1
|
Huo J, Wei A, Guo N, Wang R, Bi X. The Yeast HMGB Protein Hmo1 Is a Multifaceted Regulator of DNA Damage Tolerance. Int J Mol Sci 2025; 26:3255. [PMID: 40244093 PMCID: PMC11989408 DOI: 10.3390/ijms26073255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The Saccharomyces cerevisiae chromosomal architectural protein Hmo1 is categorized as an HMGB protein, as it contains two HMGB motifs that bind DNA in a structure-specific manner. However, Hmo1 has a basic C-terminal domain (CTD) that promotes DNA bending instead of an acidic one found in a canonical HMGB protein. Hmo1 has diverse functions in genome maintenance and gene regulation. It is implicated in DNA damage tolerance (DDT) that enables DNA replication to bypass lesions on the template. Hmo1 is believed to direct DNA lesions to the error-free template switching (TS) pathway of DDT and to aid in the formation of the key TS intermediate sister chromatid junction (SCJ), but the underlying mechanisms have yet to be resolved. In this work, we used genetic and molecular biology approaches to further investigate the role of Hmo1 in DDT. We found extensive functional interactions of Hmo1 with components of the genome integrity network in cellular response to the genotoxin methyl methanesulfonate (MMS), implicating Hmo1 in the execution or regulation of homology-directed DNA repair, replication-coupled chromatin assembly, and the DNA damage checkpoint. Notably, our data pointed to a role for Hmo1 in directing SCJ to the nuclease-mediated resolution pathway instead of the helicase/topoisomerase mediated dissolution pathway for processing/removal. They also suggested that Hmo1 modulates both the recycling of parental histones and the deposition of newly synthesized histones on nascent DNA at the replication fork to ensure proper chromatin formation. We found evidence that Hmo1 counteracts the function of histone H2A variant H2A.Z (Htz1 in yeast) in DDT possibly due to their opposing effects on DNA resection. We showed that Hmo1 promotes DNA negative supercoiling as a proxy of chromatin structure and MMS-induced DNA damage checkpoint signaling, which is independent of the CTD of Hmo1. Moreover, we obtained evidence indicating that whether the CTD of Hmo1 contributes to its function in DDT is dependent on the host's genetic background. Taken together, our findings demonstrated that Hmo1 can contribute to, or regulate, multiple processes of DDT via different mechanisms.
Collapse
Affiliation(s)
- Jinlong Huo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Anhui Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- Institute of Frontier Medical Sciences, Jilin University, Changchun 130021, China
| | - Na Guo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruotong Wang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
| | - Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
| |
Collapse
|
2
|
Thu YM. Multifaceted roles of SUMO in DNA metabolism. Nucleus 2024; 15:2398450. [PMID: 39287196 PMCID: PMC11409511 DOI: 10.1080/19491034.2024.2398450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biology, Colby College, Waterville, ME, USA
| |
Collapse
|
3
|
Toraason E, Salagean A, Almanzar DE, Brown JE, Richter CM, Kurhanewicz NA, Rog O, Libuda DE. BRCA1/BRC-1 and SMC-5/6 regulate DNA repair pathway engagement during Caenorhabditis elegans meiosis. eLife 2024; 13:e80687. [PMID: 39115289 PMCID: PMC11368404 DOI: 10.7554/elife.80687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinated interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Jordan E Brown
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Nicole A Kurhanewicz
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
4
|
Fingerman DF, O'Leary DR, Hansen AR, Tran T, Harris BR, DeWeerd RA, Hayer KE, Fan J, Chen E, Tennakoon M, Meroni A, Szeto JH, Devenport J, LaVigne D, Weitzman MD, Shalem O, Bednarski J, Vindigni A, Zhao X, Green AM. The SMC5/6 complex prevents genotoxicity upon APOBEC3A-mediated replication stress. EMBO J 2024; 43:3240-3255. [PMID: 38886582 PMCID: PMC11294446 DOI: 10.1038/s44318-024-00137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.
Collapse
Affiliation(s)
- Dylan F Fingerman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David R O'Leary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ava R Hansen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Thi Tran
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Brooke R Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina E Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiayi Fan
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Emily Chen
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- School of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Mithila Tennakoon
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alice Meroni
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julia H Szeto
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Devenport
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle LaVigne
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ophir Shalem
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Lorite NP, Apostolova S, Guasch-Vallés M, Pryer A, Unzueta F, Freire R, Solé-Soler R, Pedraza N, Dolcet X, Garí E, Agell N, Taylor EM, Colomina N, Torres-Rosell J. Crucial role of the NSE1 RING domain in Smc5/6 stability and FANCM-independent fork progression. Cell Mol Life Sci 2024; 81:251. [PMID: 38847937 PMCID: PMC11335289 DOI: 10.1007/s00018-024-05275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 08/22/2024]
Abstract
The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
Collapse
Affiliation(s)
- Neus P Lorite
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Sonia Apostolova
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marta Guasch-Vallés
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Aaron Pryer
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Fernando Unzueta
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Universidad de La Laguna, Campus Ciencias de la Salud, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Roger Solé-Soler
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Pedraza
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Xavier Dolcet
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Eloi Garí
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Agell
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elaine M Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neus Colomina
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| | - Jordi Torres-Rosell
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| |
Collapse
|
6
|
O'Leary DR, Hansen AR, Fingerman DF, Tran T, Harris BR, Hayer KE, Fan J, Chen E, Tennakoon M, DeWeerd RA, Meroni A, Szeto JH, Weitzman MD, Shalem O, Bednarski J, Vindigni A, Zhao X, Green AM. The SMC5/6 complex prevents genotoxicity upon APOBEC3A-mediated replication stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.568952. [PMID: 38077016 PMCID: PMC10705431 DOI: 10.1101/2023.11.28.568952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.
Collapse
|
7
|
Roy S, Adhikary H, D’Amours D. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break. Nucleic Acids Res 2024; 52:2112-2129. [PMID: 38375830 PMCID: PMC10954462 DOI: 10.1093/nar/gkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
High-level folding of chromatin is a key determinant of the shape and functional state of chromosomes. During cell division, structural maintenance of chromosome (SMC) complexes such as condensin and cohesin ensure large-scale folding of chromatin into visible chromosomes. In contrast, the SMC5/6 complex plays more local and context-specific roles in the structural organization of interphase chromosomes with important implications for health and disease. Recent advances in single-molecule biophysics and cryo-electron microscopy revealed key insights into the architecture of the SMC5/6 complex and how interactions connecting the complex to chromatin components give rise to its unique repertoire of interphase functions. In this review, we provide an integrative view of the features that differentiates the SMC5/6 complex from other SMC enzymes and how these enable dramatic reorganization of DNA folding in space during DNA repair reactions and other genome transactions. Finally, we explore the mechanistic basis for the dynamic targeting of the SMC5/6 complex to damaged chromatin and its crucial role in human health.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Xu MJ, Jordan PW. SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome. Int J Mol Sci 2024; 25:952. [PMID: 38256025 PMCID: PMC10815603 DOI: 10.3390/ijms25020952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated.
Collapse
Affiliation(s)
- Michelle J. Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Peng XP, Zhao X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 2023; 30:724-734. [PMID: 37336994 PMCID: PMC10372777 DOI: 10.1038/s41594-023-01015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.
Collapse
Affiliation(s)
- Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Cancer Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Li C, Guo Y, Wang L, Yan S. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis. EMBO J 2023; 42:e112756. [PMID: 36815434 PMCID: PMC10068331 DOI: 10.15252/embj.2022112756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most toxic forms of DNA damage, which threatens genome stability. Homologous recombination is an error-free DSB repair pathway, in which the evolutionarily conserved SMC5/6 complex (SMC5/6) plays essential roles. The PAF1 complex (PAF1C) is well known to regulate transcription. Here we show that SMC5/6 recruits PAF1C to facilitate DSB repair in plants. In a genetic screen for DNA damage response mutants (DDRMs), we found that the Arabidopsis ddrm4 mutant is hypersensitive to DSB-inducing agents and is defective in homologous recombination. DDRM4 encodes PAF1, a core subunit of PAF1C. Further biochemical and genetic studies reveal that SMC5/6 recruits PAF1C to DSB sites, where PAF1C further recruits the E2 ubiquitin-conjugating enzymes UBC1/2, which interact with the E3 ubiquitin ligases HUB1/2 to mediate the monoubiquitination of histone H2B at DSBs. These results implicate SMC5/6-PAF1C-UBC1/2-HUB1/2 as a new axis for DSB repair through homologous recombination, revealing a new mechanism of SMC5/6 and uncovering a novel function of PAF1C.
Collapse
Affiliation(s)
- Cunliang Li
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuyu Guo
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Lili Wang
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
11
|
Smc5/6, an atypical SMC complex with two RING-type subunits. Biochem Soc Trans 2021; 48:2159-2171. [PMID: 32964921 DOI: 10.1042/bst20200389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
The Smc5/6 complex plays essential roles in chromosome segregation and repair, by promoting disjunction of sister chromatids. The core of the complex is constituted by an heterodimer of Structural Maintenance of Chromosomes (SMC) proteins that use ATP hydrolysis to dynamically associate with and organize chromosomes. In addition, the Smc5/6 complex contains six non-SMC subunits. Remarkably, and differently to other SMC complexes, the Nse1 and Nse2 subunits contain RING-type domains typically found in E3 ligases, pointing to the capacity to regulate other proteins and complexes through ubiquitin-like modifiers. Nse2 codes for a C-terminal SP-RING domain with SUMO ligase activity, assisting Smc5/6 functions in chromosome segregation through sumoylation of several chromosome-associated proteins. Nse1 codes for a C-terminal NH-RING domain and, although it has been proposed to have ubiquitin ligase activity, no Smc5/6-dependent ubiquitylation target has been described to date. Here, we review the function of the two RING domains of the Smc5/6 complex in the broader context of SMC complexes as global chromosome organizers of the genome.
Collapse
|
12
|
The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine. Mol Cell 2020; 80:1025-1038.e5. [PMID: 33301731 DOI: 10.1016/j.molcel.2020.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023]
Abstract
The structural organization of chromosomes is a crucial feature that defines the functional state of genes and genomes. The extent of structural changes experienced by genomes of eukaryotic cells can be dramatic and spans several orders of magnitude. At the core of these changes lies a unique group of ATPases-the SMC proteins-that act as major effectors of chromosome behavior in cells. The Smc5/6 proteins play essential roles in the maintenance of genome stability, yet their mode of action is not fully understood. Here we show that the human Smc5/6 complex recognizes unusual DNA configurations and uses the energy of ATP hydrolysis to promote their compaction. Structural analyses reveal subunit interfaces responsible for the functionality of the Smc5/6 complex and how mutations in these regions may lead to chromosome breakage syndromes in humans. Collectively, our results suggest that the Smc5/6 complex promotes genome stability as a DNA micro-compaction machine.
Collapse
|
13
|
Mus81-Mms4 endonuclease is an Esc2-STUbL-Cullin8 mitotic substrate impacting on genome integrity. Nat Commun 2020; 11:5746. [PMID: 33184279 PMCID: PMC7665200 DOI: 10.1038/s41467-020-19503-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The Mus81-Mms4 nuclease is activated in G2/M via Mms4 phosphorylation to allow resolution of persistent recombination structures. However, the fate of the activated phosphorylated Mms4 remains unknown. Here we find that Mms4 is engaged by (poly)SUMOylation and ubiquitylation and targeted for proteasome degradation, a process linked to the previously described Mms4 phosphorylation cycle. Mms4 is a mitotic substrate for the SUMO-Targeted Ubiquitin ligase Slx5/8, the SUMO-like domain-containing protein Esc2, and the Mms1-Cul8 ubiquitin ligase. In the absence of these activities, phosphorylated Mms4 accumulates on chromatin in an active state in the next G1, subsequently causing abnormal processing of replication-associated recombination intermediates and delaying the activation of the DNA damage checkpoint. Mus81-Mms4 mutants that stabilize phosphorylated Mms4 have similar detrimental effects on genome integrity. Overall, our findings highlight a replication protection function for Esc2-STUbL-Cul8 and emphasize the importance for genome stability of resetting phosphorylated Mms4 from one cycle to another. Mus81-Mms4 endonuclease is critical for processing various DNA recombination structures. Here the authors uncover a regulatory mechanism of the endonuclease via posttranslational modifications involving SUMOylation and ubiquitylation that impact on genome integrity.
Collapse
|
14
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
15
|
Venegas AB, Natsume T, Kanemaki M, Hickson ID. Inducible Degradation of the Human SMC5/6 Complex Reveals an Essential Role Only during Interphase. Cell Rep 2020; 31:107533. [DOI: 10.1016/j.celrep.2020.107533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
|
16
|
Porreca RM, Herrera-Moyano E, Skourti E, Law PP, Gonzalez Franco R, Montoya A, Faull P, Kramer H, Vannier JB. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. eLife 2020; 9:49817. [PMID: 31934863 PMCID: PMC6986873 DOI: 10.7554/elife.49817] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/11/2020] [Indexed: 12/29/2022] Open
Abstract
Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.
Collapse
Affiliation(s)
- Rosa Maria Porreca
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Emilia Herrera-Moyano
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eleni Skourti
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Roser Gonzalez Franco
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom
| | - Peter Faull
- Biological Mass Spectrometry and Proteomics, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,The Francis Crick Institute, Proteomics Mass Spectrometry Science and Technology Platform, London, United Kingdom
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
18
|
Zapatka M, Pociño-Merino I, Heluani-Gahete H, Bermúdez-López M, Tarrés M, Ibars E, Solé-Soler R, Gutiérrez-Escribano P, Apostolova S, Casas C, Aragon L, Wellinger R, Colomina N, Torres-Rosell J. Sumoylation of Smc5 Promotes Error-free Bypass at Damaged Replication Forks. Cell Rep 2019; 29:3160-3172.e4. [DOI: 10.1016/j.celrep.2019.10.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
|
19
|
Meng X, Wei L, Peng XP, Zhao X. Sumoylation of the DNA polymerase ε by the Smc5/6 complex contributes to DNA replication. PLoS Genet 2019; 15:e1008426. [PMID: 31765372 PMCID: PMC6876774 DOI: 10.1371/journal.pgen.1008426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
DNA polymerase epsilon (Pol ε) is critical for genome duplication, but little is known about how post-translational modification regulates its function. Here we report that the Pol ε catalytic subunit Pol2 in yeast is sumoylated at a single lysine within a catalytic domain insertion uniquely possessed by Pol2 family members. We found that Pol2 sumoylation occurs specifically in S phase and is increased under conditions of replication fork blockade. Analyses of the genetic requirements of this modification indicate that Pol2 sumoylation is associated with replication fork progression and dependent on the Smc5/6 SUMO ligase known to promote DNA synthesis. Consistently, the pol2 sumoylation mutant phenotype suggests impaired replication progression and increased levels of gross chromosomal rearrangements. Our findings thus indicate a direct role for SUMO in Pol2-mediated DNA synthesis and a molecular basis for Smc5/6-mediated regulation of genome stability. DNA replication factors are tightly regulated to ensure genome duplication accuracy and efficiency. Among these factors, the Pol ε replicative polymerase plays a vital role by copying half of the genome every cell cycle. However, little is known about how this critical enzyme is regulated. Here we describe SUMO-based regulation of the catalytic subunit of Pol ε, Pol2. Our data suggest that Pol2 sumoylation occurs during replication elongation, particularly when replication forks encounter template obstacles. This modification is mediated by the conserved Smc5/6 SUMO ligase complex and occurs at a single site within the Pol2 catalytic domain. Several observations suggest that Pol2 sumoylation makes positive contributions to the synthesis of DNA regions enriched with template barriers and helps to prevent large-scale genomic alterations. Our work thus provides new insights into DNA polymerase regulation, specifically the role played by contributions from SUMO and the Smc5/6 complex.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Lei Wei
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Xiao P. Peng
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Jørgensen SW, Liberti SE, Larsen NB, Lisby M, Mankouri HW, Hickson ID. Esc2 promotes telomere stability in response to DNA replication stress. Nucleic Acids Res 2019; 47:4597-4611. [PMID: 30838410 PMCID: PMC6511870 DOI: 10.1093/nar/gkz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 01/27/2023] Open
Abstract
Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the ‘Tus/Ter’ system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.
Collapse
Affiliation(s)
- Signe W Jørgensen
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Sascha E Liberti
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Nicolai B Larsen
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Michael Lisby
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Department of Biology, University of Copenhagen, Ole Maaløes Vej, 2200 Copenhagen N, Denmark
| | - Hocine W Mankouri
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Bernal M, Yang X, Lisby M, Mazón G. The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair (Amst) 2019; 82:102684. [DOI: 10.1016/j.dnarep.2019.102684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
22
|
Jenkins SS, Gore S, Guo X, Liu J, Ede C, Veaute X, Jinks-Robertson S, Kowalczykowski SC, Heyer WD. Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae. Genetics 2019; 212:1133-1145. [PMID: 31142613 PMCID: PMC6707447 DOI: 10.1534/genetics.119.302337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae Srs2, in addition to its well-documented antirecombination activity, has been proposed to play a role in promoting synthesis-dependent strand annealing (SDSA). Here we report the identification and characterization of an SRS2 mutant with a single amino acid substitution (srs2-F891A) that specifically affects the Srs2 pro-SDSA function. This residue is located within the Srs2-Rad51 interaction domain and embedded within a protein sequence resembling a BRC repeat motif. The srs2-F891A mutation leads to a complete loss of interaction with Rad51 as measured through yeast two-hybrid analysis and a partial loss of interaction as determined through protein pull-down assays with purified Srs2, Srs2-F891A, and Rad51 proteins. Even though previous work has shown that internal deletions of the Srs2-Rad51 interaction domain block Srs2 antirecombination activity in vitro, the Srs2-F891A mutant protein, despite its weakened interaction with Rad51, exhibits no measurable defect in antirecombination activity in vitro or in vivo Surprisingly, srs2-F891A shows a robust shift from noncrossover to crossover repair products in a plasmid-based gap repair assay, but not in an ectopic physical recombination assay. Our findings suggest that the Srs2 C-terminal Rad51 interaction domain is more complex than previously thought, containing multiple interaction sites with unique effects on Srs2 activity.
Collapse
Affiliation(s)
- Shirin S Jenkins
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Steven Gore
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xiaoge Guo
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Christopher Ede
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xavier Veaute
- CEA, CIGEx, F-92265 Fontenay-aux-Roses Cedex, France
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
23
|
Abstract
Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.
Collapse
Affiliation(s)
- Luis Aragón
- Cell Cycle Group, MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom;
| |
Collapse
|
24
|
Waterman DP, Zhou F, Li K, Lee CS, Tsabar M, Eapen VV, Mazzella A, Haber JE. Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genet 2019; 15:e1008001. [PMID: 30822309 PMCID: PMC6415866 DOI: 10.1371/journal.pgen.1008001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/13/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022] Open
Abstract
We have used two different live-cell fluorescent protein markers to monitor the formation and localization of double-strand breaks (DSBs) in budding yeast. Using GFP derivatives of the Rad51 recombination protein or the Ddc2 checkpoint protein, we find that cells with three site-specific DSBs, on different chromosomes, usually display 2 or 3 foci that may coalesce and dissociate. This motion is independent of Rad52 and microtubules. Rad51-GFP, by itself, is unable to repair DSBs by homologous recombination in mitotic cells, but is able to form foci and allow repair when heterozygous with a wild type Rad51 protein. The kinetics of formation and disappearance of a Rad51-GFP focus parallels the completion of site-specific DSB repair. However, Rad51-GFP is proficient during meiosis when homozygous, similar to rad51 “site II” mutants that can bind single-stranded DNA but not complete strand exchange. Rad52-RFP and Rad51-GFP co-localize to the same DSB, but a significant minority of foci have Rad51-GFP without visible Rad52-RFP. We conclude that co-localization of foci in cells with 3 DSBs does not represent formation of a homologous recombination “repair center,” as the same distribution of Ddc2-GFP foci was found in the absence of the Rad52 protein. Double strand breaks (DSBs) pose the greatest threat to the fidelity of an organism’s genome. While much work has been done on the mechanisms of DSB repair, the arrangement and interaction of multiple DSBs within a single cell remain unclear. Using two live-cell fluorescent DSB markers, we show that cells with 3 site-specific DSBs usually form 2 or 3 foci that can may coalesce into fewer foci but also dissociate. The aggregation and mobility of DSBs into a single focus does not depend on the Rad52 recombination protein that is required for various mechanisms of homologous recombination, suggesting that merging of DSBs does not reflect formation of a homologous recombination repair center.
Collapse
Affiliation(s)
- David P. Waterman
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Felix Zhou
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Cheng-Sheng Lee
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael Tsabar
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vinay V. Eapen
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Allison Mazzella
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
26
|
Fanconi Anaemia-Like Mph1 Helicase Backs up Rad54 and Rad5 to Circumvent Replication Stress-Driven Chromosome Bridges. Genes (Basel) 2018; 9:genes9110558. [PMID: 30453647 PMCID: PMC6266064 DOI: 10.3390/genes9110558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination (HR) is a preferred mechanism to deal with DNA replication impairments. However, HR synapsis gives rise to joint molecules (JMs) between the nascent sister chromatids, challenging chromosome segregation in anaphase. Joint molecules are resolved by the actions of several structure-selective endonucleases (SSEs), helicases and topoisomerases. Previously, we showed that yeast double mutants for the Mus81-Mms4 and Yen1 SSEs lead to anaphase bridges (ABs) after replication stress. Here, we have studied the role of the Mph1 helicase in preventing these anaphase aberrations. Mph1, the yeast ortholog of Fanconi anaemia protein M (FANCM), is involved in the removal of the D-loop, the first JM to arise in canonical HR. Surprisingly, the absence of Mph1 alone did not increase ABs; rather, it blocked cells in G2. Interestingly, in the search for genetic interactions with functionally related helicases and translocases, we found additive effects on the G2 block and post-G2 aberrations between mph1Δ and knockout mutants for Srs2, Rad54 and Rad5. Based on these interactions, we suggest that Mph1 acts coordinately with these helicases in the non-canonical HR-driven fork regression mechanism to bypass stalled replication forks.
Collapse
|
27
|
DNA replication stress and its impact on chromosome segregation and tumorigenesis. Semin Cancer Biol 2018; 55:61-69. [PMID: 29692334 DOI: 10.1016/j.semcancer.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023]
Abstract
Genome instability and cell cycle dysregulation are commonly associated with cancer. DNA replication stress driven by oncogene activation during tumorigenesis is now well established as a source of genome instability. Replication stress generates DNA damage not only during S phase, but also in the subsequent mitosis, where it impacts adversely on chromosome segregation. Some regions of the genome seem particularly sensitive to replication stress-induced instability; most notably, chromosome fragile sites. In this article, we review some of the important issues that have emerged in recent years concerning DNA replication stress and fragile site expression, as well as how chromosome instability is minimized by a family of ring-shaped protein complexes known as SMC proteins. Understanding how replication stress impacts on S phase and mitosis in cancer should provide opportunities for the development of novel and tumour-specific treatments.
Collapse
|
28
|
SUMO E3 ligase Mms21 prevents spontaneous DNA damage induced genome rearrangements. PLoS Genet 2018; 14:e1007250. [PMID: 29505562 PMCID: PMC5860785 DOI: 10.1371/journal.pgen.1007250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/20/2018] [Accepted: 02/12/2018] [Indexed: 12/01/2022] Open
Abstract
Mms21, a subunit of the Smc5/6 complex, possesses an E3 ligase activity for the Small Ubiquitin-like MOdifier (SUMO). Here we show that the mms21-CH mutation, which inactivates Mms21 ligase activity, causes increased accumulation of gross chromosomal rearrangements (GCRs) selected in the dGCR assay. These dGCRs are formed by non-allelic homologous recombination between divergent DNA sequences mediated by Rad52-, Rrm3- and Pol32-dependent break-induced replication. Combining mms21-CH with sgs1Δ caused a synergistic increase in GCRs rates, indicating the distinct roles of Mms21 and Sgs1 in suppressing GCRs. The mms21-CH mutation also caused increased rates of accumulating uGCRs mediated by breakpoints in unique sequences as revealed by whole genome sequencing. Consistent with the accumulation of endogenous DNA lesions, mms21-CH mutants accumulate increased levels of spontaneous Rad52 and Ddc2 foci and had a hyper-activated DNA damage checkpoint. Together, these findings support that Mms21 prevents the accumulation of spontaneous DNA lesions that cause diverse GCRs. Chromosomal rearrangement is a hallmark of cancer. Saccharomyces cerevisiae Mms21 is an E3 ligase for Small Ubiquitin like MOdifer (SUMO), which has been shown to have a major role in preventing chromosomal rearrangement. Despite extensive studies about the function of Mms21 in regulating the repair of exogenously induced DNA damage, how Mms21, and its human ortholog NSMCE2, prevents spontaneous chromosomal rearrangement in unperturbed cells has been unknown. In this study, we provided genetic evidences supporting a novel role of Mms21 in preventing the accumulation of spontaneous DNA breaks, which are likely caused by defective DNA replication, without appreciably affecting how they are repaired. Our findings highlight the central role of faithful DNA replication in preventing spontaneous chromosomal rearrangement, and further suggest that the study of the role of Mms21 dependent sumoylation in DNA replication could yield important insights into how the SUMO pathway prevents chromosomal rearrangement in human disease.
Collapse
|
29
|
Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 2018; 14:e1007129. [PMID: 29360860 PMCID: PMC5779651 DOI: 10.1371/journal.pgen.1007129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA) array. Each rDNA repeat contains a programmed replication fork barrier (RFB) established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth. Smc5/6 belongs to the SMC (Structural Maintenance of Chromosomes) family of protein complexes, all of which are highly conserved and critical for genome maintenance. To address the roles of Smc5/6 during growth, we rapidly depleted its subunits in yeast and found the main acute effect to be defective ribosomal DNA (rDNA) duplication. The rDNA contains hundreds of sites that can pause replication forks; these must be carefully managed for cells to finish replication. We found that reducing fork pausing improved rDNA replication in cells without Smc5/6. Further analysis suggested that Smc5/6 prevents the DNA helicase Mph1 from turning paused forks into recombination structures, which cannot be processed without Smc5/6. Our findings thus revealed a key role for Smc5/6 in managing endogenous replication fork pausing. As rDNA and its associated nucleolar structure are critical for overall genome maintenance and other cellular processes, rDNA regulation by Smc5/6 would be expected to have multilayered effects on cell physiology and growth.
Collapse
Affiliation(s)
- Xiao P. Peng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Shelly Lim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
30
|
Diaz M, Pecinka A. Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex. Genes (Basel) 2018; 9:genes9010036. [PMID: 29329249 PMCID: PMC5793187 DOI: 10.3390/genes9010036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the maintenance of genome stability. Here we summarize recent knowledge on the composition and molecular functions of SMC5/6 complex. SMC5/6 complex was originally identified based on the sensitivity of its mutants to genotoxic stress but there is increasing number of studies demonstrating its roles in the control of DNA replication, sister chromatid resolution and genomic location-dependent promotion or suppression of homologous recombination. Some of these functions appear to be due to a very dynamic interaction with cohesin or other repair complexes. Studies in Arabidopsis indicate that, besides its canonical function in repair of damaged DNA, the SMC5/6 complex plays important roles in regulating plant development, abiotic stress responses, suppression of autoimmune responses and sexual reproduction.
Collapse
Affiliation(s)
- Mariana Diaz
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
- Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
| |
Collapse
|
31
|
Lafuente-Barquero J, Luke-Glaser S, Graf M, Silva S, Gómez-González B, Lockhart A, Lisby M, Aguilera A, Luke B. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genet 2017; 13:e1007136. [PMID: 29281624 PMCID: PMC5760084 DOI: 10.1371/journal.pgen.1007136] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1’s helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids. DNA damage can either occur exogenously through DNA damaging agents such as UV light and exposure to chemotherapeutics, or endogenously via metabolic, cellular processes. The RNA product of transcription, for example, can engage in the formation of RNA-DNA hybrids. Such RNA-DNA hybrids can impede replication fork progression and cause genomic instability, a hallmark of cancer. The misregulation of RNA-DNA hybrids has also been implicated in several neurological disorders. Recently, it has become evident that RNA-DNA hybrids may also have beneficial roles and therefore, these structures have to be tightly controlled. We found that Mph1 (mutator phenotype 1), the budding yeast homolog of Fanconi Anemia protein M, counteracts the accumulation of RNA-DNA hybrids. The inactivation of MPH1 results in a severe growth defect when combined with mutations in the well-characterized RNase H enzymes, that degrade the RNA moiety of an RNA-DNA hybrid. Based on the data presented here, we propose a model, where Mph1 itself has to be kept in check by the SMC (structural maintenance of chromosome) 5/6 complex at replication forks stalled by RNA-DNA hybrids. Mph1 acts as a double-edged sword, as both its deletion and the inability to control its helicase activity cause DNA damage and growth arrest when RNA-DNA hybrids accumulate.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | - Sarah Luke-Glaser
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marco Graf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sonia Silva
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Belén Gómez-González
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | | | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Andrés Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- * E-mail: (BL); (AA)
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Neurobiology and Developmental Biology, JGU Mainz, Mainz, Germany
- * E-mail: (BL); (AA)
| |
Collapse
|
32
|
Abstract
One major challenge during genome duplication is the stalling of DNA replication forks by various forms of template blockages. As these barriers can lead to incomplete replication, multiple mechanisms have to act concertedly to correct and rescue stalled replication forks. Among these mechanisms, replication fork regression entails simultaneous annealing of nascent and template strands, which leads to regression of replication forks and formation of four-way DNA junctions. In principle, this process can lead to either positive outcomes, such as DNA repair and replication resumption, or less desirable outcomes, such as misalignment between nascent and template DNA and DNA cleavage. While our understanding of replication fork regression and its various possible outcomes is still at an early stage, recent studies using combinational approaches in multiple organisms have begun to identify the enzymes that catalyze this DNA transaction and how these enzymes are regulated, as well as the specific manners by which fork regression can influence replication. This review summarizes these recent progresses. In keeping with the theme of this series of reviews, we focus on studies in yeast and compare to findings in higher eukaryotes. It is anticipated that these findings will form the basis for future endeavors to further elucidate replication fork remodeling and its implications for genome maintenance.
Collapse
|
33
|
Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes (Basel) 2016; 7:genes7080048. [PMID: 27548223 PMCID: PMC4999836 DOI: 10.3390/genes7080048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms.
Collapse
|
34
|
Peng J, Feng W. Incision of damaged DNA in the presence of an impaired Smc5/6 complex imperils genome stability. Nucleic Acids Res 2016; 44:10216-10229. [PMID: 27536003 PMCID: PMC5137426 DOI: 10.1093/nar/gkw720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/14/2022] Open
Abstract
The Smc5/6 complex is implicated in homologous recombination-mediated DNA repair during DNA damage or replication stress. Here, we analysed genome-wide replication dynamics in a hypomorphic budding yeast mutant, smc6-P4. The overall replication dynamics in the smc6 mutant is similar to that in the wild-type cells. However, we captured a difference in the replication profile of an early S phase sample in the mutant, prompting the hypothesis that the mutant incorporates ribonucleotides and/or accumulates single-stranded DNA gaps during replication. We tested if inhibiting the ribonucleotide excision repair pathway would exacerbate the smc6 mutant in response to DNA replication stress. Contrary to our expectation, impairment of ribonucleotide excision repair, as well as virtually all other DNA repair pathways, alleviated smc6 mutant's hypersensitivity to induced replication stress. We propose that nucleotide incision in the absence of a functional Smc5/6 complex has more disastrous outcomes than the damage per se. Our study provides novel perspectives for the role of the Smc5/6 complex during DNA replication.
Collapse
Affiliation(s)
- Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
35
|
Mms21 SUMO Ligase Activity Promotes Nucleolar Function in Saccharomyces cerevisiae. Genetics 2016; 204:645-658. [PMID: 27510371 PMCID: PMC5068852 DOI: 10.1534/genetics.115.181750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
The budding yeast E3 SUMO ligase Mms21, also known as Nse2, is a component of the Smc5/6 complex, which regulates sister chromatid cohesion, DNA replication, and repair. Our study shows that the mms21RINGΔ mutant exhibits (1) reduced ribosomal RNA production; (2) nuclear accumulation of ribosomal proteins; (3) elevated Gcn4 translation, indicating translational stress; and (4) upregulation of Gcn4 targets. Genes involved in ribosome biogenesis and translation are downregulated in the mms21RINGΔ mutant. We identified RPL19A as a novel genetic suppressor of the mms21RINGΔ mutant. Deletion of RPL19A partially suppresses growth defects in both smc5-6 and mms21RINGΔ mutants as well as nuclear accumulation of ribosome subunits in the mms21RINGΔ mutant. Deletion of a previously identified strong suppressor, MPH1, rescues both the accumulation of ribosome subunits and translational stress. This study suggests that the Smc5/6 complex supports nucleolar function.
Collapse
|
36
|
Northam MR, Trujillo KM. Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks. Nucleic Acids Res 2016; 44:9245-9255. [PMID: 27458205 PMCID: PMC5100568 DOI: 10.1093/nar/gkw658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022] Open
Abstract
Histone modifications play an important role in regulating access to DNA for transcription, DNA repair and DNA replication. A central player in these events is the mono-ubiquitylation of histone H2B (H2Bub1), which has been shown to regulate nucleosome dynamics. Previously, it was shown that H2Bub1 was important for nucleosome assembly onto nascent DNA at active replication forks. In the absence of H2Bub1, incomplete chromatin structures resulted in several replication defects. Here, we report new evidence, which shows that loss of H2Bub1 contributes to genomic instability in yeast. Specifically, we demonstrate that H2Bub1-deficient yeast accumulate mutations at a high frequency under conditions of replicative stress. This phenotype is due to an aberrant DNA Damage Tolerance (DDT) response upon fork stalling. We show that H2Bub1 normally functions to promote error-free translesion synthesis (TLS) mediated by DNA polymerase eta (Polη). Without H2Bub1, DNA polymerase zeta (Polζ) is responsible for a highly mutagenic alternative mechanism. While H2Bub1 does not appear to regulate other DDT pathways, error-free DDT mechanisms are employed by H2Bub1-deficient cells as another means for survival. However, in these instances, the anti-recombinase, Srs2, is essential to prevent the accumulation of toxic HR intermediates that arise in an unconstrained chromatin environment.
Collapse
Affiliation(s)
- Matthew R Northam
- University of Nebraska Medical Center, College of Medicine, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, Omaha NE 68198, USA
| | - Kelly M Trujillo
- University of Nebraska Medical Center, College of Medicine, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, Omaha NE 68198, USA
| |
Collapse
|
37
|
Hang L, Zhao X. The Rtt107 BRCT scaffold and its partner modification enzymes collaborate to promote replication. Nucleus 2016; 7:346-51. [PMID: 27385431 DOI: 10.1080/19491034.2016.1201624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Faithful duplication of the entire genome during each cell cycle is key for genome maintenance. Each stage of DNA replication, including initiation, progression, and termination, is tightly regulated. Some of these regulations enable replisomes to overcome tens of thousands of template obstacles that block DNA synthesis. Previous studies have identified a large number of proteins that are dedicated to this mission, including protein modification enzymes and scaffold proteins. Protein modification enzymes can bestow fast and reversible changes on many substrates, and thus are ideal for coordinating multiple events needed to promptly overcome replication impediments. Scaffold proteins can support specific protein-protein interactions that enable protein complex formation, protein recruitment, and partner enzyme functions. Taken together with previous studies, our recent work elucidates that a group of modification and scaffold proteins form several complexes to aid replication progression and are particularly important for synthesizing large replicons. Additionally, our work reveals that the intrinsic plasticity of the replication initiation program can be used to compensate for deficient replication progression. (1).
Collapse
Affiliation(s)
- Lisa Hang
- a Molecular Biology Program, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Xiaolan Zhao
- a Molecular Biology Program, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
38
|
Bonner JN, Choi K, Xue X, Torres NP, Szakal B, Wei L, Wan B, Arter M, Matos J, Sung P, Brown GW, Branzei D, Zhao X. Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates. Cell Rep 2016; 16:368-378. [PMID: 27373152 PMCID: PMC5051638 DOI: 10.1016/j.celrep.2016.06.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/12/2016] [Accepted: 05/31/2016] [Indexed: 01/23/2023] Open
Abstract
Timely removal of DNA recombination intermediates is critical for genome stability. The DNA helicase-topoisomerase complex, Sgs1-Top3-Rmi1 (STR), is the major pathway for processing these intermediates to generate conservative products. However, the mechanisms that promote STR-mediated functions remain to be defined. Here we show that Sgs1 binds to poly-SUMO chains and associates with the Smc5/6 SUMO E3 complex in yeast. Moreover, these interactions contribute to the sumoylation of Sgs1, Top3, and Rmi1 upon the generation of recombination structures. We show that reduced STR sumoylation leads to accumulation of recombination structures, and impaired growth in conditions when these structures arise frequently, highlighting the importance of STR sumoylation. Mechanistically, sumoylation promotes STR inter-subunit interactions and accumulation at DNA repair centers. These findings expand the roles of sumoylation and Smc5/6 in genome maintenance by demonstrating that they foster STR functions in the removal of recombination intermediates.
Collapse
Affiliation(s)
- Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nikko P Torres
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Barnabas Szakal
- IFOM, The FIRC of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bingbing Wan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Meret Arter
- Institute of Biochemistry, Swiss Federal Institute of Technology in Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, Swiss Federal Institute of Technology in Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Grant W Brown
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dana Branzei
- IFOM, The FIRC of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
39
|
Dummer AM, Su Z, Cherney R, Choi K, Denu J, Zhao X, Fox CA. Binding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast. PLoS Genet 2016; 12:e1006094. [PMID: 27257873 PMCID: PMC4892509 DOI: 10.1371/journal.pgen.1006094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chromosomal juxtaposition requires an interaction between the FHA domain and a partner protein(s), but to date no relevant partner has been described. In this study, we used structural modeling, 2-hybrid assays, and mutational analyses to show that the predicted phosphothreonine-binding FHA domain of Fkh1 interacted with multiple partner proteins. The Fkh1 FHA domain was important for its role in cell-cycle regulation, but no single interaction partner could account for this role. In contrast, Fkh1’s interaction with the Mph1 DNA repair helicase regulated donor preference during mating-type switching. Using 2-hybrid assays, co-immunoprecipitation, and fluorescence anisotropy, we mapped a discrete peptide within the regulatory Mph1 C-terminus required for this interaction and identified two threonines that were particularly important. In vitro binding experiments indicated that at least one of these threonines had to be phosphorylated for efficient Fkh1 binding. Substitution of these two threonines with alanines (mph1-2TA) specifically abolished the Fkh1-Mph1 interaction in vivo and altered donor preference during mating-type switching to the same degree as mph1Δ. Notably, the mph1-2TA allele maintained other functions of Mph1 in genome stability. Deletion of a second Fkh1-interacting protein encoded by YMR144W also resulted in a change in Fkh1-FHA-dependent donor preference. We have named this gene FDO1 for Forkhead one interacting protein involved in donor preference. We conclude that a phosphothreonine-mediated protein-protein interface between Fkh1-FHA and Mph1 contributes to a specific long-range chromosomal interaction required for mating-type switching, but that Fkh1-FHA must also interact with several other proteins to achieve full functionality in this process. Specific chromosomal interactions between distal regions of the genome allow for DNA transactions necessary for normal cell function, but the protein-protein interfaces that regulate such interactions remain largely unknown. The budding yeast Fkh1 protein uses its evolutionarily conserved phosphothreonine-binding FHA domain to regulate a long-range DNA transaction called mating-type switching that allows yeast cells to switch their sexual phenotype. In this study, another conserved nuclear protein, the Mph1 DNA repair helicase, was shown to interact directly with the FHA domain of Fkh1 to regulate mating-type switching. The Fkh1-Mph1 interaction required two phosphorylated threonines on Mph1 that were dispensable for many other Mph1-protein interactions and other Mph1 chromosomal functions. Thus a discrete protein-protein interface between two multifunctional chromosomal proteins helps define a long-range chromosomal interaction important for controlling cell behavior.
Collapse
Affiliation(s)
- Antoinette M. Dummer
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhangli Su
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rachel Cherney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - John Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
40
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
41
|
Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics 2016; 203:667-75. [PMID: 27075725 DOI: 10.1534/genetics.115.184317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, however, homology to only one of the ends is present, or if homologies to the two ends are situated far away from each other or in the wrong orientation, REC blocks the rapid initiation of new DNA synthesis from the synapsed end(s) and repair is carried out by the break-induced replication (BIR) machinery after a long pause. Here we report that the simultaneous deletion of two 3'→5' helicases, Sgs1 and Mph1, largely abolishes the REC-mediated lag normally observed during the repair of large gaps and BIR substrates, which now get repaired nearly as rapidly and efficiently as GC substrates. Deletion of SGS1 and MPH1 also produces a nearly additive increase in the efficiency of both BIR and long gap repair; this increase is epistatic to that seen upon Rad51 overexpression. However, Rad51 overexpression fails to mimic the acceleration in repair kinetics that is produced by sgs1Δ mph1Δ double deletion.
Collapse
|
42
|
Silva S, Altmannova V, Luke-Glaser S, Henriksen P, Gallina I, Yang X, Choudhary C, Luke B, Krejci L, Lisby M. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes Dev 2016; 30:700-17. [PMID: 26966248 PMCID: PMC4803055 DOI: 10.1101/gad.276204.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022]
Abstract
Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | - Peter Henriksen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Irene Gallina
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xuejiao Yang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Brian Luke
- Institute of Molecular Biology gGmbH (IMB), 55128 Mainz, Germany
| | - Lumir Krejci
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic; Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
43
|
Xue X, Papusha A, Choi K, Bonner JN, Kumar S, Niu H, Kaur H, Zheng XF, Donnianni RA, Lu L, Lichten M, Zhao X, Ira G, Sung P. Differential regulation of the anti-crossover and replication fork regression activities of Mph1 by Mte1. Genes Dev 2016; 30:687-99. [PMID: 26966246 PMCID: PMC4803054 DOI: 10.1101/gad.276139.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 02/03/2023]
Abstract
Xue et al. identified Mte1 as a multifunctional regulator of S. cerevisiae Mph1. Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1–MHF and exerts a procrossover role in mitotic recombination. We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1–MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiao-Feng Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Roberto A Donnianni
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
44
|
MTE1 Functions with MPH1 in Double-Strand Break Repair. Genetics 2016; 203:147-57. [PMID: 26920759 DOI: 10.1534/genetics.115.185454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.
Collapse
|
45
|
Abstract
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. In this review, Xue et al. provide an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
46
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
47
|
Chung I, Zhao X. DNA break-induced sumoylation is enabled by collaboration between a SUMO ligase and the ssDNA-binding complex RPA. Genes Dev 2015; 29:1593-8. [PMID: 26253534 PMCID: PMC4536307 DOI: 10.1101/gad.265058.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Upon genome damage, large-scale protein sumoylation occurs from yeast to humans to promote DNA repair. Currently, the underlying mechanism is largely unknown. Here we show that, upon DNA break induction, the budding yeast SUMO ligase Siz2 collaborates with the ssDNA-binding complex RPA (replication protein A) to induce the sumoylation of recombination factors and confer damage resistance. Both RPA and nuclease-generated ssDNA promote Siz2-mediated sumoylation. Mechanistically, the conserved Siz2 interaction with RPA enables Siz2 localization to damage sites. These findings provide a molecular basis for recruiting SUMO ligases to the vicinity of their substrates to induce sumoylation upon DNA damage.
Collapse
Affiliation(s)
- Inn Chung
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
48
|
Jacome A, Gutierrez-Martinez P, Schiavoni F, Tenaglia E, Martinez P, Rodríguez-Acebes S, Lecona E, Murga M, Méndez J, Blasco MA, Fernandez-Capetillo O. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J 2015; 34:2604-19. [PMID: 26443207 DOI: 10.15252/embj.201591829] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023] Open
Abstract
The SMC5/6 complex is the least understood of SMC complexes. In yeast, smc5/6 mutants phenocopy mutations in sgs1, the BLM ortholog that is deficient in Bloom's syndrome (BS). We here show that NSMCE2 (Mms21, in Saccharomyces cerevisiae), an essential SUMO ligase of the SMC5/6 complex, suppresses cancer and aging in mice. Surprisingly, a mutation that compromises NSMCE2-dependent SUMOylation does not have a detectable impact on murine lifespan. In contrast, NSMCE2 deletion in adult mice leads to pathologies resembling those found in patients of BS. Moreover, and whereas NSMCE2 deletion does not have a detectable impact on DNA replication, NSMCE2-deficient cells also present the cellular hallmarks of BS such as increased recombination rates and an accumulation of micronuclei. Despite the similarities, NSMCE2 and BLM foci do not colocalize and concomitant deletion of Blm and Nsmce2 in B lymphocytes further increases recombination rates and is synthetic lethal due to severe chromosome mis-segregation. Our work reveals that SUMO- and BLM-independent activities of NSMCE2 limit recombination and facilitate segregation; functions of the SMC5/6 complex that are necessary to prevent cancer and aging in mice.
Collapse
Affiliation(s)
- Ariana Jacome
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Federica Schiavoni
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Enrico Tenaglia
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
49
|
Hang LE, Peng J, Tan W, Szakal B, Menolfi D, Sheng Z, Lobachev K, Branzei D, Feng W, Zhao X. Rtt107 Is a Multi-functional Scaffold Supporting Replication Progression with Partner SUMO and Ubiquitin Ligases. Mol Cell 2015; 60:268-79. [PMID: 26439300 DOI: 10.1016/j.molcel.2015.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/15/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
Elucidating the individual and collaborative functions of genome maintenance factors is critical for understanding how genome duplication is achieved. Here, we investigate a conserved scaffold in budding yeast, Rtt107, and its three partners: a SUMO E3 complex, a ubiquitin E3 complex, and Slx4. Biochemical and genetic findings show that Rtt107 interacts separately with these partners and contributes to their individual functions, including a role in replisome sumoylation. We also provide evidence that Rtt107 associates with replisome components, and both itself and its associated E3s are important for replicating regions far from initiation sites. Corroborating these results, replication defects due to Rtt107 loss and genotoxic sensitivities in mutants of Rtt107 and its associated E3s are rescued by increasing replication initiation events through mutating two master repressors of late origins, Mrc1 and Mec1. These findings suggest that Rtt107 functions as a multi-functional platform to support replication progression with its partner E3 enzymes.
Collapse
Affiliation(s)
- Lisa E Hang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jie Peng
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Wei Tan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barnabas Szakal
- IFOM, The FIRC (Fondazione Italiana per la Ricerca sul Cancro) of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Demis Menolfi
- IFOM, The FIRC (Fondazione Italiana per la Ricerca sul Cancro) of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirill Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Dana Branzei
- IFOM, The FIRC (Fondazione Italiana per la Ricerca sul Cancro) of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Wenyi Feng
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
50
|
Xue X, Choi K, Bonner JN, Szakal B, Chen YH, Papusha A, Saro D, Niu H, Ira G, Branzei D, Sung P, Zhao X. Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev 2015; 29:1000-5. [PMID: 25956905 PMCID: PMC4441048 DOI: 10.1101/gad.259143.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023]
Abstract
Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Here, Xue et al. show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Barnabas Szakal
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Yu-Hung Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dorina Saro
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dana Branzei
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA;
| |
Collapse
|