1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Zhuang YM, Li MC, Lin ZY, Wang HY, Jia JT, Li MZ, Zhao H. Buyang Huanwu decoction improves motor function by enhancing internal capsule reorganization through inhibiting Notch signaling after ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119812. [PMID: 40245964 DOI: 10.1016/j.jep.2025.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BHD) is a common traditional Chinese medicine formula that has been used for the treating post-stroke disability for centuries. Nevertheless, the impact of BHD on internal capsule injury following stroke remains unknown and warrants further investigation. AIM OF THE STUDY This study aimed to assess the efficacy of BHD on post-stroke internal capsule integrity by using an in vivo magnetic resonance imaging (MRI) technique and further explore the potential mechanisms by which BHD facilitates internal capsule reorganization after ischemic stroke. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to permanent occlusion of the middle cerebral artery (MCAO) to induce focal cerebral ischemia. BHD was intragastrically administered at doses of 16.6 g/kg and 8.3 g/kg to rats once daily for 30 consecutive days. Subsequently, an automated Digi gait system was utilized to assess the motor function. MRI examinations, including T2 relaxometry mapping and diffusion tensor imaging (DTI), were conducted to detect structural alterations in the internal capsule. Moreover, diffusion tractography was performed to evaluate internal capsule remodeling. Pearson correlation analysis was conducted between the gait and MRI parameters. Additionally, luxol fast blue (LFB) staining was performed for pathological assessment of the internal capsule. Double immunofluorescence staining was carried out to evaluate remyelination and Notch signaling activation in the injured internal capsule. RESULTS The gait analysis revealed that BHD treatment significantly decreased stance time while elevating swing time, stride length, and paw area of the MCAO rats. T2 mapping indicated obvious infarction and an elevated T2 value, and DTI detected reduced fractional anisotropy but increased radial diffusivity in the internal capsule following MCAO. LFB staining further confirmed demyelination in the injured internal capsule. However, BHD interventions effectively reversed these MRI abnormalities and demyelination, and improved fiber density and length of the internal capsule. Notably, the gait performances were strongly correlated to the T2 value, fiber density, and fiber length of the internal capsule. Particularly, BHD treatments facilitated oligodendrogenesis in the internal capsule by elevating the numbers of Ki67/NG2, Ki67/Oligo2, and Ki67/CNPase positive cells. Furthermore, BHD effectively inhibited the activation of Notch signaling in the oligodendrocyte precursor cells (OPCs), as evidenced by reduced numbers of NG2/Notch1, NG2/NICD, and NG2/Hes5 positive cells. CONCLUSION The present study demonstrated that BHD could promote post-stroke motor recovery by alleviating structural damage to the internal capsule and facilitating internal capsule reorganization. Notably, BHD treatment enhanced oligodendrogenesis and subsequent remyelination by inhibiting Notch signaling activation in the OPCs.
Collapse
Affiliation(s)
- Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Han-Yu Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jing-Ting Jia
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Man-Zhong Li
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China.
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
3
|
Wang J, Gao Y, Wang B, Zhang C, Yuan Y, Xu R, Ji H, Zhang X. Low-Intensity Pulsed Ultrasound Promotes Oligodendrocyte Maturation and Remyelination by Down-regulating the Interleukin-17A/Notch1 Signaling Pathway in Mice with Ischemic Stroke. RESEARCH (WASHINGTON, D.C.) 2025; 8:0676. [PMID: 40290135 PMCID: PMC12022504 DOI: 10.34133/research.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Increasing evidence indicates that oligodendrocyte (OL) numbers and myelin as a dynamic cellular compartment perform a key role in the maintenance of neuronal function. Inhibiting white matter (WM) demyelination or promoting remyelination has garnered interest for its potential therapeutic strategy against ischemic stroke. Our previous work has shown that low-intensity pulsed ultrasound (LIPUS) could improve stroke recovery. However, it is unclear whether LIPUS can maintain WM integrity early after stroke or promote late WM repair. This study evaluated the efficacy of LIPUS on WM repair and long-term neurologic recovery after stroke. Male adult C57BL/6 mice underwent a focal cerebral ischemia model and were randomized to receive ultrasound stimulation (30 min once daily for 14 days). The effect of LIPUS on sensorimotor function was assessed by modified neurological severity score, rotarod test, grip strength test, and gait analysis up to 28 days after stroke. We found that ischemic stroke-induced WM damage was severe on day 7 and partially recovered on day 28. LIPUS prevented neuronal and oligodendrocyte progenitor cell (OPC) death during the acute phase of stroke (d7), protected WM integrity, and reduced brain atrophy and tissue damage during the recovery phase (d28). To further confirm the effect of LIPUS on remyelination, we assessed the proliferation and differentiation of OPCs. We found that LIPUS did not increase the number of OPCs (PDGFRα+ or NG2+), but markedly increased the number of newly produced mature OLs (APC+) and myelin protein levels. Mechanistically, LIPUS may promote OL maturation and remyelination by down-regulating the interleukin-17A/Notch1 signaling pathway. In summary, LIPUS can protect OLs and neurons early after stroke and promote long-term WM repair and functional recovery. LIPUS will be a viable strategy for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yuxiao Gao
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Bin Wang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Cong Zhang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yi Yuan
- School of Electrical Engineering,
Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province,
Yanshan University, Qinhuangdao 066004, China
| | - Renhao Xu
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Hui Ji
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
4
|
Kratimenos P, Sanidas G, Simonti G, Byrd C, Gallo V. The shifting landscape of the preterm brain. Neuron 2025:S0896-6273(25)00224-7. [PMID: 40239653 DOI: 10.1016/j.neuron.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/16/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Preterm birth remains a significant global health concern despite advancements in neonatal care. While survival rates have increased, the long-term neurodevelopmental consequences of preterm birth persist. Notably, the profile of the preterm infant has shifted, with infants at earlier gestational ages surviving and decreased rates of gross structural injury secondary to intracranial hemorrhage. However, these infants are still vulnerable to insults, including hypoxia-ischemia, inflammation, and disrupted in utero development, impinging on critical developmental processes, which can lead to neuronal and oligodendrocyte injury and impaired brain function. Consequently, preterm infants often experience a range of neurodevelopmental disorders, such as cognitive impairment and behavioral problems. Here, we address mechanisms underlying preterm brain injury and explore existing and new investigational therapeutic strategies. We discuss how gestational age influences brain development and how interventions, including pharmacological and non-pharmacological approaches, mitigate the effects of preterm birth complications and improve the long-term outcomes of preterm infants.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Georgios Sanidas
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Gabriele Simonti
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chad Byrd
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Seattle Children's Research Institute, Seattle, WA, USA; The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
6
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2025; 30:1102-1116. [PMID: 39639174 PMCID: PMC11835740 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
7
|
Sarallah R, Jahani S, Soltani Khaboushan A, Moaveni AK, Amiri M, Majidi Zolbin M. The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases. Brain Behav Immun Health 2025; 43:100932. [PMID: 39834554 PMCID: PMC11743895 DOI: 10.1016/j.bbih.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies. In AD, dysregulation of this axis contributes to amyloid-β accumulation and tau hyperphosphorylation, leading to synaptic dysfunction and cognitive decline. PD studies reveal that CXCL12/CXCR4 signaling influences dopaminergic neuron survival and microglial activation, affecting cognitive function. In MS, the axis modulates neuroinflammation and demyelination processes, impacting cognitive performance. ALS research indicates that the CXCL12/CXCR4/CXCR7 pathway is involved in motor neuron degeneration and associated cognitive deficits. Across these diseases, the axis influences neuroinflammation, synaptic plasticity, and neuronal survival through various signaling cascades, including PI3K/AKT, MAPK, and JAK/STAT pathways. Emerging evidence suggests that modulating this axis could provide neuroprotective effects and potentially alleviate cognitive symptoms. This review highlights the potential of the CXCL12/CXCR4/CXCR7 axis as a therapeutic target for addressing CI in neurodegenerative diseases. It also underscores the need for further research to fully elucidate its role and develop effective interventions, potentially leading to improved clinical management strategies for these devastating disorders.
Collapse
Affiliation(s)
| | - Shima Jahani
- MS Research Center Neuroscience Institute, Tehran University of Medical Science, Iran
| | - Alireza Soltani Khaboushan
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
9
|
Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, et alGabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, Close JL, Miller JA, Hodge RD, Larson EB, Grabowski TJ, Hawrylycz M, Keene CD, Lein ES. Integrated multimodal cell atlas of Alzheimer's disease. Nat Neurosci 2024; 27:2366-2383. [PMID: 39402379 PMCID: PMC11614693 DOI: 10.1038/s41593-024-01774-5] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies.
Collapse
Affiliation(s)
- Mariano I Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Victoria M Rachleff
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeanelle Ariza
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anamika Agrawal
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Omar Kana
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - John Campos
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madison Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lisa M Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Khawand
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Mitchell D Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gonzalo Mena
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Kelly P Meyers
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Mark Montine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Paul A Olsen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Maiya Pacleb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Aimee M Schantz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tracy Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Angela M Wilson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ming Xiao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Nicole M Gatto
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Grabowski
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
10
|
Sun R, Ma T, Zhao Z, Gao Y, Feng J, Yang X. Phospholipase D Family Member 4 Regulates Microglial Phagocytosis and Remyelination via the AKT Pathway in a Cuprizone-Induced Multiple Sclerosis Mouse Model. CNS Neurosci Ther 2024; 30:e70111. [PMID: 39548665 PMCID: PMC11567942 DOI: 10.1111/cns.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
AIMS Remyelination is an endogenous repair process that is often deficient in multiple sclerosis (MS). Stimulation of remyelination is thought to help limit the progression of MS. This study aimed to investigate the expression pattern and function of a microglial phagocytosis-related gene, phospholipase D family member 4 (PLD4), in a cuprizone (CPZ)-induced MS mouse model. METHODS The extent of remyelination was assessed using LFB staining. Myelin phagocytosis assay was used to investigate the effect of Pld4 on microglial phagocytic activity. RESULTS Pld4 was upregulated in the corpus callosum during demyelination and remyelination. AAV9-mediated Pld4 deficiency impaired remyelination and reduced the number of Olig2-positive cells. In the corpus callosum of Pld4-deficient mice, the microglial phagocytosis marker MAC2 was reduced, accompanied by inhibition of TrkA/AKT signaling. Similarly, the phagocytosis assay showed that Pld4 knockdown significantly inhibited myelin debris phagocytosis by BV2 cells. The AKT activator SC79 reversed the Pld4 deficiency-induced inhibition of microglial phagocytic activity and rescued the impaired remyelination in Pld4-deficient mice. CONCLUSION PLD4 is upregulated in CPZ-induced MS and modulates microglial phagocytosis and remyelination via the AKT pathway. Our findings provide experimental evidence for a better understanding of the molecular mechanism of MS.
Collapse
Affiliation(s)
- Ran Sun
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Tengyun Ma
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Juan Feng
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| |
Collapse
|
11
|
Cui S, Chen T, Xin D, Chen F, Zhong X, Dong C, Chen X, Chen H, Zhou W, Lin Y, Lu QR. Zinc-Finger Protein ZFP488 Regulates the Timing of Oligodendrocyte Myelination and Remyelination. J Neurosci 2024; 44:e0141242024. [PMID: 39151953 PMCID: PMC11426379 DOI: 10.1523/jneurosci.0141-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Oligodendrocyte myelination and remyelination after injury are intricately regulated by various intrinsic and extrinsic factors, including transcriptional regulators. Among these, the zinc-finger protein ZFP488 is an oligodendrocyte-enriched transcriptional regulator that promotes oligodendrocyte differentiation in the developing neural tube and in oligodendroglial cell lines. However, the specific in vivo genetic requirements for ZFP488 during oligodendrocyte development and remyelination have not been defined. To address this gap, we generated a lineage-traceable ZFP488 knock-out mouse line, wherein an H2b-GFP reporter replaces the ZFP488-coding region. Using these mice of either sex, we examined the dynamics of ZFP488 expression from the endogenous promoter in the developing central nervous system (CNS). We observed a unique expression pattern in the oligodendrocyte lineage, with ZFP488 expression particularly enriched in differentiated oligodendrocytes. ZFP488 loss resulted in delayed myelination in the developing CNS and impaired remyelination after demyelinating injury in the brain. Integrated transcriptomic and genomic profiling further revealed that ZFP488 loss decreased the expression of myelination-associated genes but not oligodendrocyte progenitor-associated genes, suggesting that ZFP488 serves as a positive regulator of myelination by regulating maturation programs. Thus, our genetic loss-of-function study revealed that ZFP488 regulates a stage-dependent differentiation program that controls the timing of CNS myelination and remyelination.
Collapse
Affiliation(s)
- Siying Cui
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tong Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Dazhuan Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Fangbing Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chen Dong
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Huiyao Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
12
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
13
|
Ghorbani S, Li C, Lozinski BM, Moezzi D, D’Mello C, Dong Y, Visser F, Li H, Silva C, Khakpour M, Murray CJ, Tremblay MÈ, Xue M, Yong VW. Fibulin-2 is an extracellular matrix inhibitor of oligodendrocytes relevant to multiple sclerosis. J Clin Invest 2024; 134:e176910. [PMID: 38743490 PMCID: PMC11213512 DOI: 10.1172/jci176910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Impairment of oligodendrocytes and myelin contributes to neurological disorders including multiple sclerosis (MS), stroke, and Alzheimer's disease. Regeneration of myelin (remyelination) decreases the vulnerability of demyelinated axons, but this repair process commonly fails with disease progression. A contributor to inefficient remyelination is the altered extracellular matrix (ECM) in lesions, which remains to be better defined. We have identified fibulin-2 (FBLN2) as a highly upregulated ECM component in lesions of MS and stroke and in proteome databases of Alzheimer's disease and traumatic brain injury. Focusing on MS, the inhibitory role of FBLN2 was suggested in the experimental autoimmune encephalomyelitis (EAE) model, in which genetic FBLN2 deficiency improved behavioral recovery by promoting the maturation of oligodendrocytes and enhancing remyelination. Mechanistically, when oligodendrocyte progenitors were cultured in differentiation medium, FBLN2 impeded their maturation into oligodendrocytes by engaging the Notch pathway, leading to cell death. Adeno-associated virus deletion of FBLN2 in astrocytes improved oligodendrocyte numbers and functional recovery in EAE and generated new myelin profiles after lysolecithin-induced demyelination. Collectively, our findings implicate FBLN2 as a hitherto unrecognized injury-elevated ECM, and a therapeutic target, that impairs oligodendrocyte maturation and myelin repair.
Collapse
Affiliation(s)
- Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cenxiao Li
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brian M. Lozinski
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Dorsa Moezzi
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Charlotte D’Mello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Yifei Dong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Frank Visser
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Hongmin Li
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Claudia Silva
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mohammadparsa Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Colin J. Murray
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Parrilla GE, Gupta V, Wall RV, Salkar A, Basavarajappa D, Mirzaei M, Chitranshi N, Graham SL, You Y. The role of myelin in neurodegeneration: implications for drug targets and neuroprotection strategies. Rev Neurosci 2024; 35:271-292. [PMID: 37983528 DOI: 10.1515/revneuro-2023-0081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Myelination of axons in the central nervous system offers numerous advantages, including decreased energy expenditure for signal transmission and enhanced signal speed. The myelin sheaths surrounding an axon consist of a multi-layered membrane that is formed by oligodendrocytes, while specific glycoproteins and lipids play various roles in this formation process. As beneficial as myelin can be, its dysregulation and degeneration can prove detrimental. Inflammation, oxidative stress, and changes in cellular metabolism and the extracellular matrix can lead to demyelination of these axons. These factors are hallmark characteristics of certain demyelinating diseases including multiple sclerosis. The effects of demyelination are also implicated in primary degeneration in diseases such as glaucoma and Alzheimer's disease, as well as in processes of secondary degeneration. This reveals a relationship between myelin and secondary processes of neurodegeneration, including resultant degeneration following traumatic injury and transsynaptic degeneration. The role of myelin in primary and secondary degeneration is also of interest in the exploration of strategies and targets for remyelination, including the use of anti-inflammatory molecules or nanoparticles to deliver drugs. Although the use of these methods in animal models of diseases have shown to be effective in promoting remyelination, very few clinical trials in patients have met primary end points. This may be due to shortcomings or considerations that are not met while designing a clinical trial that targets remyelination. Potential solutions include diversifying disease targets and requiring concomitant interventions to promote rehabilitation.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
- Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
- Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
15
|
Jamet M, Dupuis L, Gonzalez De Aguilar JL. Oligodendrocytes in amyotrophic lateral sclerosis and frontotemporal dementia: the new players on stage. Front Mol Neurosci 2024; 17:1375330. [PMID: 38585368 PMCID: PMC10995329 DOI: 10.3389/fnmol.2024.1375330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal adult-onset neurodegenerative disorders that share clinical, neuropathological and genetic features, which forms part of a multi-system disease spectrum. The pathological process leading to ALS and FTD is the result of the combination of multiple mechanisms that operate within specific populations of neurons and glial cells. The implication of oligodendrocytes has been the subject of a number of studies conducted on patients and related animal models. In this review we summarize our current knowledge on the alterations specific to myelin and the oligodendrocyte lineage occurring in ALS and FTD. We also consider different ways by which specific oligodendroglial alterations influence neurodegeneration and highlight the important role of oligodendrocytes in these two intrinsically associated neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Jose-Luis Gonzalez De Aguilar
- Strasbourg Translational Neuroscience and Psychiatry, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
17
|
Askari H, Rabiei F, Yahyazadeh M, Biagini G, Ghasemi-Kasman M. Notch Signaling in Central Nervous System: From Cellular Development to Multiple Sclerosis Disease. Curr Neuropharmacol 2024; 23:3-19. [PMID: 39162293 PMCID: PMC11519821 DOI: 10.2174/1570159x22666240731114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION/OBJECTIVE Multiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression. METHODS A comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as "Notch signaling," "neuroglial interactions," and "MS" were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS. RESULTS This review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy. CONCLUSION This study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoomeh Yahyazadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
18
|
Pieczonka K, Khazaei M, Fehlings MG. Promoting the Differentiation of Neural Progenitor Cells into Oligodendrocytes through the Induction of Olig2 Expression: A Transcriptomic Study Using RNA-seq Analysis. Cells 2023; 12:cells12091252. [PMID: 37174652 PMCID: PMC10177465 DOI: 10.3390/cells12091252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system that facilitate efficient signal transduction. The loss of these cells and the associated myelin sheath can lead to profound functional deficits. Moreover, oligodendrocytes also play key roles in mediating glial-neuronal interactions, which further speaks to their importance in health and disease. Neural progenitor cells (NPCs) are a promising source of cells for the treatment of oligodendrocyte-related neurological diseases due to their ability to differentiate into a variety of cell types, including oligodendrocytes. However, the efficiency of oligodendrocyte differentiation is often low. In this study, we induced the expression of the Olig2 transcription factor in tripotent NPCs using a doxycycline-inducible promoter, such that the extent of oligodendrocyte differentiation could be carefully regulated. We characterized the differentiation profile and the transcriptome of these inducible oligodendrogenic NPCs (ioNPCs) using a combination of qRT-PCR, immunocytochemistry and RNA sequencing with gene ontology (GO) and gene set enrichment analysis (GSEA). Our results show that the ioNPCs differentiated into a significantly greater proportion of oligodendrocytes than the NPCs. The induction of Olig2 expression was also associated with the upregulation of genes involved in oligodendrocyte development and function, as well as the downregulation of genes involved in other cell lineages. The GO and GSEA analyses further corroborated the oligodendrocyte specification of the ioNPCs.
Collapse
Affiliation(s)
- Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
19
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
20
|
Osorio MJ, Mariani JN, Zou L, Schanz SJ, Heffernan K, Cornwell A, Goldman SA. Glial progenitor cells of the adult human white and grey matter are contextually distinct. Glia 2023; 71:524-540. [PMID: 36334067 PMCID: PMC10100527 DOI: 10.1002/glia.24291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFβ signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Collapse
Affiliation(s)
- Maria Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kate Heffernan
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Luo W, Xu H, Xu L, Jiang W, Chen C, Chang Y, Liu C, Tian Z, Qiu X, Xie C, Li X, Chen H, Lai S, Wu L, Cui Y, Tang C, Qiu W. Remyelination in neuromyelitis optica spectrum disorder is promoted by edaravone through mTORC1 signaling activation. Glia 2023; 71:284-304. [PMID: 36089914 DOI: 10.1002/glia.24271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease of the central nervous system that is manifested as secondary myelin loss. Oligodendrocyte progenitor cells (OPCs) are the principal source of myelinating oligodendrocytes (OLs) and are abundant in demyelinated regions of NMOSD patients, thus possibly representing a cellular target for pharmacological intervention. To explore the therapeutic compounds that enhance myelination due to endogenous OPCs, we screened the candidate drugs in mouse neural progenitor cell (NPC)-derived OPCs. We identified drug edaravone, which is approved by the Food and Drug Administration (FDA), as a promoter of OPC differentiation into mature OLs. Edaravone enhanced remyelination in organotypic slice cultures and in mice, even when edaravone was administered following NMO-IgG-induced demyelination, and ameliorated motor impairment in a systemic mouse model of NMOSD. The results of mechanistic studies in NMO-IgG-treated mice and the biopsy samples of the brain tissues of NMOSD patients indicated that the mTORC1 signaling pathway was significantly inhibited, and edaravone promoted OPC maturation and remyelination by activating mTORC1 signaling. Furthermore, pharmacological activation of mTORC1 signaling significantly enhanced myelin regeneration in NMOSD. Thus, edaravone is a potential therapeutic agent that promotes lesion repair in NMOSD patients by enhancing OPC maturation.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Longjun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Pregnenolone enhances the proliferation of mouse neural stem cells and promotes oligodendrogenesis, together with Sox10, and neurogenesis, along with Notch1 and Pax6. Neurochem Int 2023; 163:105489. [PMID: 36657722 DOI: 10.1016/j.neuint.2023.105489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Pregnenolone is a precursor of various steroid hormones involved in osteoblast proliferation, microtubules polymerization and cell survival protection. Previous reports focused on the effects of pregnenolone metabolites on stem cell proliferation and differentiation; however, the effects of pregnenolone itself has not been well explored. The present study aimed to investigate the role of pregnenolone on NSC proliferation and to determine the doses required for NSC differentiation as well as the various genes involved in its mechanism of action. METHODS NSCs were isolated from the embryonic cortex of E14 mice, incubated for 5 days, and then treated with pregnenolone doses of 2, 5, 10, 15 and 20 μM for another 5 days. The number of neurospheres and neurosphere derived cells were then counted. Flow cytometry was used to evaluate the differentiation of NSCs into oligodendrocytes, astrocytes, and neurons. The expression level of Notch1, Pax6 and Sox10 genes were also measured by Real Time PCR after 5 days of treatment. RESULTS Our data suggest that treatment with 10 μM pregnenolone is optimal for NSC proliferation. In fact, this concentration caused the highest increase in the number of neurospheres and neurosphere derived cells, compared to the control group. In addition, treatment with low doses of pregnenolone (5 and 10 μM) caused a significant increase in NSC differentiation towards immature (Olig2+) and mature (MBP+) oligodendrocyte cell populations, compared to controls. However, NSC differentiation into neurons (beta III tubulin + cells) increased in all treatment groups, with the highest and most significant increase obtained at 15 μM concentration. It is worth noting that pregnenolone at the highest concentration of 15 μM decreased the number of astrocytes (GFAP+). Furthermore, there was an increase of Sox10 expression with low pregnenolone doses, leading to oligodendrogenesis, whereas Notch1 and Pax6 gene expression increased in pregnenolone groups with more neurogenesis. CONCLUSION Pregnenolone regulates NSCs proliferation in vitro. Treatment with low doses of pregnenolone caused an increase in the differentiation of NSCs into mature oligodendrocytes while higher doses increased the differentiation of NSCs into neurons. Oligodendrogenesis was accompanied by Sox10 while neurogenesis occurred together with Notch1 and Pax6 expression.
Collapse
|
23
|
Hu HJ, Fan DF, Ye ZH, Sun Q. Effects of hyperbaric oxygen on Notch signaling pathway after severe carbon monoxide poisoning in mice. Med Gas Res 2023; 13:23-28. [PMID: 35946219 PMCID: PMC9480357 DOI: 10.4103/2045-9912.344971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/20/2021] [Accepted: 03/27/2021] [Indexed: 11/04/2022] Open
Abstract
Demyelination of the cerebral white matter is the most common pathological change after carbon monoxide (CO) poisoning. Notch signaling, the mechanism underlying the differentiation of astrocytes and oligodendrocytes, is critical to remyelination of the white matter after brain lesion. The purpose of this work was to determine the effects of hyperbaric oxygen (HBO) on Notch signaling pathway after CO poisoning for the explanation of the protective effects of HBO on CO-poisoning-related cerebral white matter demyelination. The male C57 BL/6 mice with severe CO poisoning were treated by HBO. And HBO therapy shortened the escape latency and improved the body mass after CO poisoning. HBO therapy also significantly suppressed protein and mRNA levels of Notch1 and Hes5 after CO poisoning. Our findings suggested that HBO could suppress the activation of Notch signaling pathway after CO poisoning, which is the mechanism underlying the neuroprotection of HBO on demyelination after severe CO poisoning.
Collapse
Affiliation(s)
- Hui-Jun Hu
- Department of Hyperbaric Medicine, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dan-Feng Fan
- Department of Hyperbaric Medicine, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhou-Heng Ye
- Department of Special Operations Medicine, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Sun
- Department of Hyperbaric Medicine, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Jäntti H, Oksanen M, Kettunen P, Manta S, Mouledous L, Koivisto H, Ruuth J, Trontti K, Dhungana H, Keuters M, Weert I, Koskuvi M, Hovatta I, Linden AM, Rampon C, Malm T, Tanila H, Koistinaho J, Rolova T. Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice. Cells 2022; 11:cells11244116. [PMID: 36552881 PMCID: PMC9776487 DOI: 10.3390/cells11244116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Broad Institute, Cambridge, MA 02142, USA
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Stella Manta
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Johanna Ruuth
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Hiramani Dhungana
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Meike Keuters
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Isabelle Weert
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Koskuvi
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| | - Taisia Rolova
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| |
Collapse
|
25
|
Li C, Xie Z, Xing Z, Zhu H, Zhou W, Xie S, Zhang Z, Li MH. The Notch Signaling Pathway Regulates Differentiation of NG2 Cells into Oligodendrocytes in Demyelinating Diseases. Cell Mol Neurobiol 2022; 42:1-11. [PMID: 33826017 PMCID: PMC11421596 DOI: 10.1007/s10571-021-01089-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
NG2 cells are highly proliferative glial cells that can self-renew or differentiate into oligodendrocytes, promoting remyelination. Following demyelination, the proliferative and differentiation potentials of NG2 cells increase rapidly, enhancing their differentiation into functional myelinating cells. Levels of the transcription factors Olig1 and Olig2 increase during the differentiation of NG2 cells and play important roles in the development and repair of oligodendrocytes. However, the ability to generate new oligodendrocytes is hampered by injury-related factors (e.g., myelin fragments, Wnt and Notch signaling components), leading to failed differentiation and maturation of NG2 cells into oligodendrocytes. Here, we review Notch signaling as a negative regulator of oligodendrocyte differentiation and discuss the extracellular ligands, intracellular pathways, and key transcription factors involved.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Mei-Hua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
26
|
Watson CM, Sherwood CC, Phillips KA. Myelin characteristics of the corpus callosum in capuchin monkeys (Sapajus [Cebus] apella) across the lifespan. Sci Rep 2022; 12:8786. [PMID: 35610294 PMCID: PMC9130294 DOI: 10.1038/s41598-022-12893-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
The midsagittal area of the corpus callosum (CC) is frequently studied in relation to brain development, connectivity, and function. Here we quantify myelin characteristics from electron microscopy to understand more fully differential patterns of white matter development occurring within the CC. We subdivided midsagittal regions of the CC into: I-rostrum and genu, II-rostral body, III-anterior midbody, IV-posterior midbody, and V-isthmus and splenium. The sample represented capuchin monkeys ranging in age from 2 weeks to 35 years (Sapajus [Cebus] apella, n = 8). Measurements of myelin thickness, myelin fraction, and g-ratio were obtained in a systematic random fashion. We hypothesized there would be a period of rapid myelin growth within the CC in early development. Using a locally weighted regression analysis (LOESS), we found regional differences in myelin characteristics, with posterior regions showing more rapid increases in myelin thickness and sharper decreases in g-ratio in early development. The most anterior region showed the most sustained growth in myelin thickness. For all regions over the lifespan, myelin fraction increased, plateaued, and decreased. These results suggest differential patterns of nonlinear myelin growth occur early in development and well into adulthood in the CC of capuchin monkeys.
Collapse
Affiliation(s)
- Chase M Watson
- Department of Psychology and Neuroscience Program, Trinity University, San Antonio, TX, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kimberley A Phillips
- Department of Psychology and Neuroscience Program, Trinity University, San Antonio, TX, USA.
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
27
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
28
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 539] [Impact Index Per Article: 179.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
29
|
Li C, Huang S, Zhou W, Xie Z, Xie S, Li M. Effects of the Notch Signaling Pathway on Secondary Brain Changes Caused by Spinal Cord Injury in Mice. Neurochem Res 2022; 47:1651-1663. [PMID: 35211828 DOI: 10.1007/s11064-022-03558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch signaling pathway activation can regulate oligodendrocyte maturation and myelination. The aim of this study was to investigate whether inhibition of the Notch signaling pathway can alleviate hypomyelination in the dlPFC caused by SCI. Moreover, we further investigated whether the changes in myelination in the dlPFC are associated with neuropathic pain following SCI. We established a mouse model of SCI and observed the changes in mechanical and thermal hyperalgesia. Western blotting and immunofluorescence were used to analyze the changes in myelination in the dlPFC. The results indicated the existence of a relationship between activation of the Notch signaling pathway and hypomyelination in the dlPFC and confirmed the existence of a relationship between hypomyelination in the dlPFC and decreases in mechanical and thermal hyperalgesia thresholds. In conclusion, these results suggested that the Notch signaling pathway is activated after SCI, leading to hypomyelination in the dlPFC, and that DAPT can inhibit the Notch signaling pathway and improve mechanical and thermal hyperalgesia thresholds. Our findings provide a new target for the treatment of neuropathic pain caused by SCI.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, 332005, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
30
|
Ali M, Ribeiro MM, Del Sol A. Computational Methods to Identify Cell-Fate Determinants, Identity Transcription Factors, and Niche-Induced Signaling Pathways for Stem Cell Research. Methods Mol Biol 2022; 2471:83-109. [PMID: 35175592 DOI: 10.1007/978-1-0716-2193-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The large-scale development of high-throughput sequencing technologies has not only allowed the generation of reliable omics data related to various regulatory layers but also the development of novel computational models in the field of stem cell research. These computational approaches have enabled the disentangling of a complex interplay between these interrelated layers of regulation by interpreting large quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of complex gene-gene interactions has been successfully used for understanding the mechanisms underlying stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate determinants and signaling molecules controlling such processes. This chapter will provide an overview of various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-fate decisions. Furthermore, we discuss how these computational methods provide the right framework for computational modeling of biological systems in order to address long-standing challenges in the stem cell field by guiding experimental efforts in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
31
|
Liu L, Fang L, Duan B, Wang Y, Cui Z, Yang L, Wu D. Multi-Hit White Matter Injury-Induced Cerebral Palsy Model Established by Perinatal Lipopolysaccharide Injection. Front Pediatr 2022; 10:867410. [PMID: 35733809 PMCID: PMC9207278 DOI: 10.3389/fped.2022.867410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) is a group of permanent, but not unchanging, disorders of movement and/or posture and motor function. Since the major brain injury associated with CP is white matter injury (WMI), especially, in preterm infants, we established a "multi-hit" rat model to mimic human WMI in symptomatology and at a histological level. In our WMI model, pups suffering from limb paresis, incoordination, and direction difficulties fit the performance of CP. Histologically, they present with fewer neural cells, inordinate fibers, and more inflammatory cell infiltration, compared to the control group. From the electron microscopy results, we spotted neuronal apoptosis, glial activation, and myelination delay. Besides, the abundant appearance of IBA1-labeled microglia also implied that microglia play a role during neuronal cell injury. After activation, microglia shift between the pro-inflammatory M1 type and the anti-inflammatory M2 type. The results showed that LPS/infection stimulated IBA1 + (marked activated microglia) expression, downregulated CD11c + (marked M1 phenotype), and upregulated Arg 1 + (marked M2 phenotype) protein expression. It indicated an M1 to M2 transition after multiple infections. In summary, we established a "multi-hit" WMI-induced CP rat model and demonstrated that the microglial activation correlates tightly with CP formation, which may become a potential target for future studies.
Collapse
Affiliation(s)
- Le Liu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Maternal and Child Health Hospital, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwei Fang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Boyang Duan
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Cui
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Huang H, Wu H, He W, Zhou F, Yu X, Yi M, Du J, Xie B, Qiu M. Id2 and Id4 are not the major negative regulators of oligodendrocyte differentiation during early central nervous system development. Glia 2021; 70:590-601. [PMID: 34889481 DOI: 10.1002/glia.24126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/18/2022]
Abstract
Myelin sheathes ensure the rapid conduction of neural impulse and provide nutritional support for neurons. Myelin sheathes are formed by differentiated oligodendrocytes (OLs) in the central nervous system. During OL development, the differentiation of oligodendrocyte progenitor cells (OPCs) into mature OLs is controlled by both positive differentiation factors (drivers) and negative regulatory factors (brakes). Previous studies have suggested Id2 and Id4 as the key negative factors for OL differentiation. However, these conclusions were mainly based on in vitro studies and the reported OL phenotype in Id4 mutants appear to be mild. In this study, we systematically investigated the in vivo function of Id2 and Id4 genes in OL differentiation in their genetic mutants and in embryonic chicken spinal cord. Our results showed that disruption of Id4 has no effect on OL differentiation and maturation, whereas Id2 mutants and Id2/Id4 compound mutants display a mild and transient precocity of OL differentiation. In agreement with these loss-of-function studies, Id2, but not Id4, is weakly expressed in OPCs. Despite their minor roles in OL differentiation, forced expression of Id2 and Id4 in embryonic chicken spinal cords strongly inhibit the differentiation of OPCs. Taken together, our detailed functional and expressional studies strongly suggest that Id2 and Id4 are not the major in vivo repressors of OPC differentiation during animal development, shedding new light on the molecular regulation of early OL development.
Collapse
Affiliation(s)
- Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huihui Wu
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wanjun He
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fang Zhou
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xianxian Yu
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Yi
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junqing Du
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Binghua Xie
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
34
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
35
|
A proposal: How to study pro-myelinating proteins in MS. Autoimmun Rev 2021; 21:102924. [PMID: 34416371 DOI: 10.1016/j.autrev.2021.102924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disease of the CNS. An unmet need in MS is repair i.e.,promoting endogenous regeneration and remyelination after demyelinating inflammatory injury. Remyelination is critical in neuronal preservation and the prevention of clinical progression. There is a good deal of evidence for histological repair and remyelination in MS patients. Repair is driven by several prominent endogenous pro-myelinating proteinsincluding neural cellular adhesion molecule (N-CAM) and brain derived neurotrophic factor (BDNF) among others. To follow changes during acute re-myelination in vivo in MS subjects, non conventional MRI techniques are necessary such as quantitative susceptibility mapping (QSM) that detects the release of Fe from dying oligodendroglial cells and myelin water imaging (MWI) that detects water captured within newly formed myelin. The best time to monitor changes in pro-myelinating proteins and link those changes to imaging evolution is immediately after the acute inflammatory response in MS lesions (gadolinium enhancement [Gd+]) during an intense period of remyelination. We can monitor MS subjects with new Gd + lesions with periodic imaging along with sampling of blood and CSF and determine if myelin formation is linked with increases in pro-myelinating proteins. This would lead to potential therapeutic manipulation with directly administered proteins to promote CNS re-myelination in animal models and in early clinical trials.
Collapse
|
36
|
Li S, Guan H, Zhang Y, Li S, Li K, Hu S, Zuo E, Zhang C, Zhang X, Gong G, Wang R, Piao F. Bone marrow mesenchymal stem cells promote remyelination in spinal cord by driving oligodendrocyte progenitor cell differentiation via TNFα/RelB-Hes1 pathway: a rat model study of 2,5-hexanedione-induced neurotoxicity. Stem Cell Res Ther 2021; 12:436. [PMID: 34348774 PMCID: PMC8336089 DOI: 10.1186/s13287-021-02518-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND N-hexane, with its metabolite 2,5-hexanedine (HD), is an industrial hazardous material. Chronic hexane exposure causes segmental demyelination in the peripheral nerves, and high-dose intoxication may also affect central nervous system. Demyelinating conditions are difficult to treat and stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) is a promising novel strategy. Our previous study found that BMSCs promoted motor function recovery in rats modeling hexane neurotoxicity. This work aimed to explore the underlying mechanisms and focused on the changes in spinal cord. METHODS Sprague Dawley rats were intoxicated with HD (400 mg/kg/day, i.p, for 5 weeks). A bolus of BMSCs (5 × 107 cells/kg) was injected via tail vein. Demyelination and remyelination of the spinal cord before and after BMSC treatment were examined microscopically. Cultured oligodendrocyte progenitor cells (OPCs) were incubated with HD ± BMSC-derived conditional medium (BMSC-CM). OPC differentiation was studied by immunostaining and morphometric analysis. The expressional changes of Hes1, a transcription factor negatively regulating OPC-differentiation, were studied. The upstream Notch1 and TNFα/RelB pathways were studied, and some key signaling molecules were measured. The correlation between neurotrophin NGF and TNFα was also investigated. Statistical significance was evaluated using one-way ANOVA and performed using SPSS 13.0. RESULTS The demyelinating damage by HD and remyelination by BMSCs were evidenced by electron microscopy, LFB staining and NG2/MBP immunohistochemistry. In vitro cultured OPCs showed more differentiation after incubation with BMSC-CM. Hes1 expression was found to be significantly increased by HD and decreased by BMSC or BMSC-CM. The change of Hes1 was found, however, independent of Notch1 activation, but dependent on TNFα/RelB signaling. HD was found to increase TNFα, RelB and Hes1 expression, and BMSCs were found to have the opposite effect. Addition of recombinant TNFα to OPCs or RelB overexpression similarly caused upregulation of Hes1 expression. The secretion of NGF by BMSC and activation of NGF receptor was found important for suppression of TNFα production in OPCs. CONCLUSIONS Our findings demonstrated that BMSCs promote remyelination in the spinal cord of HD-exposed rats via TNFα/RelB-Hes1 pathway, providing novel insights for evaluating and further exploring the therapeutical effect of BMSCs on demyelinating neurodegenerative disease.
Collapse
Affiliation(s)
- Shuangyue Li
- School of Public Health, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Huai Guan
- Department of Obstetrics and Gynecology, No. 967 Hospital of the Joint Logistics Support Force of the Chinese PLA, Dalian, People's Republic of China
| | - Yan Zhang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China.,Xunyi Center for Disease Control and Prevention, Xunyi, Shanxi, 711300, People's Republic of China
| | - Sheng Li
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Kaixin Li
- School of Public Health, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China.,Xian Center for Disease Control and Prevention, Xian, 710054, People's Republic of China
| | - Shuhai Hu
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Enjun Zuo
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Cong Zhang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Xin Zhang
- Department of Clinical Nutrition, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Guanyu Gong
- Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China. .,Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| | - Ruoyu Wang
- Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Fengyuan Piao
- Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| |
Collapse
|
37
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
38
|
Hou J, Bi H, Ye Z, Huang W, Zou G, Zou X, Shi YS, Shen Y, Ma Q, Kirchhoff F, Hu Y, Chen G. Pen-2 Negatively Regulates the Differentiation of Oligodendrocyte Precursor Cells into Astrocytes in the Central Nervous System. J Neurosci 2021; 41:4976-4990. [PMID: 33972402 PMCID: PMC8197633 DOI: 10.1523/jneurosci.2455-19.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations on γ-secretase subunits are associated with neurologic diseases. Whereas the role of γ-secretase in neurogenesis has been intensively studied, little is known about its role in astrogliogenesis. Recent evidence has demonstrated that astrocytes can be generated from oligodendrocyte precursor cells (OPCs). However, it is not well understood what mechanism may control OPCs to differentiate into astrocytes. To address the above questions, we generated two independent lines of oligodendrocyte lineage-specific presenilin enhancer 2 (Pen-2) conditional KO mice. Both male and female mice were used. Here we demonstrate that conditional inactivation of Pen-2 mediated by Olig1-Cre or NG2-CreERT2 causes enhanced generation of astrocytes. Lineage-tracing experiments indicate that abnormally generated astrocytes are derived from Cre-expressing OPCs in the CNS in Pen-2 conditional KO mice. Mechanistic analysis reveals that deletion of Pen-2 inhibits the Notch signaling to upregulate signal transducer and activator of transcription 3, which triggers activation of GFAP to promote astrocyte differentiation. Together, these novel findings indicate that Pen-2 regulates the specification of astrocytes from OPCs through the signal transducer and activator of transcription 3 signaling.SIGNIFICANCE STATEMENT Astrocytes and oligodendrocyte (OLs) play critical roles in the brain. Recent evidence has demonstrated that astrocytes can be generated from OL precursor cells (OPCs). However, it remains poorly understood what mechanism governs the differentiation of OPCs into astrocytes. In this study, we took advantage of OL lineage cells specific presenilin enhancer 2 (Pen-2) conditional KO mice. We show that deletion of Pen-2 leads to dramatically enhanced astrocyte differentiation from OPCs in the CNS. Mechanistic analysis reveals that deletion of Pen-2 inhibits Hes1 and activates signal transducer and activator of transcription 3 to trigger GFAP activation which promotes astrocyte differentiation. Overall, this study identifies a novel function of Pen-2 in astrogliogenesis from OPCs.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Huiru Bi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Zhuoyang Ye
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, D-66421, Germany
| | - Gang Zou
- Department of General Surgery, Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518000, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, D-66421, Germany
| | - Yimin Hu
- Department of Anesthesiology, Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| |
Collapse
|
39
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
40
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
41
|
Dynamics of Central Remyelination and Treatment Evolution in a Model of Multiple Sclerosis with Optic Coherence Tomography. Int J Mol Sci 2021; 22:ijms22052440. [PMID: 33671012 PMCID: PMC7957639 DOI: 10.3390/ijms22052440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
The need for remyelinating drugs is essential for healing disabling diseases such as multiple sclerosis (MS). One of the reasons for the lack of this class of therapies is the impossibility to monitor remyelination in vivo, which is of utmost importance to perform effective clinical trials. Here, we show how optical coherence tomography (OCT), a cheap and non-invasive technique commonly used in ophthalmology, may be used to assess remyelination in vivo in MS patients. Our pioneer approach validates OCT as a technique to study remyelination of the optic nerve and reflects what is occurring in non-accessible central nervous system (CNS) structures, like the spinal cord. In this study we used the orally bioavailable small molecule VP3.15, confirming its therapeutical potential as a neuroprotective, anti-inflammatory, and probably remyelinating drug for MS. Altogether, our results confirm the usefulness of OCT to monitor the efficacy of remyelinating therapies in vivo and underscore the relevance of VP3.15 as a potential disease modifying drug for MS therapy.
Collapse
|
42
|
Sun Y, Ji J, Zha Z, Zhao H, Xue B, Jin L, Wang L. Effect and Mechanism of Catalpol on Remyelination via Regulation of the NOTCH1 Signaling Pathway. Front Pharmacol 2021; 12:628209. [PMID: 33708131 PMCID: PMC7940842 DOI: 10.3389/fphar.2021.628209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Promoting the differentiation of oligodendrocyte precursor cells (OPCs) is important for fostering remyelination in multiple sclerosis. Catalpol has the potential to promote remyelination and exert neuroprotective effects, but its specific mechanism is still unclear. Recent studies have shown that the NOTCH1 signaling pathway is involved in mediating OPC proliferation and differentiation. In this study, we elucidated that catalpol promoted OPC differentiation in vivo and vitro and explored the regulatory role of catalpol in specific biomolecular processes. Following catalpol administration, better and faster recovery of body weight and motor balance was observed in mice with cuprizone (CPZ)-induced demyelination. Luxol fast blue staining (LFB) and transmission electron microscopy (TEM) showed that catalpol increased the myelinated area and improved myelin ultrastructure in the corpus callosum in demyelinated mice. In addition, catalpol enhanced the expression of CNPase and MBP, indicating that it increased OPC differentiation. Additionally, catalpol downregulated the expression of NOTCH1 signaling pathway-related molecules, such as JAGGED1, NOTCH1, NICD1, RBPJ, HES5, and HES1. We further demonstrated that in vitro, catalpol enhanced the differentiation of OPCs into OLs and inhibited NOTCH1 signaling pathway activity. Our data suggested that catalpol may promote OPC differentiation and remyelination through modulation of the NOTCH1 pathway. This study provides new insight into the mechanism of action of catalpol in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Zheng Zha
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Core Facility Center, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
44
|
Auderset L, Pitman KA, Cullen CL, Pepper RE, Taylor BV, Foa L, Young KM. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Negative Regulator of Oligodendrocyte Progenitor Cell Differentiation in the Adult Mouse Brain. Front Cell Dev Biol 2020; 8:564351. [PMID: 33282858 PMCID: PMC7691426 DOI: 10.3389/fcell.2020.564351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large, endocytic cell surface receptor that is highly expressed by oligodendrocyte progenitor cells (OPCs) and LRP1 expression is rapidly downregulated as OPCs differentiate into oligodendrocytes (OLs). We report that the conditional deletion of Lrp1 from adult mouse OPCs (Pdgfrα-CreER :: Lrp1fl/fl) increases the number of newborn, mature myelinating OLs added to the corpus callosum and motor cortex. As these additional OLs extend a normal number of internodes that are of a normal length, Lrp1-deletion increases adult myelination. OPC proliferation is also elevated following Lrp1 deletion in vivo, however, this may be a secondary, homeostatic response to increased OPC differentiation, as our in vitro experiments show that LRP1 is a direct negative regulator of OPC differentiation, not proliferation. Deleting Lrp1 from adult OPCs also increases the number of newborn mature OLs added to the corpus callosum in response to cuprizone-induced demyelination. These data suggest that the selective blockade of LRP1 function on adult OPCs may enhance myelin repair in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
45
|
Choi BR, Dobrowolski M, Sockanathan S. GDE2 expression in oligodendroglia regulates the pace of oligodendrocyte maturation. Dev Dyn 2020; 250:513-526. [PMID: 33095500 DOI: 10.1002/dvdy.265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Oligodendrocytes generate specialized lipid-rich sheaths called myelin that wrap axons and facilitate the rapid, saltatory transmission of action potentials. Extrinsic signals and surface-mediated pathways coordinate oligodendrocyte development to ensure appropriate axonal myelination, but the mechanisms involved are not fully understood. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a six-transmembrane enzyme that regulates the activity of surface glycosylphosphatidylinositol (GPI)-anchored proteins by cleavage of the GPI-anchor. GDE2 is expressed in neurons where it promotes oligodendrocyte maturation through the release of neuronally-derived soluble factors. GDE2 is also expressed in oligodendrocytes but the function of oligodendroglial GDE2 is not known. RESULTS Using Cre-lox technology, we generated mice that lack GDE2 expression in oligodendrocytes (O-Gde2KO). O-Gde2KOs show normal production and proliferation of oligodendrocyte precursor cells. However, oligodendrocyte maturation is accelerated leading to the robust increase of myelin proteins and increased myelination during development. These in vivo observations are recapitulated in vitro using purified primary oligodendrocytes, supporting cell-autonomous functions for GDE2 in oligodendrocyte maturation. CONCLUSIONS These studies reveal that oligodendroglial GDE2 expression is required for controlling the pace of oligodendrocyte maturation. Thus, the cell-type specific expression of GDE2 is important for the coordination of oligodendrocyte maturation and axonal myelination during neural development.
Collapse
Affiliation(s)
- Bo-Ran Choi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mateusz Dobrowolski
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanthini Sockanathan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Fissel JA, Farah MH. Macrophage-specific deletion of BACE1 does not enhance macrophage recruitment to the injured peripheral nerve. J Neuroimmunol 2020; 349:577423. [PMID: 33074142 DOI: 10.1016/j.jneuroim.2020.577423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
Following peripheral nerve injury, macrophages are recruited to the injury site from circulation to clear cellular debris. Injured β-secretase 1 (BACE1) knockout mice have enhanced macrophage recruitment and debris clearance, which may be due to BACE1 activity in macrophages or the hypomyelination observed in BACE1 knockout mice. To assess if BACE1 expression by macrophages mediates enhanced macrophage recruitment we utilized mice with macrophage specific deletion of BACE1 and saw no increase in macrophage recruitment following injury. This study suggests that expression of BACE1 by macrophages may not be essential for increased recruitment observed previously in global BACE1 KO mice.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed H Farah
- Department of Neurology at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol 2020; 140:359-375. [PMID: 32710244 PMCID: PMC7424408 DOI: 10.1007/s00401-020-02189-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is the most frequent demyelinating disease and a leading cause for disability in young adults. Despite significant advances in immunotherapies in recent years, disease progression still cannot be prevented. Remyelination, meaning the formation of new myelin sheaths after a demyelinating event, can fail in MS lesions. Impaired differentiation of progenitor cells into myelinating oligodendrocytes may contribute to remyelination failure and, therefore, the development of pharmacological approaches which promote oligodendroglial differentiation and by that remyelination, represents a promising new treatment approach. However, this generally accepted concept has been challenged recently. To further understand mechanisms contributing to remyelination failure in MS, we combined detailed histological analyses assessing oligodendroglial cell numbers, presence of remyelination as well as the inflammatory environment in different MS lesion types in white matter with in vitro experiments using induced-pluripotent stem cell (iPSC)-derived oligodendrocytes (hiOL) and supernatants from polarized human microglia. Our findings suggest that there are multiple reasons for remyelination failure in MS which are dependent on lesion stage. These include lack of myelin sheath formation despite the presence of mature oligodendrocytes in a subset of active lesions as well as oligodendroglial loss and a hostile tissue environment in mixed active/inactive lesions. Therefore, we conclude that better in vivo and in vitro models which mimic the pathological hallmarks of the different MS lesion types are required for the successful development of remyelination promoting drugs.
Collapse
|
48
|
Ferreira S, Pitman KA, Wang S, Summers BS, Bye N, Young KM, Cullen CL. Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain. J Neurosci Res 2020; 98:1905-1932. [PMID: 32557778 PMCID: PMC7540704 DOI: 10.1002/jnr.24672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid β impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB‐APPSw.Ind, also known as J20 mice). PDGFB‐APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60‐P180 PDGFB‐APPSw.Ind transgenic mice and, by performing whole‐cell patch‐clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB‐APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB‐APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB‐APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.
Collapse
Affiliation(s)
- Solène Ferreira
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shiwei Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin S Summers
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
49
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
50
|
Liu C, Li D, Lv C, Gao Z, Qi Y, Wu H, Tian Y, Guo Y. Activation of the Notch Signaling Pathway and Cellular Localization of Notch Signaling Molecules in the Spinal Cord of SOD1-G93A ALS Model Mice. Neuroscience 2020; 432:84-93. [PMID: 32114100 DOI: 10.1016/j.neuroscience.2020.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/01/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron loss and gliosis in the spinal cord, brain stem and cortex. The Notch signaling pathway has been reported to be dysfunctional in neurodegenerative diseases, including ALS. However, the exact mechanism is still unclear. Here, we detected Notch signaling activation in proliferating glial cells, Notch inactivation in motor neurons in the spinal cord of the SOD1-G93A model, and dramatic changes of cellular relocalization of Notch pathway signaling molecules, including activated Notch intracellular domain (NICD), Notch ligands (Jagged1 and DLL4) and the target gene Hes1. We found that Notch activation was universal in proliferating astrocytes and that the Notch ligand Jagged1 was uniquely upregulated in proliferating microglia, while DLL4 expression was increased in both activated astrocytes and degenerating oligodendrocytes. Our results indicate that microglia may play an important role in the intercellular receptor-ligand interaction of the Notch signaling pathway and contribute to the pathogenesis of motor neuron loss in ALS mice. Further experiments are required to clarify the exact mechanism responsible for Notch dysfunction in ALS.
Collapse
Affiliation(s)
- Chong Liu
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China; Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Dongxiao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhisong Gao
- Department of Scientific Research, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yinkuang Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yunyun Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China; Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|