1
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
2
|
Impact of somatostatin interneurons on interactions between barrels in plasticity induced by whisker deprivation. Sci Rep 2022; 12:17992. [PMID: 36289269 PMCID: PMC9605983 DOI: 10.1038/s41598-022-22801-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The activity of inhibitory interneurons has a profound role in shaping cortical plasticity. Somatostatin-expressing interneurons (SOM-INs) are involved in several aspects of experience-dependent cortical rewiring. We addressed the question of the barrel cortex SOM-IN engagement in plasticity formation induced by sensory deprivation in adult mice (2-3 months old). We used a spared vibrissa paradigm, resulting in a massive sensory map reorganization. Using chemogenetic manipulation, the activity of barrel cortex SOM-INs was blocked or activated by continuous clozapine N-oxide (CNO) administration during one-week-long deprivation. To visualize the deprivation-induced plasticity, [14C]-2-deoxyglucose mapping of cortical functional representation of the spared whisker was performed at the end of the deprivation. The plasticity was manifested as an extension of cortical activation in response to spared vibrissae stimulation. We found that SOM-IN inhibition in the cortical column of the spared whisker did not influence the areal extent of the cortex activated by the spared whisker. However, blocking the activity of SOM-INs in the deprived column, adjacent to the spared one, decreased the plasticity of the spared whisker representation. SOM-IN activation did not affect plasticity. These data show that SOM-IN activity is part of cortical circuitry that affects interbarrel interactions underlying deprivation-induced plasticity in adult mice.
Collapse
|
3
|
Pedrosa LRR, Coimbra GDS, Corrêa MG, Dias IA, Bahia CP. Time Window of the Critical Period for Neuroplasticity in S1, V1, and A1 Sensory Areas of Small Rodents: A Systematic Review. Front Neuroanat 2022; 16:763245. [PMID: 35370567 PMCID: PMC8970055 DOI: 10.3389/fnana.2022.763245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 12/09/2022] Open
Abstract
The plasticity of the central nervous system (CNS) allows the change of neuronal organization and function after environmental stimuli or adaptation after sensory deprivation. The so-called critical period (CP) for neuroplasticity is the time window when each sensory brain region is more sensitive to changes and adaptations. This time window is usually different for each primary sensory area: somatosensory (S1), visual (V1), and auditory (A1). Several intrinsic mechanisms are also involved in the start and end of the CP for neuroplasticity; however, which is its duration in S1, VI, and A1? This systematic review evaluated studies on the determination of these time windows in small rodents. The careful study selection and methodological quality assessment indicated that the CP for neuroplasticity is different among the sensory areas, and the brain maps are influenced by environmental stimuli. Moreover, there is an overlap between the time windows of some sensory areas. Finally, the time window duration of the CP for neuroplasticity is predominant in S1.
Collapse
|
4
|
Sadowska M, Mehlhorn C, Średniawa W, Szewczyk ŁM, Szlachcic A, Urban P, Winiarski M, Jabłonka JA. Spreading Depressions and Periinfarct Spreading Depolarizations in the Context of Cortical Plasticity. Neuroscience 2020; 453:81-101. [PMID: 33227236 DOI: 10.1016/j.neuroscience.2020.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Studies of cortical function-recovery require a comparison between normal and post-stroke conditions that lead to changes in cortical metaplasticity. Focal cortical stroke impairs experience-dependent plasticity in the neighboring somatosensory cortex and usually evokes periinfarct depolarizations (PiDs) - spreading depression-like waves. Experimentally induced spreading depressions (SDs) affect gene expression and some of these changes persist for at least 30 days. In this study we compare the effects of non-stroke depolarizations that impair cortical experience-dependent plasticity to the effects of stroke, by inducing experience-dependent plasticity in rats with SDs or PiDs by a month of contralateral partial whiskers deprivation. We found that whiskers' deprivation after SDs resulted in normal cortical representation enlargement suggesting that SDs and PiDs depolarization have no influence on experience-dependent plasticity cortical map reorganization. PiDs and the MMP-9, -3, -2 or COX-2 proteins, which are assumed to influence metaplasticity in rats after stroke were compared between SDs induced by high osmolarity KCl solution and the PiDs that followed cortical photothrombotic stroke (PtS). We found that none of these factors directly caused cortical post-stroke metaplasticity changes. The only significant difference between stoke and induced SD was a greater imbalance in interhemispheric activity equilibrium after stroke. The interhemispheric interactions that were modified by stroke may therefore be promising targets for future studies of post-stroke experience-dependent plasticity and of recuperation studies.
Collapse
Affiliation(s)
- Maria Sadowska
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of PAS, Warsaw, Poland; Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Łukasz M Szewczyk
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Szlachcic
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jan A Jabłonka
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Bortel A, Pilgram R, Yao ZS, Shmuel A. Dexmedetomidine - Commonly Used in Functional Imaging Studies - Increases Susceptibility to Seizures in Rats But Not in Wild Type Mice. Front Neurosci 2020; 14:832. [PMID: 33192234 PMCID: PMC7658317 DOI: 10.3389/fnins.2020.00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Functional MRI (fMRI) utilizes changes in metabolic and hemodynamic signals to indirectly infer the underlying local changes in neuronal activity. To investigate the mechanisms of fMRI responses, spontaneous fluctuations, and functional connectivity in the resting-state, it is important to pursue fMRI in animal models. Animal studies commonly use dexmedetomidine sedation. It has been demonstrated that potent sensory stimuli administered under dexmedetomidine are prone to inducing seizures in Sprague-Dawley (SD) rats. Here we combined optical imaging of intrinsic signals and cerebral blood flow with neurophysiological recordings to measure responses in rat area S1FL to electrical forepaw stimulation administered at 8 Hz. We show that the increased susceptibility to seizures starts no later than 1 h and ends no sooner than 3 h after initiating a continuous administration of dexmedetomidine. By administering different combinations of anesthetic and sedative agents, we demonstrate that dexmedetomidine is the sole agent necessary for the increased susceptibility to seizures. The increased susceptibility to seizures prevails under a combination of 0.3–0.5% isoflurane and dexmedetomidine anesthesia. The blood-oxygenation and cerebral blood flow responses to seizures induced by forepaw stimulation have a higher amplitude and a larger spatial extent relative to physiological responses to the same stimuli. The epileptic activity and the associated blood oxygenation and cerebral blood flow responses stretched beyond the stimulation period. We observed seizures in response to forepaw stimulation with 1–2 mA pulses administered at 8 Hz. In contrast, responses to stimuli administered at 4 Hz were seizure-free. We demonstrate that such seizures are generated not only in SD rats but also in Long-Evans rats, but not in C57BL6 mice stimulated with similar potent stimuli under dexmedetomidine sedation. We conclude that high-amplitude hemodynamic functional imaging responses evoked by peripheral stimulation in rats sedated with dexmedetomidine are possibly due to the induction of epileptic activity. Therefore, caution should be practiced in experiments that combine the administration of potent stimuli with dexmedetomidine sedation. We propose stimulation paradigms that elicit seizure-free, well detectable neurophysiological and hemodynamic responses in rats. We further conclude that the increased susceptibility to seizures under dexmedetomidine sedation is species dependent.
Collapse
Affiliation(s)
- Aleksandra Bortel
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Roland Pilgram
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ze Shan Yao
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Amir Shmuel
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Di J, Li J, O’Hara B, Alberts I, Xiong L, Li J, Li X. The role of GABAergic neural circuits in the pathogenesis of autism spectrum disorder. Int J Dev Neurosci 2020; 80:73-85. [DOI: 10.1002/jdn.10005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jing Di
- Department of Neurology David Geffen School of Medicine at UCLA Los Angeles CA USA
| | - Jian Li
- Department of Pediatrics the Second Xiangya HospitalCentral South University Changsha P.R. China
| | - Bruce O’Hara
- Department of Biology University of Kentucky Lexington KY USA
| | - Ian Alberts
- Department of Natural Sciences LaGuardia CCCUNY New York NY USA
| | - Lei Xiong
- Department of Clinical Medicine Yunnan University of Chinese Medicine Kunming P.R. China
| | - Jijun Li
- Department of Integrative Medicine on Pediatrics Shanghai Children’s Medical Center Shanghai Jiao Tong University School of Medicine Shanghai P.R. China
| | - Xiaohong Li
- Department of Neurochemistry New York State Institute for Basic Research in Developmental Disabilities New York NY USA
| |
Collapse
|
7
|
Zhou M, Yuan J, Yan Z, Dai J, Wang X, Xu T, Xu Z, Wang N, Liu J. Intrinsic and Miniature Postsynaptic Current Changes in Rat Principal Neurons of the Lateral Superior Olive after Unilateral Auditory Deprivation at an Early Age. Neuroscience 2019; 428:2-12. [PMID: 31866557 DOI: 10.1016/j.neuroscience.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Unilateral auditory deprivation results in lateralization changes in the central auditory system, interfering with the integration of binaural information and thereby leading to a decrease in binaural auditory functions such as sound localization. Principal neurons of the lateral superior olive (LSO) are responsible for computing the interaural intensity differences that are critical for sound localization in the horizontal plane. To investigate changes caused by unilateral auditory deprivation, electrophysiological activity was recorded from LSO principal neurons in control rats and rats with unilateral cochlear ablation. At one week after unilateral cochlear ablation, the excitability of LSO principal neurons on the side ipsilateral to the ablation (the ablated side) was greater than that on the side contralateral to the ablation (the intact side); however, the input resistance increased on both sides. Furthermore, by analysing the miniature inhibitory postsynaptic currents and miniature excitatory postsynaptic currents, we found that unilateral auditory deprivation weakened the inhibitory driving force on the intact side, whereas it strengthened the excitatory driving force on the ablated side. In summary, asymmetric changes in the electrophysiological activity of LSO principal neurons were found on both sides at postnatal day 19, one week after unilateral cochlear ablation.
Collapse
Affiliation(s)
- Mo Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanfeng Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinsheng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tao Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zhiqing Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ningyu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jinfeng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
9
|
Abstract
Propofol is primarily a hypnotic, and is widely used for induction and maintenance of anesthesia, as well as for sedation in various medical procedures. The exact mechanisms of its action are not well understood, although its neural mechanisms have been explored in in vivo and in vitro experiments. Accumulating evidence indicates that one of the major targets of propofol is the cerebral cortex. The principal effect of propofol is considered to be the potentiation of GABAA receptor-mediated inhibitory synaptic currents, but propofol has additional roles in modulating ion channels, including voltage-gated Na+ channels and several K+ channels. We focus on the pharmacological actions of propofol on cerebrocortical neurons, particularly at the cellular and synaptic levels.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry.,RIKEN Center for Life Science Technologies
| | - Yoshiyuki Oi
- Department of Anesthesiology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
10
|
Ablation of C-fibers decreases quantal size of GABAergic synaptic transmission in the insular cortex. Neuroscience 2017; 365:179-191. [DOI: 10.1016/j.neuroscience.2017.09.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
|
11
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, Martin B, Freedman S, Cea-Del Rio CA, Oboti L, Tsuchida TN, Oluigbo C, Yaun A, Magge SN, O'Neill B, Kao A, Zelleke TG, Depositario-Cabacar DT, Ghimbovschi S, Knoblach S, Ho CY, Corbin JG, Goodkin HP, Vicini S, Huntsman MM, Gaillard WD, Valdez G, Liu JS. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron 2017; 96:387-401.e6. [PMID: 29024662 PMCID: PMC6233318 DOI: 10.1016/j.neuron.2017.09.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.
Collapse
Affiliation(s)
- Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Nathan A Smith
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Ziobro
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julian Curiel
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Milagros J Tenga
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA
| | - Brandon Martin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samuel Freedman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Livio Oboti
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Tammy N Tsuchida
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Chima Oluigbo
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Amanda Yaun
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Suresh N Magge
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Brent O'Neill
- Division of Pediatric Neurosurgery, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy Kao
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Tesfaye G Zelleke
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Dewi T Depositario-Cabacar
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Susan Knoblach
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Chen-Ying Ho
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Division of Pathology, Children's National Medical Center; Washington, DC 20010, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Gregorio Valdez
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA; Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
13
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
14
|
Clarkson C, Antunes FM, Rubio ME. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus. J Neurosci 2016; 36:10214-27. [PMID: 27683915 PMCID: PMC5039262 DOI: 10.1523/jneurosci.0226-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sound deprivation by conductive hearing loss increases hearing thresholds, but little is known about the response of the auditory brainstem during and after conductive hearing loss. Here, we show in young adult rats that 10 d of monaural conductive hearing loss (i.e., earplugging) leads to hearing deficits that persist after sound levels are restored. Hearing thresholds in response to clicks and frequencies higher than 8 kHz remain increased after a 10 d recovery period. Neural output from the cochlear nucleus measured at 10 dB above threshold is reduced and followed by an overcompensation at the level of the lateral lemniscus. We assessed whether structural and molecular substrates at auditory nerve (endbulb of Held) synapses in the cochlear nucleus could explain these long-lasting changes in hearing processing. During earplugging, vGluT1 expression in the presynaptic terminal decreased and synaptic vesicles were smaller. Together, there was an increase in postsynaptic density (PSD) thickness and an upregulation of GluA3 AMPA receptor subunits on bushy cells. After earplug removal and a 10 d recovery period, the density of synaptic vesicles increased, vesicles were also larger, and the PSD of endbulb synapses was larger and thicker. The upregulation of the GluA3 AMPAR subunit observed during earplugging was maintained after the recovery period. This suggests that GluA3 plays a role in plasticity in the cochlear nucleus. Our study demonstrates that sound deprivation has long-lasting alterations on structural and molecular presynaptic and postsynaptic components at the level of the first auditory nerve synapse in the auditory brainstem. SIGNIFICANCE STATEMENT Despite being the second most prevalent form of hearing loss, conductive hearing loss and its effects on central synapses have received relatively little attention. Here, we show that 10 d of monaural conductive hearing loss leads to an increase in hearing thresholds, to an increased central gain upstream of the cochlear nucleus at the level of the lateral lemniscus, and to long-lasting presynaptic and postsynaptic structural and molecular effects at the endbulb of the Held synapse. Knowledge of the structural and molecular changes associated with decreased sensory experience, along with their potential reversibility, is important for the treatment of hearing deficits, such as hyperacusis and chronic otitis media with effusion, which is prevalent in young children with language acquisition or educational disabilities.
Collapse
Affiliation(s)
| | | | - Maria E Rubio
- Departments of Otolaryngology and Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
15
|
Clark R, Blizzard C, Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5:511-25. [DOI: 10.2217/nmt.15.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis, motor neuron hyperexcitability and inhibitory dysfunction is emerging as a potential causative link in the dysfunction and degeneration of the motoneuronal circuitry that characterizes the disease. Interneurons, as key regulators of excitability, may mediate much of this imbalance, yet we know little about the way in which inhibitory deficits perturb excitability. In this review, we explore inhibitory control of excitability and the potential contribution of altered inhibition to amyotrophic lateral sclerosis disease processes and vulnerabilities, identifying important windows of therapeutic opportunity and potential interventions, specifically targeting inhibitory control at key disease stages.
Collapse
Affiliation(s)
- Rosemary Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| |
Collapse
|
16
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
17
|
Wang GX, Smith SJ, Mourrain P. Fmr1 KO and fenobam treatment differentially impact distinct synapse populations of mouse neocortex. Neuron 2015; 84:1273-86. [PMID: 25521380 DOI: 10.1016/j.neuron.2014.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
Cognitive deficits in fragile X syndrome (FXS) are attributed to molecular abnormalities of the brain's vast and heterogeneous synapse populations. Unfortunately, the density of synapses coupled with their molecular heterogeneity presents formidable challenges in understanding the specific contribution of synapse changes in FXS. We demonstrate powerful new methods for the large-scale molecular analysis of individual synapses that allow quantification of numerous specific changes in synapse populations present in the cortex of a mouse model of FXS. Analysis of nearly a million individual synapses reveals distinct, quantitative changes in synaptic proteins distributed across over 6,000 pairwise metrics. Some, but not all, of these synaptic alterations are reversed by treatment with the candidate therapeutic fenobam, an mGluR5 antagonist. These patterns of widespread, but diverse synaptic protein changes in response to global perturbation suggest that FXS and its treatment must be understood as a networked system at the synapse level.
Collapse
Affiliation(s)
- Gordon X Wang
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| | - Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Philippe Mourrain
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; INSERM 1024, Ecole Normale Supérieure Paris, 75005, France
| |
Collapse
|
18
|
Weiler NC, Collman F, Vogelstein JT, Burns R, Smith SJ. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Sci Data 2014; 1:140046. [PMID: 25977797 PMCID: PMC4411012 DOI: 10.1038/sdata.2014.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023] Open
Abstract
A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.
Collapse
Affiliation(s)
- Nicholas C Weiler
- Graduate Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Forrest Collman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Joshua T Vogelstein
- Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Randal Burns
- Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| |
Collapse
|
19
|
Siucinska E, Hamed A, Jasinska M. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning. PLoS One 2014; 9:e110493. [PMID: 25333489 PMCID: PMC4204871 DOI: 10.1371/journal.pone.0110493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.
Collapse
Affiliation(s)
- Ewa Siucinska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| | - Adam Hamed
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Malgorzata Jasinska
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
20
|
Li P, Huntsman MM. Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons. Neuroscience 2014; 265:60-71. [PMID: 24480365 DOI: 10.1016/j.neuroscience.2014.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 02/05/2023]
Abstract
Cortical fast spiking (FS) interneurons possess autaptic, synaptic, and electrical synapses that serve to mediate a fast, coordinated response to their postsynaptic targets. While FS interneurons are known to participate in numerous and diverse actions, functional subgroupings within this multi-functional interneuron class remain to be identified. In the present study, we examined parvalbumin-positive FS interneurons in layer 4 of the primary somatosensory (barrel) cortex - a brain region well-known for specialized inhibitory function. Here we show that FS interneurons fall into two broad categories identified by the onset of the first action potential in a depolarizing train as: "delayed firing FS interneurons (FSD) and early onset firing FS interneurons (FSE). Subtle variations in action potential firing reveal six subtypes within these two categories: delayed non-accommodating (FSD-NAC), delayed stuttering (FSD-STUT), early onset stuttering (FSE-STUT), early onset-late spiking (FSE-LS), early onset early-spiking (FSE-ES), and early onset accommodating (FSE-AC). Using biophysical criteria previously employed to distinguish neuronal cell types, the FSD and FSE categories exhibit several shared biophysical and synaptic properties that coincide with the notion of specificity of inhibitory function within the cortical FS interneuron class.
Collapse
Affiliation(s)
- P Li
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - M M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Wang Z, Qi HX, Kaas JH, Roe AW, Chen LM. Functional signature of recovering cortex: dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys. Exp Neurol 2013; 249:132-43. [PMID: 24017995 DOI: 10.1016/j.expneurol.2013.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 11/27/2022]
Abstract
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (<two months).
Collapse
Affiliation(s)
- Zheng Wang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
22
|
Alwis DS, Rajan R. Environmental enrichment causes a global potentiation of neuronal responses across stimulus complexity and lamina of sensory cortex. Front Cell Neurosci 2013; 7:124. [PMID: 23964199 PMCID: PMC3737482 DOI: 10.3389/fncel.2013.00124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/20/2013] [Indexed: 01/21/2023] Open
Abstract
Enriched social and physical housing produces many molecular, anatomical, electrophysiological and behavior benefits even in adult animals. Much less is known of its effects on cortical electrophysiology, especially in how sensory cortex encodes the altered environment, and extant studies have generally been restricted to neurons in input laminae in sensory cortex. To extend the understanding of how an enriched environment alters the way in which cortex views the world, we investigated enrichment-induced changes in neuronal encoding of sensory stimuli across all laminae of the rat barrel cortex receiving input from the face whisker tactile system. Animals were housed in Enriched (n = 13) or Isolated housing (n = 13) conditions for 8 weeks before extracellular recordings were obtained from barrel cortex in response to simple whisker deflections and whisker motions modeling movements seen in awake animals undertaking a variety of different tasks. Enrichment resulted in increases in neuronal responses to all stimuli, ranging from those modeling exploratory behavior through to discrimination behaviors. These increases were seen throughout the cortex from supragranular layers through to input Layer 4 and for some stimuli, in infragranular Layer 5. The observed enrichment-induced effect is consistent with the postulate that enrichment causes shift in cortical excitatory/inhibitory balance, and we demonstrate this is greatest in supragranular layers. However, we also report that the effects are non-selective for stimulus parameters across a range of stimuli except for one modeling the likely use of whiskers by the rats in the enriched housing.
Collapse
Affiliation(s)
- Dasuni S Alwis
- Department of Physiology, Monash University Clayton, VIC, Australia
| | | |
Collapse
|
23
|
Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012; 2012:305693. [PMID: 22848849 PMCID: PMC3400395 DOI: 10.1155/2012/305693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
Collapse
|
24
|
Jablonka JA, Kossut M, Witte OW, Liguz-Lecznar M. Experience-dependent brain plasticity after stroke: effect of ibuprofen and poststroke delay. Eur J Neurosci 2012; 36:2632-9. [PMID: 22694049 DOI: 10.1111/j.1460-9568.2012.08174.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite indications that brain plasticity may be enhanced after stroke, we have described impairment of experience-dependent plasticity in rat cerebral cortex neighboring the stroke-induced lesion. Photothrombotic stroke was centered behind the barrel cortex in one cerebral hemisphere of rats. Plasticity of cortical representation of one row of vibrissae was induced by sensory deprivation of all surrounding whiskers for 1 month, and visualized with [(14)C]-2-deoxyglucose autoradiography. In control rats deprivation resulted in an enlargement of functional cortical representation of the spared row of vibrissae. After a focal stroke neighbouring the barrel cortex, no plasticity of the spared row representation was found. Investigation of plastic changes with deprivation initiated 1 week and 1 month after stroke have shown that later poststroke onset of deprivation resulted in a partial recovery of cortical plasticity in the barrel field. Western blot analysis of proinflammatory enzyme cyclooxygenase-2 (COX-2) expression revealed its strong upregulation in the barrel cortex 24 h after stroke. When chronic treatment with the anti-inflammatory drug ibuprofen (10 mg/kg or 20 mg/kg) accompanied deprivation, plasticity was restored. Ibuprofen applied before the ischemia also prevented the poststroke upregulation of COX-2. The results strongly suggest that poststroke impairment of experience-dependent cortical plasticity is caused by stroke-induced inflammatory reactions that subside with poststroke delay and can be at least partially ameliorated by pharmacological treatment.
Collapse
Affiliation(s)
- Jan A Jablonka
- Department of Animal Physiology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | | | | | | |
Collapse
|
25
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
26
|
O'Rourke NA, Weiler NC, Micheva KD, Smith SJ. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 2012; 13:365-79. [PMID: 22573027 DOI: 10.1038/nrn3170] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pioneering studies in the middle of the twentieth century revealed substantial diversity among mammalian chemical synapses and led to a widely accepted classification of synapse type on the basis of neurotransmitter molecule identity. Subsequently, powerful new physiological, genetic and structural methods have enabled the discovery of much deeper functional and molecular diversity within each traditional neurotransmitter type. Today, this deep diversity continues to pose both daunting challenges and exciting new opportunities for neuroscience. Our growing understanding of deep synapse diversity may transform how we think about and study neural circuit development, structure and function.
Collapse
Affiliation(s)
- Nancy A O'Rourke
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
27
|
α4* Nicotinic acetylcholine receptors modulate experience-based cortical depression in the adult mouse somatosensory cortex. J Neurosci 2012; 32:1207-19. [PMID: 22279206 DOI: 10.1523/jneurosci.4568-11.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms that mediate experience-based changes in the function of the cerebral cortex, particularly in the adult animal, are poorly understood. Here we show using in vivo voltage-sensitive dye imaging, that whisker trimming leads to depression of whisker-evoked sensory responses in primary, secondary and associative somatosensory cortical regions. Given the importance of cholinergic neurotransmission in cognitive and sensory functions, we examined whether α4-containing (α4*) nicotinic acetylcholine receptors (nAChRs) mediate cortical depression. Using knock-in mice that express YFP-tagged α4 nAChRs subunits, we show that whisker trimming selectively increased the number α4*-YFP nAChRs in layer 4 of deprived barrel columns within 24 h, which persisted until whiskers regrew. Confocal and electron microscopy revealed that these receptors were preferentially increased on the cell bodies of GABAergic neurons. To directly link these receptors with functional cortical depression, we show that depression could be induced in normal mice by topical application or micro-injection of α4* nAChR agonist in the somatosensory cortex. Furthermore, cortical depression could be blocked after whisker trimming with chronic infusions of an α4* nAChR antagonist. Collectively, these results uncover a new role for α4* nAChRs in regulating rapid changes in the functional responsiveness of the adult somatosensory cortex.
Collapse
|
28
|
Peusner KD, Shao M, Reddaway R, Hirsch JC. Basic Concepts in Understanding Recovery of Function in Vestibular Reflex Networks during Vestibular Compensation. Front Neurol 2012; 3:17. [PMID: 22363316 PMCID: PMC3282297 DOI: 10.3389/fneur.2012.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/27/2012] [Indexed: 12/30/2022] Open
Abstract
Unilateral peripheral vestibular lesions produce a syndrome of oculomotor and postural deficits with the symptoms at rest, the static symptoms, partially or completely normalizing shortly after the lesion due to a process known as vestibular compensation. The symptoms are thought to result from changes in the activity of vestibular sensorimotor reflexes. Since the vestibular nuclei must be intact for recovery to occur, many investigations have focused on studying these neurons after lesions. At present, the neuronal plasticity underlying early recovery from the static symptoms is not fully understood. Here we propose that knowledge of the reflex identity and input–output connections of the recorded neurons is essential to link the responses to animal behavior. We further propose that the cellular mechanisms underlying vestibular compensation can be sorted out by characterizing the synaptic responses and time course for change in morphologically defined subsets of vestibular reflex projection neurons. Accordingly, this review focuses on the perspective gained by performing electrophysiological and immunolabeling studies on a specific subset of morphologically defined, glutamatergic vestibular reflex projection neurons, the principal cells of the chick tangential nucleus. Reference is made to pertinent findings from other studies on vestibular nuclei neurons, but no comprehensive review of the literature is intended since broad reviews already exist. From recording excitatory and inhibitory spontaneous synaptic activity in principal cells, we find that the rebalancing of excitatory synaptic drive bilaterally is essential for vestibular compensation to proceed. This work is important for it defines for the first time the excitatory and inhibitory nature of the changing synaptic inputs and the time course for changes in a morphologically defined subset of vestibular reflex projection neurons during early stages of vestibular compensation.
Collapse
Affiliation(s)
- Kenna D Peusner
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine Washington, DC, USA
| | | | | | | |
Collapse
|
29
|
Popescu SC. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface. FRONTIERS IN PLANT SCIENCE 2012; 3:71. [PMID: 22639660 PMCID: PMC3355576 DOI: 10.3389/fpls.2012.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/26/2012] [Indexed: 05/03/2023]
Abstract
Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane (PM) activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the PM.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- *Correspondence: Sorina C. Popescu, Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
30
|
Shao M, Hirsch JC, Peusner KD. Plasticity of spontaneous excitatory and inhibitory synaptic activity in morphologically defined vestibular nuclei neurons during early vestibular compensation. J Neurophysiol 2011; 107:29-41. [PMID: 21957228 DOI: 10.1152/jn.00406.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG.
Collapse
Affiliation(s)
- Mei Shao
- Dept. of Anatomy and Regenerative Biology, George Washington Univ. Medical Center, 2300 I St. N.W., Washington, DC 20037, USA.
| | | | | |
Collapse
|
31
|
Paluszkiewicz SM, Martin BS, Huntsman MM. Fragile X syndrome: the GABAergic system and circuit dysfunction. Dev Neurosci 2011; 33:349-64. [PMID: 21934270 DOI: 10.1159/000329420] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/10/2011] [Indexed: 12/18/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function and plasticity are well-established in Fmr1 knockout (KO) mouse models of FXS, a number of recent electrophysiological and molecular studies now identify prominent defects in inhibitory GABAergic transmission in behaviorally relevant forebrain regions such as the amygdala, cortex, and hippocampus. In this review, we summarize evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike. We then discuss some of the known developmental roles of GABAergic signaling, as well as the development and refinement of GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction. Finally, we highlight the GABAergic system as a relevant target for the treatment of FXS.
Collapse
Affiliation(s)
- Scott M Paluszkiewicz
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
32
|
Méndez P, Bacci A. Assortment of GABAergic plasticity in the cortical interneuron melting pot. Neural Plast 2011; 2011:976856. [PMID: 21785736 PMCID: PMC3139185 DOI: 10.1155/2011/976856] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/01/2011] [Indexed: 12/30/2022] Open
Abstract
Cortical structures of the adult mammalian brain are characterized by a spectacular diversity of inhibitory interneurons, which use GABA as neurotransmitter. GABAergic neurotransmission is fundamental for integrating and filtering incoming information and dictating postsynaptic neuronal spike timing, therefore providing a tight temporal code used by each neuron, or ensemble of neurons, to perform sophisticated computational operations. However, the heterogeneity of cortical GABAergic cells is associated to equally diverse properties governing intrinsic excitability as well as strength, dynamic range, spatial extent, anatomical localization, and molecular components of inhibitory synaptic connections that they form with pyramidal neurons. Recent studies showed that similarly to their excitatory (glutamatergic) counterparts, also inhibitory synapses can undergo activity-dependent changes in their strength. Here, some aspects related to plasticity and modulation of adult cortical and hippocampal GABAergic synaptic transmission will be reviewed, aiming at providing a fresh perspective towards the elucidation of the role played by specific cellular elements of cortical microcircuits during both physiological and pathological operations.
Collapse
Affiliation(s)
- Pablo Méndez
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alberto Bacci
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
33
|
Walcher J, Hassfurth B, Grothe B, Koch U. Comparative posthearing development of inhibitory inputs to the lateral superior olive in gerbils and mice. J Neurophysiol 2011; 106:1443-53. [PMID: 21697449 DOI: 10.1152/jn.01087.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaural intensity differences are analyzed in neurons of the lateral superior olive (LSO) by integration of an inhibitory input from the medial nucleus of the trapezoid body (MNTB), activated by sound from the contralateral ear, with an excitatory input from the ipsilateral cochlear nucleus. The early postnatal refinement of this inhibitory MNTB-LSO projection along the tonotopic axis of the LSO has been extensively studied. However, little is known to what extent physiological changes at these inputs also occur after the onset of sound-evoked activity. Using whole-cell patch-clamp recordings of LSO neurons in acute brain stem slices, we analyzed the developmental changes of inhibitory synaptic currents evoked by MNTB fiber stimulation occurring after hearing onset. We compared these results in gerbils and mice, two species frequently used in auditory research. Our data show that neither the number of presumed input fibers nor the conductance of single fibers significantly changed after hearing onset. Also the amplitude of miniature inhibitory currents remained constant during this developmental period. In contrast, the kinetics of inhibitory synaptic currents greatly accelerated after hearing onset. We conclude that tonotopic refinement of inhibitory projections to the LSO is largely completed before the onset of hearing, whereas acceleration of synaptic kinetics occurs to a large part after hearing onset and might thus be dependent on proper auditory experience. Surprisingly, inhibitory input characteristics, as well as basic membrane properties of LSO neurons, were rather similar in gerbils and mice.
Collapse
Affiliation(s)
- Jan Walcher
- Department Biologie II, Ludwig-Maximilans University München, Martinsried, Germany
| | | | | | | |
Collapse
|
34
|
Giusi G, Crudo M, Di Vito A, Facciolo RM, Garofalo F, Chew SF, Ip YK, Canonaco M. Lungfish aestivating activities are locked in distinct encephalic γ-aminobutyric acid type A receptor α subunits. J Neurosci Res 2011; 89:418-28. [PMID: 21259328 DOI: 10.1002/jnr.22553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/06/2010] [Accepted: 10/20/2010] [Indexed: 01/12/2023]
Abstract
Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.001) and mesencephalic (P < 0.01) areas proved to be significantly higher during long aestivating maintenance states. Very evident α₅ mRNA levels were detected in diencephalon during short inductive aestivating states, whereas an α₄ /α₁ turnover characterized the arousal state. Contextually, the recovery of physiological activities appeared to be tightly related to an evident up-regulation of α₁ transcripts in telencephalic and cerebellar sites. Surprisingly, TUNEL and amino cupric silver methods corroborated apoptotic and neurodegenerative cellular events, respectively, above all in telencephalon and cerebellum of lungfish exposed to long maintenance aestivating conditions. Overall, these results tend to underlie a novel GABAergic-related ON/OFF molecular switch operating during aestivation of the lungfish, which might have a bearing on sleeping disorders.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Comparative Neuroanatomy Laboratory, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Alò R, Avolio E, Di Vito A, Carelli A, Facciolo RM, Canonaco M. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ) are linked to hibernating state in hamsters. BMC Neurosci 2010; 11:111. [PMID: 20815943 PMCID: PMC2944354 DOI: 10.1186/1471-2202-11-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/06/2010] [Indexed: 12/01/2022] Open
Abstract
Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR) is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR) tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB) and hibernating (HIB) hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p < 0.01) prevalence of α1 ratio (over total α subunits considered in the present study) in the medial preoptic area (MPOA) and arcuate nucleus (Arc) of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe) and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%). Regarding the other two subunits (β and γ), elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional distribution pattern of distinct GABAAR subunit combinations may prove to be very useful for highlighting GABAergic mechanisms functioning at least during the different physiological states of hibernators and this may have interesting therapeutic bearings on neurological sleeping disorders.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Ecology Department, University of Calabria, Ponte Pietro Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|