1
|
Huynh NV, Mendoza LD, Nguyen H, Rehage C, Saurage EB, Davis P, Hyndman KA. Lysine acetylation of aquaporin-3 promotes water permeability but is not essential for urine concentrating ability. Am J Physiol Renal Physiol 2025; 328:F517-F529. [PMID: 40062363 DOI: 10.1152/ajprenal.00037.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Aquaporin-3 (AQP3) mediates basolateral water transport in the kidney principal cells contributing to urine concentration. We previously identified the acetylation of lysine 282 (K282) in the C-terminus of AQP3, which we hypothesized as a positive regulator of AQP3 water permeability. AQP3 acetylation (K282Q or Q) or deacetylation (K282R or R) mimetic mutant mice models were created using CRISPR/Cas9. Male and female wild-type (WT) and mutant mice were assigned to hydrating diets and water deprivation protocols. Urine and plasma osmolality in response to acute vasopressin receptor-2 activation with desmopressin (dDAVP) or inhibition by tolvaptan were determined. In vitro water permeability of murine principal kidney cortical collecting duct (mpkCCD) cells stably expressing AQP3 WT, Q, or R was measured. Acetylated AQP3 was prominent in the cortical to inner medullary collecting ducts of dehydrated versus hydrated mice. At baseline, the mutations did not affect the kidney transcriptome, AQP3 abundance, or subcellular localization. Urine osmolality of the mutant mice was within the normal range. With dehydration, all mice excreted concentrated urine; however, the female Q mutants exhibited significantly greater 24-h urine osmolality than WT, suggesting greater water reabsorption. In response to acute dDAVP, all mice produced concentrated urine; however, female Q mutants had a more dilute plasma than WT, further suggesting greater water retention. mpkCCD Q mutant cells exhibited greater water permeability than WT and R cells. We conclude that AQP3 K282 acetylation promotes principal cell water permeability in a sex-dependent manner; however, it is not essential for urine concentration.NEW & NOTEWORTHY The water channel, AQP3, is lysine 282 acetylated (acAQP3) in rodents and humans. When dehydrated, mouse cortical to inner medullary collecting ducts express acAQP3, suggesting that it promotes water reabsorption. acAQP3 expressing principal cells have high water permeability, and in vivo acute desmopressin resulted in a dilute plasma in female acAQP3 mice. However, all mice produced concentrated urine during water deprivation. Thus, acAQP3 promotes water permeability but is not essential for urine concentration during antidiuresis.
Collapse
Affiliation(s)
- Nha V Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Luciano D Mendoza
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hung Nguyen
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elizabeth B Saurage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Parker Davis
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Yang CR, Park E, Chen L, Datta A, Chou CL, Knepper MA. Proteomics and AQP2 regulation. J Physiol 2024; 602:3011-3023. [PMID: 36571566 PMCID: PMC10686537 DOI: 10.1113/jp283899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
The advent of modern quantitative protein mass spectrometry techniques around the turn of the 21st century has contributed to a revolution in biology referred to as 'systems biology'. These methods allow identification and quantification of thousands of proteins in a biological specimen, as well as detection and quantification of post-translational protein modifications including phosphorylation. Here, we discuss these methodologies and show how they can be applied to understand the effects of the peptide hormone vasopressin to regulate the molecular water channel aquaporin-2. The emerging picture provides a detailed framework for understanding the molecular mechanisms involved in water balance disorders.
Collapse
Affiliation(s)
- Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Euijung Park
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
- Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Venneri M, Vezzi V, Di Mise A, Ranieri M, Centrone M, Tamma G, Nejsum LN, Valenti G. Novel signalling pathways in nephrogenic syndrome of inappropriate antidiuresis: functional implication of site-specific AQP2 phosphorylation. J Physiol 2024; 602:3169-3189. [PMID: 36823952 DOI: 10.1113/jp284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked disease caused by gain-of-function mutations of arginine vasopressin receptor 2 (V2R). Patients with NSIAD are characterized by the inability to excrete a free water load and by inappropriately increased urinary osmolality despite very low levels of plasma vasopressin, resulting in euvolaemic hyponatraemia. To dissect the signalling downstream V2R constitutively active variants, Flp-In T-REx Madin-Darby canine kidney (FTM) cells, stably transfected with V2R mutants (R137L, R137C and F229V) and AQP2-wt or non-phosphorylatable AQP2-S269A/AQP2-S256A, were used as cellular models. All three activating V2R mutations presented constitutive plasma membrane expression of AQP2-wt and significantly higher basal water permeability. In addition, V2R-R137L/C showed significantly higher activity of Rho-associated kinase (ROCK), a serine/threonine kinase previously suggested to be involved in S269-AQP2 phosphorylation downstream of these V2R mutants. Interestingly, FTM cells expressing V2R-R137L/C mutants and AQP2-S269A showed a significant reduction in AQP2 membrane abundance and a significant reduction in ROCK activity, indicating the crucial importance of S269-AQP2 phosphorylation in the gain-of-function phenotype. Conversely, V2R-R137L/C mutants retained the gain-of-function phenotype when AQP2-S256A was co-expressed. In contrast, cells expressing the F229V mutant and the non-phosphorylatable AQP2-S256A had a significant reduction in AQP2 membrane abundance along with a significant reduction in basal osmotic water permeability, indicating a crucial role of Ser256 for this mutant. These data indicate that the constitutive AQP2 trafficking associated with the gain-of-function V2R-R137L/C mutants causing NSIAD is protein kinase A independent and requires an intact Ser269 in AQP2 under the control of ROCK phosphorylation. KEY POINTS: Nephrogenic syndrome of inappropriate antidiuresis is caused by two constitutively active variant phenotypes of AVPR2, one sensitive to vaptans (V2R-F229V) and the other vaptan resistant (V2R-R137C/L). In renal cells, all three activating arginine vasopressin receptor 2 (V2R) variants display constitutive AQP2 plasma membrane expression and high basal water permeability. In cells expressing V2R-R137L/C mutants, disruption of the AQP2-S269 phosphorylation site caused the loss of the gain-of-function phenotype, which, in contrast, was retained in V2R-F229V-expressing cells. Cells expressing the V2R-F229V mutant were instead sensitive to disruption of the AQP2-S256 phosphorylation site. The serine/threonine kinase Rho-associated kinase (ROCK) was found to be involved in AQP2-S269 phosphorylation downstream of the V2R-R137L/C mutants. These findings might have clinical relevance for patients with nephrogenic syndrome of inappropriate antidiuresis.
Collapse
Affiliation(s)
- Maria Venneri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Vanessa Vezzi
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Giovanna Valenti
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Ando F, Hara Y, Uchida S. Identification of protein kinase A signalling molecules in renal collecting ducts. J Physiol 2024; 602:3057-3067. [PMID: 37013848 DOI: 10.1113/jp284178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Body water homeostasis is maintained by the correct balance between water intake and water loss through urine, faeces, sweat and breath. It is known that elevated circulating levels of the antidiuretic hormone vasopressin decrease urine volume to prevent excessive water loss from the body. Vasopressin/cAMP/protein kinase A (PKA) signalling is the canonical pathway in renal collecting ducts for phosphorylating aquaporin-2 (AQP2) water channels, which leads to the reabsorption of water from urine via AQP2. Although recent omics data have verified various downstream targets of PKA, crucial regulators that mediate PKA-induced AQP2 phosphorylation remain unknown, mainly because vasopressin is usually used to activate PKA as a positive control. Vasopressin is extremely potent and phosphorylates various PKA substrates non-specifically, making it difficult to narrow down the candidate mediators responsible for AQP2 phosphorylation. The intracellular localization of PKA is tightly regulated by its scaffold proteins, also known as A-kinase anchoring proteins (AKAPs). Furthermore, each AKAP has a target domain that determines its intracellular localization, enabling the creation of a local PKA signalling network. Although vasopressin activates most PKAs independently of their intracellular localization, some chemical compounds preferentially act on PKAs localized on AQP2-containing vesicles while simultaneously phosphorylating AQP2 and its surrounding PKA substrates. Immunoprecipitation with antibodies against phosphorylated PKA substrates followed by mass spectrometry analysis revealed that the PKA substrate in proximity to AQP2 was lipopolysaccharide-responsive and beige-like anchor (LRBA). Furthermore, Lrba knockout studies revealed that LRBA was required for vasopressin-induced AQP2 phosphorylation.
Collapse
Affiliation(s)
- Fumiaki Ando
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Kharin A, Klussmann E. Many kinases for controlling the water channel aquaporin-2. J Physiol 2024; 602:3025-3039. [PMID: 37440212 DOI: 10.1113/jp284100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
Aquaporin-2 (AQP2) is a member of the aquaporin water channel family. In the kidney, AQP2 is expressed in collecting duct principal cells where it facilitates water reabsorption in response to antidiuretic hormone (arginine vasopressin, AVP). AVP induces the redistribution of AQP2 from intracellular vesicles and its incorporation into the plasma membrane. The plasma membrane insertion of AQP2 represents the crucial step in AVP-mediated water reabsorption. Dysregulation of the system preventing the AQP2 plasma membrane insertion causes diabetes insipidus (DI), a disease characterised by an impaired urine concentrating ability and polydipsia. There is no satisfactory treatment of DI available. This review discusses kinases that control the localisation of AQP2 and points out potential kinase-directed targets for the treatment of DI.
Collapse
Affiliation(s)
- Andrii Kharin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
6
|
Murali SK, McCormick JA, Fenton RA. Regulation of the water channel aquaporin-2 by cullin E3 ubiquitin ligases. Am J Physiol Renal Physiol 2024; 326:F814-F826. [PMID: 38545647 PMCID: PMC11381000 DOI: 10.1152/ajprenal.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.
Collapse
Affiliation(s)
- Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - James A McCormick
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Judd E, Kumar V, Porrett PM, Hyndman KA, Anderson DJ, Jones-Carr ME, Shunk A, Epstein DR, Fatima H, Katsurada A, Satou R, Navar LG, Locke JE. Physiologic homeostasis after pig-to-human kidney xenotransplantation. Kidney Int 2024; 105:971-979. [PMID: 38290599 PMCID: PMC11457287 DOI: 10.1016/j.kint.2024.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Demand for kidney grafts outpaces supply, limiting kidney transplantation as a treatment for kidney failure. Xenotransplantation has the potential to make kidney transplantation available to many more patients with kidney failure, but the ability of xenografts to support human physiologic homeostasis has not been established. A brain-dead adult decedent underwent bilateral native nephrectomies followed by 10 gene-edited (four gene knockouts, six human transgenes) pig-to-human xenotransplantation. Physiologic parameters and laboratory values were measured for seven days in a critical care setting. Data collection aimed to assess homeostasis by measuring components of the renin-angiotensin-aldosterone system, parathyroid hormone signaling, glomerular filtration rate, and markers of salt and water balance. Mean arterial blood pressure was maintained above 60 mmHg throughout. Pig kidneys secreted renin (post-operative day three to seven mean and standard deviation: 47.3 ± 9 pg/mL). Aldosterone and angiotensin II levels were present (post-operative day three to seven, 57.0 ± 8 pg/mL and 5.4 ± 4.3 pg/mL, respectively) despite plasma renin activity under 0.6 ng/mL/hr. Parathyroid hormone levels followed ionized calcium. Urine output down trended from 37 L to 6 L per day with 4.5 L of electrolyte free water loss on post-operative day six. Aquaporin 2 channels were detected in the apical surface of principal cells, supporting pig kidney response to human vasopressin. Serum creatinine down trended to 0.9 mg/dL by day seven. Glomerular filtration rate ranged 90-240 mL/min by creatinine clearance and single-dose inulin clearance. Thus, in a human decedent model, xenotransplantation of 10 gene-edited pig kidneys provided physiologic balance for seven days. Hence, our in-human study paves the way for future clinical study of pig-to-human kidney xenotransplantation in living persons.
Collapse
Affiliation(s)
- Eric Judd
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Vineeta Kumar
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Paige M Porrett
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Kelly A Hyndman
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Douglas J Anderson
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Maggie E Jones-Carr
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | | | - Daniel R Epstein
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Huma Fatima
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Akemi Katsurada
- Department of Physiology and Hypertension and Renal Center, Tulane University, New Orleans, Louisianna, USA
| | - Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center, Tulane University, New Orleans, Louisianna, USA
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center, Tulane University, New Orleans, Louisianna, USA
| | - Jayme E Locke
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA.
| |
Collapse
|
8
|
Empitu MA, Ramadhan RN, Rampengan DDCH. Modulation of AQP2 localization and water reabsorption. J Physiol 2024; 602:1665-1667. [PMID: 38520369 DOI: 10.1113/jp286393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Affiliation(s)
- Maulana A Empitu
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Airlangga University, East Java, Indonesia
| | - Roy N Ramadhan
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
9
|
Login FH, Dam VS, Nejsum LN. Following the cellular itinerary of renal aquaporin-2 shuttling with 4.5x expansion microscopy. Am J Physiol Cell Physiol 2024; 326:C194-C205. [PMID: 38047301 DOI: 10.1152/ajpcell.00397.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The shuttling of renal collecting duct aquaporin-2 (AQP2) between intracellular vesicles and the apical plasma membrane is paramount for regulation of renal water reabsorption. The binding of the circulating antidiuretic hormone arginine vasopressin (AVP) to the basolateral AVP receptor increases intracellular cAMP, which ultimately leads to AQP2 plasma membrane accumulation via a dual effect on AQP2 vesicle fusion with the apical plasma membrane and reduced AQP2 endocytosis. This AQP2 plasma membrane accumulation increases water reabsorption and consequently urine concentration. Conventional fluorescent microscopy provides a lateral resolution of ∼250 nm, which is insufficient to resolve the AQP2-containing endosomes/vesicles. Therefore, detailed information regarding the AQP2 vesicular population is still lacking. Newly established 4.5x Expansion Microscopy (ExM) can increase resolution to 60-70 nm. Using 4.5x ExM, we detected AQP2 vesicles/endosomes as small as 79 nm considering an average expansion factor of 4.3 for endosomes. Using different markers of the endosomal system provided detailed information of the cellular AQP2 itinerary upon changes in endogenous cAMP levels. Before cAMP elevation, AQP2 colocalized with early and recycling, but not late endosomes. Forskolin-induced cAMP increase was characterized by AQP2 insertion into the plasma membrane and AQP2 withdrawal from large perinuclear endosomes as well as some localization to lysosomal compartments. Forskolin washout promoted AQP2 endocytosis where AQP2 localized to not only early and recycling endosomes but also late endosomes and lysosomes indicating increased AQP2 degradation. Thus, our results show that 4.5 ExM is an attractive approach to obtain detailed information regarding AQP2 shuttling.NEW & NOTEWORTHY Renal aquaporin-2 (AQP2) imaged by expansion microscopy provides unprecedented 3-D information regarding the AQP2 itinerary in response to changes in cellular cAMP.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Khan S, Raghuram V, Chen L, Chou CL, Yang CR, Khundmiri SJ, Knepper MA. Vasopressin V2 receptor, tolvaptan, and ERK1/2 phosphorylation in the renal collecting duct. Am J Physiol Renal Physiol 2024; 326:F57-F68. [PMID: 37916285 PMCID: PMC10812694 DOI: 10.1152/ajprenal.00124.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
Tolvaptan, a vasopressin antagonist selective for the V2-subtype vasopressin receptor (V2R), is widely used in the treatment of hyponatremia and autosomal-dominant polycystic kidney disease (ADPKD). Its effects on signaling in collecting duct cells have not been fully characterized. Here, we perform RNA-seq in a collecting duct cell line (mpkCCD). The data show that tolvaptan inhibits the expression of mRNAs that were previously shown to be increased in response to vasopressin including aquaporin-2, but also reveals mRNA changes that were not readily predictable and suggest off-target actions of tolvaptan. One such action is activation of the MAPK kinase (ERK1/ERK2) pathway. Prior studies have shown that ERK1/ERK2 activation is essential in the regulation of a variety of cellular and physiological processes and can be associated with cell proliferation. In immunoblotting experiments, we demonstrated that ERK1/ERK2 phosphorylation in mpkCCD cells was significantly reduced by vasopressin, in contrast to the increases seen in non-collecting-duct cells overexpressing V2R in prior studies. We also found that tolvaptan has a strong effect to increase ERK1/ERK2 phosphorylation in the presence of vasopressin and that tolvaptan's effect to increase ERK1/ERK2 phosphorylation is absent in mpkCCD cells in which both protein kinase A (PKA)-catalytic subunits have been deleted. Thus, it appears that the tolvaptan effect to increase ERK activation is PKA-dependent and is not due to an off-target effect of tolvaptan. We conclude that in cells expressing V2R at endogenous levels: 1) vasopressin decreases ERK1/ERK2 activation; 2) in the presence of vasopressin, tolvaptan increases ERK1/ERK2 activation; and 3) these effects are PKA-dependent.NEW & NOTEWORTHY Vasopressin is a key hormone that regulates the function of the collecting duct of the kidney. ERK1 and ERK2 are enzymes that play key roles in physiological regulation in all cells. The authors used collecting duct cell cultures to investigate the effects of vasopressin and the vasopressin receptor antagonist tolvaptan on ERK1 and ERK2 phosphorylation and activation.
Collapse
Affiliation(s)
- Shaza Khan
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, United States
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
11
|
Yanagawa H, Hara Y, Ando F, Suzuki S, Fujiki T, Oikawa D, Yui N, Mandai S, Mori Y, Susa K, Mori T, Sohara E, Tokunaga F, Uchida S. LRBA signalosomes activate vasopressin-induced AQP2 trafficking at recycling endosomes. J Physiol 2023; 601:5437-5451. [PMID: 37860942 DOI: 10.1113/jp285188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.
Collapse
Affiliation(s)
- Hideki Yanagawa
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Soichiro Suzuki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Tamami Fujiki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naofumi Yui
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
| |
Collapse
|
12
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
13
|
Erdélyi LS, Hunyady L, Balla A. V2 vasopressin receptor mutations: future personalized therapy based on individual molecular biology. Front Endocrinol (Lausanne) 2023; 14:1173601. [PMID: 37293495 PMCID: PMC10244717 DOI: 10.3389/fendo.2023.1173601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
The diluting and concentrating function of the kidney plays a crucial role in regulating the water homeostasis of the body. This function is regulated by the antidiuretic hormone, arginine vasopressin through the type 2 vasopressin receptor (V2R), allowing the body to adapt to periods of water load or water restriction. Loss-of-function mutations of the V2R cause X-linked nephrogenic diabetes insipidus (XNDI), which is characterized by polyuria, polydipsia, and hyposthenuria. Gain-of-function mutations of the V2R lead to nephrogenic syndrome of inappropriate antidiuresis disease (NSIAD), which results in hyponatremia. Various mechanisms may be responsible for the impaired receptor functions, and this review provides an overview of recent findings about the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- László Sándor Erdélyi
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
14
|
Cheung PW, Boukenna M, Babicz RSE, Mitra S, Kay A, Paunescu TC, Baylor N, Liu CCS, Nair AV, Bouley R, Brown D. Intracellular sites of AQP2 S256 phosphorylation identified using inhibitors of the AQP2 recycling itinerary. Am J Physiol Renal Physiol 2023; 324:F152-F167. [PMID: 36454701 PMCID: PMC9844975 DOI: 10.1152/ajprenal.00123.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Vasopressin (VP)-regulated aquaporin-2 (AQP2) trafficking between cytoplasmic vesicles and the plasma membrane of kidney principal cells is essential for water homeostasis. VP affects AQP2 phosphorylation at several serine residues in the COOH-terminus; among them, serine 256 (S256) appears to be a major regulator of AQP2 trafficking. Mutation of this serine to aspartic acid, which mimics phosphorylation, induces constitutive membrane expression of AQP2. However, the intracellular location(s) at which S256 phosphorylation occurs remains elusive. Here, we used strategies to block AQP2 trafficking at different cellular locations in LLC-PK1 cells and monitored VP-stimulated phosphorylation of S256 at these sites by immunofluorescence and Western blot analysis with phospho-specific antibodies. Using methyl-β-cyclodextrin, cold block or bafilomycin, and taxol, we blocked AQP2 at the plasma membrane, in the perinuclear trans-Golgi network, and in scattered cytoplasmic vesicles, respectively. Regardless of its cellular location, VP induced a significant increase in S256 phosphorylation, and this effect was not dependent on a functional microtubule cytoskeleton. To further investigate whether protein kinase A (PKA) was responsible for S256 phosphorylation in these cellular compartments, we created PKA-null cells and blocked AQP2 trafficking using the same procedures. We found that S256 phosphorylation was no longer increased compared with baseline, regardless of AQP2 localization. Taken together, our data indicate that AQP2 S256 phosphorylation can occur at the plasma membrane, in the trans-Golgi network, or in cytoplasmic vesicles and that this event is dependent on the expression of PKA in these cells.NEW & NOTEWORTHY Phosphorylation of aquaporin-2 by PKA at serine 256 (S256) occurs in various subcellular locations during its recycling itinerary, suggesting that the protein complex necessary for AQP2 S256 phosphorylation is present in these different recycling stations. Furthermore, we showed, using PKA-null cells, that PKA activity is required for vasopressin-induced AQP2 phosphorylation. Our data reveal a complex spatial pattern of intracellular AQP2 phosphorylation at S256, shedding new light on the role of phosphorylation in AQP2 membrane accumulation.
Collapse
Affiliation(s)
- Pui W Cheung
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mey Boukenna
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard S E Babicz
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shimontini Mitra
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna Kay
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Theodor C Paunescu
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chen-Chung Steven Liu
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Park E, Yang CR, Raghuram V, Deshpande V, Datta A, Poll BG, Leo KT, Kikuchi H, Chen L, Chou CL, Knepper MA. Data resource: vasopressin-regulated protein phosphorylation sites in the collecting duct. Am J Physiol Renal Physiol 2023; 324:F43-F55. [PMID: 36264882 PMCID: PMC9762968 DOI: 10.1152/ajprenal.00229.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Vasopressin controls renal water excretion through actions to regulate aquaporin-2 (AQP2) trafficking, transcription, and degradation. These actions are in part dependent on vasopressin-induced phosphorylation changes in collecting duct cells. Although most efforts have focused on the phosphorylation of AQP2 itself, phosphoproteomic studies have identified many vasopressin-regulated phosphorylation sites in proteins other than AQP2. The goal of this bioinformatics-based review is to create a compendium of vasopressin-regulated phosphorylation sites with a focus on those that are seen in both native rat inner medullary collecting ducts and cultured collecting duct cells from the mouse (mpkCCD), arguing that these sites are the best candidates for roles in AQP2 regulation. This analysis identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. We provide resource web pages at https://esbl.nhlbi.nih.gov/Databases/AVP-Phos/ and https://esbl.nhlbi.nih.gov/AVP-Network/, listing the phosphorylation sites and describing annotated functions of each of the vasopressin-targeted phosphoproteins. Among these sites are 23 consensus protein kinase A (PKA) sites that are increased in response to vasopressin, consistent with a central role for PKA in vasopressin signaling. The remaining sites are predicted to be phosphorylated by other kinases, most notably ERK1/2, which accounts for decreased phosphorylation at sites with a X-p(S/T)-P-X motif. Additional protein kinases that undergo vasopressin-induced changes in phosphorylation are Camkk2, Cdk18, Erbb3, Mink1, and Src, which also may be activated directly or indirectly by PKA. The regulated phosphoproteins are mapped to processes that hypothetically can account for vasopressin-mediated control of AQP2 trafficking, cytoskeletal alterations, and Aqp2 gene expression, providing grist for future studies.NEW & NOTEWORTHY Vasopressin regulates renal water excretion through control of the aquaporin-2 water channel in collecting duct cells. Studies of vasopressin-induced protein phosphorylation have focused mainly on the phosphorylation of aquaporin-2. This study describes 44 phosphoproteins other than aquaporin-2 that undergo vasopressin-mediated phosphorylation changes and summarizes potential physiological roles of each.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Venkatesh Deshpande
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Zhao X, Liang B, Li C, Wang W. Expression Regulation and Trafficking of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:39-51. [PMID: 36717485 DOI: 10.1007/978-981-19-7415-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate the bidirectional water flow driven by an osmotic gradient. Either gating or trafficking allows for rapid and specific AQP regulation in a tissue-dependent manner. The regulatory mechanisms of AQP2 are discussed mainly in this chapter, as the mechanisms controlling the regulation and trafficking of AQP2 have been very well studied. The targeting of AQP2 to the apical plasma membrane of collecting duct principal cells is mainly regulated by the action of arginine vasopressin (AVP) on the type 2 AVP receptor (V2R), which cause increased intracellular cAMP or elevated intracellular calcium levels. Activation of these intracellular signaling pathways results in vesicles bearing AQP2 transport, docking and fusion with the apical membrane, which increase density of AQP2 on the membrane. The removal of AQP2 from the membrane requires dynamic cytoskeletal remodeling. AQP2 is degraded through the ubiquitin proteasome pathway and lysosomal proteolysis pathway. Finally, we review updated findings in transcriptional and epigenetic regulation of AQP2.
Collapse
Affiliation(s)
- Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
18
|
Petrillo F, Chernyakov D, Esteva-Font C, Poulsen SB, Edemir B, Fenton RA. Genetic deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus. FASEB J 2022; 36:e22583. [PMID: 36197017 DOI: 10.1096/fj.202200856r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Water homeostasis is tightly regulated by the kidneys via the process of urine concentration. During reduced water intake, the antidiuretic hormone arginine vasopressin (AVP) binds to the vasopressin receptor type II (V2R) in the kidney to enhance countercurrent multiplication and medullary osmolality, and increase water reabsorption via aquaporin-2 (AQP2) water channels. The importance of this AVP, V2R, and AQP2 axis is highlighted by low urine osmolality and polyuria in people with various water balance disorders, including nephrogenic diabetes insipidus (NDI). ELF5 and nuclear factor of activated T cells 5 (NFAT5) are two transcription factors proposed to regulate Aqp2 expression, but their role is poorly defined. Here we generated two novel mouse lines with principal cell (PC)-specific deletion of ELF5 or NFAT5 and phenotyped them in respect to renal water handling. ELF5-deficient mice (ELF5PC-KO ) had a very mild phenotype, with no clear differences in AQP2 abundance, and mild differences in renal water handling and maximal urinary concentrating capacity. In contrast, NFAT5 (NFAT5PC-KO ) mice had significantly higher water intake and their 24 h urine volume was almost 10-fold greater than controls. After challenging with dDAVP or 8 h water restriction, NFAT5PC-KO mice were unable to concentrate their urine, demonstrating that they suffer from NDI. The abundance of AQP2, other AQPs, and the urea transporter UT-A1 were greatly decreased in NFAT5PC-KO mice. In conclusion, NFAT5 is a major regulator of not only Aqp2 gene transcription, but also other genes important for water homeostasis and its absence leads to the development of NDI.
Collapse
Affiliation(s)
| | - Dmitry Chernyakov
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Institute for Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
20
|
Abstract
Protein kinase A (PKA) directly phosphorylates aquaporin-2 (AQP2) water channels in renal collecting ducts to reabsorb water from urine for the maintenance of systemic water homeostasis. More than 50 functionally distinct PKA-anchoring proteins (AKAPs) respectively create compartmentalized PKA signaling to determine the substrate specificity of PKA. Identification of an AKAP responsible for AQP2 phosphorylation is an essential step toward elucidating the molecular mechanisms of urinary concentration. PKA activation by several compounds is a novel screening strategy to uncover PKA substrates whose phosphorylation levels were nearly perfectly correlated with that of AQP2. The leading candidate in this assay proved to be an AKAP termed lipopolysaccharide-responsive and beige-like anchor protein (LRBA). We found that LRBA colocalized with AQP2 in vivo, and Lrba knockout mice displayed a polyuric phenotype with severely impaired AQP2 phosphorylation. Most of the PKA substrates other than AQP2 were adequately phosphorylated by PKA in the absence of LRBA, demonstrating that LRBA-anchored PKA preferentially phosphorylated AQP2 in renal collecting ducts. Furthermore, the LRBA-PKA interaction, rather than other AKAP-PKA interactions, was robustly dissociated by PKA activation. AKAP-PKA interaction inhibitors have attracted attention for their ability to directly phosphorylate AQP2. Therefore, the LRBA-PKA interaction is a promising drug target for the development of anti-aquaretics.
Collapse
|
21
|
Verzicco I, Tedeschi S, Graiani G, Bongrani A, Carnevali ML, Dancelli S, Zappa J, Mattei S, Bovino A, Cavazzini S, Rocco R, Calvi A, Palladini B, Volpi R, Cannone V, Coghi P, Borghetti A, Cabassi A. Evidence for a Prehypertensive Water Dysregulation Affecting the Development of Hypertension: Results of Very Early Treatment of Vasopressin V1 and V2 Antagonism in Spontaneously Hypertensive Rats. Front Cardiovasc Med 2022; 9:897244. [PMID: 35722114 PMCID: PMC9198251 DOI: 10.3389/fcvm.2022.897244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to long-term regulation of blood pressure (BP), in the kidney resides the initial trigger for hypertension development due to an altered capacity to excrete sodium and water. Betaine is one of the major organic osmolytes, and its betaine/gamma-aminobutyric acid transporter (BGT-1) expression in the renal medulla relates to interstitial tonicity and urinary osmolality and volume. This study investigated altered water and sodium balance as well as changes in antidiuretic hormone (ADH) activity in female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats from their 3–5 weeks of age (prehypertensive phase) to SHR’s 28–30 weeks of age (established hypertension-organ damage). Young prehypertensive SHRs showed a reduced daily urine output, an elevated urine osmolarity, and higher immunostaining of tubule BGT-1, alpha-1-Na-K ATPase in the outer medulla vs. age-matched WKY. ADH circulating levels were not different between young prehypertensive SHR and WKY, but the urine aquaporin2 (AQP2)/creatinine ratio and labeling of AQP2 in the collecting duct were increased. At 28–30 weeks, hypertensive SHR with moderate renal failure did not show any difference in urinary osmolarity, urine AQP2/creatinine ratio, tubule BGT-1, and alpha-1-Na-K ATPase as compared with WKY. These results suggest an increased sensitivity to ADH in prehypertensive female SHR. On this basis, a second series of experiments were set to study the role of ADH V1 and V2 receptors in the development of hypertension, and a group of female prehypertensive SHRs were treated from the 25th to 49th day of age with either V1 (OPC21268) or V2 (OPC 41061) receptor antagonists to evaluate the BP time course. OPC 41061-treated SHRs had a delayed development of hypertension for 5 weeks without effect in OPC 21268-treated SHRs. In prehypertensive female SHR, an increased renal ADH sensitivity is crucial for the development of hypertension by favoring a positive water balance. Early treatment with selective V2 antagonism delays future hypertension development in young SHRs.
Collapse
Affiliation(s)
- Ignazio Verzicco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Stefano Tedeschi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Gallia Graiani
- Histology and Histopathology Unit and Molecular Biology Laboratory, Dental School Parma, University of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Maria Luisa Carnevali
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Simona Dancelli
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Jessica Zappa
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Silvia Mattei
- Nefrologia e Dialisi, Azienda USL – Istituto di Ricerca a Carattere Scientifico IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Achiropita Bovino
- Internal Medicine Unit, Ospedale Fidenza, Azienda USL Parma, Parma, Italy
| | - Stefania Cavazzini
- Laboratory of Industrial Toxicology, DIMEC, University of Parma, Parma, Italy
| | - Rossana Rocco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Anna Calvi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Barbara Palladini
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Riccardo Volpi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Valentina Cannone
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Pietro Coghi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Alberico Borghetti
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Aderville Cabassi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
- *Correspondence: Aderville Cabassi,
| |
Collapse
|
22
|
A multiscale model of the regulation of aquaporin 2 recycling. NPJ Syst Biol Appl 2022; 8:16. [PMID: 35534498 PMCID: PMC9085758 DOI: 10.1038/s41540-022-00223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
Collapse
|
23
|
Chen L, Jung HJ, Datta A, Park E, Poll BG, Kikuchi H, Leo KT, Mehta Y, Lewis S, Khundmiri SJ, Khan S, Chou CL, Raghuram V, Yang CR, Knepper MA. Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annu Rev Pharmacol Toxicol 2022; 62:595-616. [PMID: 34579536 PMCID: PMC10676752 DOI: 10.1146/annurev-pharmtox-052120-011012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systems biology can be defined as the study of a biological process in which all of the relevant components are investigated together in parallel to discover the mechanism. Although the approach is not new, it has come to the forefront as a result of genome sequencing projects completed in the first few years of the current century. It has elements of large-scale data acquisition (chiefly next-generation sequencing-based methods and protein mass spectrometry) and large-scale data analysis (big data integration and Bayesian modeling). Here we discuss these methodologies and show how they can be applied to understand the downstream effects of GPCR signaling, specifically looking at how the neurohypophyseal peptide hormone vasopressin, working through the V2 receptor and PKA activation, regulates the water channel aquaporin-2. The emerging picture provides a detailedframework for understanding the molecular mechanisms involved in water balance disorders, pointing the way to improved treatment of both polyuric disorders and water-retention disorders causing dilutional hyponatremia.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Yenepoya Research Center, Yenepoya, Mangalore 575018, Karnataka, India
| | - Euijung Park
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Yash Mehta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Spencer Lewis
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Syed J Khundmiri
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
24
|
Olesen ETB, Fenton RA. Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat Rev Nephrol 2021; 17:765-781. [PMID: 34211154 DOI: 10.1038/s41581-021-00447-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Targeting the collecting duct water channel aquaporin 2 (AQP2) to the plasma membrane is essential for the maintenance of mammalian water homeostasis. The vasopressin V2 receptor (V2R), which is a GS protein-coupled receptor that increases intracellular cAMP levels, has a major role in this targeting process. Although a rise in cAMP levels and activation of protein kinase A are involved in facilitating the actions of V2R, studies in knockout mice and cell models have suggested that cAMP signalling pathways are not an absolute requirement for V2R-mediated AQP2 trafficking to the plasma membrane. In addition, although AQP2 phosphorylation is a known prerequisite for V2R-mediated plasma membrane targeting, none of the known AQP2 phosphorylation events appears to be rate-limiting in this process, which suggests the involvement of other factors; cytoskeletal remodelling has also been implicated. Notably, several regulatory processes and signalling pathways involved in AQP2 trafficking also have a role in the pathophysiology of autosomal dominant polycystic kidney disease, although the role of AQP2 in cyst progression is unknown. Here, we highlight advances in the field of AQP2 regulation that might be exploited for the treatment of water balance disorders and provide a rationale for targeting these pathways in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Emma T B Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Endocrinology and Nephrology, North Zealand Hospital, Hillerød, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Karaduman T, Özcan Türkmen M, Ozer ES, Ergin B, Saglam B, Erdem Tuncdemir B, Mergen H. Functional analysis of AQP2 mutants found in patients with diabetes insipidus. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Holst MR, Gammelgaard L, Aaron J, Login FH, Rajkumar S, Hahn U, Nejsum LN. Regulated exocytosis: Renal Aquaporin-2 3D Vesicular Network Organization and Association with F-actin. Am J Physiol Cell Physiol 2021; 321:C1060-C1069. [PMID: 34432538 DOI: 10.1152/ajpcell.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse physiological processes; including hormone regulated short-term urine concentration. In the renal collecting duct, the water channel aquaporin-2 localizes to the apical plasma membrane as well as small, sub-apical vesicles. In response to stimulation with the antidiuretic hormone, arginine vasopressin, aquaporin-2 containing vesicles fuse with the plasma membrane, which increases collecting duct water reabsorption and thus, urine concentration. The nano-scale size of these vesicles has limited analysis of their 3D organization. Using a cell system combined with 3D super resolution microscopy, we provide the first direct analysis of the 3D network of aquaporin-2 containing exocytic vesicles in a cell culture system. We show that aquaporin-2 vesicles are 43 ± 3nm in diameter, a size similar to synaptic vesicles, and that one fraction of AQP2 vesicles localized with the sub-cortical F-actin layer and the other localized in between the F-actin layer and the plasma membrane. Aquaporin-2 vesicles associated with F-actin and this association was enhanced in a serine 256 phospho-mimic of aquaporin-2, whose phosphorylation is a key event in antidiuretic hormone-mediated aquaporin-2 vesicle exocytosis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Louis Gammelgaard
- Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Aarhus, Denmark
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Ashburn, VA, United States
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sampavi Rajkumar
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ute Hahn
- Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Liu CCS, Cheung PW, Dinesh A, Baylor N, Paunescu TC, Nair AV, Bouley R, Brown D. Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway. Am J Physiol Renal Physiol 2021; 321:F179-F194. [PMID: 34180716 PMCID: PMC8424666 DOI: 10.1152/ajprenal.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.
Collapse
Affiliation(s)
- Chen-Chung Steven Liu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pui Wen Cheung
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anupama Dinesh
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodor C. Paunescu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V. Nair
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Petrillo F, Iervolino A, Angrisano T, Jelen S, Costanzo V, D’Acierno M, Cheng L, Wu Q, Guerriero I, Mazzarella MC, De Falco A, D’Angelo F, Ceccarelli M, Caraglia M, Capasso G, Fenton RA, Trepiccione F. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2021; 32:1339-1354. [PMID: 33727367 PMCID: PMC8259636 DOI: 10.1681/asn.2020010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/02/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. METHODS Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre+ mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. RESULTS The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre+ mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre+ mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre+ mice, resulting in decreased RNA Pol II association. CONCLUSIONS Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression.
Collapse
Affiliation(s)
- Federica Petrillo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anna Iervolino
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabina Jelen
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilaria Guerriero
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Alfonso De Falco
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Fulvio D’Angelo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Michele Ceccarelli
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Electrical Engineering and Information Technology (DIETI) University of Naples “Federico II”, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovambattista Capasso
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesco Trepiccione
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
29
|
Login FH, Palmfeldt J, Cheah JS, Yamada S, Nejsum LN. Aquaporin-5 regulation of cell-cell adhesion proteins: an elusive "tail" story. Am J Physiol Cell Physiol 2020; 320:C282-C292. [PMID: 33175575 DOI: 10.1152/ajpcell.00496.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are water channels that facilitate transport of water across cellular membranes. AQPs are overexpressed in several cancers. Especially in breast cancer, AQP5 overexpression correlates with spread to lymph nodes and poor prognosis. Previously, we showed that AQP5 expression reduced cell-cell adhesion by reducing levels of adherens and tight-junction proteins (e.g., ZO-1, plakoglobin, and β-catenin) at the actual junctions. Here, we show that, when targeted to the plasma membrane, the AQP5 COOH-terminal tail domain regulated junctional proteins and, moreover, that AQP5 interacted with ZO-1, plakoglobin, β-catenin, and desmoglein-2, which were all reduced at junctions upon AQP5 overexpression. Thus, our data suggest that AQP5 mediates the effect on cell-cell adhesion via interactions with junctional proteins independently of AQP5-mediated water transport. AQP5 overexpression in cancers may thus contribute to carcinogenesis and cancer spread by two independent mechanisms: reduced cell-cell adhesion, a characteristic of epithelial-mesenchymal transition, and increased cell migration capacity via water transport.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, California
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, California
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Wong KY, Wang WL, Su SH, Liu CF, Yu MJ. Intracellular location of aquaporin-2 serine 269 phosphorylation and dephosphorylation in kidney collecting duct cells. Am J Physiol Renal Physiol 2020; 319:F592-F602. [PMID: 32799672 DOI: 10.1152/ajprenal.00205.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for water reabsorption by the kidney collecting ducts. Under control conditions, most AQP2 resides in the recycling endosomes of principal cells, where it answers to vasopressin with trafficking to the apical plasma membrane to increase water reabsorption. Upon vasopressin withdrawal, apical AQP2 retreats to the early endosomes before joining the recycling endosomes for the next vasopressin stimulation. Prior studies have demonstrated a role of AQP2 S269 phosphorylation in reducing AQP2 endocytosis, thereby prolonging apical AQP2 retention. Here, we studied where in the cells S269 was phosphorylated and dephosphorylated in response to vasopressin versus withdrawal. In mpkCCD collecting cells, vacuolar protein sorting 35 knockdown slowed vasopressin-induced apical AQP2 trafficking, resulting in AQP2 accumulation in the recycling endosomes where S269 was phosphorylated. Rab7 knockdown, which impaired AQP2 trafficking from the early to recycling endosomes, reduced vasopressin-induced S269 phosphorylation. Rab5 knockdown, which impaired AQP2 endocytosis, did not affect vasopressin-induced S269 phosphorylation. Upon vasopressin withdrawal, S269 was not dephosphorylated in Rab5 knockdown cells. In contrast, S269 dephosphorylation upon vasopressin withdrawal was completed in Rab7 or vacuolar protein sorting 35 knockdown cells. We conclude that S269 is dephosphorylated during Rab5-mediated AQP2 endocytosis before AQP2 joins the recycling endosomes upon vasopressin withdrawal. While in the recycling endosomes, AQP2 can be phosphorylated at S269 in response to vasopressin before apical trafficking.
Collapse
Affiliation(s)
- Kit Yee Wong
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Ling Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Han Su
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Fu Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Qiu J, McGaughey SA, Groszmann M, Tyerman SD, Byrt CS. Phosphorylation influences water and ion channel function of AtPIP2;1. PLANT, CELL & ENVIRONMENT 2020; 43:2428-2442. [PMID: 32678928 DOI: 10.1111/pce.13851] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
The phosphorylation state of two serine residues within the C-terminal domain of AtPIP2;1 (S280, S283) regulates its plasma membrane localization in response to salt and osmotic stress. Here, we investigated whether the phosphorylation state of S280 and S283 also influence AtPIP2;1 facilitated water and cation transport. A series of single and double S280 and S283 phosphomimic and phosphonull AtPIP2;1 mutants were tested in heterologous systems. In Xenopus laevis oocytes, phosphomimic mutants AtPIP2;1 S280D, S283D, and S280D/S283D had significantly greater ion conductance for Na+ and K+ , whereas the S280A single phosphonull mutant had greater water permeability. We observed a phosphorylation-dependent inverse relationship between AtPIP2;1 water and ion transport with a 10-fold change in both. The results revealed that phosphorylation of S280 and S283 influences the preferential facilitation of ion or water transport by AtPIP2;1. The results also hint that other regulatory sites play roles that are yet to be elucidated. Expression of the AtPIP2;1 phosphorylation mutants in Saccharomyces cerevisiae confirmed that phosphorylation influences plasma membrane localization, and revealed higher Na+ accumulation for S280A and S283D mutants. Collectively, the results show that phosphorylation in the C-terminal domain of AtPIP2;1 influences its subcellular localization and cation transport capacity.
Collapse
Affiliation(s)
- Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Samantha A McGaughey
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Michael Groszmann
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
32
|
AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions. Cells 2020; 9:cells9102172. [PMID: 32993088 PMCID: PMC7599609 DOI: 10.3390/cells9102172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
, the molecular defects in the AVPR2 and AQP2 mutants, post-translational modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and degradation of AQP2.
Collapse
|
33
|
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008458. [PMID: 32644992 PMCID: PMC7413563 DOI: 10.1371/journal.pntd.0008458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.
Collapse
Affiliation(s)
- Juan F. Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Juan Bueren-Calabuig
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Harry P. de Koning
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
34
|
Fenton RA, Murali SK, Moeller HB. Advances in aquaporin-2 trafficking mechanisms and their implications for treatment of water balance disorders. Am J Physiol Cell Physiol 2020; 319:C1-C10. [PMID: 32432927 DOI: 10.1152/ajpcell.00150.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, conservation of body water is critical for survival and is dependent on the kidneys' ability to minimize water loss in the urine during periods of water deprivation. The collecting duct water channel aquaporin-2 (AQP2) plays an essential role in this homeostatic response by facilitating water reabsorption along osmotic gradients. The ability to increase the levels of AQP2 in the apical plasma membrane following an increase in plasma osmolality is a rate-limiting step in water reabsorption, a process that is tightly regulated by the antidiuretic hormone arginine vasopressin (AVP). In this review, the focus is on the role of the carboxyl-terminus of AQP2 as a key regulatory point for AQP2 trafficking. We provide an overview of AQP2 structure, disease-causing mutations in the AQP2 carboxyl-terminus, the role of posttranslational modifications such as phosphorylation and ubiquitylation in the tail domain, and their implications for balanced trafficking of AQP2. Finally, we discuss how various modifications of the AQP2 tail facilitate selective protein-protein interactions that modulate the AQP2 trafficking mechanism.
Collapse
Affiliation(s)
- Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Laszczyk AM, Higashi AY, Patel SR, Johnson CN, Soofi A, Abraham S, Dressler GR. Pax2 and Pax8 Proteins Regulate Urea Transporters and Aquaporins to Control Urine Concentration in the Adult Kidney. J Am Soc Nephrol 2020; 31:1212-1225. [PMID: 32381599 PMCID: PMC7269349 DOI: 10.1681/asn.2019090962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues. The collecting tubules and renal medulla are derived from Pax2-positive ureteric bud epithelia that continue to express Pax2 and Pax8 in adult kidneys. Despite the crucial role of Pax2 in renal development, functions for Pax2 or Pax8 in adult renal epithelia have not been established. METHODS To examine the roles of Pax2 and Pax8 in the adult mouse kidney, we deleted either Pax2, Pax8, or both genes in adult mice and examined the resulting phenotypes and changes in gene expression patterns. We also explored the mechanism of Pax8-mediated activation of potential target genes in inner medullary collecting duct cells. RESULTS Mice with induced deletions of both Pax2 and Pax8 exhibit severe polyuria that can be attributed to significant changes in the expression of solute carriers, such as the urea transporters encoded by Slc14a2, as well as aquaporins within the inner and outer medulla. Furthermore, Pax8 expression is induced by high-salt levels in collecting duct cells and activates the Slc14a2 gene by recruiting a histone methyltransferase complex to the promoter. CONCLUSIONS These data reveal novel functions for Pax proteins in adult renal epithelia that are essential for retaining water and concentrating urine.
Collapse
Affiliation(s)
- Ann M Laszczyk
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Atsuko Y Higashi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Saji Abraham
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
36
|
Ranieri M, Venneri M, Pellegrino T, Centrone M, Di Mise A, Cotecchia S, Tamma G, Valenti G. The Vasopressin Receptor 2 Mutant R137L Linked to the Nephrogenic Syndrome of Inappropriate Antidiuresis (NSIAD) Signals through an Alternative Pathway that Increases AQP2 Membrane Targeting Independently of S256 Phosphorylation. Cells 2020; 9:cells9061354. [PMID: 32486031 PMCID: PMC7349359 DOI: 10.3390/cells9061354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
NSIAD is a rare X-linked condition, caused by activating mutations in the AVPR2 gene coding for the vasopressin V2 receptor (V2R) associated with hyponatremia, despite undetectable plasma vasopressin levels. We have recently provided in vitro evidence that, compared to V2R-wt, expression of activating V2R mutations R137L, R137C and F229V cause a constitutive redistribution of the AQP2 water channel to the plasma membrane, higher basal water permeability and significantly higher basal levels of p256-AQP2 in the F229V mutant but not in R137L or R137C. In this study, V2R mutations were expressed in collecting duct principal cells and the associated signalling was dissected. V2R-R137L and R137C mutants had significantly higher basal pT269-AQP2 levels -independently of S256 and PKA-which were reduced to control by treatment with Rho kinase (ROCK) inhibitor. Interestingly, ROCK activity was found significantly higher in V2R-R137L along with activation of the Gα12/13–Rho–ROCK pathway. Of note, inhibition of ROCK reduced the basal elevated osmotic water permeability to control. To conclude, our data demonstrate for the first time that the gain-of-function mutation of the V2R, R137L causing NSIAD, signals through an alternative PKA-independent pathway that increases AQP2 membrane targeting through ROCK-induced phosphorylation at S/T269 independently of S256 of AQP2.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Tommaso Pellegrino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Susanna Cotecchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
- Istituto Nazionale di Biostrutture e Biosistemi, 00136 Roma, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
- Istituto Nazionale di Biostrutture e Biosistemi, 00136 Roma, Italy
- Center of Excellence in Comparative Genomics (CEGBA), University of Bari, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-080-5443444
| |
Collapse
|
37
|
Chen Z, Zhuang J, Yang Q, Yang J, Wang D, Yu L, Chen M. Direct effect of protein kinase A on four putative phosphorylation sites of aquaporin 2 in vitro. Biochem Biophys Res Commun 2020; 525:505-511. [PMID: 32113684 DOI: 10.1016/j.bbrc.2020.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
The water channel aquaporin 2 (AQP2) has four phosphorylation sites at Ser256, Ser261, Ser264, and Ser269 in the C-terminus and these sites are important for AQP2 bioactivity. However, the exact role of each phosphorylation site still remains unclear. In this study, we generated unique AQP2 mutants in which we eliminated three phosphorylation sites but maintained only one site at the C-terminal end. The AQP2 phosphorylation of each single site by protein kinase A (PKA) was examined by in vitro translation and 32P incorporation. The ability of AQP2 trafficking to the cell membrane was evaluated by cell surface biotinylation. Among the four phosphorylation sites, AQP2 mutant with only S256 preserved the most ability of AQP2 to cell membrane expression. The AQP2 water permeability was measured in oocyte. Ser256 is the most important site for AQP2 function. Interestingly, Ser261 and Ser264 significantly inhibit AQP2 activity. Ser269 slightly but not statistically reduced AQP2 activity. Our data suggest that the four phosphorylation sites execute differential roles in concert in AQP2 functional regulation. AQP2 activity regulated by phosphorylation at Ser256 can be counterbalanced by phosphorylation at Ser261 and Ser264.
Collapse
Affiliation(s)
- Zhiyi Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jieqiu Zhuang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qing Yang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianhuan Yang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Dexuan Wang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linfang Yu
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Minguang Chen
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
38
|
Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells. Cells 2020; 9:cells9041057. [PMID: 32340337 PMCID: PMC7226349 DOI: 10.3390/cells9041057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
We previously showed that in polarized Madin-Darby canine kidney (MDCK) cells, aquaporin-2 (AQP2) is continuously targeted to the basolateral plasma membrane from which it is rapidly retrieved by clathrin-mediated endocytosis. It then undertakes microtubule-dependent transcytosis toward the apical plasma membrane. In this study, we found that treatment with chlorpromazine (CPZ, an inhibitor of clathrin-mediated endocytosis) results in AQP2 accumulation in the basolateral, but not the apical plasma membrane of epithelial cells. In MDCK cells, both AQP2 and clathrin were concentrated in the basolateral plasma membrane after CPZ treatment (100 µM for 15 min), and endocytosis was reduced. Then, using rhodamine phalloidin staining, we found that basolateral, but not apical, F-actin was selectively reduced by CPZ treatment. After incubation of rat kidney slices in situ with CPZ (200 µM for 15 min), basolateral AQP2 and clathrin were increased in principal cells, which simultaneously showed a significant decrease of basolateral compared to apical F-actin staining. These results indicate that clathrin-dependent transcytosis of AQP2 is an essential part of its trafficking pathway in renal epithelial cells and that this process can be inhibited by selectively depolymerizing the basolateral actin pool using CPZ.
Collapse
|
39
|
Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP. Cells 2020; 9:cells9030673. [PMID: 32164329 PMCID: PMC7140648 DOI: 10.3390/cells9030673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Arginine-vasopressin (AVP) facilitates water reabsorption in renal collecting duct principal cells through regulation of the water channel aquaporin-2 (AQP2). The hormone binds to vasopressin V2 receptors (V2R) on the surface of the cells and stimulates cAMP synthesis. The cAMP activates protein kinase A (PKA), which initiates signaling that causes an accumulation of AQP2 in the plasma membrane of the cells facilitating water reabsorption from primary urine and fine-tuning of body water homeostasis. AVP-mediated PKA activation also causes an increase in the AQP2 protein abundance through a mechanism that involves dephosphorylation of AQP2 at serine 261 and a decrease in its poly-ubiquitination. However, the signaling downstream of PKA that controls the localization and abundance of AQP2 is incompletely understood. We carried out an siRNA screen targeting 719 kinase-related genes, representing the majority of the kinases of the human genome and analyzed the effect of the knockdown on AQP2 by high-content imaging and biochemical approaches. The screening identified 13 hits whose knockdown inhibited the AQP2 accumulation in the plasma membrane. Amongst the candidates was the so far hardly characterized cyclin-dependent kinase 18 (CDK18). Our further analysis revealed a hitherto unrecognized signalosome comprising CDK18, an E3 ubiquitin ligase, STUB1 (CHIP), PKA and AQP2 that controls the localization and abundance of AQP2. CDK18 controls AQP2 through phosphorylation at serine 261 and STUB1-mediated ubiquitination. STUB1 functions as an A-kinase anchoring protein (AKAP) tethering PKA to the protein complex and bridging AQP2 and CDK18. The modulation of the protein complex may lead to novel concepts for the treatment of disorders which are caused or are associated with dysregulated AQP2 and for which a satisfactory treatment is not available, e.g., hyponatremia, liver cirrhosis, diabetes insipidus, ADPKD or heart failure.
Collapse
|
40
|
Saglar Ozer E, Moeller HB, Karaduman T, Fenton RA, Mergen H. Molecular characterization of an aquaporin-2 mutation causing a severe form of nephrogenic diabetes insipidus. Cell Mol Life Sci 2020; 77:953-962. [PMID: 31302751 PMCID: PMC11104860 DOI: 10.1007/s00018-019-03219-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023]
Abstract
The water channel aquaporin 2 (AQP2) is responsible for water reabsorption by kidney collecting duct cells. A substitution of amino acid leucine 137 to proline in AQP2 (AQP2-L137P) causes Nephrogenic Diabetes Insipidus (NDI). This study aimed to determine the cell biological consequences of this mutation on AQP2 function. Studies were performed in HEK293 and MDCK type I cells, transfected with wildtype (WT) AQP2 or an AQP2-L137P mutant. AQP2-L137P was predominantly detected as a high-mannose form of AQP2, whereas AQP2-WT was observed in both non-glycosylated and complex glycosylated forms. In contrast to AQP2-WT, the AQP2-L137P mutant did not accumulate on the apical plasma membrane following stimulation with forskolin. Ubiquitylation of AQP2-L137P was different from AQP2-WT, with predominance of non-distinct protein bands at various molecular weights. The AQP2-L137P mutant displayed reduced half-life compared to AQP2-WT. Treatment of cells with chloroquine increased abundance of AQP2-WT, but not AQP2-L137P. In contrast, treatment with MG132 increased abundance of AQP2-L137P but not AQP2-WT. Xenopus oocytes injected with AQP2-WT had increased osmotic water permeability when compared to AQP2-L137P, which correlated with lack of the mutant form in the plasma membrane. From the localization of the mutation and nature of the substitution it is likely that AQP2-L137P causes protein misfolding, which may be responsible for the observed functional defects. The data suggest that the L137P mutation results in altered AQP2 protein maturation, increased AQP2 degradation via the proteasomal pathway and limited plasma membrane expression. These combined mechanisms are likely responsible for the phenotype observed in this class of NDI patients.
Collapse
Affiliation(s)
- Emel Saglar Ozer
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
| | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, South, Bldg 1233, 3 Wilhelm Meyers Alle, 8000, Aarhus, Denmark.
| | - Tugce Karaduman
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, South, Bldg 1233, 3 Wilhelm Meyers Alle, 8000, Aarhus, Denmark
| | - Hatice Mergen
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| |
Collapse
|
41
|
Ferré-Dolcet L, Rodríguez-Gil JE, Yeste M, Rigau T, Rivera Del Alamo MM. Tyrosine phosphorylation is not a relevant mechanism to modulate aquaporin 2 activity in gestational queen endometrium and placenta. Reprod Domest Anim 2020; 55:448-453. [PMID: 31951059 DOI: 10.1111/rda.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022]
Abstract
Aquaporins have been shown to be regulated by phosphorylation of serine residues, but the possible role of tyrosine residues phosphorylation has not been evaluated. Changes in the localization of aquaporin 2 (AQP2) in the queen endometrium have been related to serum progesterone levels. The aim of this study was to determine whether these AQP2-localization changes are mediated by variations in its tyrosine phosphorylation levels. Twelve queens were included in the study and divided into (a) non-macroscopically pregnant with low levels of progesterone; (b) non-macroscopically pregnant with high levels of progesterone; (c) 30 days of pregnancy; and (d) 60 days of pregnancy. Samples from endometrium and placental transference zone were obtained, immunoprecipitated and analysed by immunoblotting to determine the abundance of AQP2 and its relative levels of tyrosine phosphorylation. No significant differences in the tyrosine phosphorylation levels of immunoprecipated-AQP2 were observed between groups. We can thus conclude that changes in the localization of AQP2 in the queen endometrium are not modulated by tyrosine phosphorylation.
Collapse
Affiliation(s)
- Lluis Ferré-Dolcet
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Joan Enric Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Teresa Rigau
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria Montserrat Rivera Del Alamo
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
42
|
Isobe K, Raghuram V, Krishnan L, Chou CL, Yang CR, Knepper MA. CRISPR-Cas9/phosphoproteomics identifies multiple noncanonical targets of myosin light chain kinase. Am J Physiol Renal Physiol 2020; 318:F600-F616. [PMID: 31904282 DOI: 10.1152/ajprenal.00431.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prior studies have implicated myosin light chain kinase (MLCK) in the regulation of aquaporin-2 (AQP2) in the renal collecting duct. To discover signaling targets of MLCK, we used CRISPR-Cas9 to delete the MLCK gene (Mylk) to obtain MLCK-null mpkCCD cells and carried out comprehensive phosphoproteomics using stable isotope labeling with amino acids in cell culture for quantification. Immunocytochemistry and electron microscopy demonstrated a defect in the processing of AQP2-containing early endosomes to late endosomes. The phosphoproteomics experiments revealed that, of the 1,743 phosphopeptides quantified over multiple replicates, 107 were changed in abundance by MLCK deletion (29 decreased and 78 increased). One of the decreased phosphopeptides corresponded to the canonical target site in myosin regulatory light chain. Network analysis indicated that targeted phosphoproteins clustered into distinct structural/functional groups: actomyosin, signaling, nuclear envelope, gene transcription, mRNA processing, energy metabolism, intermediate filaments, adherens junctions, and tight junctions. There was significant overlap between the derived MLCK signaling network and a previously determined PKA signaling network. The presence of multiple proteins in the actomyosin category prompted experiments showing that MLCK deletion inhibits the normal effect of vasopressin to depolymerize F-actin, providing a potential explanation for the AQP2 trafficking defect. Changes in phosphorylation of multiple proteins in the nuclear envelope prompted measurement of nuclear size, showing a significant increase in average nuclear volume. We conclude that MLCK is part of a multicomponent signaling pathway in both the cytoplasm and nucleus that includes much more than simple regulation of conventional nonmuscle myosins through myosin regulatory light chain phosphorylation.
Collapse
Affiliation(s)
- Kiyoshi Isobe
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Laya Krishnan
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
43
|
Cheung PW, Bouley R, Brown D. Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit. Annu Rev Pharmacol Toxicol 2020; 60:175-194. [PMID: 31561739 PMCID: PMC7334826 DOI: 10.1146/annurev-pharmtox-010919-023654] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to regulate water movement is vital for the survival of cells and organisms. In addition to passively crossing lipid bilayers by diffusion, water transport is also driven across cell membranes by osmotic gradients through aquaporin water channels. There are 13 aquaporins in human tissues, and of these, aquaporin-2 (AQP2) is the most highly regulated water channel in the kidney: The expression and trafficking of AQP2 respond to body volume status and plasma osmolality via the antidiuretic hormone, vasopressin (VP). Dysfunctional VP signaling in renal epithelial cells contributes to disorders of water balance, and research initially focused on regulating the major cAMP/PKA pathway to normalize urine concentrating ability. With the discovery of novel and more complex signaling networks that regulate AQP2 trafficking, promising therapeutic targets have since been identified. Several strategies based on data from preclinical studies may ultimately translate to the care of patients with defective water homeostasis.
Collapse
Affiliation(s)
- Pui W. Cheung
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
44
|
|
45
|
Wu Q, Aroankins TS, Cheng L, Fenton RA. SUMOylation Landscape of Renal Cortical Collecting Duct Cells. J Proteome Res 2019; 18:3640-3648. [PMID: 31502464 DOI: 10.1021/acs.jproteome.9b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO) is a mechanism that allows a diverse response of cells to stress. Five SUMO family members, SUMO1-5, are expressed in mammals. We hypothesized that because kidney epithelial cells are often subject to stresses arising from various physiological conditions, multiple proteins in the kidney will be SUMOylated. Here, we profiled SUMO1- and SUMO2-modified proteins in a polarized epithelial cell model of the renal cortical collecting duct (mpkCCD14 cells). Modified forms of SUMO1 or SUMO2, with a histidine tag and a Thr to Lys mutation preceding the carboxyl-terminal di-gly motif, were expressed in mpkCCD14 cells, allowing SUMO-conjugated proteins to be purified and identified. Protein mass spectrometry identified 1428 SUMO1 and 1957 SUMO2 sites, corresponding to 741 SUMO1 and 971 SUMO2 proteins. Gene ontology indicated that the function of the majority of SUMOylated proteins in mpkCCD14 cells was related to gene transcription. After treatment of the mpkCCD14 cells for 24 h with aldosterone, the levels of SUMOylation at a specific site on the proton and oligopeptide/antibiotic cotransporter protein Pept2 were greatly increased. In conclusion, the SUMOylation landscape of mpkCCD14 cells suggests that protein modification by SUMOylation is a mechanism within renal epithelial cells to modulate gene transcription under various physiological conditions.
Collapse
Affiliation(s)
- Qi Wu
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Takwa S Aroankins
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Lei Cheng
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| |
Collapse
|
46
|
Törnroth-Horsefield S. Phosphorylation of human AQP2 and its role in trafficking. VITAMINS AND HORMONES 2019; 112:95-117. [PMID: 32061351 DOI: 10.1016/bs.vh.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human Aquaporin 2 (AQP2) is a membrane-bound water channel found in the kidney collecting duct whose regulation by trafficking plays a key role in regulating urine volume. AQP2 trafficking is tightly controlled by the pituitary hormone arginine vasopressin (AVP), which stimulates translocation of AQP2 residing in storage vesicles to the apical membrane. The AVP-dependent translocation of AQP2 to and from the apical membrane is controlled by multiple phosphorylation sites in the AQP2 C-terminus, the phosphorylation of which alters its affinity to proteins within the cellular membrane protein trafficking machinery. The aim of this chapter is to provide a summary of what is currently known about AVP-mediated AQP2 trafficking, dissecting the roles of individual phosphorylation sites, kinases and phosphatases and interacting proteins. From this, the picture of an immensely complex process emerges, of which many structural and molecular details remains to be elucidated.
Collapse
|
47
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by excretion of large amounts of hypotonic urine. Central DI results from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, whereas nephrogenic DI results from resistance to AVP in the kidneys. Central and nephrogenic DI are usually acquired, but genetic causes must be evaluated, especially if symptoms occur in early childhood. Central or nephrogenic DI must be differentiated from primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Primary polydipsia is most common in psychiatric patients and health enthusiasts but the polydipsia in a small subgroup of patients seems to be due to an abnormally low thirst threshold, a condition termed dipsogenic DI. Distinguishing between the different types of DI can be challenging and is done either by a water deprivation test or by hypertonic saline stimulation together with copeptin (or AVP) measurement. Furthermore, a detailed medical history, physical examination and imaging studies are needed to ensure an accurate DI diagnosis. Treatment of DI or primary polydipsia depends on the underlying aetiology and differs in central DI, nephrogenic DI and primary polydipsia.
Collapse
|
48
|
Baltzer S, Klussmann E. Small molecules for modulating the localisation of the water channel aquaporin-2-disease relevance and perspectives for targeting local cAMP signalling. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1049-1064. [PMID: 31300862 DOI: 10.1007/s00210-019-01686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
Abstract
The tight spatial and temporal organisation of cyclic adenosine monophosphate (cAMP) signalling plays a key role in arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells and in a plethora of other processes such as in the control of cardiac myocyte contractility. This review critically discusses in vitro- and cell-based screening strategies for the identification of small molecules that interfere with AVP/cAMP signalling in renal principal cells; it features phenotypic screening and approaches for targeting protein-protein interactions of A-kinase anchoring proteins (AKAPs), which organise local cAMP signalling hubs. The discovery of novel chemical entities for the modulation of local cAMP will not only provide tools for elucidating molecular mechanisms underlying cAMP signalling. Novel chemical entities can also serve as starting points for the development of novel drugs for the treatment of human diseases. Examples illustrate how screening for small molecules can pave the way to novel approaches for the treatment of certain forms of diabetes insipidus, a disease caused by defects in AVP-mediated water reabsorption.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Vegetative Physiology, Berlin, Germany.
| |
Collapse
|
49
|
Yang T, Liu T, Gan J, Yu K, Chen K, Xue W, Lan L, Yang S, Yang CG. Structural Insight into the Mechanism of Staphylococcus aureus Stp1 Phosphatase. ACS Infect Dis 2019; 5:841-850. [PMID: 30868877 DOI: 10.1021/acsinfecdis.8b00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus Stp1, which belongs to the bacterial metal-dependent protein phosphatase (PPM) family, is a promising candidate for antivirulence targeting. How Stp1 recognizes the phosphorylated peptide remains unclear, however. In order to investigate the recognition mechanism of Stp1 in depth, we have determined a series of crystal structures of S. aureus Stp1 in different states and the structural complex of Stp1 bound with a phosphorylated peptide His12. Different phosphorylated peptides, including MgrA- and GraR-derived phosphopeptides, are substrates of Stp1, which supports the function of Stp1 as a selective Ser/Thr phosphatase. In addition, interestingly, the crystal structures of R161-Stp1 variants combined with the biochemical activity validations have uncovered that R161 residue plays a key role to control the conformation switches of the flap domain in order to facilitate substrate binding and the dephosphorylation process. Our findings provide crucial structural insight into the molecular mechanism of S. aureus Stp1 phosphatase and reveal the phosphorylated peptides for biochemistry study and inhibitor screening of Stp1.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, 2708 South Huaxi Road, Guiyang, Guizhou 550025, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Tingting Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Kunqian Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, 2708 South Huaxi Road, Guiyang, Guizhou 550025, P. R. China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, 2708 South Huaxi Road, Guiyang, Guizhou 550025, P. R. China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
50
|
Holst MR, Nejsum LN. A versatile aquaporin-2 cell system for quantitative temporal expression and live cell imaging. Am J Physiol Renal Physiol 2019; 317:F124-F132. [PMID: 31091121 DOI: 10.1152/ajprenal.00150.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|