1
|
Invernizzi L, Lemaître JF, Douhard M. The expensive son hypothesis. J Anim Ecol 2025; 94:20-44. [PMID: 39473289 DOI: 10.1111/1365-2656.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/12/2024] [Indexed: 01/15/2025]
Abstract
In its initial form, the expensive son hypothesis postulates that sons from male-biased sexually dimorphic species require more food during growth than daughters, which ultimately incur fitness costs for mothers predominantly producing and rearing sons. We first dissect the evolutionary framework in which the expensive son hypothesis is rooted, and we provide a critical reappraisal of its differences from other evolutionary theories proposed in the field of sex allocation. Then, we synthesize the current (and absence of) support for the costs of producing and rearing sons on maternal fitness components (future reproduction and survival). Regarding the consequences in terms of future reproduction, we highlight that species with pronounced sexual size dimorphism display a higher cost of sons than of daughters on subsequent reproductive performance, at least in mammals. However, in most studies, the relative fitness costs of producing and rearing sons and daughters can be due to sex-biased maternal allocation strategies rather than differences in energetic demands of offspring, which constitutes an alternative mechanism to the expensive son hypothesis stricto sensu. We observe that empirical studies investigating the differential costs of sons and daughters on maternal survival in non-human animals remain rare, especially for long-term survival. Indeed, most studies have investigated the influence of offspring sex (or litter sex ratio) at year T on survival at year T + 1, and they rarely provide a support to the expensive son hypothesis. On the contrary, in humans, most studies have focused on the relationship between proportion of sons and maternal lifespan, but these results are inconsistent. Our study highlights new avenues for future research that should provide a comprehensive view of the expensive son hypothesis, by notably disentangling the effects of offspring behaviour from the effect of sex-specific maternal allocation. Moreover, we emphasize that future studies should also embrace the mechanistic side of the expensive son hypothesis, largely neglected so far, by deciphering the physiological pathways linking son's production to maternal health and fitness.
Collapse
Affiliation(s)
- Lucas Invernizzi
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université Lyon 1, CNRS, Université de Lyon, Villeurbanne, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université Lyon 1, CNRS, Université de Lyon, Villeurbanne, France
| | - Mathieu Douhard
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université Lyon 1, CNRS, Université de Lyon, Villeurbanne, France
| |
Collapse
|
2
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
3
|
Kramer P. Iconic logic: the visual art of drawing the right conclusion. Front Psychol 2024; 15:1368989. [PMID: 38911953 PMCID: PMC11190960 DOI: 10.3389/fpsyg.2024.1368989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Most people, evidence suggests, have a hard time thinking straight. Symbolic logic is a tool that can help remedy this problem. Unfortunately, it is highly abstract and uses symbols whose meanings rely on unintuitive arbitrary conventions. Without sacrificing rigor, iconic logic is more concrete and uses icons that resemble what they stand for and whose meanings are thus easier to picture, process, and remember. Here I review and critique iconic existential graphs and concept diagrams-the former link iconic logic to iconic mathematics; the latter expand popular Euler or Venn diagrams and have, to some degree, been empirically investigated for user-friendliness. I lay out how expertise in perception, cognition, and genetics can inform and improve such empirical research to help make iconic logic more ergonomic. After all, logic is a tool, and tools should not only suit their use but also their user.
Collapse
|
4
|
Tomizawa Y, Wali KH, Surti M, Suhail Y, Kshitiz, Hoshino K. Lightsheet microscopy integrates single-cell optical visco-elastography and fluorescence cytometry of 3D live tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590392. [PMID: 38766194 PMCID: PMC11100606 DOI: 10.1101/2024.04.20.590392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Most common cytometry methods, including flow cytometry, observe suspended or fixed cells and cannot evaluate their structural roles in 3D tissues. However, cellular physical interactions are critical in physiological, developmental, and pathological processes. Here, we present a novel optical visco-elastography that characterizes single-cellular physical interactions by applying in-situ micro-mechanical perturbation to live microtissues under 3D lightsheet microscopy. The 4D digital image correlation (DIC) analysis of ~20,000 nodes tracked the compressive deformation of 3D tissues containing ~500 cells. The computational 3D image segmentation allowed cell-by-cell qualitative observation and statistical analysis, directly correlating multi-channel fluorescence and viscoelasticity. To represent epithelia-stroma interactions, we used a 3D organoid model of maternal-fetal interface and visualized solid-like, well-aligned displacement and liquid-like random motion between individual cells. The statistical analysis through our unique cytometry confirmed that endometrial stromal fibroblasts stiffen in response to decidualization. Moreover, we demonstrated in the 3D model that interaction with placental extravillous trophoblasts partially reverses the attained stiffness, which was supported by the gene expression analysis. Placentation shares critical cellular and molecular significance with various fundamental biological events such as cancer metastasis, wound healing, and gastrulation. Our analysis confirmed existing beliefs and discovered new insights, proving the broad applicability of our method.
Collapse
Affiliation(s)
- Yuji Tomizawa
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Khadija H Wali
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Manav Surti
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
- Systems Biology Institute, Yale University, West Haven, CT
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, CT
| |
Collapse
|
5
|
Fur removal promotes an earlier expression of involution-related genes in mammary gland of lactating mice. J Comp Physiol B 2023; 193:171-192. [PMID: 36650338 PMCID: PMC9992052 DOI: 10.1007/s00360-023-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.
Collapse
|
6
|
Leake DW. Tracing Slow Phenoptosis to the Prenatal Stage in Social Vertebrates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1512-1527. [PMID: 36717460 DOI: 10.1134/s0006297922120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vladimir Skulachev's coining of the term "phenoptosis" 25 years ago (Skulachev, V. P., Biochemistry (Moscow), 62, 1997) highlighted the theoretical possibility that aging is a programmed process to speed the exit of individuals posing some danger to their social group. While rapid "acute phenoptosis" might occur at any age (e.g., to prevent spread of deadly infections), "slow phenoptosis" is generally considered to occur later in life in the form of chronic age-related disorders. However, recent research indicates that risks for such chronic disorders can be greatly raised by early life adversity, especially during the prenatal stage. Much of this research uses indicators of biological aging, the speeding or slowing of natural physiological deterioration in response to environmental inputs, leading to divergence from chronological age. Studies using biological aging indicators commonly find it is accelerated not only in older individuals with chronic disorders, but also in very young individuals with health problems. This review will explain how accelerated biological aging equates to slow phenoptosis. Its occurrence even in the prenatal stage is theoretically supported by W. D. Hamilton's proposal that offsprings detecting they have dangerous mutations should then automatically speed their demise, in order to improve their inclusive fitness by giving their parents the chance to produce other fitter siblings.
Collapse
Affiliation(s)
- David W Leake
- University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
7
|
Kramer P. Iconic Mathematics: Math Designed to Suit the Mind. Front Psychol 2022; 13:890362. [PMID: 35769758 PMCID: PMC9234488 DOI: 10.3389/fpsyg.2022.890362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mathematics is a struggle for many. To make it more accessible, behavioral and educational scientists are redesigning how it is taught. To a similar end, a few rogue mathematicians and computer scientists are doing something more radical: they are redesigning mathematics itself, improving its ergonomic features. Charles Peirce, an important contributor to ordinary symbolic logic, also introduced a rigorous but non-symbolic, graphical alternative to it that is easier to picture. In the spirit of this iconic logic, George Spencer-Brown founded iconic mathematics. Performing iconic arithmetic, algebra, and even trigonometry, resembles doing calculations on an abacus, which is still popular in education today, has aided humanity for millennia, helps even when it is merely imagined, and ameliorates severe disability in basic computation. Interestingly, whereas some intellectually disabled individuals excel in very complex numerical tasks, others of normal intelligence fail even in very simple ones. A comparison of their wider psychological profiles suggests that iconic mathematics ought to suit the very people traditional mathematics leaves behind.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Watson OT, Buchmann G, Young P, Lo K, Remnant EJ, Yagound B, Shambrook M, Hill AF, Oldroyd BP, Ashe A. Abundant small RNAs in the reproductive tissues and eggs of the honey bee, Apis mellifera. BMC Genomics 2022; 23:257. [PMID: 35379185 PMCID: PMC8978429 DOI: 10.1186/s12864-022-08478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Polyandrous social insects such as the honey bee are prime candidates for parental manipulation of gene expression in offspring. Although there is good evidence for parent-of-origin effects in honey bees the epigenetic mechanisms that underlie these effects remain a mystery. Small RNA molecules such as miRNAs, piRNAs and siRNAs play important roles in transgenerational epigenetic inheritance and in the regulation of gene expression during development. Results Here we present the first characterisation of small RNAs present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes. We show that semen contains fewer piRNAs relative to eggs and ovaries, and that piRNAs and miRNAs which map antisense to genes involved in DNA regulation and developmental processes are differentially expressed between tissues. tRNA fragments are highly abundant in semen and have a similar profile to those seen in the semen of other animals. Intriguingly we also find abundant piRNAs that target the sex determination locus, suggesting that piRNAs may play a role in honey bee sex determination. Conclusions We conclude that small RNAs may play a fundamental role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of-origin effects on gene expression and reproductive physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08478-9.
Collapse
Affiliation(s)
- Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gabriele Buchmann
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Young
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute NSW 2010, Darlinghurst, Australia
| | - Kitty Lo
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emily J Remnant
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Benjamin P Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia. .,Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany.
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Abstract
In mammals, parthenogenesis is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized eggs. This was achieved by the targeted DNA methylation rewriting of seven imprinting control regions. By designing guide RNAs with protospacer adjacent motif (PAM) sequences matching one allele but not the other, dCas9-Dnmt3a or dCpf1-Tet1 enables targeted DNA methylation editing in an allele-specific manner. The success of parthenogenesis in mammals opens many opportunities in agriculture, research, and medicine. In mammals, a new life starts with the fusion of an oocyte and a sperm cell. Parthenogenesis, a way of generating offspring solely from female gametes, is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized oocytes, which was achieved by targeted DNA methylation rewriting of seven imprinting control regions. Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a or dCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs) targeting specific regions induced de novo methylation or demethylation, respectively, of the targeted region. Following parthenogenetic activation, these edited regions showed maintenance of methylation as naturally established regions during early preimplantation development. The transfer of modified parthenogenetic embryos into foster mothers resulted in significantly extended development and finally in the generation of viable full-term offspring. These data demonstrate that parthenogenesis can be achieved by targeted epigenetic rewriting of multiple critical imprinting control regions.
Collapse
|
10
|
Whiteman NK. Evolution in small steps and giant leaps. Evolution 2022; 76:67-77. [PMID: 35040122 PMCID: PMC9387839 DOI: 10.1111/evo.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."
Collapse
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
11
|
Evolutionary Perspectives on Infant-Mother Conflict. EVOLUTIONARY PSYCHOLOGY 2022. [DOI: 10.1007/978-3-030-76000-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Snopkowski K, Nelson JJ. Fertility intentions and outcomes in Indonesia: Evolutionary perspectives on sexual conflict. EVOLUTIONARY HUMAN SCIENCES 2021; 3:e33. [PMID: 37588532 PMCID: PMC10427277 DOI: 10.1017/ehs.2021.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Differential fertility preferences for men and women may provide insights into human sexual conflict. We explore whether pairbonded couples have different preferences for future offspring, which socioecological factors are associated with these preferences, and who achieves their desired fertility over time. We utilise the Indonesia Family Life Survey (IFLS), a longitudinal survey which collected data from 1993 to 2015, to compare desired future fertility for 9655 couples and follow couples who had divergent preferences. The majority of couples (64.8%) want the same number of future offspring. In 20.7% of couples, husbands want more future offspring than their wives, while the reverse occurs in 14.5% of couples. Living in villages with the husband's or the wife's parent(s) is associated with having divergent preferences for future offspring, where there is a higher likelihood that women prefer more offspring than their husbands. When examining fertility outcomes, women, particularly those who marry at older ages, are more likely to achieve their desired preference. Contrary to previous research, we do not find that living near one's natal kin or having increased autonomy increases an individual's likelihood of achieving desired fertility outcomes.
Collapse
Affiliation(s)
- Kristin Snopkowski
- Department of Anthropology, 1910 University Drive, Boise State University, Boise, ID83725, USA
| | - James Joseph Nelson
- Department of Anthropology, 1910 University Drive, Boise State University, Boise, ID83725, USA
| |
Collapse
|
13
|
Oldroyd BP, Yagound B. Parent-of-origin effects, allele-specific expression, genomic imprinting and paternal manipulation in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200425. [PMID: 33866807 DOI: 10.1098/rstb.2020.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.,BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| | - Boris Yagound
- BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Austin AJ, Gilbert JDJ. Solitary bee larvae prioritize carbohydrate over protein in parentally provided pollen. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander J. Austin
- Department of Biological and Marine Sciences University of Hull Hull UK
- Strategy & Environment Ku‐ring‐gai Council Gordon NSW Australia
| | | |
Collapse
|
15
|
Bressan P, Kramer P. Mental Health, Mitochondria, and the Battle of the Sexes. Biomedicines 2021; 9:biomedicines9020116. [PMID: 33530498 PMCID: PMC7911591 DOI: 10.3390/biomedicines9020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
This paper presents a broad perspective on how mental disease relates to the different evolutionary strategies of men and women and to growth, metabolism, and mitochondria—the enslaved bacteria in our cells that enable it all. Several mental disorders strike one sex more than the other; yet what truly matters, regardless of one’s sex, is how much one’s brain is “female” and how much it is “male”. This appears to be the result of an arms race between the parents over how many resources their child ought to extract from the mother, hence whether it should grow a lot or stay small and undemanding. An uneven battle alters the child’s risk of developing not only insulin resistance, diabetes, or cancer, but a mental disease as well. Maternal supremacy increases the odds of a psychosis-spectrum disorder; paternal supremacy, those of an autism-spectrum one. And a particularly lopsided struggle may invite one or the other of a series of syndromes that come in pairs, with diametrically opposite, excessively “male” or “female” characteristics. By providing the means for this tug of war, mitochondria take center stage in steadying or upsetting the precarious balance on which our mental health is built.
Collapse
|
16
|
|
17
|
Cissé YM, Chan JC, Nugent BM, Banducci C, Bale TL. Brain and placental transcriptional responses as a readout of maternal and paternal preconception stress are fetal sex specific. Placenta 2020; 100:164-170. [PMID: 32980048 DOI: 10.1016/j.placenta.2020.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite a wealth of epidemiological evidence that cumulative parental lifetime stress experiences prior to conception are determinant of offspring developmental trajectories, there is a lack of insight on how these previous stress experiences are stored and communicated intergenerationally. Preconception experiences may impact offspring development through alterations in transcriptional regulation of the placenta, a major determinant of offspring growth and sex-specific developmental outcomes. We evaluated the lasting influence of maternal and paternal preconception stress (PCS) on the mid-gestation placenta and fetal brain, utilizing their transcriptomes as proximate readouts of intergenerational impact. METHODS To assess the combined vs. dominant influence of maternal and paternal preconception environment on sex-specific fetal development, we compared transcriptional outcomes using a breeding scheme of one stressed parent, both stressed parents, or no stressed parents as controls. RESULTS Interestingly, offspring sex affected the directionality of transcriptional changes in response to PCS, where male tissues showed a predominant downregulation, and female tissues showed an upregulation. There was also an intriguing effect of parental sex on placental programming where paternal PCS drove more effects in female placentas, while maternal PCS produced more transcriptional changes in male placentas. However, in the fetal brain, maternal PCS produced overall more changes in gene expression than paternal PCS, supporting the idea that the intrauterine environment may have a larger overall influence on the developing brain than it does on shaping the placenta. DISCUSSION Preconception experiences drive changes in the placental and the fetal brain transcriptome at a critical developmental timepoint. While not determinant, these altered transcriptional states may underlie sex-biased risk or resilience to stressful experiences later in life.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jennifer C Chan
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Bridget M Nugent
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Caitlin Banducci
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Tracy L Bale
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
18
|
Ryan CP, Kuzawa CW. Germline epigenetic inheritance: Challenges and opportunities for linking human paternal experience with offspring biology and health. Evol Anthropol 2020; 29:180-200. [DOI: 10.1002/evan.21828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Calen P. Ryan
- Department of AnthropologyNorthwestern University Evanston Illinois USA
| | - Christopher W. Kuzawa
- Department of AnthropologyNorthwestern University Evanston Illinois USA
- Institute for Policy Research Northwestern University Evanston Illinois USA
| |
Collapse
|
19
|
Dupoué A, Sorlin M, Richard M, Le Galliard JF, Lourdais O, Clobert J, Aubret F. Mother-offspring conflict for water and its mitigation in the oviparous form of the reproductively bimodal lizard, Zootoca vivipara. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractParent-offspring conflicts are widespread given that resources are often limited. Recent evidence has shown that availability of water can trigger such conflict during pregnancy in viviparous squamate species (lizards and snakes) and thus questions the role of water in the evolution of reproductive modes. Here, we examined the impact of water restriction during gravidity in the oviparous form of the bimodal common lizard (Zootoca vivipara), using a protocol previously used on the viviparous form. Females were captured in early gravidity from six populations along a 600 m altitudinal gradient to investigate whether environmental conditions (altitude, water access and temperature) exacerbate responses to water restriction. Females were significantly dehydrated after water restriction, irrespective of their reproductive status (gravid vs. non-reproductive), relative reproductive effort (relative clutch mass), and treatment timing (embryonic development stage). Female dehydration, together with reproductive performance, varied with altitude, probably due to long term acclimation or local adaptation. This moderate water-based intergenerational conflict in gravid females contrasts sharply with previous findings for the viviparous form, with implications to the evolutionary reversion from viviparity to oviparity. It is likely that oviparity constitutes a water-saving reproductive mode which might help mitigate intensive temperature-driven population extinctions at low altitudes.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
- School of Biological Sciences, Monash University, Clayton campus, VIC, Melbourne, Australia
| | - Mahaut Sorlin
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
| | - Murielle Richard
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
| | - Jean François Le Galliard
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Tours 44–45, Paris, France
- Ecole normale supérieure, Département de biologie, PSL Research University, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Olivier Lourdais
- Centre d’Etudes Biologiques de Chizé, La Rochelle Université, CNRS, UMR, Beauvoir sur Niort, France
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
20
|
Crespi BJ. Why and How Imprinted Genes Drive Fetal Programming. Front Endocrinol (Lausanne) 2020; 10:940. [PMID: 32117048 PMCID: PMC7025584 DOI: 10.3389/fendo.2019.00940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes mediate fetal and childhood growth and development, and early growth patterns drive fetal programming effects. However, predictions and evidence from the kinship theory of imprinting have yet to be directly integrated with data on fetal programming and risks of metabolic disease. I first define paternal-gene and maternal-gene optima with regard to early human growth and development. Next, I review salient evidence with regard to imprinted gene effects on birth weight, body composition, trajectories of feeding and growth, and timing of developmental stages, to evaluate why and how imprinted gene expression influences risks of metabolic disease in later life. I find that metabolic disease risks derive primarily from maternal gene biases that lead to reduced placental efficacy, low birth weight, low relative muscle mass, high relative white fat, increased abdominal adiposity, reduced pancreatic β-cell mass that promotes insulin resistance, reduced appetite and infant sucking efficacy, catch-up fat deposition from family foods after weaning, and early puberty. Paternal gene biases, by contrast, may contribute to metabolic disease via lower rates of brown fat thermiogenesis, and through favoring more rapid postnatal catch-up growth after intrauterine growth restriction from environmental causes. These disease risks can be alleviated through dietary and pharmacological alterations that selectively target imprinted gene expression and relevant metabolic pathways. The kinship theory of imprinting, and mother-offspring conflict more generally, provide a clear predictive framework for guiding future research on fetal programming and metabolic disease.
Collapse
Affiliation(s)
- Bernard J. Crespi
- Department of Biological Sciences and Human Evolutionary Studies Program, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
21
|
Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019; 20:235-248. [PMID: 30647469 DOI: 10.1038/s41576-018-0092-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.
Collapse
|
22
|
Morar N, Bohannan BJM. The Conceptual Ecology of the Human Microbiome. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Kotler J, Mehr SA, Egner A, Haig D, Krasnow MM. Response to vocal music in Angelman syndrome contrasts with Prader-Willi syndrome. EVOL HUM BEHAV 2019; 40:420-426. [PMID: 32655274 DOI: 10.1016/j.evolhumbehav.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parent-offspring conflict-conflict over resource distribution within families due to differences in genetic relatedness-is the biological foundation for many psychological phenomena. In genomic imprinting disorders, parent-specific genetic expression is altered causing imbalances in behaviors influenced by parental investment. We use this natural experiment to test the theory that parent-offspring conflict contributed to the evolution of vocal music by moderating infant demands for parental attention. Individuals with Prader-Willi syndrome, a genomic imprinting disorder resulting from increased relative maternal genetic contribution, show enhanced relaxation responses to song, consistent with reduced demand for parental investment (Mehr et al., 2017, Psychological Science). We report the necessary complementary pattern here: individuals with Angelman syndrome, a genomic imprinting disorder resulting from increased relative paternal genetic contribution, demonstrate a relatively reduced relaxation response to song, suggesting increased demand for parental attention. These results support the extension of genetic conflict theories to psychological resources like parental attention.
Collapse
Affiliation(s)
- Jennifer Kotler
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.,Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA
| | - Samuel A Mehr
- Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA.,Data Science Initiative, Harvard University, 8 Story St., Suite 380, Cambridge, MA 02138, USA
| | - Alena Egner
- Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| | - Max M Krasnow
- Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Salminen II, Crespi BJ, Mokkonen M. Baby food and bedtime: Evidence for opposite phenotypes from different genetic and epigenetic alterations in Prader-Willi and Angelman syndromes. SAGE Open Med 2019; 7:2050312118823585. [PMID: 30728968 PMCID: PMC6350130 DOI: 10.1177/2050312118823585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prader–Willi and Angelman syndromes are often referred to as a sister pair of
neurodevelopmental disorders, resulting from different genetic and epigenetic
alterations to the same chromosomal region, 15q11-q13. Some of the primary
phenotypes of the two syndromes have been suggested to be opposite to one
another, but this hypothesis has yet to be tested comprehensively, and it
remains unclear how opposite effects could be produced by changes to different
genes in one syndrome compared to the other. We evaluated the evidence for
opposite effects on sleep and eating phenotypes in Prader–Willi syndrome and
Angelman syndrome, and developed physiological–genetic models that represent
hypothesized causes of these differences. Sleep latency shows opposite
deviations from controls in Prader–Willi and Angelman syndromes, with shorter
latency in Prader–Willi syndrome by meta-analysis and longer latency in Angelman
syndrome from previous studies. These differences can be accounted for by the
effects of variable gene dosages of UBE3A and MAGEL2, interacting with clock
genes, and leading to acceleration (in Prader–Willi syndrome) or deceleration
(in Angelman syndrome) of circadian rhythms. Prader–Willi and Angelman syndromes
also show evidence of opposite alterations in hyperphagic food selectivity, with
more paternally biased subtypes of Angelman syndrome apparently involving
increased preference for complementary foods (“baby foods”); hedonic reward from
eating may also be increased in Angelman syndrome and decreased in Prader–Willi
syndrome. These differences can be explained in part under a model whereby
hyperphagia and food selectivity are mediated by the effects of the genes
SNORD-116, UBE3A and MAGEL2, with outcomes depending upon the genotypic cause of
Angelman syndrome. The diametric variation observed in sleep and eating
phenotypes in Prader–Willi and Angelman syndromes is consistent with predictions
from the kinship theory of imprinting, reflecting extremes of higher resource
demand in Angelman syndrome and lower demand in Prader–Willi syndrome, with a
special emphasis on social–attentional demands and attachment associated with
bedtime, and feeding demands associated with mother-provided complementary foods
compared to offspring-foraged family-type foods.
Collapse
|
25
|
Potter HG, Ashbrook DG, Hager R. Offspring genetic effects on maternal care. Front Neuroendocrinol 2019; 52:195-205. [PMID: 30576700 DOI: 10.1016/j.yfrne.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Parental care is found widely across animal taxa and is manifest in a range of behaviours from basic provisioning in cockroaches to highly complex behaviours seen in mammals. The evolution of parental care is viewed as the outcome of an evolutionary cost/benefit trade-off between investing in current and future offspring, leading to the selection of traits in offspring that influence parental behaviour. Thus, level and quality of parental care are affected by both parental and offspring genetic differences that directly and indirectly influence parental care behaviour. While significant research effort has gone into understanding how parental genomes affect parental, and mostly maternal, behaviour, few studies have investigated how offspring genomes affect parental care. In this review, we bring together recent findings across different fields focussing on the mechanism and genetics of offspring effects on maternal care in mammals.
Collapse
Affiliation(s)
- Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, Translational Science Research Building, Room 415, University of Tennessee Health Science Center, 71 S Manassas St, Memphis, TN 38103, United States
| | - Reinmar Hager
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
26
|
Jin Y, Vakili H, Liu SY, Menticoglou S, Bock ME, Cattini PA. Chromosomal architecture and placental expression of the human growth hormone gene family are targeted by pre-pregnancy maternal obesity. Am J Physiol Endocrinol Metab 2018; 315:E435-E445. [PMID: 29763375 DOI: 10.1152/ajpendo.00042.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human (h) placental lactogenic hormone chorionic somatomammotropin (CS) is highly produced during pregnancy and acts as a metabolic adaptor in response to maternal insulin resistance. Maternal obesity can exacerbate this "resistance", and a >75% decrease in CS RNA levels was observed in term placentas from obese vs. lean women. The genes coding for hCS ( hCS-A and hCS-B) and placental growth hormone ( hGH-V) as well as the hCS-L pseudogene and pituitary growth hormone (GH) gene ( hGH-N) are located at a single locus on chromosome 17. Three remote hypersensitive sites (HS III-V) located >28 kb upstream of hGH-N as well as local hCS gene promoter and enhancer regions are implicated in hCS gene expression. A placenta-specific chromosomal architecture, including interaction between HS III-V and hCS but not hGH gene promoters, was detected in placentas from lean women (BMI <25 kg/m2) by using the chromosome conformation capture assay. This architecture was disrupted by pre-pregnancy maternal obesity (BMI >35 kg/m2), resulting in a predominant interaction between HS III and the hGH-N promoter, which was also observed in nonplacental tissues. This was accompanied by a decrease in hCS levels, which was consistent with reduced RNA polymerase II and CCAAT/enhancer-binding protein-β association with individual hCS promoter and enhancer sequences, respectively. Thus, pre-pregnancy maternal obesity disrupts the placental hGH/CS gene locus chromosomal architecture. However, based on data from obese women who develop GDM, insulin treatment partially recapitulates the chromosomal architecture seen in lean women and positively affects hCS production, presumably facilitating prolactin receptor-related signaling by hCS.
Collapse
Affiliation(s)
- Yan Jin
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Hana Vakili
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada
| | - Song Yan Liu
- Department of Biochemistry and Medical Genetics and College of Pharmacy, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Savas Menticoglou
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Margaret E Bock
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
27
|
Tekola-Ayele F, Workalemahu T, Amare AT. High burden of birthweight-lowering genetic variants in Africans and Asians. BMC Med 2018; 16:70. [PMID: 29792231 PMCID: PMC5967042 DOI: 10.1186/s12916-018-1061-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/25/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Birthweight is an important predictor of infant morbidity and mortality, and is associated with cardiovascular diseases, obesity, and diabetes in childhood and adulthood. Birthweight and fetal growth show regional and population variations even under similar maternal conditions, and a large proportion of these differences are not explained by environmental factors. Whether and to what extent population genetic variations at key birthweight-associated loci account for the residual birthweight disparities not explained by environmental determinants is unknown. We hypothesized that the cumulative burden of genetic variants with a birthweight-lowering effect (GRB) is different among ancestrally diverse populations. METHODS Genotype data were extracted from phase 3 of the 1000 Genomes Project for 2504 participants from 26 global populations grouped into five super-populations. GRB was calculated in offspring as the weighted sum of the number of birthweight-lowering genetic variants of 59 autosomal single-nucleotide polymorphisms associated with birthweight, and comparisons were made between Europeans and non-Europeans. RESULTS GRB was significantly higher in Africans (mean difference 3.15; 95% confidence interval 2.64, 3.66), admixed Americans (3.02; 2.34, 3.70), East Asians (2.85; 2.29, 3.41), and South Asians (1.07; 0.49, 1.65) compared to Europeans. Birthweight-lowering genetic variants in Africans and East Asians were enriched for rare and frequency-fixed alleles (P < 0.001). African and Asian populations had the greatest deviation from the expectation of the common disease-common variant hyothesis. Compared to Europeans, the GRB of ancestral alleles was significantly higher and that of derived alleles was significantly lower in non-Europeans (P < 0.001). CONCLUSIONS The burden of birthweight-lowering genetic variants is higher in Africans and East Asians. This finding is consistent with the high incidence of low birthweight in the two populations. The genetic variants we studied may not be causal and the extent to which they tag the causal variants in non-Europeans is unknown; however, our findings highlight that genetic variations contribute to population differences in birthweight.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20817, USA.
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20817, USA
| | - Azmeraw T Amare
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Kotler J, Haig D. The tempo of human childhood: a maternal foot on the accelerator, a paternal foot on the brake. Evol Anthropol 2018; 27:80-91. [PMID: 29575348 PMCID: PMC5947556 DOI: 10.1002/evan.21579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Relative to the life history of other great apes, that of humans is characterized by early weaning and short interbirth intervals (IBIs). We propose that in modern humans, birth until adrenarche, or the rise in adrenal androgens, developmentally corresponds to the period from birth until weaning in great apes and ancestral hominins. According to this hypothesis, humans achieved short IBIs by subdividing ancestral infancy into a nurseling phase, during which offspring fed at the breast, and a weanling phase, during which offspring fed specially prepared foods. Imprinted genes influence the timing of human weaning and adrenarche, with paternally expressed genes promoting delays in childhood maturation and maternally expressed genes promoting accelerated maturation. These observations suggest that the tempo of human development has been shaped by consequences for the fitness of kin, with faster development increasing maternal fitness at a cost to child fitness. The effects of imprinted genes suggest that the duration of the juvenile period (adrenarche until puberty) has also been shaped by evolutionary conflicts within the family.
Collapse
Affiliation(s)
| | - David Haig
- Harvard University, Department of Organismic & Evolutionary Biology
| |
Collapse
|
29
|
|
30
|
Dauber A, Cunha-Silva M, Macedo DB, Brito VN, Abreu AP, Roberts SA, Montenegro LR, Andrew M, Kirby A, Weirauch MT, Labilloy G, Bessa DS, Carroll RS, Jacobs DC, Chappell PE, Mendonca BB, Haig D, Kaiser UB, Latronico AC. Paternally Inherited DLK1 Deletion Associated With Familial Central Precocious Puberty. J Clin Endocrinol Metab 2017; 102:1557-1567. [PMID: 28324015 PMCID: PMC5443333 DOI: 10.1210/jc.2016-3677] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023]
Abstract
CONTEXT Central precocious puberty (CPP) results from premature activation of the hypothalamic-pituitary-gonadal axis. Few genetic causes of CPP have been identified, with the most common being mutations in the paternally expressed imprinted gene MKRN3. OBJECTIVE To identify the genetic etiology of CPP in a large multigenerational family. DESIGN Linkage analysis followed by whole-genome sequencing was performed in a family with five female members with nonsyndromic CPP. Detailed phenotyping was performed at the time of initial diagnosis and long-term follow-up, and circulating levels of Delta-like 1 homolog (DLK1) were measured in affected individuals. Expression of DLK1 was measured in mouse hypothalamus and in kisspeptin-secreting neuronal cell lines in vitro. SETTING Endocrine clinic of an academic medical center. PATIENTS Patients with familial CPP were studied. RESULTS A complex defect of DLK1 (∼14-kb deletion and 269-bp duplication) was identified in this family. This deletion included the 5' untranslated region and the first exon of DLK1, including the translational start site. Only family members who inherited the defect from their father have precocious puberty, consistent with the known imprinting of DLK1. The patients did not demonstrate additional features of the imprinted disorder Temple syndrome except for increased fat mass. Serum DLK1 levels were undetectable in all affected individuals. Dlk1 was expressed in mouse hypothalamus and in kisspeptin neuron-derived cell lines. CONCLUSION We identified a genomic defect in DLK1 associated with isolated familial CPP. MKRN3 and DLK1 are both paternally expressed imprinted genes. These findings suggest a role of genomic imprinting in regulating the timing of human puberty.
Collapse
Affiliation(s)
- Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Marina Cunha-Silva
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Delanie B. Macedo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Vinicius N. Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Stephanie A. Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts 02115
| | - Luciana R. Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Melissa Andrew
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Andrew Kirby
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Guillaume Labilloy
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
| | - Danielle S. Bessa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dakota C. Jacobs
- Department of Biological Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
| | - Patrick E. Chappell
- Department of Biological Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
| | - Berenice B. Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| |
Collapse
|
31
|
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138
| |
Collapse
|
32
|
Antfolk J, Karlsson LC, Söderlund J, Szala A. Willingness to Invest in Children: Psychological Kinship Estimates and Emotional Closeness. EVOLUTIONARY PSYCHOLOGY 2017; 15:1474704917705730. [PMID: 28441879 PMCID: PMC10480846 DOI: 10.1177/1474704917705730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 09/09/2023] Open
Abstract
In general, adults invest more in related children compared to unrelated children. To test whether this pattern reflects variations in psychological kinship estimates (i.e., putative relatedness weighted by certainty in relatedness), willingness to invest in children belonging to different categories (direct offspring, nieces/nephews, stepchildren, and friends' children) was measured in a population-based sample of 1,012 adults. Respondents reported more willingness to invest in their own biological children, than in other related children (nieces and nephews), or in stepchildren and friends' children. Compared to putative relatedness, respondents' psychological kinship estimates better predicted the willingness to invest. This association was partially mediated by emotional closeness. Additionally, the age of a child and the number of children in the care of the respondent were negatively associated with willingness to invest. The association between psychological kinship estimates and willingness to invest supports evolutionary predictions. Investment in stepchildren was, however, higher than expected.
Collapse
Affiliation(s)
- Jan Antfolk
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | | | | | - Anna Szala
- Department of Psychology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
33
|
The Association between Unequal Parental Treatment and the Sibling Relationship in Finland: The Difference between Full and Half-Siblings. EVOLUTIONARY PSYCHOLOGY 2016. [DOI: 10.1177/147470491501300211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Studies have shown that unequal parental treatment is associated with relationship quality between siblings. However, it is unclear how it affects the relationship between full and half-siblings. Using data from the Generational Transmissions in Finland project ( n = 1,537 younger adults), we study whether those who have half-siblings perceive more unequal parental treatment than those who have full siblings only. In addition, we study how unequal parental treatment is associated with sibling relationship between full, maternal, and paternal half-siblings. First, we found that individuals who have maternal and/or paternal half-siblings are more likely to have encountered unequal maternal treatment than individuals who have full siblings only. Second, we found that unequal parental treatment impairs full as well as maternal and paternal half-sibling relations in adulthood. Third, unequal parental treatment mediates the effect of genetic relatedness on sibling relations in the case of maternal half-siblings, but not in the case of paternal half-siblings. After controlling for unequal parental treatment, the quality of maternal half-sibling relationships did not differ from that of full siblings, whereas the quality of paternal half-sibling relationships still did. Fourth, the qualitative comments ( n = 206) from the same population reveal that unequal parental treatment presents itself several ways, such as differential financial, emotional, or practical support.
Collapse
|
34
|
The Fifth Letter. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
35
|
Danielsbacka M, Tanskanen AO. The association between unequal parental treatment and the sibling relationship in Finland: The difference between full and half-siblings. EVOLUTIONARY PSYCHOLOGY 2015; 13:492-510. [PMID: 26101176 PMCID: PMC10426943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/06/2015] [Indexed: 06/04/2023] Open
Abstract
Studies have shown that unequal parental treatment is associated with relationship quality between siblings. However, it is unclear how it affects the relationship between full and half-siblings. Using data from the Generational Transmissions in Finland project (n = 1,537 younger adults), we study whether those who have half-siblings perceive more unequal parental treatment than those who have full siblings only. In addition, we study how unequal parental treatment is associated with sibling relationship between full, maternal, and paternal half-siblings. First, we found that individuals who have maternal and/or paternal half-siblings are more likely to have encountered unequal maternal treatment than individuals who have full siblings only. Second, we found that unequal parental treatment impairs full as well as maternal and paternal half-sibling relations in adulthood. Third, unequal parental treatment mediates the effect of genetic relatedness on sibling relations in the case of maternal half-siblings, but not in the case of paternal half-siblings. After controlling for unequal parental treatment, the quality of maternal half-sibling relationships did not differ from that of full siblings, whereas the quality of paternal half-sibling relationships still did. Fourth, the qualitative comments (n = 206) from the same population reveal that unequal parental treatment presents itself several ways, such as differential financial, emotional, or practical support.
Collapse
Affiliation(s)
| | - Antti O. Tanskanen
- Department of Social Research, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Byars SG, Stearns SC, Boomsma JJ. Opposite risk patterns for autism and schizophrenia are associated with normal variation in birth size: phenotypic support for hypothesized diametric gene-dosage effects. Proc Biol Sci 2015; 281:20140604. [PMID: 25232142 DOI: 10.1098/rspb.2014.0604] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Opposite phenotypic and behavioural traits associated with copy number variation and disruptions to imprinted genes with parent-of-origin effects have led to the hypothesis that autism and schizophrenia share molecular risk factors and pathogenic mechanisms, but a direct phenotypic comparison of how their risks covary has not been attempted. Here, we use health registry data collected on Denmark's roughly 5 million residents between 1978 and 2009 to detect opposing risks of autism and schizophrenia depending on normal variation (mean ± 1 s.d.) in adjusted birth size, which we use as a proxy for diametric gene-dosage variation in utero. Above-average-sized babies (weight, 3691-4090 g; length, 52.8-54.3 cm) had significantly higher risk for autism spectrum (AS) and significantly lower risk for schizophrenia spectrum (SS) disorders. By contrast, below-average-sized babies (2891-3290 g; 49.7-51.2 cm) had significantly lower risk for AS and significantly higher risk for SS disorders. This is the first study directly comparing autism and schizophrenia risks in the same population, and provides the first large-scale empirical support for the hypothesis that diametric gene-dosage effects contribute to these disorders. Only the kinship theory of genomic imprinting predicts the opposing risk patterns that we discovered, suggesting that molecular research on mental disease risk would benefit from considering evolutionary theory.
Collapse
Affiliation(s)
- Sean G Byars
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stephen C Stearns
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Kalinka AT. How did viviparity originate and evolve? Of conflict, co-option, and cryptic choice. Bioessays 2015; 37:721-31. [PMID: 25904118 DOI: 10.1002/bies.201400200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
I propose that the underlying adaptation enabling the reproductive strategy of birthing live young (viviparity) is retraction of the site of fertilization within the female reproductive tract, and that this evolved as a means of postcopulatory sexual selection. There are three conspicuous aspects associated with viviparity: (i) internal development is a complex trait often accompanied by a suite of secondary adaptations, yet it is unclear how the intermediate state of this trait - egg retention - could have evolved; (ii) viviparity often results in a reduction in fecundity; (iii) viviparity has evolved independently many times across a diverse array of animal groups. Focusing on the Diptera (true flies), I provide explanations for these observations. I further propose that fecundity is not traded-off to enable potential benefits of viviparity, but rather that loss of fecundity is directly selected and egg retention is an indirect consequence - a model that provides a unifying common basis for the ubiquity of viviparity.
Collapse
Affiliation(s)
- Alex T Kalinka
- Institute of Population genetics, Vetmeduni, Vienna, Austria
| |
Collapse
|
38
|
Abstract
I present evidence that humans have evolved convergently to social insects with regard to a large suite of social, ecological, and reproductive phenotypes. Convergences between humans and social insects include: (1) groups with genetically and environmentally defined structures; (2) extensive divisions of labor; (3) specialization of a relatively restricted set of females for reproduction, with enhanced fertility; (4) extensive extramaternal care; (5) within-group food sharing; (6) generalized diets composed of high-nutrient-density food; (7) solicitous juveniles, but high rates of infanticide; (8) ecological dominance; (9) enhanced colonizing abilities; and (10) collective, cooperative decision-making. Most of these convergent phenotypic adaptations stem from reorganization of key life-history trade-offs due to behavioral, physiological, and life-historical specializations. Despite their extensive socioreproductive overlap with social insects, humans differ with regard to the central aspect of eusociality: reproductive division of labor. This difference may be underpinned by the high energetic costs of producing offspring with large brains.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6,
| |
Collapse
|
39
|
Gluckman PD, Low FM, Buklijas T, Hanson MA, Beedle AS. How evolutionary principles improve the understanding of human health and disease. Evol Appl 2015; 4:249-63. [PMID: 25567971 PMCID: PMC3352556 DOI: 10.1111/j.1752-4571.2010.00164.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/19/2010] [Indexed: 02/06/2023] Open
Abstract
An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.
Collapse
Affiliation(s)
- Peter D Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Felicia M Low
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Tatjana Buklijas
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Mark A Hanson
- Institute of Developmental Sciences, University of Southampton, Mailpoint 887, Southampton General Hospital Southampton, UK
| | - Alan S Beedle
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| |
Collapse
|
40
|
Affiliation(s)
- Robert Kurzban
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19146;
| | - Maxwell N. Burton-Chellew
- Department of Zoology, University of Oxford, Oxford, OX1 3PS United Kingdom; ,
- Nuffield College, University of Oxford, Oxford, OX1 1NF United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS United Kingdom; ,
| |
Collapse
|
41
|
Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 2014; 36:940-9. [PMID: 25103109 PMCID: PMC4270213 DOI: 10.1002/bies.201400071] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii) inducing dysphoria until we eat foods that enhance their fitness. We review several potential mechanisms for microbial control over eating behavior including microbial influence on reward and satiety pathways, production of toxins that alter mood, changes to receptors including taste receptors, and hijacking of the vagus nerve, the neural axis between the gut and the brain. We also review the evidence for alternative explanations for cravings and unhealthy eating behavior. Because microbiota are easily manipulatable by prebiotics, probiotics, antibiotics, fecal transplants, and dietary changes, altering our microbiota offers a tractable approach to otherwise intractable problems of obesity and unhealthy eating.
Collapse
Affiliation(s)
- Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
42
|
Haig D. Troubled sleep: A response to commentaries. Evol Med Public Health 2014; 2014:57-62. [PMID: 24632049 PMCID: PMC3982903 DOI: 10.1093/emph/eou011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Haig
- *Corresponding author. Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. Tel: +1-617-496-5125; Fax: +1-617-495-5667; E-mail:
| |
Collapse
|
43
|
Garratt M, Brooks RC, Lemaître JF, Gaillard JM. FEMALE PROMISCUITY AND MATERNALLY DEPENDENT OFFSPRING GROWTH RATES IN MAMMALS. Evolution 2014; 68:1207-15. [DOI: 10.1111/evo.12333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Garratt
- Evolution & Ecology Research Centre; School of Biological; Earth and Environmental Sciences; The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Robert C Brooks
- Evolution & Ecology Research Centre; School of Biological; Earth and Environmental Sciences; The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive; UMR 5558; Université de Lyon; Université Lyon 1 F-69622 Villeurbanne France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive; UMR 5558; Université de Lyon; Université Lyon 1 F-69622 Villeurbanne France
| |
Collapse
|
44
|
Haig D. Interbirth intervals: Intrafamilial, intragenomic and intrasomatic conflict. EVOLUTION MEDICINE AND PUBLIC HEALTH 2014; 2014:12-7. [PMID: 24480612 PMCID: PMC3917425 DOI: 10.1093/emph/eou002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Interbirth intervals (IBIs) mediate a trade-off between child number and child survival. Life history theory predicts that the evolutionarily optimal IBI differs for different individuals whose fitness is affected by how closely a mother spaces her children. The objective of the article is to clarify these conflicts and explore their implications for public health. METHODOLOGY Simple models of inclusive fitness and kin conflict address the evolution of human birth-spacing. RESULTS Genes of infants generally favor longer intervals than genes of mothers, and infant genes of paternal origin generally favor longer IBIs than genes of maternal origin. CONCLUSIONS AND IMPLICATIONS The colonization of maternal bodies by offspring cells (fetal microchimerism) raises the possibility that cells of older offspring could extend IBIs by interfering with the implantation of subsequent embryos.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
45
|
Influencing the Social Group. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:107-34. [DOI: 10.1016/b978-0-12-800222-3.00006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Wright AE, Mank JE. The scope and strength of sex-specific selection in genome evolution. J Evol Biol 2013; 26:1841-53. [PMID: 23848139 PMCID: PMC4352339 DOI: 10.1111/jeb.12201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022]
Abstract
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome.
Collapse
Affiliation(s)
- A E Wright
- Department of Zoology, University of Oxford, Edward Grey Institute, Oxford, UK.
| | | |
Collapse
|
47
|
Abbott JK, Innocenti P, Chippindale AK, Morrow EH. Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster. PLoS One 2013; 8:e70493. [PMID: 23922998 PMCID: PMC3726629 DOI: 10.1371/journal.pone.0070493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/19/2013] [Indexed: 12/04/2022] Open
Abstract
When males and females have different fitness optima for the same trait but share loci, intralocus sexual conflict is likely to occur. Epigenetic mechanisms such as genomic imprinting (in which expression is altered according to parent-of-origin) and sex-specific maternal effects have been suggested as ways by which this conflict can be resolved. However these ideas have not yet been empirically tested. We designed an experimental evolution protocol in Drosophila melanogaster that enabled us to look for epigenetic effects on the X-chromosome–a hotspot for sexually antagonistic loci. We used special compound-X females to enforce father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between Control males, males with a Control X-chromosome that had undergone one generation of father-son transmission, and males with an X-chromosome that had undergone many generations of father-son transmission. Fitness differences were dramatic, with experimentally-evolved males approximately 20% greater than controls, and with males inheriting a non-evolved X from their father about 20% lower than controls. These data are consistent with both strong intralocus sexual conflict and misimprinting of the X-chromosome under paternal inheritance. However, expression differences suggested that reduced fitness under paternal X inheritance was largely due to deleterious maternal effects. Our data confirm the sexually-antagonistic nature of Drosophila’s X-chromosome and suggest that the response to male-limited X-chromosome evolution entails compensatory evolution for maternal effects, and perhaps modification of other epigenetic effects via coevolution of the sex chromosomes.
Collapse
Affiliation(s)
- Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
48
|
Gale T, Gibson AB, Brooks RC, Garratt M. Exposure to a novel male during late pregnancy influences subsequent growth of offspring during lactation. J Evol Biol 2013; 26:2057-62. [DOI: 10.1111/jeb.12192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 12/01/2022]
Affiliation(s)
- T. Gale
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - A. B. Gibson
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - R. C. Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - M. Garratt
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
49
|
Crispel Y, Katz O, Ben-Yosef D, Hochberg Z. Effects of breastfeeding on body composition and maturational tempo in the rat. BMC Med 2013; 11:114. [PMID: 23627911 PMCID: PMC3639023 DOI: 10.1186/1741-7015-11-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/20/2012] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Features of life history are subject to environmental regulation in the service of reproductive fitness goals. We have previously shown that the infant-to-childhood transition reflects the adaptive adjustment of an individual's size to the prevailing and anticipated environment. METHODS To evaluate effects of weaning age on life-history traits in rats, we repeatedly measured length and body mass index (BMI), as well as physiological development and sexual maturation in pups weaned early (d16), normally (d21) or late (d26). Males were bred to females of the same weaning age group for four generations. RESULTS Here, we show that the age at weaning from lactation regulates a rat's life history, growth, body composition and maturational tempo. We show that early-weaned rats developed faster than normal- or late-weaned rats; they are leaner and longer than late-weaned ones who are heavier and shorter. Early-weaned progeny develop more rapidly (that is, fur budding, pinnae detachment, eye opening); females show earlier vaginal opening and estrous and males show earlier onset of testicular growth. In generations 3 and 4, early-weaned rats bear larger litter sizes and heavier newborn pups. The entire traits complex is transmitted to subsequent generations from the paternal side. CONCLUSIONS The findings presented here lend support to the proposition that the duration of infancy, as indexed by weaning age, predicts and perhaps programs growth, body composition, and the tempo of physiological development and maturation, as well as litter size and parity and, thereby, reproductive strategy.
Collapse
Affiliation(s)
- Yonatan Crispel
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haaliya Street, Haifa 31096, Israel
- Rappaport Family Faculty of Medicine, Technion - Israel Institute of Technology, Efron Street, Haifa 31096, Israel
| | - Oren Katz
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haaliya Street, Haifa 31096, Israel
| | - Dafna Ben-Yosef
- Endocrine Laboratory, Rambam Health Care Campus, Haaliya Street, Haifa 31096, Israel
| | - Ze'ev Hochberg
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haaliya Street, Haifa 31096, Israel
- Rappaport Family Faculty of Medicine, Technion - Israel Institute of Technology, Efron Street, Haifa 31096, Israel
| |
Collapse
|
50
|
Lewitus E, Kalinka AT. Neocortical development as an evolutionary platform for intragenomic conflict. Front Neuroanat 2013; 7:2. [PMID: 23576960 PMCID: PMC3620502 DOI: 10.3389/fnana.2013.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal or paternal genome. In eutherian mammals, extraordinary in utero maternal investment in the brain, and neocortex especially, suggests that convergent evolution of an expanded mammalian neocortex along divergent lineages may be explained, in part, by parent-of-origin-linked gene expression arising from parent-offspring conflict. The influence of this conflict on neocortical development and evolution, however, has not been investigated at the genomic level. In this hypothesis and theory article, we provide preliminary evidence for positive selection in humans in the regions of two platforms of intragenomic conflict—chromosomes 15q11-q13 and X—and explore the potential relevance of cis-regulated imprinted domains to neocortical expansion in mammalian evolution. We present the hypothesis that maternal- and paternal-specific pressures on the developing neocortex compete intragenomically to influence neocortical expansion in mammalian evolution.
Collapse
Affiliation(s)
- Eric Lewitus
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | | |
Collapse
|