1
|
Switala J, Donald L, Ivancich A. A remarkable peroxidase-like behavior of the catalase KatA from the pathogenic bacteria Helicobacter pylori: The oxidation reaction with formate as substrate and the stabilization of an [Fe(IV) = O Trp •] intermediate assessed by multifrequency EPR spectroscopy. J Inorg Biochem 2024; 257:112594. [PMID: 38749080 DOI: 10.1016/j.jinorgbio.2024.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.
Collapse
Affiliation(s)
- Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lynda Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anabella Ivancich
- Bioénergétique et Ingénierie des Protéines, UMR 7281 and IMM FR3479, CNRS, Aix-Marseille Univ., 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
2
|
Bugg TDH. The chemical logic of enzymatic lignin degradation. Chem Commun (Camb) 2024; 60:804-814. [PMID: 38165282 PMCID: PMC10795516 DOI: 10.1039/d3cc05298b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Lignin is an aromatic heteropolymer, found in plant cell walls as 20-30% of lignocellulose. It represents the most abundant source of renewable aromatic carbon in the biosphere, hence, if it could be depolymerised efficiently, then it would be a highly valuable source of renewable aromatic chemicals. However, lignin presents a number of difficulties for biocatalytic or chemocatalytic breakdown. Research over the last 10 years has led to the identification of new bacterial enzymes for lignin degradation, and the use of metabolic engineering to generate useful bioproducts from microbial lignin degradation. The aim of this article is to discuss the chemical mechanisms used by lignin-degrading enzymes and microbes to break down lignin, and to describe current methods for generating aromatic bioproducts from lignin using enzymes and engineered microbes.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Fang W, Feng S, Jiang Z, Liang W, Li P, Wang B. Understanding the Key Roles of pH Buffer in Accelerating Lignin Degradation by Lignin Peroxidase. JACS AU 2023; 3:536-549. [PMID: 36873691 PMCID: PMC9976348 DOI: 10.1021/jacsau.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
pH buffer plays versatile roles in both biology and chemistry. In this study, we unravel the critical role of pH buffer in accelerating degradation of the lignin substrate in lignin peroxidase (LiP) using QM/MM MD simulations and the nonadiabatic electron transfer (ET) and proton-coupled electron transfer (PCET) theories. As a key enzyme involved in lignin degradation, LiP accomplishes the oxidation of lignin via two consecutive ET reactions and the subsequent C-C cleavage of the lignin cation radical. The first one involves ET from Trp171 to the active species of Compound I, while the second one involves ET from the lignin substrate to the Trp171 radical. Differing from the common view that pH = 3 may enhance the oxidizing power of Cpd I via protonation of the protein environment, our study shows that the intrinsic electric fields have minor effects on the first ET step. Instead, our study shows that the pH buffer of tartaric acid plays key roles during the second ET step. Our study shows that the pH buffer of tartaric acid can form a strong H-bond with Glu250, which can prevent the proton transfer from the Trp171-H•+ cation radical to Glu250, thereby stabilizing the Trp171-H•+ cation radical for the lignin oxidation. In addition, the pH buffer of tartaric acid can enhance the oxidizing power of the Trp171-H•+ cation radical via both the protonation of the proximal Asp264 and the second-sphere H-bond with Glu250. Such synergistic effects of pH buffer facilitate the thermodynamics of the second ET step and reduce the overall barrier of lignin degradation by ∼4.3 kcal/mol, which corresponds to a rate acceleration of 103-fold that agrees with experiments. These findings not only expand our understanding on pH-dependent redox reactions in both biology and chemistry but also provide valuable insights into tryptophan-mediated biological ET reactions.
Collapse
Affiliation(s)
- Wenhan Fang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Shishi Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Zhihui Jiang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Wanzhen Liang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Pengfei Li
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1068 W. Sheridan Rd., Chicago, Illinois60660, United States
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| |
Collapse
|
4
|
Ledray AP, Dwaraknath S, Chakarawet K, Sponholtz MR, Merchen C, Van Stappen C, Rao G, Britt RD, Lu Y. Tryptophan Can Promote Oxygen Reduction to Water in a Biosynthetic Model of Heme Copper Oxidases. Biochemistry 2023; 62:388-395. [PMID: 36215733 DOI: 10.1021/acs.biochem.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudharsan Dwaraknath
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Madeline R Sponholtz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Claire Merchen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
6
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Ayub R, Raheel A. High-Value Chemicals from Electrocatalytic Depolymerization of Lignin: Challenges and Opportunities. Int J Mol Sci 2022; 23:3767. [PMID: 35409138 PMCID: PMC8999055 DOI: 10.3390/ijms23073767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Lignocellulosic biomass is renewable and one of the most abundant sources for the production of high-value chemicals, materials, and fuels. It is of immense importance to develop new efficient technologies for the industrial production of chemicals by utilizing renewable resources. Lignocellulosic biomass can potentially replace fossil-based chemistries. The production of fuel and chemicals from lignin powered by renewable electricity under ambient temperatures and pressures enables a more sustainable way to obtain high-value chemicals. More specifically, in a sustainable biorefinery, it is essential to valorize lignin to enhance biomass transformation technology and increase the overall economy of the process. Strategies regarding electrocatalytic approaches as a way to valorize or depolymerize lignin have attracted significant interest from growing scientific communities over the recent decades. This review presents a comprehensive overview of the electrocatalytic methods for depolymerization of lignocellulosic biomass with an emphasis on untargeted depolymerization as well as the selective and targeted mild synthesis of high-value chemicals. Electrocatalytic cleavage of model compounds and further electrochemical upgrading of bio-oils are discussed. Finally, some insights into current challenges and limitations associated with this approach are also summarized.
Collapse
Affiliation(s)
- Rabia Ayub
- RISE Processum AB, Bioeconomy and Health Division, SE-891 22 Örnsköldsvik, Sweden
| | - Ahmad Raheel
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|
8
|
Agaricales Mushroom Lignin Peroxidase: From Structure-Function to Degradative Capabilities. Antioxidants (Basel) 2021; 10:antiox10091446. [PMID: 34573078 PMCID: PMC8472802 DOI: 10.3390/antiox10091446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Lignin biodegradation has been extensively studied in white-rot fungi, which largely belong to order Polyporales. Among the enzymes that wood-rotting polypores secrete, lignin peroxidases (LiPs) have been labeled as the most efficient. Here, we characterize a similar enzyme (ApeLiP) from a fungus of the order Agaricales (with ~13,000 described species), the soil-inhabiting mushroom Agrocybe pediades. X-ray crystallography revealed that ApeLiP is structurally related to Polyporales LiPs, with a conserved heme-pocket and a solvent-exposed tryptophan. Its biochemical characterization shows that ApeLiP can oxidize both phenolic and non-phenolic lignin model-compounds, as well as different dyes. Moreover, using stopped-flow rapid spectrophotometry and 2D-NMR, we demonstrate that ApeLiP can also act on real lignin. Characterization of a variant lacking the above tryptophan residue shows that this is the oxidation site for lignin and other high redox-potential substrates, and also plays a role in phenolic substrate oxidation. The reduction potentials of the catalytic-cycle intermediates were estimated by stopped-flow in equilibrium reactions, showing similar activation by H2O2, but a lower potential for the rate-limiting step (compound-II reduction) compared to other LiPs. Unexpectedly, ApeLiP was stable from acidic to basic pH, a relevant feature for application considering its different optima for oxidation of phenolic and nonphenolic compounds.
Collapse
|
9
|
Rai A, Klare JP, Reinke PYA, Englmaier F, Fohrer J, Fedorov R, Taft MH, Chizhov I, Curth U, Plettenburg O, Manstein DJ. Structural and Biochemical Characterization of a Dye-Decolorizing Peroxidase from Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms22126265. [PMID: 34200865 PMCID: PMC8230527 DOI: 10.3390/ijms22126265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
A novel cytoplasmic dye-decolorizing peroxidase from Dictyostelium discoideum was investigated that oxidizes anthraquinone dyes, lignin model compounds, and general peroxidase substrates such as ABTS efficiently. Unlike related enzymes, an aspartate residue replaces the first glycine of the conserved GXXDG motif in Dictyostelium DyPA. In solution, Dictyostelium DyPA exists as a stable dimer with the side chain of Asp146 contributing to the stabilization of the dimer interface by extending the hydrogen bond network connecting two monomers. To gain mechanistic insights, we solved the Dictyostelium DyPA structures in the absence of substrate as well as in the presence of potassium cyanide and veratryl alcohol to 1.7, 1.85, and 1.6 Å resolution, respectively. The active site of Dictyostelium DyPA has a hexa-coordinated heme iron with a histidine residue at the proximal axial position and either an activated oxygen or CN- molecule at the distal axial position. Asp149 is in an optimal conformation to accept a proton from H2O2 during the formation of compound I. Two potential distal solvent channels and a conserved shallow pocket leading to the heme molecule were found in Dictyostelium DyPA. Further, we identified two substrate-binding pockets per monomer in Dictyostelium DyPA at the dimer interface. Long-range electron transfer pathways associated with a hydrogen-bonding network that connects the substrate-binding sites with the heme moiety are described.
Collapse
Affiliation(s)
- Amrita Rai
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Barbarastrasse 7, D-49076 Osnabrück, Germany;
| | - Patrick Y. A. Reinke
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- Center for Free-Electron Laser Science, German Electron Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany
| | - Felix Englmaier
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Jörg Fohrer
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
- NMR Department of the Department of Chemistry, Technical University Darmstadt, Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Roman Fedorov
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5323700
| |
Collapse
|
10
|
Pham LTM, Deng K, Northen TR, Singer SW, Adams PD, Simmons BA, Sale KL. Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:108. [PMID: 33926536 PMCID: PMC8082889 DOI: 10.1186/s13068-021-01953-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/11/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Lignin peroxidases catalyze a variety of reactions, resulting in cleavage of both β-O-4' ether bonds and C-C bonds in lignin, both of which are essential for depolymerizing lignin into fragments amendable to biological or chemical upgrading to valuable products. Studies of the specificity of lignin peroxidases to catalyze these various reactions and the role reaction conditions such as pH play have been limited by the lack of assays that allow quantification of specific bond-breaking events. The subsequent theoretical understanding of the underlying mechanisms by which pH modulates the activity of lignin peroxidases remains nascent. Here, we report on combined experimental and theoretical studies of the effect of pH on the enzyme-catalyzed cleavage of β-O-4' ether bonds and of C-C bonds by a lignin peroxidase isozyme H8 from Phanerochaete chrysosporium and an acid stabilized variant of the same enzyme. RESULTS Using a nanostructure initiator mass spectrometry assay that provides quantification of bond breaking in a phenolic model lignin dimer we found that catalysis of degradation of the dimer to products by an acid-stabilized variant of lignin peroxidase isozyme H8 increased from 38.4% at pH 5 to 92.5% at pH 2.6. At pH 2.6, the observed product distribution resulted from 65.5% β-O-4' ether bond cleavage, 27.0% Cα-C1 carbon bond cleavage, and 3.6% Cα-oxidation as by-product. Using ab initio molecular dynamic simulations and climbing-image Nudge Elastic Band based transition state searches, we suggest the effect of lower pH is via protonation of aliphatic hydroxyl groups under which extremely acidic conditions resulted in lower energetic barriers for bond-cleavages, particularly β-O-4' bonds. CONCLUSION These coupled experimental results and theoretical explanations suggest pH is a key driving force for selective and efficient lignin peroxidase isozyme H8 catalyzed depolymerization of the phenolic lignin dimer and further suggest that engineering of lignin peroxidase isozyme H8 and other enzymes involved in lignin depolymerization should include targeting stability at low pH.
Collapse
Affiliation(s)
- Le Thanh Mai Pham
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94550 USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94550 USA
| | - Trent R. Northen
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Steven W. Singer
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- University of California, Berkeley, CA 94720 USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Kenneth L. Sale
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94550 USA
| |
Collapse
|
11
|
Ben Ayed A, Saint-Genis G, Vallon L, Linde D, Turbé-Doan A, Haon M, Daou M, Bertrand E, Faulds CB, Sciara G, Adamo M, Marmeisse R, Comtet-Marre S, Peyret P, Abrouk D, Ruiz-Dueñas FJ, Marchand C, Hugoni M, Luis P, Mechichi T, Record E. Exploring the Diversity of Fungal DyPs in Mangrove Soils to Produce and Characterize Novel Biocatalysts. J Fungi (Basel) 2021; 7:jof7050321. [PMID: 33919051 PMCID: PMC8143184 DOI: 10.3390/jof7050321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The functional diversity of the New Caledonian mangrove sediments was examined, observing the distribution of fungal dye-decolorizing peroxidases (DyPs), together with the complete biochemical characterization of the main DyP. Using a functional metabarcoding approach, the diversity of expressed genes encoding fungal DyPs was investigated in surface and deeper sediments, collected beneath either Avicennia marina or Rhizophora stylosa trees, during either the wet or the dry seasons. The highest DyP diversity was observed in surface sediments beneath the R. stylosa area during the wet season, and one particular operational functional unit (OFU1) was detected as the most abundant DyP isoform. This OFU was found in all sediment samples, representing 51–100% of the total DyP-encoding sequences in 70% of the samples. The complete cDNA sequence corresponding to this abundant DyP (OFU 1) was retrieved by gene capture, cloned, and heterologously expressed in Pichia pastoris. The recombinant enzyme, called DyP1, was purified and characterized, leading to the description of its physical–chemical properties, its ability to oxidize diverse phenolic substrates, and its potential to decolorize textile dyes; DyP1 was more active at low pH, though moderately stable over a wide pH range. The enzyme was very stable at temperatures up to 50 °C, retaining 60% activity after 180 min incubation. Its ability to decolorize industrial dyes was also tested on Reactive Blue 19, Acid Black, Disperse Blue 79, and Reactive Black 5. The effect of hydrogen peroxide and sea salt on DyP1 activity was studied and compared to what is reported for previously characterized enzymes from terrestrial and marine-derived fungi.
Collapse
Affiliation(s)
- Amal Ben Ayed
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
- Laboratoire de Biochimie et de Génie, Enzymatique des Lipases, Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, 3038 Sfax, Tunisia;
| | - Geoffroy Saint-Genis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Laurent Vallon
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, 28040 Madrid, Spain; (D.L.); (F.J.R.-D.)
| | - Annick Turbé-Doan
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Mireille Haon
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Marianne Daou
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emmanuel Bertrand
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Craig B. Faulds
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Giuliano Sciara
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Martino Adamo
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10125 Torino, Italy
| | - Roland Marmeisse
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10125 Torino, Italy
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDiS, 63000 Clermont-Ferrand, France; (S.C.-M.); (P.P.)
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDiS, 63000 Clermont-Ferrand, France; (S.C.-M.); (P.P.)
| | - Danis Abrouk
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Francisco J. Ruiz-Dueñas
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, 28040 Madrid, Spain; (D.L.); (F.J.R.-D.)
| | - Cyril Marchand
- IMPMC, Institut de Recherche Pour le Développement (IRD), UPMC, CNRS, MNHN, 98851 Noumea, France;
- ISEA, EA, Université de la Nouvelle-Calédonie (UNC), 3325, BP R4, 98851 Noumea, France
| | - Mylène Hugoni
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Patricia Luis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Tahar Mechichi
- Laboratoire de Biochimie et de Génie, Enzymatique des Lipases, Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, 3038 Sfax, Tunisia;
| | - Eric Record
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
- Correspondence:
| |
Collapse
|
12
|
Cajnko MM, Novak U, Grilc M, Likozar B. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5- diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:66. [PMID: 32308735 PMCID: PMC7149886 DOI: 10.1186/s13068-020-01705-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied. RESULTS Commercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a K m value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h. CONCLUSIONS Our study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.
Collapse
Affiliation(s)
- Miša Mojca Cajnko
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Tyson KJ, Davis AN, Norris JL, Bartolotti LJ, Hvastkovs EG, Offenbacher AR. Impact of Local Electrostatics on the Redox Properties of Tryptophan Radicals in Azurin: Implications for Redox-Active Tryptophans in Proton-Coupled Electron Transfer. J Phys Chem Lett 2020; 11:2408-2413. [PMID: 32134666 DOI: 10.1021/acs.jpclett.0c00614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tyrosine and tryptophan play critical roles in facilitating proton-coupled electron transfer (PCET) processes essential to life. The local protein environment is anticipated to modulate the thermodynamics of amino acid radicals to achieve controlled, unidirectional PCET. Herein, square-wave voltammetry was employed to investigate the electrostatic effects on the redox properties of tryptophan in two variants of the protein azurin. Each variant contains a single redox-active tryptophan, W48 or W108, in a unique and buried protein environment. These tryptophan residues exhibit reversible square-wave voltammograms. A Pourbaix plot, representing the reduction potentials versus pH, is presented for the non-H-bonded W48, which has potentials comparable to those of tryptophan in solution. The reduction potentials of W108 are seen to be increased by more than 100 mV across the same pH range. Molecular dynamics shows that, despite its buried indole ring, the N-H of W108 hydrogen bonds with a water cluster, while W48 is completely excluded from interactions with water or polar groups. These redox properties provide insight into the role of the protein in tuning the reactivity of tryptophan radicals, a requirement for controlled biological PCET.
Collapse
Affiliation(s)
- Kristin J Tyson
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Amanda N Davis
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Jessica L Norris
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Libero J Bartolotti
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Eli G Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
14
|
Stevens JC, Shi J. Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnol Adv 2019; 37:107418. [DOI: 10.1016/j.biotechadv.2019.107418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
|
15
|
Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat Commun 2019; 10:5123. [PMID: 31719532 PMCID: PMC6851146 DOI: 10.1038/s41467-019-13022-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/10/2019] [Indexed: 11/08/2022] Open
Abstract
Lignin is a major component of lignocellulosic biomass. Although it is highly recalcitrant to break down, it is a very abundant natural source of valuable aromatic carbons. Thus, the effective valorisation of lignin is crucial for realising a sustainable biorefinery chain. Here, we report a compartmented photo-electro-biochemical system for unassisted, selective, and stable lignin valorisation, in which a TiO2 photocatalyst, an atomically dispersed Co-based electrocatalyst, and a biocatalyst (lignin peroxidase isozyme H8, horseradish peroxidase) are integrated, such that each system is separated using Nafion and cellulose membranes. This cell design enables lignin valorisation upon irradiation with sunlight without the need for any additional bias or sacrificial agent and allows the protection of the biocatalyst from enzyme-damaging elements, such as reactive radicals, gas bubbles, and light. The photo-electro-biochemical system is able to catalyse lignin depolymerisation with a 98.7% selectivity and polymerisation with a 73.3% yield using coniferyl alcohol, a lignin monomer.
Collapse
|
16
|
Pal I, Nath AK, Roy M, Seal M, Ghosh C, Dey A, Dey SG. Formation of compound I in heme bound Aβ-peptides relevant to Alzheimer's disease. Chem Sci 2019; 10:8405-8410. [PMID: 31803419 PMCID: PMC6844219 DOI: 10.1039/c9sc01679a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 12/02/2022] Open
Abstract
Proteolysis of Amyloid Precursor Protein, APP, results in the formation of amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD). Recently the failure of therapeutic agents that prohibit Aβ aggregation and sequester Cu/Zn in providing symptomatic relief to AD patients has questioned the amyloid and metal ion hypothesis. Alternatively, abnormal heme homeostasis and reduced levels of neurotransmitters in the brain are hallmark features of AD. Heme can bind Aβ peptides forming a peroxidase type active site which can oxidatively degrade neurotransmitters like serotonin. To date the reactive species responsible for this activity has not been identified. Using rapid kinetics and freeze quenching, we show that heme bound Aβ forms a highly reactive intermediate, compound I. Thus, compound I provides a basis for elucidating the oxidative degradation of neurotransmitters like serotonin, resulting in abnormal neurotransmission, a key pathological feature of AD. Site directed mutants indicate that the Arg5 and Tyr10 residues, unique to human Aβ, affect the rates of formation and decay of compound I providing insight into their roles in the oxidative degradation of neurotransmitters. Tyr10 can potentially play a natural protective role against the highly reactive oxidant, compound I, in AD.
Collapse
Affiliation(s)
- Ishita Pal
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| | - Arnab Kumar Nath
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| | - Madhuparna Roy
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| | - Manas Seal
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| | - Chandradeep Ghosh
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| | - Abhishek Dey
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| | - Somdatta Ghosh Dey
- Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India .
| |
Collapse
|
17
|
Romero JO, Fernández-Fueyo E, Avila-Salas F, Recabarren R, Alzate-Morales J, Martínez AT. Binding and Catalytic Mechanisms of Veratryl Alcohol Oxidation by Lignin Peroxidase: A Theoretical and Experimental Study. Comput Struct Biotechnol J 2019; 17:1066-1074. [PMID: 31452859 PMCID: PMC6700493 DOI: 10.1016/j.csbj.2019.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022] Open
Abstract
Lignin peroxidase (LiP) and its natural substrate veratryl alcohol (VA) play a crucial role in lignin degradation by white-rot fungi. Understanding the molecular determinants for the interaction of this enzyme with its substrates is essential in the rational design of engineered peroxidases for biotechnological application. Here, we combine computational and experimental approaches to analyze the interaction of Phanerochaete chrysosporium LiP (isoenzyme H8) with VA and its radical cation (VA•+, resulting from substrate oxidation by the enzyme). Interaction energy calculations at semiempirical quantum mechanical level (SQM) between LiP and VA/VA•+ enabled to identify those residues at the acidic environment of catalytic Trp171 involved in the main interactions. Then, a battery of variants, with single and multiple mutations at these residues (Glu168, Asp165, Glu250, Asp264, and Phe267), was generated by directed mutagenesis, and their kinetics parameters were estimated on VA and two additional substrates. The experimental results show that Glu168 and Glu250 are crucial for the binding of VA, with Glu250 also contributing to the turnover of the enzyme. The experimental results were further rationalized through new calculations of interaction energies between VA/VA•+ and LiP with each of the single mutations. Finally, the delocalization of spin density was determined with quantum mechanics/molecular mechanics calculations (QM/MM), further supporting the contribution of Glu250 to VA oxidation at Trp171.
Collapse
Affiliation(s)
- Jefferson O Romero
- Centro de Bioinformática, Simulacion y Modelado (CBSM), Departamento de Bioinformática, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile.,Doctorado en Ciencias Mencion Investigacion y Desarrollo de Productos Bioactivos, Instituto de Química de Recursos Naturales, Universidad de Talca, 2 Norte 685, Casilla 747, Talca, Chile
| | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain.,Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Fabián Avila-Salas
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Chile.,Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Chile
| | - Rodrigo Recabarren
- Centro de Bioinformática, Simulacion y Modelado (CBSM), Departamento de Bioinformática, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulacion y Modelado (CBSM), Departamento de Bioinformática, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain
| |
Collapse
|
18
|
Chaplin AK, Chicano TM, Hampshire BV, Wilson MT, Hough MA, Svistunenko DA, Worrall JAR. An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis. Chemistry 2019; 25:6141-6153. [PMID: 30945782 DOI: 10.1002/chem.201806290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2 O2 , DyPs form a high-valent iron(IV)-oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein-bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2 O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein-bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron-transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron-transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed.
Collapse
Affiliation(s)
- Amanda K Chaplin
- Present address: Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tadeo Moreno Chicano
- Present address: Department of Molecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Bethany V Hampshire
- Present address: Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
19
|
Pham LTM, Seo H, Kim KJ, Kim YH. In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:325. [PMID: 30555531 PMCID: PMC6287364 DOI: 10.1186/s13068-018-1324-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND The lignin peroxidase isozyme H8 from the white-rot fungus Phanerochaete chrysosporium (LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin. However, native LiPH8 is unstable under acidic pH conditions. This characteristic is a barrier to lignin depolymerization, as repolymerization of phenolic products occurs simultaneously at neutral pH. Because repolymerization of phenolics is repressed at acidic pH, a highly acid-stable LiPH8 could accelerate the selective depolymerization of recalcitrant lignin. RESULTS The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from Phanerochaete chrysosporium and acid-stable manganese peroxidase isozyme 6 (MnP6) from Ceriporiopsis subvermispora. Effective salt bridges were probed by molecular dynamics simulation and changes to Gibbs free energy following mutagenesis were predicted, suggesting promising variants with higher stability under extremely acidic conditions. The rationally designed variant, A55R/N156E-H239E, demonstrated a 12.5-fold increased half-life under extremely acidic conditions, 9.9-fold increased catalytic efficiency toward veratryl alcohol, and a 7.8-fold enhanced lignin model dimer conversion efficiency compared to those of native LiPH8. Furthermore, the two constructed salt bridges in the variant A55R/N156E-H239E were experimentally confirmed to be identical to the intentionally designed LiPH8 variant using X-ray crystallography (PDB ID: 6A6Q). CONCLUSION Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin.
Collapse
Affiliation(s)
- Le Thanh Mai Pham
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea
| | - Hogyun Seo
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea
| |
Collapse
|
20
|
Bronikowski A, Koschorreck K, Urlacher VB. Redesign of a New Manganese Peroxidase Highly Expressed in
Pichia pastoris
towards a Lignin‐Degrading Versatile Peroxidase. Chembiochem 2018; 19:2481-2489. [DOI: 10.1002/cbic.201800500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Agathe Bronikowski
- Institute of Biochemistry and Bioeconomy Science Center (BioSc)Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Katja Koschorreck
- Institute of Biochemistry and Bioeconomy Science Center (BioSc)Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry and Bioeconomy Science Center (BioSc)Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
21
|
Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT. Evolutionary convergence in lignin-degrading enzymes. Proc Natl Acad Sci U S A 2018; 115:6428-6433. [PMID: 29866821 PMCID: PMC6016776 DOI: 10.1073/pnas.1802555115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The resurrection of ancestral enzymes of now-extinct organisms (paleogenetics) is a developing field that allows the study of evolutionary hypotheses otherwise impossible to be tested. In the present study, we target fungal peroxidases that play a key role in lignin degradation, an essential process in the carbon cycle and often a limiting step in biobased industries. Ligninolytic peroxidases are secreted by wood-rotting fungi, the origin of which was recently established in the Carboniferous period associated with the appearance of these enzymes. These first peroxidases were not able to degrade lignin directly and used diffusible metal cations to attack its phenolic moiety. The phylogenetic analysis of the peroxidases of Polyporales, the order in which most extant wood-rotting fungi are included, suggests that later in evolution these enzymes would have acquired the ability to degrade nonphenolic lignin using a tryptophanyl radical interacting with the bulky polymer at the surface of the enzyme. Here, we track this powerful strategy for lignin degradation as a phenotypic trait in fungi and show that it is not an isolated event in the evolution of Polyporales. Using ancestral enzyme resurrection, we study the molecular changes that led to the appearance of the same surface oxidation site in two distant peroxidase lineages. By characterization of the resurrected enzymes, we demonstrate convergent evolution at the amino acid level during the evolution of these fungi and track the different changes leading to phylogenetically distant ligninolytic peroxidases from ancestors lacking the ability to degrade nonphenolic lignin.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid, Spain
| | - Francisco J Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid, Spain
| |
Collapse
|
22
|
Davis I, Koto T, Terrell JR, Kozhanov A, Krzystek J, Liu A. High-Frequency/High-Field Electron Paramagnetic Resonance and Theoretical Studies of Tryptophan-Based Radicals. J Phys Chem A 2018; 122:3170-3176. [PMID: 29488750 DOI: 10.1021/acs.jpca.7b12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tryptophan-based free radicals have been implicated in a myriad of catalytic and electron transfer reactions in biology. However, very few of them have been trapped so that biophysical characterizations can be performed in a high-precision context. In this work, tryptophan derivative-based radicals were studied by high-frequency/high-field electron paramagnetic resonance (HFEPR) and quantum chemical calculations. Radicals were generated at liquid nitrogen temperature with a photocatalyst, sacrificial oxidant, and violet laser. The precise g-anisotropies of l- and d-tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 5-fluorotryptophan, and 7-hydroxytryptophan were measured directly by HFEPR. Quantum chemical calculations were conducted to predict both neutral and cationic radical spectra for comparison with the experimental data. The results indicate that under the experimental conditions, all radicals formed were cationic. Spin densities of the radicals were also calculated. The various line patterns and g-anisotropies observed by HFEPR can be understood in terms of spin-density populations and the positioning of oxygen atom substitution on the tryptophan ring. The results are considered in the light of the tryptophan and 7-hydroxytryptophan diradical found in the biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States.,Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Teruaki Koto
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States
| | - James R Terrell
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Alexander Kozhanov
- Department of Physics and Astronomy , Georgia State University , Atlanta , Georgia 30303 , United States
| | - J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Aimin Liu
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States
| |
Collapse
|
23
|
Min K, Yum T, Kim J, Woo HM, Kim Y, Sang BI, Yoo YJ, Kim YH, Um Y. Perspectives for biocatalytic lignin utilization: cleaving 4- O-5 and C α-C β bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:212. [PMID: 28912833 PMCID: PMC5594458 DOI: 10.1186/s13068-017-0900-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In the biorefinery utilizing lignocellulosic biomasses, lignin decomposition to value-added phenolic derivatives is a key issue, and recently biocatalytic delignification is emerging owing to its superior selectivity, low energy consumption, and unparalleled sustainability. However, besides heme-containing peroxidases and laccases, information about lignolytic biocatalysts is still limited till date. RESULTS Herein, we report a promiscuous activity of tyrosinase which is closely associated with delignification requiring high redox potentials (>1.4 V vs. normal hydrogen electrode [NHE]). The promiscuous activity of tyrosinase not only oxidizes veratryl alcohol, a commonly used nonphenolic substrate for assaying ligninolytic activity, to veratraldehyde but also cleaves the 4-O-5 and Cα-Cβ bonds in 4-phenoxyphenol and guaiacyl glycerol-β-guaiacyl ether (GGE) that are dimeric lignin model compounds. Cyclic voltammograms additionally verified that the promiscuous activity oxidizes lignin-related high redox potential substrates. CONCLUSION These results might be applicable for extending the versatility of tyrosinase toward biocatalytic delignification as well as suggesting a new perspective for sustainable lignin utilization. Furthermore, the results provide insight for exploring the previously unknown promiscuous activities of biocatalysts much more diverse than ever thought before, thereby innovatively expanding the applicable area of biocatalysis.
Collapse
Affiliation(s)
- Kyoungseon Min
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
- Present Address: Gwangju Bioenergy Research Center, Korea Institute of Energy Research (KIER), Daejeon, 34129 Republic of Korea
| | - Taewoo Yum
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Jiye Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Han Min Woo
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Present Address: Department of Food Sciencen and Biotechnology, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Yunje Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Young Je Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| |
Collapse
|
24
|
Khatoon N, Jamal A, Ali MI. Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment. Int J Biol Macromol 2017. [PMID: 28648638 DOI: 10.1016/j.ijbiomac.2017.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The detoxification of xenobiotic organic compounds by various microorganisms through oxidative coupling is facilitated with oxidoreductases. With the help of energy yielding biochemical reactions, these microbes extract energy for their metabolic pathway. They promote the transfer of electrons from a reduced organic substrate to another chemical compound. During such oxidation-reduction reactions, the toxic polymeric substance is finally oxidized into harmless compounds. Enzymatic bioremediation of toxic organic pollutant is a very effective strategy in complex environmental conditions. Oxidoreductases enzymes have a significant potential for the bioremediation of the xenobiotic compounds. Various electron donor complex polymeric substrates containing Phenol and aromatic amines are oxidized by peroxidase in the presence of H2O2 while O2 in the case of dioxygenase. This review attempts to present relevant information on the peroxidases and dioxygenase from various microbial isolates involved in the biodegradation of a wide range of pollutants.
Collapse
Affiliation(s)
- Nazia Khatoon
- Environmental Microbiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asif Jamal
- Environmental Microbiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ishtiaq Ali
- Environmental Microbiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
25
|
Acebes S, Ruiz-Dueñas FJ, Toubes M, Sáez-Jiménez V, Pérez-Boada M, Lucas MF, Martínez AT, Guallar V. Mapping the Long-Range Electron Transfer Route in Ligninolytic Peroxidases. J Phys Chem B 2017; 121:3946-3954. [PMID: 28375014 DOI: 10.1021/acs.jpcb.7b00835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combining a computational analysis with site-directed mutagenesis, we have studied the long-range electron transfer pathway in versatile and lignin peroxidases, two enzymes of biotechnological interest that play a key role for fungal degradation of the bulky lignin molecule in plant biomass. The in silico study established two possible electron transfer routes starting at the surface tryptophan residue previously identified as responsible for oxidation of the bulky lignin polymer. Moreover, in both enzymes, a second buried tryptophan residue appears as a top electron transfer carrier, indicating the prevalence of one pathway. Site-directed mutagenesis of versatile peroxidase (from Pleurotus eryngii) allowed us to corroborate the computational analysis and the role played by the buried tryptophan (Trp244) and a neighbor phenylalanine residue (Phe198), together with the surface tryptophan, in the electron transfer. These three aromatic residues are highly conserved in all the sequences analyzed (up to a total of 169). The importance of the surface (Trp171) and buried (Trp251) tryptophan residues in lignin peroxidase has been also confirmed by directed mutagenesis of the Phanerochaete chrysosporium enzyme. Overall, the combined procedure identifies analogous electron transfer pathways in the long-range oxidation mechanism for both ligninolytic peroxidases, constituting a good example of how computational analysis avoids making extensive trial-error mutagenic experiments.
Collapse
Affiliation(s)
- Sandra Acebes
- Barcelona Supercomputing Center, Joint BSC-CRG-IRB Research Program in Computational Biology , Jordi Girona 29, E-08034 Barcelona, Spain
| | | | - Mario Toubes
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Veronica Sáez-Jiménez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Marta Pérez-Boada
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - M Fátima Lucas
- Barcelona Supercomputing Center, Joint BSC-CRG-IRB Research Program in Computational Biology , Jordi Girona 29, E-08034 Barcelona, Spain.,Anaxomics Biotech , Balmes 89, 08008 Barcelona, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Joint BSC-CRG-IRB Research Program in Computational Biology , Jordi Girona 29, E-08034 Barcelona, Spain.,ICREA , Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
26
|
Field MJ, Bains RK, Warren JJ. Using an artificial tryptophan “wire” in cytochrome c peroxidase for oxidation of organic substrates. Dalton Trans 2017; 46:11078-11083. [DOI: 10.1039/c7dt02330h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of tryptophan residues between heme and the protein surface in cytochrome c peroxidase gives rise to new redox reactivity, in analogy to lignolytic peroxidases.
Collapse
|
27
|
Sáez-Jiménez V, Rencoret J, Rodríguez-Carvajal MA, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT. Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:198. [PMID: 28616078 PMCID: PMC5467052 DOI: 10.1186/s13068-016-0615-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Despite claims as key enzymes in enzymatic delignification, very scarce information on the reaction rates between the ligninolytic versatile peroxidase (VP) and lignin peroxidase (LiP) and the lignin polymer is available, due to methodological difficulties related to lignin heterogeneity and low solubility. RESULTS Two water-soluble sulfonated lignins (from Picea abies and Eucalyptus grandis) were chemically characterized and used to estimate single electron-transfer rates to the H2O2-activated Pleurotus eryngii VP (native enzyme and mutated variant) transient states (compounds I and II bearing two- and one-electron deficiencies, respectively). When the rate-limiting reduction of compound II was quantified by stopped-flow rapid spectrophotometry, from fourfold (softwood lignin) to over 100-fold (hardwood lignin) lower electron-transfer efficiencies (k3app values) were observed for the W164S variant at surface Trp164, compared with the native VP. These lignosulfonates have ~20-30 % phenolic units, which could be responsible for the observed residual activity. Therefore, methylated (and acetylated) samples were used in new stopped-flow experiments, where negligible electron transfer to the W164S compound II was found. This revealed that the residual reduction of W164S compound II by native lignin was due to its phenolic moiety. Since both native lignins have a relatively similar phenolic moiety, the higher W164S activity on the softwood lignin could be due to easier access of its mono-methoxylated units for direct oxidation at the heme channel in the absence of the catalytic tryptophan. Moreover, the lower electron transfer rates from the derivatized lignosulfonates to native VP suggest that peroxidase attack starts at the phenolic lignin moiety. In agreement with the transient-state kinetic data, very low structural modification of lignin, as revealed by size-exclusion chromatography and two-dimensional nuclear magnetic resonance, was obtained during steady-state treatment (up to 24 h) of native lignosulfonates with the W164S variant compared with native VP and, more importantly, this activity disappeared when nonphenolic lignosulfonates were used. CONCLUSIONS We demonstrate for the first time that the surface tryptophan conserved in most LiPs and VPs (Trp164 of P. eryngii VPL) is strictly required for oxidation of the nonphenolic moiety, which represents the major and more recalcitrant part of the lignin polymer.
Collapse
Affiliation(s)
- Verónica Sáez-Jiménez
- CSIC, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jorge Rencoret
- CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla, Avenida Reina Mercedes 10, 41012 Seville, Spain
| | | | - Ana Gutiérrez
- CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla, Avenida Reina Mercedes 10, 41012 Seville, Spain
| | | | - Angel T. Martínez
- CSIC, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
28
|
Limits of Versatility of Versatile Peroxidase. Appl Environ Microbiol 2016; 82:4070-4080. [PMID: 27129968 DOI: 10.1128/aem.00743-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/22/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Although Mn(2+) is the most abundant substrate of versatile peroxidases (VPs), repression of Pleurotus ostreatus vp1 expression occurred in Mn(2+)-sufficient medium. This seems to be a biological contradiction. The aim of this study was to explore the mechanism of direct oxidation by VP1 under Mn(2+)-deficient conditions, as it was found to be the predominant enzyme during fungal growth in the presence of synthetic and natural substrates. The native VP1 was purified and characterized using three substrates, Mn(2+), Orange II (OII), and Reactive Black 5 (RB5), each oxidized by a different active site in the enzyme. While the pH optimum for Mn(2+) oxidation is 5, the optimum pH for direct oxidation of both dyes was found to be 3. Indeed, effective in vivo decolorization occurred in media without addition of Mn(2+) only under acidic conditions. We have determined that Mn(2+) inhibits in vitro the direct oxidation of both OII and RB5 while RB5 stabilizes both Mn(2+) and OII oxidation. Furthermore, OII was found to inhibit the oxidation of both Mn(2+) and RB5. In addition, we could demonstrate that VP1 can cleave OII in two different modes. Under Mn(2+)-mediated oxidation conditions, VP1 was able to cleave the azo bond only in asymmetric mode, while under the optimum conditions for direct oxidation (absence of Mn(2+) at pH 3) both symmetric and asymmetric cleavages occurred. We concluded that the oxidation mechanism of aromatic compounds by VP1 is controlled by Mn(2+) and pH levels both in the growth medium and in the reaction mixture. IMPORTANCE VP1 is a member of the ligninolytic heme peroxidase gene family of the white rot fungus Pleurotus ostreatus and plays a fundamental role in biodegradation. This enzyme exhibits a versatile nature, as it can oxidize different substrates under altered environmental conditions. VPs are highly interesting enzymes due to the fact that they contain unique active sites that are responsible for direct oxidation of various aromatic compounds, including lignin, in addition to the well-known Mn(2+) binding active site. This study demonstrates the limits of versatility of P. ostreatus VP1, which harbors multiple active sites, exhibiting a broad range of enzymatic activities, but they perform differently under distinct conditions. The versatility of P. ostreatus and its enzymes is an advantageous factor in the fungal ability to adapt to changing environments. This trait expands the possibilities for the potential utilization of P. ostreatus and other white rot fungi.
Collapse
|
29
|
Recabarren R, Fuenzalida-Valdivia I, Alzate-Morales J. Studying the binding mechanisms of veratryl alcohol to P. chrysosporium lignin peroxidase: insights from theoretical approaches. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1828-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch Biochem Biophys 2016; 594:54-60. [DOI: 10.1016/j.abb.2016.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
|
31
|
Pham LTM, Kim SJ, Kim YH. Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:247. [PMID: 27872660 PMCID: PMC5111271 DOI: 10.1186/s13068-016-0664-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/09/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer. RESULTS In the study of lignin peroxidase isozyme H8 from white-rot fungi Phanerochaete chrysosporium (LiPH8), W251 site was revealed to make the covalent coupling with one moiety of monolignolic radical (guaiacol radical) by LC-MS/MS analysis. Hypothetical electron-relay containing W251 residue was newly suggested based on the observation of repressed radical coupling and remarkably lower electron transfer rate for W215A mutant. Furthermore, the retardation of the suicidal radical coupling between the W251 residue and the monolignolic radical was attempted by supplementing the acidic microenvironment around the W251 residue to engineer radical-robust LiPH8. Among many mutants, mutant A242D showed exceptional catalytic performances by yielding 21.1- and 4.9-fold higher increases of kcat and kcat/KM values, respectively, in the oxidation of non-phenolic model lignin dimer. CONCLUSIONS A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.
Collapse
Affiliation(s)
- Le Thanh Mai Pham
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea
| | - Su Jin Kim
- Life Ingredient Material Research Institute, CJ Company, 42 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea
| |
Collapse
|
32
|
Sáez-Jiménez V, Baratto MC, Pogni R, Rencoret J, Gutiérrez A, Santos JI, Martínez AT, Ruiz-Dueñas FJ. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer: A TRANSIENT-STATE KINETICS, DIRECTED MUTAGENESIS, EPR, AND NMR STUDY. J Biol Chem 2015; 290:23201-13. [PMID: 26240145 PMCID: PMC4645588 DOI: 10.1074/jbc.m115.665919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/23/2022] Open
Abstract
Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan.
Collapse
Affiliation(s)
- Verónica Sáez-Jiménez
- From the Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Maria Camilla Baratto
- the Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, I-53100 Siena, Italy
| | - Rebecca Pogni
- the Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, I-53100 Siena, Italy
| | - Jorge Rencoret
- the Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P. O. Box 1052, E-41080 Seville, Spain, and
| | - Ana Gutiérrez
- the Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P. O. Box 1052, E-41080 Seville, Spain, and
| | - José Ignacio Santos
- the NMR Facility, SGIKER, Universidad del País Vasco, UPV/EHU Donostia, 48940 Leioa, Bizkaia Spain
| | - Angel T Martínez
- From the Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain,
| | | |
Collapse
|
33
|
Baratto MC, Sinicropi A, Linde D, Sáez-Jiménez V, Sorace L, Ruiz-Duenas FJ, Martinez AT, Basosi R, Pogni R. Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study. J Phys Chem B 2015; 119:13583-92. [PMID: 26120933 DOI: 10.1021/acs.jpcb.5b02961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxide-activated Auricularia auricula-judae dye-decolorizing peroxidase (DyP) forms a mixed Trp377 and Tyr337 radical, the former being responsible for oxidation of the typical DyP substrates (Linde et al. Biochem. J., 2015, 466, 253-262); however, a pure tryptophanyl radical EPR signal is detected at pH 7 (where the enzyme is inactive), in contrast with the mixed signal observed at pH for optimum activity, pH 3. On the contrary, the presence of a second tyrosine radical (at Tyr147) is deduced by a multifrequency EPR study of a variety of simple and double-directed variants (including substitution of the above and other tryptophan and tyrosine residues) at different freezing times after their activation by H2O2 (at pH 3). This points out that subsidiary long-range electron-transfer pathways enter into operation when the main pathway(s) is removed by directed mutagenesis, with catalytic efficiencies progressively decreasing. Finally, self-reduction of the Trp377 neutral radical is observed when reaction time (before freezing) is increased in the absence of reducing substrates (from 10 to 60 s). Interestingly, the tryptophanyl radical is stable in the Y147S/Y337S variant, indicating that these two tyrosine residues are involved in the self-reduction reaction.
Collapse
Affiliation(s)
- Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Dolores Linde
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Verónica Sáez-Jiménez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Lorenzo Sorace
- Department of Chemistry, "Ugo Schiff" and INSTM RU, University of Florence , 50019 Sesto Fiorentino, Florence, Italy
| | | | - Angel T Martinez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| |
Collapse
|
34
|
Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study. Biochem J 2015; 466:253-62. [PMID: 25495127 PMCID: PMC4357238 DOI: 10.1042/bj20141211] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Collapse
|
35
|
A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep 2015; 5:8245. [PMID: 25650125 PMCID: PMC4316163 DOI: 10.1038/srep08245] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022] Open
Abstract
In the biorefinery using lignocellulosic biomass as feedstock, pretreatment to breakdown or loosen lignin is important step and various approaches have been conducted. For biological pretreatment, we screened Bacillus subtilis KCTC2023 as a potential lignin-degrading bacterium based on veratryl alcohol (VA) oxidation test and the putative heme-containing dye-decolorizing peroxidase was found in the genome of B. subtilis KCTC2023. The peroxidase from B. subtilis KCTC2023 (BsDyP) was capable of oxidizing various substrates and atypically exhibits substrate-dependent optimum temperature: 30°C for dyes (Reactive Blue19 and Reactive Black5) and 50°C for high redox potential substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid [ABTS], VA, and veratryl glycerol-β-guaiacyl ether [VGE]) over +1.0 V vs. normal hydrogen electrode. At 50°C, optimum temperature for high redox potential substrates, BsDyP not only showed the highest VA oxidation activity (0.13 Umg−1) among the previously reported bacterial peroxidases but also successfully achieved VGE decomposition by cleaving Cα-Cβ bond in the absence of any oxidative mediator with a specific activity of 0.086 Umg−1 and a conversion rate of 53.5%. Based on our results, BsDyP was identified as the first bacterial peroxidase capable of oxidizing high redox potential lignin-related model compounds, especially VGE, revealing a previously unknown versatility of lignin degrading biocatalyst in nature.
Collapse
|
36
|
Xu J, Eriksson SE, Cebula M, Sandalova T, Hedström E, Pader I, Cheng Q, Myers CR, Antholine WE, Nagy P, Hellman U, Selivanova G, Lindqvist Y, Arnér ESJ. The conserved Trp114 residue of thioredoxin reductase 1 has a redox sensor-like function triggering oligomerization and crosslinking upon oxidative stress related to cell death. Cell Death Dis 2015; 6:e1616. [PMID: 25611390 PMCID: PMC4669772 DOI: 10.1038/cddis.2014.574] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1) has several key roles in cellular redox systems and reductive pathways. Here we discovered that an evolutionarily conserved and surface-exposed tryptophan residue of the enzyme (Trp114) is excessively reactive to oxidation and exerts regulatory functions. The results indicate that it serves as an electron relay communicating with the FAD moiety of the enzyme, and, when oxidized, it facilitates oligomerization of TrxR1 into tetramers and higher multimers of dimers. A covalent link can also be formed between two oxidized Trp114 residues of two subunits from two separate TrxR1 dimers, as found both in cell extracts and in a crystal structure of tetrameric TrxR1. Formation of covalently linked TrxR1 subunits became exaggerated in cells on treatment with the pro-oxidant p53-reactivating anticancer compound RITA, in direct correlation with triggering of a cell death that could be prevented by antioxidant treatment. These results collectively suggest that Trp114 of TrxR1 serves a function reminiscent of an irreversible sensor for excessive oxidation, thereby presenting a previously unrecognized level of regulation of TrxR1 function in relation to cellular redox state and cell death induction.
Collapse
Affiliation(s)
- J Xu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - S E Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - M Cebula
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - T Sandalova
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - E Hedström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - I Pader
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Q Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - C R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - W E Antholine
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - P Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Rath György ut 7-91, 1122, Budapest, Hungary
| | - U Hellman
- Ludwig Institutet for Cancer Research Ltd., Uppsala University BMC, SE-75 124 Uppsala, Sweden
| | - G Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Y Lindqvist
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - E S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
37
|
Knop D, Yarden O, Hadar Y. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 2014; 99:1025-38. [PMID: 25503316 DOI: 10.1007/s00253-014-6256-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.
Collapse
Affiliation(s)
- Doriv Knop
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | |
Collapse
|
38
|
Thanh Mai Pham L, Eom MH, Kim YH. Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium. Enzyme Microb Technol 2014; 61-62:48-54. [DOI: 10.1016/j.enzmictec.2014.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022]
|
39
|
Miner KD, Pfister TD, Hosseinzadeh P, Karaduman N, Donald LJ, Loewen PC, Lu Y, Ivancich A. Identifying the elusive sites of tyrosyl radicals in cytochrome c peroxidase: implications for oxidation of substrates bound at a site remote from the heme. Biochemistry 2014; 53:3781-9. [PMID: 24901481 PMCID: PMC4063442 DOI: 10.1021/bi500353p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The location of the Trp radical and the catalytic function of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr₇₁(•) and Tyr₂₃₆(•) is independent of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632-1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr₇₁(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248-255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665-11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557-8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction.
Collapse
Affiliation(s)
- Kyle D Miner
- CNRS, Unité de Recherche Mixte CNRS/CEA/Université Paris-Sud (UMR 8221), Laboratoire de Bioénergétique, Métalloprotéines et Stress. Centre d'Etudes de Saclay, iBiTec-S, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
41
|
Radical formation on a conserved tyrosine residue is crucial for DyP activity. Arch Biochem Biophys 2013; 537:161-7. [PMID: 23876237 DOI: 10.1016/j.abb.2013.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/08/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) are able to cleave bulky anthraquinone dyes. The recently published crystal structure of AauDyPI reveals that a direct oxidation in the distal heme cavity can be excluded for most DyP substrates. It is shown that a surface-exposed tyrosine residue acts as a substrate interaction site for bulky substrates. This amino acid is conserved in eucaryotic DyPs but is missing in the structurally related chlorite dismutases (Clds). Dye-decolorizing peroxidases of procaryotic origin equally possess a conserved tyrosine in the same region of the polypeptide albeit not at the homologous position.
Collapse
|
42
|
Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis. Proc Natl Acad Sci U S A 2013; 110:4569-73. [PMID: 23487750 DOI: 10.1073/pnas.1215011110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of tryptophan (Trp) radicals in biology, very few radicals have been trapped and characterized in a physiologically meaningful context. Here we demonstrate that the diheme enzyme MauG uses Trp radical chemistry to catalyze formation of a Trp-derived tryptophan tryptophylquinone cofactor on its substrate protein, premethylamine dehydrogenase. The unusual six-electron oxidation that results in tryptophan tryptophylquinone formation occurs in three discrete two-electron catalytic steps. Here the exact order of these oxidation steps in the processive six-electron biosynthetic reaction is determined, and reaction intermediates are structurally characterized. The intermediates observed in crystal structures are also verified in solution using mass spectrometry. Furthermore, an unprecedented Trp-derived diradical species on premethylamine dehydrogenase, which is an intermediate in the first two-electron step, is characterized using high-frequency and -field electron paramagnetic resonance spectroscopy and UV-visible absorbance spectroscopy. This work defines a unique mechanism for radical-mediated catalysis of a protein substrate, and has broad implications in the areas of applied biocatalysis and understanding of oxidative protein modification during oxidative stress.
Collapse
|
43
|
McMillan AW, Kier BL, Shu I, Byrne A, Andersen NH, Parson WW. Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations. J Phys Chem B 2013; 117:1790-809. [PMID: 23330783 PMCID: PMC3581364 DOI: 10.1021/jp3097378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The quantum yield of tryptophan (Trp) fluorescence was measured in 30 designed miniproteins (17 β-hairpins and 13 Trp-cage peptides), each containing a single Trp residue. Measurements were made in D(2)O and H(2)O to distinguish between fluorescence quenching mechanisms involving electron and proton transfer in the hairpin peptides, and at two temperatures to check for effects of partial unfolding of the Trp-cage peptides. The extent of folding of all the peptides also was measured by NMR. The fluorescence yields ranged from 0.01 in some of the Trp-cage peptides to 0.27 in some hairpins. Fluorescence quenching was found to occur by electron transfer from the excited indole ring of the Trp to a backbone amide group or the protonated side chain of a nearby histidine, glutamate, aspartate, tyrosine, or cysteine residue. Ionized tyrosine side chains quenched strongly by resonance energy transfer or electron transfer to the excited indole ring. Hybrid classical/quantum mechanical molecular dynamics simulations were performed by a method that optimized induced electric dipoles separately for the ground and excited states in multiple π-π* and charge-transfer (CT) excitations. Twenty 0.5 ns trajectories in the tryptophan's lowest excited singlet π-π* state were run for each peptide, beginning by projections from trajectories in the ground state. Fluorescence quenching was correlated with the availability of a CT or exciton state that was strongly coupled to the π-π* state and that matched or fell below the π-π* state in energy. The fluorescence yields predicted by summing the calculated rates of charge and energy transfer are in good accord with the measured yields.
Collapse
Affiliation(s)
- Andrew W. McMillan
- Department of Biochemistry, Structure and Design, University of Washington, Seattle, WA 98195
- Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195
| | - Brandon L. Kier
- Department of Chemistry, Structure and Design, University of Washington, Seattle, WA 98195
- Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195
| | - Irene Shu
- Department of Chemistry, Structure and Design, University of Washington, Seattle, WA 98195
| | - Aimee Byrne
- Department of Chemistry, Structure and Design, University of Washington, Seattle, WA 98195
| | - Niels H. Andersen
- Department of Chemistry, Structure and Design, University of Washington, Seattle, WA 98195
- Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195
| | - William W. Parson
- Department of Biochemistry, Structure and Design, University of Washington, Seattle, WA 98195
- Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195
| |
Collapse
|
44
|
Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner DA, Piontek K. First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase: substrate interaction sites and long-range electron transfer. J Biol Chem 2012; 288:4095-102. [PMID: 23235158 DOI: 10.1074/jbc.m112.400176] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dye-decolorizing peroxidases (DyPs) belong to the large group of heme peroxidases. They utilize hydrogen peroxide to catalyze oxidations of various organic compounds. AauDyPI from Auricularia auricula-judae (fungi) was crystallized, and its crystal structure was determined at 2.1 Å resolution. The mostly helical structure also shows a β-sheet motif typical for DyPs and Cld (chlorite dismutase)-related structures and includes the complete polypeptide chain. At the distal side of the heme molecule, a flexible aspartate residue (Asp-168) plays a key role in catalysis. It guides incoming hydrogen peroxide toward the heme iron and mediates proton rearrangement in the process of Compound I formation. Afterward, its side chain changes its conformation, now pointing toward the protein backbone. We propose an extended functionality of Asp-168, which acts like a gatekeeper by altering the width of the heme cavity access channel. Chemical modifications of potentially redox-active amino acids show that a tyrosine is involved in substrate interaction. Using spin-trapping experiments, a transient radical on the surface-exposed Tyr-337 was identified as the oxidation site for bulky substrates. A possible long-range electron transfer pathway from the surface of the enzyme to the redox cofactor (heme) is discussed.
Collapse
Affiliation(s)
- Eric Strittmatter
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 2012; 97:5839-49. [PMID: 23111597 DOI: 10.1007/s00253-012-4521-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/27/2023]
Abstract
Catalytic and physicochemical properties of representative fungal dye-decolorizing peroxidases (DyPs) of wood- (WRF) and litter-decomposing white-rot fungi (LDF) are summarized and compared, including one recombinant Mycetinis scorodonius DyP (rMscDyP; LDF), the wild-type Auricularia auricula-judae DyP (AauDyP; WRF), and two new DyPs secreted by the jelly fungi Exidia glandulosa (EglDyP; WRF) and Mycena epipterygia (MepDyP; LDF). Homogeneous preparations of these DyPs were obtained after different steps of fast protein liquid chromatography, and they increase the total number of characterized fungal DyP proteins to eight. The peptide sequences of AauDyP, MepDyP, and EglDyP showed highest homologies (52-56%) to the DyPs of M. scorodonius. Five out of the eight characterized fungal DyPs were used to evaluate their catalytic properties compared to classic fungal and plant heme peroxidases, namely lignin peroxidase of Phanerochaete chrysosporium (PchLiP; WRF), versatile peroxidase of Bjerkandera adusta (BadVP; WRF), and generic peroxidases of Coprinopsis cinerea (CiP) and Glycine max (soybean peroxidase=SBP). All DyPs tested possess unique properties regarding the stability at low pH values: 50-90% enzymatic activity remained after 4-h exposition at pH 2.5, and the oxidation of nonphenolic aromatic substrates (lignin model compounds) was optimal below pH 3. Furthermore, all DyPs efficiently oxidized recalcitrant dyes (e.g., Azure B) as well as the phenolic substrate 2,6-dimethoxyphenol. Thus, DyPs combine features of different peroxidases on the functional level and may be part of the biocatalytic system secreted by fungi for the oxidation of lignin and/or toxic aromatic compounds.
Collapse
|
46
|
The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics. Arch Biochem Biophys 2012; 525:121-30. [PMID: 22516655 DOI: 10.1016/j.abb.2012.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 11/21/2022]
Abstract
Catalases are ubiquitous enzymes that prevent cell oxidative damage by degrading hydrogen peroxide to water and oxygen (2H(2)O(2) → 2H(2)O+O(2)) with high efficiency. The enzyme is first oxidized to a high-valent iron intermediate, known as Compound I (Cpd I, Por(·+)-Fe(IV)=O) which, at difference from other hydroperoxidases, is reduced back to the resting state by further reacting with H(2)O(2). The normal catalase activity is reduced if Cpd I is consumed in a competing side reaction, forming a species named Cpd I*. In recent years, Density Functional Theory (DFT) methods have unraveled the electronic configuration of these high-valent iron species, helping to assign the intermediates trapped in the crystal structures of oxidized catalases. It has been demonstrated that the a priori assumption that the H(+)/H(-) type of mechanism for Cpd I reduction leads to the generation of singlet oxygen is not justified. Moreover, it has been shown by ab initio metadynamics simulations that two pathways are operative for Cpd I reduction: a His-mediated mechanism (described as H·/H(+) + e(-)) in which the distal His acts as an acid-base catalyst and a direct mechanism (described as H·/H·) in which the distal His does not play a direct role. Independently of the mechanism, the reaction proceeds by two one-electron transfers rather than one two-electron transfer, as previously assumed. Electron transfer to Cpd I, regardless of whether the electron is exogenous or endogenous, facilitates protonation of the oxoferryl group, to the point that formation of Cpd I* may be controlled by the easiness of protonation of reduced Cpd I.
Collapse
|
47
|
Bernini C, Pogni R, Basosi R, Sinicropi A. The nature of tryptophan radicals involved in the long-range electron transfer of lignin peroxidase and lignin peroxidase-like systems: Insights from quantum mechanical/molecular mechanics simulations. Proteins 2012; 80:1476-83. [DOI: 10.1002/prot.24046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/21/2023]
|
48
|
Shigeto J, Itoh Y, Tsutsumi Y, Kondo R. Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L. FEBS J 2011; 279:348-57. [DOI: 10.1111/j.1742-4658.2011.08429.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Stoll S, Shafaat HS, Krzystek J, Ozarowski A, Tauber MJ, Kim JE, Britt RD. Hydrogen bonding of tryptophan radicals revealed by EPR at 700 GHz. J Am Chem Soc 2011; 133:18098-101. [PMID: 22007694 PMCID: PMC3251908 DOI: 10.1021/ja208462t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Redox-active tryptophans are important in biological electron transfer and redox biochemistry. Proteins can tune the electron transfer kinetics and redox potentials of tryptophan via control of the protonation state and the hydrogen-bond strength. We examine the local environment of two neutral tryptophan radicals (Trp108 on the solvent-exposed surface and Trp48 buried in the hydrophobic core) in two azurin variants. Ultrahigh-field EPR spectroscopy at 700 GHz and 25 T allowed complete resolution of all of the principal components of the g tensors of the two radicals and revealed significant differences in the g tensor anisotropies. The spectra together with (2)H ENDOR spectra and supporting DFT calculations show that the g tensor anisotropy is directly diagnostic of the presence or absence as well as the strength of a hydrogen bond to the indole nitrogen. The approach is a powerful one for identifying and characterizing hydrogen bonds that are critical in the regulation of tryptophan-assisted electron transfer and tryptophan-mediated redox chemistry in proteins.
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California Davis, Davis California 95616, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, United States
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis California 95616, United States
| |
Collapse
|
50
|
Ruiz-Dueñas FJ, Fernández E, Martínez MJ, Martínez AT. Pleurotus ostreatus heme peroxidases: An in silico analysis from the genome sequence to the enzyme molecular structure. C R Biol 2011; 334:795-805. [DOI: 10.1016/j.crvi.2011.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|