is further evidenced by the mass spectrometry data in which DMPO-OCH3 has been identified in BQ (or chlorinated-BQ)/DMPO systems. 17O incorporation experiments verify that hydroxyl oxygen in DMPO-OH originates from water. The DMPO-OH adduct might be formed via direct oxidation and water substitution or one-electron oxidation and nucleophilic addition. This study provides a peroxide-independent alternative route leading to DMPO-OH adduct in quinone-based systems, which has profound implications for assessing adverse health effects and even biogeochemical impacts of quinones if EPR is applied.
Collapse
Affiliation(s)
- Lingli Wang
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinhui Cao
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Pu Wang
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jialin Chen
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Technology
Innovation Center for Land Spatial Eco-restoration in Metropolitan
Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China
- Shanghai
Engineering Research Center of Biotransformation of Organic Solid
Waste, Shanghai 200241, China
| |
Collapse
|
3
|
Cheng Q, Tang W, Liu Z, Wu Y, Zheng M, Ma D. In vivo oxidative stress responses and mechanism to chlorinated and methylated p-benzoquinone oxidation byproducts: A comparison study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117914. [PMID: 39970498 DOI: 10.1016/j.ecoenv.2025.117914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Halogen-substituted para-benzoquinones (p-BQs) are emerging disinfection byproducts known to induce oxidative damage both in vitro and in vivo. However, as ubiquitous oxidation byproducts, the in vivo toxicity and transport mechanism of non-halogenated p-BQs with similar structure of α, β-unsaturated ketones to halogenated p-BQs have not been thoroughly investigated. In this study, the effect of substituents on toxicity and transportation of 2-chloro-1,4-benzoquinone (CBQ) and 2-methyl-1,4-benzoquinone (MBQ) was systematically investigated. The results show that MBQ exhibits slightly lower acute toxicity to zebrafish embryos compared to CBQ. Exposure to both CBQ and MBQ at concentration of 10 μg/L and 100 μg/L significantly increased the levels of reactive oxygen species, and enhanced the activities of total superoxide dismutase, catalase, and glutathione peroxidase, while malformations were primarily observed in the 100 μg/L exposure groups. The varying developmental toxicity was associated with significant upregulation of 10 genes by CBQ compared to only 6 by MBQ. Using the high-resolution mass spectrometry and electron paramagnetic resonance spectroscopy, the hydroxylation of both CBQ and MBQ, and the production of semiquinone radicals and hydroxyl radicals in aqueous environments have been revealed. This study has demonstrated that the toxicity of non-halogenated p-BQs should not be overlooked and contributes to the understanding of the generated radicals, leading to excessive oxidative-stress in vivo.
Collapse
Affiliation(s)
- Qiang Cheng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Weixu Tang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Zirui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Yasen Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dehua Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
4
|
Liu M, Ning Z, Cheng Y, Zheng Z, Yang X, Zheng T, Li N, Wu JL. The key to 2,6-dichloro-1,4-benzoquinone reproductive toxicity and green tea detoxification: Covalent binding and competitive binding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117239. [PMID: 39454356 DOI: 10.1016/j.ecoenv.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Halobenzoquinones (HBQs) are ubiquitous disinfection by-products (DBPs) in chlorinated drinking water with various health risks including reproductive toxicity, while the potential mechanisms are still unclear. Although green tea exhibits common detoxifying properties, its ability to mitigate the toxicity of HBQs still needs to be further deepened and explored. This study attempted to investigate the possible mechanism of the most common HBQ, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) induced reproductive toxicity and elucidate the protective effect of green tea using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. Firstly, in vivo experiments showed that 2,6-DCBQ could induce testicular damage in male rats via significantly decreasing sperm-associated Leydig cells and seminiferous tubules. Then, in vitro incubation of 2,6-DCBQ with amino acids suggested that 2,6-DCBQ could bind to proteins via residues of cysteine or lysine and provided five additional modification patterns. Following, proteomics analysis revealed that at least 42 proteins were modified by 2,6-DCBQ, which were mainly enriched in the reproductive system. These results highlighted the significance of covalent protein modification in 2,6-DCBQ reproductive toxicity. Fortunately, we found that catechins (a class of major components of green tea) could competitively bind to 2,6-DCBQ in vivo and in vitro, reducing the amount and type of 2,6-DCBQ-protein adducts, thereby attenuating the reproductive system damage caused by 2,6-DCBQ. This study provides new insights into 2,6-DCBQ-induced reproductive system damage and reveals a new mechanism of green tea detoxification. Moreover, these findings offer potential strategies for alleviating the harmful impacts of environmental toxicants on human health.
Collapse
Affiliation(s)
- Meixian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiyuan Ning
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, China
| | - Zhiyuan Zheng
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Ting Zheng
- Multi-omics Mass Spectrometry Core, Biomedical Research Core Facilities, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| |
Collapse
|
5
|
Zhan Y, Gan W, Chen X, Liu B, Chu W, Hur K, Dong S. Biomimetic cytotoxicity control of select nitrogenous disinfection byproducts in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134983. [PMID: 38941836 DOI: 10.1016/j.jhazmat.2024.134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Nitrogenous disinfection byproducts (N-DBPs) in water are carcinogenic, teratogenic, and mutagenic. In this work, we developed a biomimetic reduction approach based on the cysteine thiol that destructed the highly toxic, select nitrogenous haloacetamides (HAMs) and haloacetonitriles (HANs) while effectively controlling the cytotoxicity of the degradation products to serve as a basis for further technological applications (e.g. immobilized contact bed for terminal users). Mechanisms on toxicity control were elucidated. Results showed the degradation and cytotoxicity control of HAMs as more efficient than that of the HANs. The cytotoxicity of the chlorinated, brominated, and iodinated HAMs and HANs was reduced to 25 %- 0.25 % of the original after biomimetic reduction using a reasonable concentration ratio. Through a combination of thiol-specific reactivity, dehalogenation, and quantitative structure-activity relationship analyses, the major toxicity control mechanisms were found to be the reductive dehalogenation of the N-DBPs. The halogenated functional groups on the N-DBPs had a more pronounced effect than the amide and nitrile groups on the cytotoxicity and detoxification effect. Patterns of toxicity interaction variations with DBPs concentrations were identified to detect possible synergistic cytotoxicity interactions under various combinations of HAMs and HANs in the presence of the cysteine thiol. Results could benefit future N-DBPs control efforts.
Collapse
Affiliation(s)
- Yuehao Zhan
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenhui Gan
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaohong Chen
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bingjun Liu
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kyu Hur
- 3-2-9 Yushima, Bunkyo Ward, Tokyo 113-0034, Japan
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China.
| |
Collapse
|
6
|
Hu Q, Lou M, Wang R, Bai S, Guo H, Zhou J, Ma Q, Wang T, Zhu L, Zhang X. Complexation with Metal Ions Affects Chlorination Reactivity of Dissolved Organic Matter: Structural Reactomics of Emerging Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13890-13903. [PMID: 39042037 DOI: 10.1021/acs.est.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Metal ions are liable to form metal-dissolved organic matter [dissolved organic matter (DOM)] complexes, changing the chemistry and chlorine reactivity of DOM. Herein, the impacts of iron and zinc ions (Fe3+ and Zn2+) on the formation of unknown chlorinated disinfection byproducts (Cl-DBPs) were investigated in a chlorination system. Fe3+ preferentially complexed with hydroxyl and carboxyl functional groups, while Zn2+ favored the amine functional groups in DOM. As a consequence, electron-rich reaction centers were created by the C-O-metal bonding bridge, which facilitated the electrophilic attack of α-C in metal-DOM complexes. Size-reactivity continuum networks were constructed in the chlorination system, revealing that highly aromatic small molecules were generated during the oxidation and decarbonization of metal-DOM complexes. Molecular transformation related to C-R (R represents complex sites) loss was promoted via metal complexation, including decarboxylation and deamination. Consequently, complexation with Fe3+ and Zn2+ promoted hydroxylation by the C-O-metal bonding bridge, thereby increasing the abundances of unknown polychlorinated Cl-DBPs by 9.6 and 14.2%, respectively. The study provides new insights into the regulation of DOM chemistry and chlorine reactivity by metal ions in chlorination systems, emphasizing that metals increase the potential health risks of drinking water and more scientific control standards for metals are needed.
Collapse
Affiliation(s)
- Qian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mingxuan Lou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Sai Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300385, China
| | - Xiangru Zhang
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 00000, PR China
| |
Collapse
|
7
|
Olson KR, Clear KJ, Takata T, Gao Y, Ma Z, Pfaff E, Travlos A, Luu J, Wilson K, Joseph Z, Kyle I, Kasko SM, Jones Jr P, Fukuto J, Xian M, Wu G, Straub KD. Reaction Mechanisms of H 2S Oxidation by Naphthoquinones. Antioxidants (Basel) 2024; 13:619. [PMID: 38790724 PMCID: PMC11117753 DOI: 10.3390/antiox13050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
1,4-naphthoquinones (NQs) catalytically oxidize H2S to per- and polysufides and sulfoxides, reduce oxygen to superoxide and hydrogen peroxide, and can form NQ-SH adducts through Michael addition. Here, we measured oxygen consumption and used sulfur-specific fluorophores, liquid chromatography tandem mass spectrometry (LC-MS/MS), and UV-Vis spectrometry to examine H2S oxidation by NQs with various substituent groups. In general, the order of H2S oxidization was DCNQ ~ juglone > 1,4-NQ > plumbagin >DMNQ ~ 2-MNQ > menadione, although this order varied somewhat depending on the experimental conditions. DMNQ does not form adducts with GSH or cysteine (Cys), yet it readily oxidizes H2S to polysulfides and sulfoxides. This suggests that H2S oxidation occurs at the carbonyl moiety and not at the quinoid 2 or 3 carbons, although the latter cannot be ruled out. We found little evidence from oxygen consumption studies or LC-MS/MS that NQs directly oxidize H2S2-4, and we propose that apparent reactions of NQs with inorganic polysulfides are due to H2S impurities in the polysulfides or an equilibrium between H2S and H2Sn. Collectively, NQ oxidation of H2S forms a variety of products that include hydropersulfides, hydropolysulfides, sulfenylpolysulfides, sulfite, and thiosulfate, and some of these reactions may proceed until an insoluble S8 colloid is formed.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anthony Travlos
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer Luu
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katherine Wilson
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zachary Joseph
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ian Kyle
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephen M. Kasko
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Prentiss Jones Jr
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA;
| | - Gang Wu
- Department of Internal Medicine, University of Texas-McGovern Medical School, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
8
|
Su R, He X, Houk KN, Lu Q, Liu F. Periselectivity and ambimodal transition states in cycloadditions of tetrachloro-o-benzoquinone with 6,6-dimethylfulvene. J Comput Chem 2024; 45:752-760. [PMID: 38116842 DOI: 10.1002/jcc.27264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
The reaction mechanism of cycloadditions of tetrachloro-o-benzoquinone with 6,6-dimethylfulvene were systematically investigated with density functional theory calculations. It was found that conditional primary interactions stabilize the ambimodal transition states in the endo pathways. Ambimodal transition states lead to [6 + 4]/[4 + 2] adducts or [4 + 2]/[2 + 4] adducts, which interconvert through 3,3-sigmatropic shift reactions. The substituent effects on periselectivity were also investigated.
Collapse
Affiliation(s)
- Ruirui Su
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xue He
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Qianqian Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Martínez A. Toxicity of persistent organic pollutants: a theoretical study. J Mol Model 2024; 30:97. [PMID: 38451367 PMCID: PMC11310291 DOI: 10.1007/s00894-024-05890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
CONTEXT Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two families of persistent organic pollutants that are dangerous as they remain in the atmosphere for long periods and are toxic for humans and animals. They are found all over the world, including the penguins of Antarctica. One of the mechanisms that explains the toxicity of these compounds is related to oxidative stress. The main idea of this theoretical research is to use conceptual density functional theory as a theory of chemical reactivity to analyze the oxidative stress that PCBs and PBDEs can produce. The electron transfer properties as well as the interaction with DNA nitrogenous bases of nine PCBs and ten PBDEs found in Antarctic penguins are investigated. From this study, it can be concluded that compounds with more chlorine or bromine atoms are more oxidizing and produce more oxidative stress. These molecules also interact directly with the nitrogenous bases of DNA, forming hydrogen bonds, and this may be an explanation for the toxicity. Since quinone-type metabolites of PCBs and PBDEs can cause neurotoxicity, examples of quinones are also investigated. Condensed Fukui functions are included to analyze local reactivity. These results are important as the reactivity of these compounds helps to explain the toxicity of PCBs and PBDEs. METHODS All DFT computations were performed using Gaussian16 at M06-2x/6-311 + g(2d,p) level of theory without symmetry constraints. Electro-donating (ω-) and electro-accepting (ω +) powers were used as global response functions and condensed Fukui functions as local parameters of reactivity.
Collapse
Affiliation(s)
- Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S.N. Ciudad Universitaria, 04510, CDMX, CP, Mexico.
| |
Collapse
|
10
|
Xu Z, Wei J, Abid A, Liu Z, Wu Y, Gu J, Ma D, Zheng M. Formation and toxicity contribution of chlorinated and dechlorinated halobenzoquinones from dichlorophenols after ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169860. [PMID: 38199341 DOI: 10.1016/j.scitotenv.2023.169860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Halobenzoquinones (HBQs) are a class of disinfection byproducts with high cytotoxicity and potential carcinogenicity, which have been widely detected in chlorination of drinking water and swimming pool water. However, to date, the formation of HBQs upon ozonation and the HBQ precursors have been overlooked. This study investigated the formation of chlorinated and dechlorinated HBQs from six dichlorophenol (DCP) isomers. The monomeric and dimeric HBQs were identified in all the ozonation effluents, exhibiting 1-100 times higher toxicity levels than their precursors. The sum of detected HBQs intensity had a satisfactory linear relation with the maximum toxic unit (R2 = 0.9657), indicating the primary toxicity contribution to the increased overall toxicity of effluents. Based on density functional theory calculations, when ozone attacks the para carbon to the hydroxyl group of 2,3-DCP, the probability of producing chlorinated HBQs is 80.41 %, indicating that the para carbon attack mainly resulted in the formation of monomeric HBQs. 2,3-dichlorophenoxy radicals were successfully detected in ozonated 2,3-DCP effluent through electron paramagnetic resonance and further validated using theoretical calculation, revealing the formation pathway of dimeric HBQs. The results indicate that chlorinated phenols, regardless of the positions of chlorine substitution, can potentially serve as precursors for both chlorinated and dechlorinated HBQs formation during ozonation.
Collapse
Affiliation(s)
- Zhourui Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jianjian Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Aroob Abid
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Zirui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yasen Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jia Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Dehua Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Zhou Y, Lei Y, Kong Q, Cheng F, Fan M, Deng Y, Zhao Q, Qiu J, Wang P, Yang X. o-Semiquinone Radical and o-Benzoquinone Selectively Degrade Aniline Contaminants in the Periodate-Mediated Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2123-2132. [PMID: 38237556 DOI: 10.1021/acs.est.3c08179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Advanced oxidation processes (AOPs) often employ strong oxidizing inorganic radicals (e.g., hydroxyl and sulfate radicals) to oxidize contaminants in water treatment. However, the water matrix could scavenge the strong oxidizing radicals, significantly deteriorating the treatment efficiency. Here, we report a periodate/catechol process in which reactive quinone species (RQS) including the o-semiquinone radical (o-SQ•-) and o-benzoquinone (o-Q) were dominant to effectively degrade anilines within 60 s. The second-order reaction rate constants of o-SQ•- and o-Q with aniline were determined to be 1.0 × 108 and 4.0 × 103 M-1 s-1, respectively, at pH 7.0, which accounted for 21% and 79% of the degradation of aniline with a periodate-to-catechol molar ratio of 1:1. The major byproducts were generated via addition or polymerization. The RQS-based process exhibited excellent anti-interference performance in the degradation of aniline-containing contaminants in real water samples in the presence of diverse inorganic ions and organics. Subsequently, we extended the RQS-based process by employing tea extract and dissolved organic matter as catechol replacements as well as metal ions [e.g., Fe(III) or Cu(II)] as periodate replacements, which also exhibited good performance in aniline degradation. This study provides a novel strategy to develop RQS-based AOPs for the highly selective degradation of aniline-containing emerging contaminants.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Mengge Fan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanchun Deng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants (Basel) 2023; 12:1953. [PMID: 38001806 PMCID: PMC10669396 DOI: 10.3390/antiox12111953] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.
Collapse
Affiliation(s)
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| |
Collapse
|
13
|
Wu T, Liu Y, Zheng T, Dai Y, Li Z, Lin D. Fe-Based Nanomaterials and Plant Growth Promoting Rhizobacteria Synergistically Degrade Polychlorinated Biphenyls by Producing Extracellular Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12771-12781. [PMID: 37583057 DOI: 10.1021/acs.est.3c02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 μm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhongyu Li
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Ecological Civilization Academy, Anji 313300, P. R. China
| |
Collapse
|
14
|
Yang B, Ye Z, Zhu X, Huang R, Song E, Song Y. The redox activity of polychlorinated biphenyl quinone metabolite orchestrates its pro-atherosclerosis effect via CAV1 phosphorylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131697. [PMID: 37257380 DOI: 10.1016/j.jhazmat.2023.131697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Further investigations are required to prove that polychlorinated biphenyls (PCBs) exposure is a cardiovascular disease risk factor. Unlike previous studies that attributed the atherogenic effect of PCBs to aryl hydrocarbon receptor activation, we illustrated a new mechanism involved in the redox reactivity of PCBs. We discover the redox reactivity of quinone moiety is the primary factor for PCB29-pQ-induced proinflammatory response, which highly depends on the status of caveolin 1 (CAV1) phosphorylation. PCB29-pQ-mediated CAV1 phosphorylation disrupts endothelial nitric oxide synthase, toll-like receptor 4, and reduces interleukin-1 receptor-associated kinase 1 binding with CAV1. Phosphorylated proteomics analysis indicated that PCB29-pQ treatment significantly enriched phosphorylated peptides in protein binding functions, inflammation, and apoptosis signaling. Meanwhile, apolipoprotein E knockout (ApoE-/-) mice exposed to PCB29-pQ had increased atherosclerotic plaques compared to the vehicle group, while this effect was significantly reduced in ApoE-/-/CAV1-/- double knockout mice. Thus, we hypothesis CAV1 is a platform for proinflammatory cascades induced by PCB29-pQ on atherosclerotic processes. Together, these findings confirm that the redox activity of PCB metabolite plays a role in the etiology of atherosclerosis.
Collapse
Affiliation(s)
- Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
15
|
Zhang CY, Li X, Flor S, Ruiz P, Kruve A, Ludewig G, Lehmler HJ. Metabolism of 3-Chlorobiphenyl (PCB 2) in a Human-Relevant Cell Line: Evidence of Dechlorinated Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12460-12472. [PMID: 35994059 PMCID: PMC9573771 DOI: 10.1021/acs.est.2c03687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lower chlorinated polychlorinated biphenyls (LC-PCBs) and their metabolites make up a class of environmental pollutants implicated in a range of adverse outcomes in humans; however, the metabolism of LC-PCBs in human models has received little attention. Here we characterize the metabolism of PCB 2 (3-chlorobiphenyl), an environmentally relevant LC-PCB congener, in HepG2 cells with in silico prediction and nontarget high-resolution mass spectrometry. Twenty PCB 2 metabolites belonging to 13 metabolite classes, including five dechlorinated metabolite classes, were identified in the cell culture media from HepG2 cells exposed for 24 h to 10 μM or 3.6 nM PCB 2. The PCB 2 metabolite profiles differed from the monochlorinated metabolite profiles identified in samples from an earlier study with PCB 11 (3,3'-dichlorobiphenyl) under identical experimental conditions. A dechlorinated dihydroxylated metabolite was also detected in human liver microsomal incubations with monohydroxylated PCB 2 metabolites but not PCB 2. These findings demonstrate that the metabolism of LC-PCBs in human-relevant models involves the formation of dechlorination products. In addition, untargeted metabolomic analyses revealed an altered bile acid biosynthesis in HepG2 cells. Our results indicate the need to study the disposition and toxicity of complex PCB 2 metabolites, including novel dechlorinated metabolites, in human-relevant models.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Hubei
Key Laboratory of Regional Development and Environmental Response,
Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Office
of Innovation and Analytics, Simulation Science Section, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 10691 Stockholm, Sweden
| | - Gabriele Ludewig
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Phone: (319) 335-4981. Fax: (319) 335-4290.
| |
Collapse
|
16
|
Yang B, Ye Z, Wang Y, Guo H, Lehmler HJ, Huang R, Song E, Song Y. Evaluation of Early Biomarkers of Atherosclerosis Associated with Polychlorinated Biphenyl Exposure: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37011. [PMID: 35349355 PMCID: PMC8963524 DOI: 10.1289/ehp9833] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Miscellaneous cardiovascular risk factors have been defined, but the contribution of environmental pollutants exposure on cardiovascular disease (CVD) remains underappreciated. OBJECTIVE We investigated the potential impact of typical environmental pollutant exposure on atherogenesis and its underlying mechanisms. METHODS We used human umbilical vein endothelial cells (HUVECs) and apolipoprotein E knockout (ApoE-/-) mice to investigate how 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ, a toxic polychlorinated biphenyl metabolite) affects atherogenesis and identified early biomarkers of CVD associated with PCB29-pQ exposures. Then, we used long noncoding RNAs (lncRNAs) HDAC7-AS1-overexpressing ApoE-/- mice and apolipoprotein E/caveolin 1 double-knockout (ApoE-/-/CAV1-/-) mice to address the role of these early biomarkers in PCB29-pQ-induced atherogenesis. Plasma samples from patients with coronary heart disease (CHD) were also used to confirm our findings. RESULTS Our data indicate that lncRNA HDAC7-AS1 bound to MIR-7-5p via argonaute 2 in PCB29-pQ-challenged HUVECs. Our mRNA sequencing assay identified transforming growth factor-β2 (TGF-β2) as a possible target gene of MIR-7-5p; HDAC7-AS1 sponged MIR-7-5p and inhibited the binding of TGF-β2 to MIR-7-5p. The effect of PCB29-pQ-induced endothelial injury, vascular inflammation, development of plaques, and atherogenesis in ApoE-/- mice was greater with MIR-7-5p-mediated TGF-β2 inhibition, whereas HDAC7-AS1-overexpressing ApoE-/- mice and ApoE-/-/CAV1-/- mice showed the opposite effect. Consistently, plasma levels of HDAC7-AS1 and MIR-7-5p were found to be significantly associated individuals diagnosed with CHD. DISCUSSIONS These findings demonstrated that a mechanism-based, integrated-omics approach enabled the identification of potentially clinically relevant diagnostic indicators and therapeutic targets of CHD mediated by environmental contaminants using in vitro and in vivo models of HUVECs and ApoE-/- and ApoE-/-/CAV1-/- mice. https://doi.org/10.1289/EHP9833.
Collapse
Affiliation(s)
- Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yawen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongzhou Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Huang CH, Tang M, Xu D, Shao B, Li PL, Tang TS, Qin L, Zhu BZ. The critical role of unique azido-substituted chloro-O-semiquinone radical intermediates in the synergistic toxicity between sodium azide and chlorocatecholic carcinogens. Free Radic Biol Med 2021; 177:260-269. [PMID: 34673144 DOI: 10.1016/j.freeradbiomed.2021.08.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
We have shown previously that exposing bacteria to tetrachlorocatechol (TCC) and sodium azide (NaN3) together causes synergistic cytotoxicity in a biphasic mode. However, the underlying chemical mechanism remains unclear. In this study, an unexpected ring-contraction 3(2H)-furanone and two quinoid-compounds were identified as the major and minor reaction products, respectively; and two unusual azido-substituted chloro-O-semiquinone radicals were detected and characterized as the major radical intermediates by complementary applications of direct ESR, HPLC/ESI-Q-TOF and high-resolution MS studies with nitrogen-15 isotope-labeled NaN3. Taken together, we proposed a novel molecular mechanism for the reaction of TCC/NaN3: N3- may attack on tetrachloro-O-semiquinone radical, forming two transient 4-azido-3,5,6-trichloro- and 4,5-diazido-3,6-dichloro-O-semiquinone radicals, consecutively. The second-radical intermediate may either undergo an unusual zwitt-azido cleavage to form the less-toxic ring-contraction 3(2H)-furanone product, or further oxidize to form the more toxic quinoid-product 4-amino-5-azido-3,6-dichloro-O-benzoquinone. A good correlation was observed between the biphasic formation of this toxic quinone due to the two competing decomposition pathways of the radical intermediate and the biphasic synergism between TCC and NaN3, which are dependent on their molar-ratios. This is the first report of detection and identification of two unique azido-substituted chloro-O-semiquinone radicals, and an unprecedented ring-contraction mechanism via an unusually mild and facile zwitt-azido rearrangement.
Collapse
Affiliation(s)
- Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Technical Center of Zhengzhou Customs District, Zhengzhou, 450003, Henan, PR China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing, Hong Kong, China.
| |
Collapse
|
18
|
Terenzi A, La Franca M, van Schoonhoven S, Panchuk R, Martínez Á, Heffeter P, Gober R, Pirker C, Vician P, Kowol CR, Stoika R, Salassa L, Rohr J, Berger W. Landomycins as glutathione-depleting agents and natural fluorescent probes for cellular Michael adduct-dependent quinone metabolism. Commun Chem 2021; 4:162. [PMID: 36697631 PMCID: PMC9814637 DOI: 10.1038/s42004-021-00600-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 01/28/2023] Open
Abstract
Landomycins are angucyclines with promising antineoplastic activity produced by Streptomyces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide chain differs within derivatives. Herein, we report that landomycins spontaneously form Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While landomycins generally do not display emissive properties, the respective Michael adducts exerted intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the fluorescent mono-adduct. While extracellular adduct formation completely blocked the cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glutathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting agents like menadione but exerted reduced activity under hypoxia. Summarizing, landomycins represent natural glutathione-depleting agents and fluorescence probes for intracellular anthraquinone-based angucycline metabolism.
Collapse
Affiliation(s)
- Alessio Terenzi
- grid.10776.370000 0004 1762 5517Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Mery La Franca
- grid.10776.370000 0004 1762 5517Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy ,grid.22937.3d0000 0000 9259 8492Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Sushilla van Schoonhoven
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Rostyslav Panchuk
- grid.466769.cDepartment of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, Drahomanov St., 14/16, Lviv, 79005 Ukraine
| | - Álvaro Martínez
- grid.452382.a0000 0004 1768 3100Donostia International Physics Center and Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 4, Donostia, 20018 Spain
| | - Petra Heffeter
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Redding Gober
- grid.266539.d0000 0004 1936 8438College of Pharmacy, University of Kentucky, South Limestone Str. 789, Lexington, 40536-0596 USA
| | - Christine Pirker
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Petra Vician
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Christian R. Kowol
- grid.22937.3d0000 0000 9259 8492Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria ,grid.10420.370000 0001 2286 1424Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Rostyslav Stoika
- grid.466769.cDepartment of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, Drahomanov St., 14/16, Lviv, 79005 Ukraine
| | - Luca Salassa
- grid.452382.a0000 0004 1768 3100Donostia International Physics Center and Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 4, Donostia, 20018 Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, Bilbao, 48011 Spain
| | - Jürgen Rohr
- grid.266539.d0000 0004 1936 8438College of Pharmacy, University of Kentucky, South Limestone Str. 789, Lexington, 40536-0596 USA
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Spitalgasse 23, 1090, Vienna, Austria. .,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126697. [PMID: 34329100 DOI: 10.1016/j.jhazmat.2021.126697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a category of brominated flame retardants, which were widely used in industrial products since the 1970 s. Our previous studies indicated quinone-type metabolites of PBDEs (PBDE-Qs) cause neurotoxicity, however, their inherent toxicological mechanism remains unclear. Here, we first synthesized PBDE-Qs and corresponding reduced hydroquinone homologous (PBDE-HQs) with different pattern of bromine substitution. Their nucleophilic and redox properties were investigated. PBDE-Qs react with reduced glutathione (GSH) via Michael addition and bromine displacement reaction, whilst PBDE-HQs lack the ability of reacting with GSH. Of note, the displacement reaction only occurs with bromine on the quinone ring of PBDE-Qs but not phenyl ring. Next, electron paramagnetic resonance (EPR) analysis revealed the generation of SQ•-, along with their downstream hydroxyl radical (HO•) and methyl radical (•CH3) through a PBDE quinone/semiquinone/hydroquinone (Q/SQ•-/HQ) futile cycle. In addition, a structure-dependent cytotoxicity pattern was found, the exposure of PBDE-Q/HQ with bromine substitution on the quinone ring resulted in higher level of apoptosis and autophagy in BV2 cells. In conclusion, this work clearly demonstrated that the nucleophilic and redox properties of PBDE-Qs/HQs are responsible for their neurotoxicity, and this finding provide better understanding of neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yuting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China.
| |
Collapse
|
20
|
Zhu BZ, Tang M, Huang CH, Mao L. Detecting and Quantifying Polyhaloaromatic Environmental Pollutants by Chemiluminescence-Based Analytical Method. Molecules 2021; 26:molecules26113365. [PMID: 34199613 PMCID: PMC8199721 DOI: 10.3390/molecules26113365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhaloaromatic compounds (XAr) are ubiquitous and recalcitrant in the environment. They are potentially carcinogenic to organisms and may induce serious risks to the ecosystem, raising increasing public concern. Therefore, it is important to detect and quantify these ubiquitous XAr in the environment, and to monitor their degradation kinetics during the treatment of these recalcitrant pollutants. We have previously found that unprecedented intrinsic chemiluminescence (CL) can be produced by a haloquinones/H2O2 system, a newly-found ●OH-generating system different from the classic Fenton system. Recently, we found that the degradation of priority pollutant pentachlorophenol by the classic Fe(II)-Fenton system could produce intrinsic CL, which was mainly dependent on the generation of chloroquinone intermediates. Analogous effects were observed for all nineteen chlorophenols, other halophenols and several classes of XAr, and a novel, rapid and sensitive CL-based analytical method was developed to detect these XAr and monitor their degradation kinetics. Interestingly, for those XAr with halohydroxyl quinoid structure, a Co(II)-mediated Fenton-like system could induce a stronger CL emission and higher degradation, probably due to site-specific generation of highly-effective ●OH. These findings may have broad chemical and environmental implications for future studies, which would be helpful for developing new analytical methods and technologies to investigate those ubiquitous XAr.
Collapse
Affiliation(s)
- Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.-Z.Z.); (L.M.); Tel.: +86-10-62849030 (B.-Z.Z.)
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.-Z.Z.); (L.M.); Tel.: +86-10-62849030 (B.-Z.Z.)
| |
Collapse
|
21
|
Xie LN, Huang CH, Xu D, Qin L, Li F, Shan GQ, Liu ZS, Cao D, Geng FL, Mao L, Shao J, Sheng ZG, Zhu BZ. Structure-Activity Relationship Investigation on Reaction Mechanism between Chlorinated Quinoid Carcinogens and Clinically-Used Aldoxime Nerve-Agent Antidote under Physiological Condition. Chem Res Toxicol 2021; 34:1091-1100. [PMID: 33656317 DOI: 10.1021/acs.chemrestox.0c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyridinium aldoximes are best-known therapeutic antidotes used for clinical treatment of poisonings by organophosphorus nerve-agents and pesticides. Recently, we found that pralidoxime (2-PAM, a currently clinically used nerve-agent antidote) could also detoxify tetrachloro-1,4-benzoquinone (TCBQ), which is a carcinogenic quinoid metabolite of the widely used wood preservative pentachlorophenol under normal physiological conditions, via an unusually mild and facile Beckmann fragmentation mechanism accompanied by radical homolysis. However, it is not clear whether the less-chlorinated benzoquinones (CnBQs, n ≤ 3) act similarly; if so, what is the structure-activity relationship? In this study, we found that (1) The stability of reaction intermediates produced by different CnBQs and 2-PAM was dependent not only on the position but also the degree of Cl-substitution on CnBQs, which can be divided into TCBQ- and DCBQ (dichloro-1,4-benzoquinone)-subgroup; (2) The pKa value of hydroxlated quinones (Cn-1BQ-OHs, the hydrolysis products of CnBQs), determined the stability of corresponding intermediates, that is, the decomposition rate of the intermediates depended on the acidity of Cn-1BQ-OHs; (3) The pKa value of the corresponding Cn-1BQ-OHs could also determine the reaction ratio of Beckmann fragmentation to radical homolysis in CnBQs/2-PAM. These new findings on the structure-activity relationship of the halogenated quinoid carcinogens detoxified by pyridinium aldoxime therapeutic agents via Beckmann fragmentation and radical homolysis reaction may have broad implications on future biomedical and environmental research.
Collapse
Affiliation(s)
- Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China.,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China.,School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guo-Qiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Fang-Lan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences University of Chinese Academy of Sciences, Beijing 100085, P. R. China.,Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing/Hong Kong, P. R. China
| |
Collapse
|
22
|
Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. CHEMOSPHERE 2021; 263:128125. [PMID: 33297114 DOI: 10.1016/j.chemosphere.2020.128125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent industrial pollutants that have been linked to breast cancer progression. However, their molecular mechanism(s) are currently unclear. Our previous assessment suggested that the highly reactive PCB metabolite 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ) induces the metastasis of breast cancer. Here, our data illustrate that PCB29-pQ increases cancer stem cell (CSC) marker expression, resulting in an increase in the epithelial-mesenchymal transition (EMT) in MDA-MB-231 breast cancer cells; further, the Wnt/β-catenin pathway also becomes activated by PCB29-pQ. When the Wnt/β-catenin pathway is inhibited, the promotion of CSC properties and EMT by PCB29-pQ were accordingly reversed. In addition, the overproduction of reactive oxygen species (ROS) mediated by PCB29-pQ plays a key role in Wnt/β-catenin activation. Collectively, our current data designated the regulatory role of Wnt/β-catenin in PCB29-pQ-triggered acquisition of CSC properties and EMT.
Collapse
Affiliation(s)
- Qi Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
23
|
Lv X, Liu Z, Xu L, Song E, Song Y. Tetrachlorobenzoquinone exhibits immunotoxicity by inducing neutrophil extracellular traps through a mechanism involving ROS-JNK-NOX2 positive feedback loop. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115921. [PMID: 33187846 DOI: 10.1016/j.envpol.2020.115921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is a common metabolite of persistent organic pollutants pentachlorophenol (PCP) and hexachlorobenzene (HCB). Current reports on the toxicity of TCBQmainly focused on its reproductive toxicity, neurotoxicity, carcinogenicity and cardiovascular toxicity. However, the possible immunotoxicity of TCBQ remains unclear. The release of neutrophil extracellular traps (NETs) is a recently discovered immune response mechanism, however, excess NETs play a pathogenic role in various immune diseases. In an attempt to address concerns regarding the immunotoxicity of TCBQ, we adopted primary mouse neutrophils as the research object, explored the influence of TCBQ on the formation of NETs. The results showed that TCBQ could induce NETs rapidly in a reactive oxygen species (ROS)-dependent manner. Moreover, TCBQ promoted the phosphorylation of c-Jun N-terminal kinase (JNK) mitogen activated protein kinase (MAPK), but not p38 or extracellular signal related kinase (ERK) in neutrophils. Mechanistically, JNK activation enhanced the expression of NADPH oxidase enzyme 2 (NOX2), which further accelerated the generation of ROS and thus amplified the formation of NETs. The pharmacologic blockage of JNK or NOX2 effectively ameliorated TCBQ-induced ROS and NETs, implying that ROS-JNK-NOX2 positive feedback loop was involved in TCBQ-induced NETs. In conclusion, we speculated that targeting NETs formation would be a promising therapeutic strategy in modulating the immunotoxicity of TCBQ.
Collapse
Affiliation(s)
- Xuying Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
24
|
In situ organic Fenton-like catalysis triggered by anodic polymeric intermediates for electrochemical water purification. Proc Natl Acad Sci U S A 2020; 117:30966-30972. [PMID: 33229548 DOI: 10.1073/pnas.2005035117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic Fenton-like catalysis has been recently developed for water purification, but redox-active compounds have to be ex situ added as oxidant activators, causing secondary pollution problem. Electrochemical oxidation is widely used for pollutant degradation, but suffers from severe electrode fouling caused by high-resistance polymeric intermediates. Herein, we develop an in situ organic Fenton-like catalysis by using the redox-active polymeric intermediates, e.g., benzoquinone, hydroquinone, and quinhydrone, generated in electrochemical pollutant oxidation as H2O2 activators. By taking phenol as a target pollutant, we demonstrate that the in situ organic Fenton-like catalysis not only improves pollutant degradation, but also refreshes working electrode with a better catalytic stability. Both 1O2 nonradical and ·OH radical are generated in the anodic phenol conversion in the in situ organic Fenton-like catalysis. Our findings might provide a new opportunity to develop a simple, efficient, and cost-effective strategy for electrochemical water purification.
Collapse
|
25
|
Huang CH, Xu D, Qin L, Li PL, Tang TS, Zhu BZ. Unusual Two-Step Claisen-type Rearrangement Reaction under Physiological Conditions. J Org Chem 2020; 85:14945-14953. [DOI: 10.1021/acs.joc.0c01675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing 100085, P. R. China
| |
Collapse
|
26
|
Liu J, Tan Y, Song E, Song Y. A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their Correlation with Oxidative Stress. Chem Res Toxicol 2020; 33:2022-2042. [DOI: 10.1021/acs.chemrestox.0c00078] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People’s Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ya Tan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
27
|
Yang B, Qin Q, Xu L, Lv X, Liu Z, Song E, Song Y. Polychlorinated Biphenyl Quinone Promotes Atherosclerosis through Lipid Accumulation and Endoplasmic Reticulum Stress via CD36. Chem Res Toxicol 2020; 33:1497-1507. [PMID: 32434321 DOI: 10.1021/acs.chemrestox.0c00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic environmental pollutants. According to previous epidemiological reports, PCBs exposure is highly related to atherosclerosis. However, studies of PCBs metabolites and atherosclerosis and corresponding mechanism studies are scarce. In this study, we evaluated the effect of 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ), a presumptive PCB metabolite, on atherosclerosis. Aortic plaques were increased in PCB29-pQ-treated ApoE-/- mice [intraperitoneally (i.p.) injection of 5 mg/kg body weight of PCB29-pQ once a week for 12 continuous weeks, high-fat feeding]. We observed lipids accumulation and the release of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in ApoE-/- mice. In addition, we found that PCB29-pQ promoted the levels of total cholesterol, free cholesterol, triglyceride, and cholesteryl ester. Mechanism investigation indicated that PCB29-pQ induces the activation of three branches of endoplasmic reticulum (ER) stress response, that is, phosphorylated protein kinase R-like ER kinase (p-PERK), eukaryotic translation initiation factor 2α (eIF2α) and transcription factor 6 (ATF6), which is responsible for downstream necrosis. More importantly, we found the silence of CD36 is able to reverse PCB29-pQ-induced adverse effects completely. Overall, PCB29-pQ exposure resulted in lipid accumulation, ER stress response, apoptosis, and pro-inflammatory cytokines release via CD36, ultimately leading to atherosclerosis.
Collapse
Affiliation(s)
- Bingwei Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Qi Qin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Lei Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xuying Lv
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Zixuan Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
28
|
Liu J, Tan Y, Yang B, Wu Y, Fan B, Zhu S, Song E, Song Y. Polychlorinated biphenyl quinone induces hepatocytes iron overload through up-regulating hepcidin expression. ENVIRONMENT INTERNATIONAL 2020; 139:105701. [PMID: 32278200 DOI: 10.1016/j.envint.2020.105701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are infamous industry by-products or additives, and increasing evidences demonstrated that their exposure is associate with adverse effects on human health. Liver, as the dominate site for xenobiotic metabolism, is apt to be the primary target of PCBs insult. Although PCBs' hepatic toxic effects have been extensively studied, however, the biotransformation of PCBs in liver and the toxicities of associated PCB metabolites are neglected at some extent. Thus, we choose 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ), a surrogate PCB29 metabolite, and evaluated its contribution on hepatotoxicity. In the current study, we discovered PCB29-pQ-induced lipid peroxidation and iron overload both in vivo and in vitro. Further mechanistic research confirmed iron overload is caused by reactive oxygen species (ROS)-driven hepcidin disorder in hepatic cells, and the increase of hepcidin is regulated by the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2).
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China; Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Ya Tan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yunjie Wu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Bailing Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Sixi Zhu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
29
|
Shao J, Huang CH, Shao B, Qin L, Xu D, Li F, Qu N, Xie LN, Kalyanaraman B, Zhu BZ. Potent Oxidation of DNA by Haloquinoid Disinfection Byproducts to the More Mutagenic Imidazolone dIz via an Unprecedented Haloquinone-Enoxy Radical-Mediated Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6244-6253. [PMID: 32323976 DOI: 10.1021/acs.est.9b07886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection byproducts in drinking water. We found recently that halogenated quinones could enhance the decomposition of hydroperoxides independent of transition-metal ions and formation of the novel quinone enoxy/ketoxy radicals. Here, we show that the major oxidation product was 2-amino-5-[(2-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) when the nucleoside 2'-deoxyguanosine (dG) was treated with tetrachloro-1,4-benzoquinone (TCBQ) and t-butyl hydroperoxide (t-BuOOH). The formation of dIz was markedly inhibited by typical radical spin-trapping agents. Interestingly and unexpectedly, we found that the generated quinone enoxy radical played a critical role in dIz formation. Using [15N5]-8-oxodG, dIz was found to be produced either directly from dG or through the transient formation of 8-oxodG. Based on these data, we proposed that the production of dIz might be through an unusual haloquinone-enoxy radical-mediated mechanism. Analogous results were observed in the oxidation of ctDNA by TCBQ/t-BuOOH and when t-BuOOH was substituted by the endogenously generated physiologically relevant hydroperoxide 13S-hydroperoxy-9Z,11E-octadecadienoic acid. This is the first report that halogenated quinoid carcinogens and hydroperoxides can induce potent oxidation of dG to the more mutagenic product dIz via an unprecedented quinone-enoxy radical-mediated mechanism, which may partly explain their potential carcinogenicity.
Collapse
Affiliation(s)
- Jie Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Feng Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Na Qu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
30
|
Cytotoxicity and reactivity of a redox active 1,4-quinone-pyrazole compound and its Ru(II)-p-cymene complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Mao L, Huang CH, Shao J, Qin L, Xu D, Shao B, Zhu BZ. An unexpected antioxidant and redox activity for the classic copper-chelating drug penicillamine. Free Radic Biol Med 2020; 147:150-158. [PMID: 31857235 DOI: 10.1016/j.freeradbiomed.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/30/2019] [Accepted: 12/14/2019] [Indexed: 11/26/2022]
Abstract
Penicillamine has been widely-used clinically as a copper-chelating drug for the treatment of copper-overload in Wilson's disease. In this study, we found that penicillamine provided marked protection against cytotoxicity induced by tetrachlorohydroquinone (TCHQ), a major toxic metabolite of the well-known wood preservative pentachlorophenol, while other classic copper-chelating agents do not. We found, unexpectedly, that both TCHQ autooxidation and tetrachlorosemiquinone radical (TCSQ•-) formation were remarkably delayed by penicillamine. Further investigation showed that TCSQ•- was reduced back to TCHQ by penicillamine, with the concurrent formation of its corresponding disulfide. These data demonstrated that the protection by penicillamine against TCHQ-induced toxicity was not due to its classic Cu-chelating property, but rather to its reduction of the reactive TCSQ•- to the much less-reactive TCHQ. This is the first report of an unexpected antioxidant and redox activity for penicillamine, which might prove highly relevant to its biological activities.
Collapse
Affiliation(s)
- Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing, Hong Kong, PR China.
| |
Collapse
|
32
|
Zhu BZ, Xu D, Qin L, Huang CH, Xie LN, Mao L, Shao J, Kalyanaraman B. An unexpected new pathway for nitroxide radical production via more reactve nitrogen-centered amidyl radical intermediate during detoxification of the carcinogenic halogenated quinones by N-alkyl hydroxamic acids. Free Radic Biol Med 2020; 146:150-159. [PMID: 31302229 DOI: 10.1016/j.freeradbiomed.2019.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/11/2023]
Abstract
We found previously that nitroxide radical of desferrioxamine (DFO•) could be produced from the interaction between the classic iron chelating agent desferrioxamine (DFO, an N-alkyl trihydroxamic acid) and tetrachlorohydroquinone (TCHQ), one of the carconogenic quinoind metabolites of the widely used wood preservative pentachlorophenol. However, the underlying molecular mechanism remains unclear. Here N-methylacetohydroxamic acid (N-MeAHA) was synthesized and used as a simple model compound of DFO for further mechanistic study. As expected, direct ESR studies showed that nitroxide radical of N-MeAHA (Ac-(CH3)NO•) can be produced from N-MeAHA/TCHQ. Interestingly and unexpectedly, when TCHQ was substituted by its oxidation product tetrachloro-1,4-benzoquinone (TCBQ), although Ac-(CH3)NO• could also be produced, no concurrent formation of tetrachlorosemiquinone radical (TCSQ•) and TCHQ was detected, suggesting that Ac-(CH3)NO• did not result from direct oxidation of N-MeAHA by TCSQ• or TCBQ as proposed previously. To our surprise, a new nitrogen-centered amidyl radical was found to be generated from N-MeAHA/TCBQ, which was observed by ESR with the spin-trapping agents and further unequivacally identified as Ac-(CH3)N• by HPLC-MS. The final product of amidyl radical was isolated and identified as its corresponding amine. Analogous radical homolysis mechanism was observed with other halogenated quinoid compounds and N-alkyl hydroxamic acids including DFO. Interestingly, amidyl radicals were found to induce both DNA strand breaks and DNA adduct formation, suggesting that N-alkyl hydroxamic acids may exert their potential side-toxic effects via forming the reactive amidyl radical species. This study represents the first report of an unexpected new pathway for nitroxide radical production via hydrogen abstration reaction of a more reactive amidyl radical intermediate during the detoxification of the carcinogenic polyhalogenated quinones by N-alkyl hydroxamic acids, which provides more direct experimental evidence to better explain not only our previous finding that excess DFO can provide effective but only partial protection against TCHQ (or TCBQ)-induced biological damage, and also the potential side-toxic effects induced by DFO and other N-alkyl hydroxamic acid drugs.
Collapse
Affiliation(s)
- Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | | |
Collapse
|
33
|
Yang B, Wang Y, Qin Q, Xia X, Liu Z, Song E, Song Y. Polychlorinated Biphenyl Quinone Promotes Macrophage-Derived Foam Cell Formation. Chem Res Toxicol 2019; 32:2422-2432. [PMID: 31680514 DOI: 10.1021/acs.chemrestox.9b00184] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polychlorinated biphenyls (PCBs) are organic environmental pollutants that are accused of various toxic effects. PCB exposure is widely believed to be associated with atherosclerosis, but the underlying mechanisms are unclear. Although PCBs are easily metabolized, there is rarely information on the effects of their metabolites on atherosclerosis. Currently, we evaluate the effect of 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ) on the critical phase of atherosclerosis development, that is, the formation of macrophage-derived foam cells. We exposed Ox-LDL-induced RAW264.7 cells to 2.5 μM and 5 μM PCB29-pQ. Varieties of evidence have demonstrated that PCB29-pQ promotes foam cell formation and develops proinflammatory cascade and cell necroptosis. In detail, we observed that PCB29-pQ increased levels of total cholesterol (TC), free cholesterol (FC), triglyceride (TG), and cholesteryl ester (CE) by increasing the cholesterol influx and reducing the cholesterol efflux. Moreover, we found that PCB29-pQ induced inflammatory cytokines, such as tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and IL-1β, released by activating the mitogen-activated protein kinase (MAPK)-nuclear factor kappa B (NF-κB) inflammatory pathway. In addition, we demonstrated that PCB29-pQ induced cell necroptosis via receptor interacting protein kinases 1 and 3 (RIPK1/3) and a mixed-lineage kinase domain-like (MLKL) pathway. Finally, the overproduction of reactive oxygen species (ROS) by PCB29-pQ played significant roles in these processes, which could be reversed with an antioxidant. Overall, our results indicated that PCB29-pQ promoted the macrophage formation of foam cells, inflammation, and cell necroptosis.
Collapse
Affiliation(s)
- Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Qi Qin
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| |
Collapse
|
34
|
Lou J, Wang W, Zhu L. Occurrence, Formation, and Oxidative Stress of Emerging Disinfection Byproducts, Halobenzoquinones, in Tea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11860-11868. [PMID: 31509700 DOI: 10.1021/acs.est.9b03163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halobenzoquinones (HBQs) are frequently detected disinfection byproducts (DBPs) in drinking water with high toxicity and relevance to public health. In this study, we characterized the occurrence, formation, and oxidative stress of the HBQs in tea. 2,6-DCBQ and TetraC-1,2-BQ were identified in all prepared teas at total concentrations of 1.3-2.0 ng/L. 2,6-DCBQ originated from drinking water DBPs, while TetraC-1,2-BQ originated from tea leaves or were generated during tea polyphenol chlorination. HBQs in tea induced the formation of reactive oxygen species and semiquinone radicals, and the oxidative stress could be depleted by tea polyphenols, e.g., (-)-epigallocatechin gallate (EGCG). High-resolution mass spectrometry analysis indicated that the HBQs combined with EGCG and formed adducts at a ratio of 1:1 or 2:1 with the binding sites on the A ring and B ring of EGCG. The viability of HepG2 cells exposed to 50 μM 2,6-DCBQ was increased from 20.0% to 65.2% when 50 μM of EGCG was added. These results demonstrated that various HBQs can occur in tea due to the HBQ DBPs in drinking water, the leachate from tea leaves, and the chlorination of tea polyphenols; furthermore, the oxidative stress and cellular toxicity induced by HBQs in tea could be decreased by tea polyphenols. This is the first study to report HBQs in tea, elucidate the sources of HBQs, and assess relevant health risks.
Collapse
Affiliation(s)
- Jinxiu Lou
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Wei Wang
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Lizhong Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| |
Collapse
|
35
|
Feng D, Wang X, Li E, Bu X, Qiao F, Qin J, Chen L. Dietary Aroclor 1254-Induced Toxicity on Antioxidant Capacity, Immunity and Energy Metabolism in Chinese Mitten Crab Eriocheir sinensis: Amelioration by Vitamin A. Front Physiol 2019; 10:722. [PMID: 31244681 PMCID: PMC6581683 DOI: 10.3389/fphys.2019.00722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Effects of dietary Polychlorinated biphenyl (PCB) exposure and dietary vitamin A supplementation on Chinese mitten crab Eriocheir sinensis were studied with the aim to explain dietary PCB toxicity and toxic alleviation by vitamin A intake in crab. Four diets were used including three experimental diets containing 0, 80000 or 240000 IU/kg vitamin A with each experimental diet containing 10 mg PCB/kg diet, and a control diet (without vitamin A and PCB supplementation) in 56 days feeding trial. Crabs fed the PCB-only diet had significantly lower weight gain than those fed the control diet. No significant difference was observed in crab survival among all groups. Crabs fed the PCB-only diet had a significantly higher malondialdehyde content and antioxidase superoxide dismutase activity in the serum and hepatopancreas, and higher erythromycin N-demethylase and glutathione S-transferase activities in the hepatopancreas than those fed the control diet. However, supplementation of dietary vitamin A decreased the levels of all these parameters. The hepatopancreatic cytochrome P450 2 and 4 (CYP2, CYP4), fatty acid binding proteins 3 and 10 (FABP3, FABP10) and intracellular lipolytic enzyme (IL) Messenger Ribonucleic Acid (mRNA) levels in the PCB-only group were significantly higher than those in the control group, and dietary 240000 IU/kg vitamin A supplementation decreased hepatopancreatic CYP4, FABP3, FABP10 and IL enzyme mRNA level. The crabs fed 80000 IU/kg vitamin A supplementation diet had the highest level of retinoid X receptor mRNA in the hepatopancreas. The structure of the hepatopancreas was damaged and the deposit of lipid droplets decreased with dietary PCB exposure. Both levels of vitamin A supplementation alleviated the damage and increased lipid droplets in the hepatopancreas. Dietary PCB exposure significantly reduced total hemocyte count (THC), and phenoloxidase, acid phosphatase activities in the serum. Post-challenge survival of crab in the experimental PCB-only diet group was low compared with that in the control. Supplementation of 240000 IU/kg vitamin A significantly increased the THC and phenoloxidase activity in the serum and post-challenge survival compared with those in the PCB-only group. This study indicates that dietary vitamin A can improve the antioxidant capacity, immune response, detoxification enzymes activities, energy metabolism and hepatopancreas tissue structure of Chinese mitten crab fed PCB contaminated diets.
Collapse
Affiliation(s)
- Dexiang Feng
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Erchao Li
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, China
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
36
|
Dong W, Zhu Q, Yang B, Qin Q, Wang Y, Xia X, Zhu X, Liu Z, Song E, Song Y. Polychlorinated Biphenyl Quinone Induces Caspase 1-Mediated Pyroptosis through Induction of Pro-inflammatory HMGB1-TLR4-NLRP3-GSDMD Signal Axis. Chem Res Toxicol 2019; 32:1051-1057. [DOI: 10.1021/acs.chemrestox.8b00376] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenjing Dong
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qiushuang Zhu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qi Qin
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
37
|
Sun X, Wei D, Liu W, Geng J, Liu J, Du Y. Formation of novel disinfection by-products chlorinated benzoquinone, phenyl benzoquinones and polycyclic aromatic hydrocarbons during chlorination treatment on UV filter 2,4-dihydroxybenzophenone in swimming pool water. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:725-733. [PMID: 30685680 DOI: 10.1016/j.jhazmat.2019.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
2,4-Dihydroxybenzophenone (BP-1) is an important component and metabolite of benzophenone-type (BPs) UV filters, it is widely used in commercial products and frequently detected in environmental media and organism samples. The transformation characteristics and genotoxicity changes of BP-1 during chlorination disinfection process were explored. Nineteen transformation products were separated and tentatively identified, eleven of which were not previously reported. Most importantly, nine novel by-products including one chlorobenzoquinone, four phenyl benzoquinones, and four polycyclic aromatic hydrocarbons were formed during BP-1 chlorination. Plausible transformation pathways for BP-1 during chlorination treatment were proposed, in which chlorination substitution, Baeyer-Villiger oxidation, hydrolysis, and CC coupling reactions were involved. The CC coupling reaction is firstly observed in chlorination disinfection system. Higher pH values and chlorine doses would be a benefit for BP-1 transformation. The genotoxicity of the reaction mixture increased significantly with increasing chlorine dose under acid and neutral conditions due to the formation of benzoquinones and polycyclic aromatic hydrocarbons. It was noted that BP-1 and its chlorinated products were found in swimming pool water samples. This work inferred that BP-1 and its analogs are transformed during the chlorination disinfection process and may cause potential ecological and health risks.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialin Geng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Xie LN, Shao J, Huang CH, Li F, Xu D, Kalyanaraman B, Zhu BZ. An unusual double radical homolysis mechanism for the unexpected activation of the aldoxime nerve-agent antidotes by polyhalogenated quinoid carcinogens under normal physiological conditions. Free Radic Biol Med 2019; 130:1-7. [PMID: 30352302 DOI: 10.1016/j.freeradbiomed.2018.10.425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/21/2023]
Abstract
We have recently shown that the pyridinium aldoximes, best-known as therapeutic antidotes for chemical warfare nerve-agents, could markedly detoxify the carcinogenic tetrachloro-1,4-benzoquinone (TCBQ) via an unusual double Beckmann fragmentation mechanism. However, it is still not clear why pralidoxime (2-PAM) cannot provide full protection against TCBQ-induced biological damages even when 2-PAM was in excess. Here we show, unexpectedly, that TCBQ can also activate pralidoxime to generate a reactive iminyl radical intermediate in two-consecutive steps, which was detected and unequivocally characterized by the complementary application of ESR spin-trapping, HPLC/MS and nitrogen-15 isotope-labeling studies. The same iminyl radical was observed when TCBQ was substituted by other halogenated quinones. The end product of iminyl radical was isolated and identified as its corresponding reactive and toxic aldehyde. Based on these data, we proposed that the reaction of 2-PAM and TCBQ might be through the following two competing pathways: a nucleophilic attack of 2-PAM on TCBQ forms an unstable transient intermediate, which can decompose not only heterolytically to form 2-CMP via double Beckmann fragmentation, but also homolytically leading to the formation of a reactive iminyl radical in double-steps, which then via H abstraction and further hydrolyzation to form its corresponding more toxic aldehyde. Analogous radical homolysis mechanism was observed with other halogenated quinones and pyridinium aldoximes. This study represents the first detection and identification of reactive iminyl radical intermediates produced under normal physiological conditions, which provides direct experimental evidence to explain only the partial protection by 2-PAM against TCBQ-induced biological damages, and also the potential side-toxic effects induced by 2-PAM and other pyridinium aldoxime nerve-agent antidotes.
Collapse
Affiliation(s)
- Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
39
|
Liu Z, Dong W, Yang B, Peng L, Xia X, Pu L, Zhang N, Song E, Song Y. Tetrachlorobenzoquinone-Induced Nrf2 Confers Neuron-like PC12 Cells Resistance to Endoplasmic Reticulum Stress via Regulating Glutathione Synthesis and Protein Thiol Homeostasis. Chem Res Toxicol 2018; 31:1230-1239. [DOI: 10.1021/acs.chemrestox.8b00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Wenjing Dong
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Lu Peng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Lanxiang Pu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Na Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| |
Collapse
|
40
|
Wang C, Yang X, Zheng Q, Moe B, Li XF. Halobenzoquinone-Induced Developmental Toxicity, Oxidative Stress, and Apoptosis in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10590-10598. [PMID: 30125093 DOI: 10.1021/acs.est.8b02831] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The developmental toxicity of water disinfection byproducts remains unclear. Here we report the study of halobenzoquinone (HBQ)-induced in vivo developmental toxicity and oxidative stress using zebrafish embryos as a model. Embryos were exposed to 0.5-10 μM of individual HBQs and 0.5-5 mM haloacetic acids for up to 120 h postfertilization (hpf). LC50 values of the HBQs at 24 hpf were 4.6-9.8 μM, while those of three haloacetic acids were up to 200 times higher at 1900-2600 μM. HBQ exposure resulted in significant developmental malformations in larvae, including failed inflation of the gas bladder, heart malformations, and curved spines. An increase in reactive oxygen species was observed, together with a decrease in superoxide dismutase activity and glutathione content. Additionally, the antioxidant N-acetyl-l-cysteine significantly mitigated all HBQ-induced effects, supporting that oxidative stress contributes to HBQ toxicity. Further experiments examined HBQ-induced effects on DNA and genes. HBQ exposure increased 8-hydroxydeoxyguanosine levels, DNA fragmentation, and apoptosis in larvae, with apoptosis induction related to changes in the gene expression of p53 and mdm2. These results suggest that HBQs are acutely toxic, causing oxidative damage and developmental toxicity to zebrafish larvae.
Collapse
Affiliation(s)
- Chang Wang
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Xue Yang
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
- School of Environmental Ecology and Biological Engineering , Wuhan Institute of Technology , Wuhan 430025 , China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|
41
|
Wang Y, Wang Y, Liu Z, Dong W, Yang B, Xia X, Song E, Song Y. Polychlorinated Biphenyl Quinones Promotes Breast Cancer Metastasis through Reactive Oxygen Species-Mediated Nuclear Factor κB-Matrix Metalloproteinase Signaling. Chem Res Toxicol 2018; 31:954-963. [DOI: 10.1021/acs.chemrestox.8b00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Wenjing Dong
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China, 400715
| |
Collapse
|
42
|
Wang W, Qian Y, Li J, Aljuhani N, Siraki AG, Le XC, Li XF. Characterization of Mechanisms of Glutathione Conjugation with Halobenzoquinones in Solution and HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2898-2908. [PMID: 29420883 DOI: 10.1021/acs.est.7b05945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Halobenzoquinones (HBQs) are a class of emerging disinfection byproducts. Chronic exposure to chlorinated drinking water is potentially associated with an increased risk of human bladder cancer. HBQ-induced cytotoxicity involves depletion of cellular glutathione (GSH), but the underlying mechanism remains unclear. Here we used ultrahigh performance liquid chromatography-high resolution mass spectrometry and electron paramagnetic resonance spectroscopy to study interactions between HBQs and GSH and found that HBQs can directly react with GSH, forming various glutathionyl conjugates (HBQ-SG) in both aqueous solution and HepG2 cells. We found that the formation of HBQ-SG varies with the initial molar ratio of GSH to HBQ in reaction mixtures. Higher molar ratios of GSH to HBQ facilitate the conjugation of more GSH molecules to an HBQ molecule. We deduced the reaction mechanism between GSH and HBQs, which involves redox cycling-induced formation of halosemiquinone (HSQ) free radicals and glutathione disulfide, Michael addition, as well as nucleophilic substitution. The proposed reaction rates are in the following order: formation of HSQ radicals > substitution of bromine by GSH > Michael addition of GSH on the benzoquinone ring > substitution of chlorine by GSH > substitution of the methyl group by GSH. The conjugates identified in HBQ-treated HepG2 cells were the same as those found in aqueous solution containing a 5:1 ratio of GSH:HBQs.
Collapse
Affiliation(s)
- Wei Wang
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Yichao Qian
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Jinhua Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Naif Aljuhani
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
- Department of Chemistry, Faculty of Science , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| |
Collapse
|
43
|
Zhu B, Shen C, Gao H, Zhu L, Shao J, Mao L. Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes: Mechanism, structure-activity relationship and potential applications. J Environ Sci (China) 2017; 62:68-83. [PMID: 29289294 DOI: 10.1016/j.jes.2017.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The ubiquitous distribution of halogenated aromatic compounds (XAr) coupled with their carcinogenicity has raised public concerns on their potential risks to both human health and the ecosystem. Recently, advanced oxidation processes (AOPs) have been considered as an "environmentally-friendly" technology for the remediation and destruction of such recalcitrant and highly toxic XAr. During our study on the mechanism of metal-independent production of hydroxyl radicals (OH) by halogenated quinones and H2O2, we found, unexpectedly, that an unprecedented OH-dependent two-step intrinsic chemiluminescene (CL) can be produced by H2O2 and tetrachloro-p-benzoquinone, the major carcinogenic metabolite of the widely used wood preservative pentachlorophenol. Further investigations showed that, in all OH-generating systems, CL can also be produced not only by pentachlorophenol and all other halogenated phenols, but also by all XAr tested. A systematic structure-activity relationship study for all 19 chlorophenolic congeners showed that the CL increased with an increasing number of Cl-substitution in general. More importantly, a relatively good correlation was observed between the formation of quinoid/semiquinone radical intermediates and CL generation. Based on these results, we propose that OH-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual CL production; and a rapid, sensitive, simple, and effective CL method was developed not only to detect and quantify trace amount of XAr, but also to provide useful information for predicting the toxicity or monitoring real-time degradation kinetics of XAr. These findings may have broad chemical, environmental and biological implications for future studies on halogenated aromatic persistent organic pollutants.
Collapse
Affiliation(s)
- Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chen Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiying Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liya Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
44
|
Xie LN, Huang CH, Xu D, Li F, Zhu JG, Shen C, Shao B, Gao HY, Kalyanaraman B, Zhu BZ. Unusual Double Beckmann Fragmentation Reaction under Physiological Conditions. J Org Chem 2017; 82:13084-13092. [DOI: 10.1021/acs.joc.7b02106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lin-Na Xie
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Chun-Hua Huang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Dan Xu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Feng Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jun-Ge Zhu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Chen Shen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Bo Shao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hui-Ying Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Balaraman Kalyanaraman
- Department
of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ben-Zhan Zhu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
45
|
Du P, Zhao H, Cao H, Huang CH, Liu W, Li Y. Transformation of halobenzoquinones with the presence of amino acids in water: Products, pathways and toxicity. WATER RESEARCH 2017; 122:299-307. [PMID: 28614742 DOI: 10.1016/j.watres.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
The transformation and detoxification of halobenzoquinones (HBQs), a class of emerging disinfection byproducts (DBPs), was studied in the presence of amino acids (AAs). The reaction activity of three HBQs with AAs generally ranked as 2-chlorobenzoquinone (CBQ) < 2,6-dichlorobezoquinone (DCBQ) < tetrachloroquinone (TCBQ), consistent with their halogenation degree and the calculated electron affinity (EA) results. According to mass spectrometry and density functional theory (DFT) calculations, AAs can easily covalently incorporate into HBQs via nucleophilic addition (CBQ and DCBQ) or substitution (TCBQ) through CNC or CSC linkages. Hydroxylation, nucleophilic reaction and decarboxylation were proposed to be the three major reaction pathways for HBQs transformation with AAs. HBQs firstly underwent the spontaneous hydrolysis, resulting in OH-HBQs formation. Then, nucleophilic addition/substitution of AAs occurred on HBQs and OH-HBQs to produce AA-HBQs/AA-HBQs-OH adducts. These adducts were subsequently oxidized into their corresponding decarboxylated forms. Based on the results of Luminous bacterium Q67 acute toxicity test, the toxicity of HBQs solution greatly decreased with AAs presented. The toxicity change was well explained by the lowest unoccupied molecular orbital energy (ELUMO) of formed products. Notably, the step that AAs nucleophilic bonded with HBQs led to the highest rise of ELUMO, which should be the most effective pathway for HBQs detoxification. This study shows that binding with amino nitrogen compounds should be an important process for HBQs transformation and detoxification, which helps to better understand the fate of this typical DBP in surface water.
Collapse
Affiliation(s)
- Penghui Du
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Wen Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Yao Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Liu Z, Wang Y, Wang Y, Dong W, Xia X, Song E, Song Y. Effect of Subcellular Translocation of Protein Disulfide Isomerase on Tetrachlorobenzoquinone-Induced Signaling Shift from Endoplasmic Reticulum Stress to Apoptosis. Chem Res Toxicol 2017; 30:1804-1814. [DOI: 10.1021/acs.chemrestox.7b00118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Yawen Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Yuxin Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Wenjing Dong
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Erqun Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Yang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| |
Collapse
|
47
|
Shao B, Mao L, Qu N, Wang YF, Gao HY, Li F, Qin L, Shao J, Huang CH, Xu D, Xie LN, Shen C, Zhou X, Zhu BZ. Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals. Free Radic Biol Med 2017; 104:54-63. [PMID: 28062359 DOI: 10.1016/j.freeradbiomed.2016.12.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H2O2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Na Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ya-Fen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Hui-Ying Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Feng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chen Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
48
|
The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via Toll-like receptor 4 signaling: The protective role of melatonin preconditioning. Toxicology 2017; 381:39-50. [PMID: 28238930 DOI: 10.1016/j.tox.2017.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
This study is aimed to investigate the inflammation and neurological dysfunction induced by tetrachloro-p-benzoquinone (TCBQ) through Toll-like receptor 4 (TLR4) signaling. We also investigated the protective role of melatonin as an antioxidant and anti-inflammatory agent. In vitro model was established by rat pheochromocytoma PC12 cells, meanwhile, TLR4 wild-type (C57BL/6) and knockout mice (C57BL/10ScNJ TLR4-/-) were used as in vivo model. In vitro study showed TCBQ exposure enhanced the expression of TLR4, myeloid differentiation factor 88 (MyD88) at both transcriptional and post-transcriptional levels. By contrast, melatonin decreased TLR4 and MyD88 expressions. Moreover, our result indicated that melatonin disrupted the formation of TLR4/MyD88/MD2/CD14 complex. In addition, melatonin terminated TCBQ-mediated phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK) signaling and hampered its downstream pro-inflammatory cytokine releases. In vivo result also indicated TLR4 deficiency partially protected against TCBQ-induced morphological and neuropathological changes in mice brain, suggested the role of TLR4. In conclusion, melatonin modulates TCBQ-mediated inflammatory genes through TLR4/MyD88-dependent signaling pathway. Our current study, to the best of our knowledge, is the first time show melatonin not only disrupt the binding of TLR4 and MyD88, but also restricted the formation of TLR4/MD2/CD14 complex, suggesting that melatonin supplementary may represent a valuable therapeutic strategy for inflammatory neurological dysfunction.
Collapse
|
49
|
Lebeuf R, Nardello-Rataj V, Aubry JM. Hydroquinone-Based Biarylic Polyphenols as Redox Organocatalysts for Dioxygen Reduction: Dramatic Effect of Orcinol Substituent on the Catalytic Activity. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raphaël Lebeuf
- Univ. Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide; F-59000 Lille France
| | - Véronique Nardello-Rataj
- Univ. Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide; F-59000 Lille France
| | - Jean-Marie Aubry
- Univ. Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide; F-59000 Lille France
| |
Collapse
|
50
|
Li P, Guo C, Feng W, Sun Q, Wang W. A DFT study on the reaction mechanism between tetrachloro-o-benzoquinone and H2O2 and an alternative reaction approach to produce the hydroxyl radical. RSC Adv 2017. [DOI: 10.1039/c7ra01878a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reaction mechanism between tetrachloro-o-benzoquinone and H2O2 was studied theoretically and an alternative approach to produce the hydroxyl radical was proposed.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Chao Guo
- Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Wenling Feng
- Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Qiao Sun
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- School for Radiological and Interdisciplinary Sciences
- Soochow University
- Suzhou
- P. R. China
| | - Weihua Wang
- Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|