1
|
Arvind A, Sreelekshmi S, Dubey N. Genetic, Epigenetic, and Hormonal Regulation of Stress Phenotypes in Major Depressive Disorder: From Maladaptation to Resilience. Cell Mol Neurobiol 2025; 45:29. [PMID: 40138049 PMCID: PMC11947386 DOI: 10.1007/s10571-025-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Major Depressive Disorder (MDD) is a complex psychiatric disorder with varied molecular mechanisms underlying its aetiology, diagnosis, and treatment. This review explores the crucial roles of stress, genetics, epigenetics, and hormones in shaping susceptibility and resilience to mood disorders. We discuss how acute stress can be beneficial, while prolonged stress disrupts brain function, leading to MDD. The review also highlights the significance of various animal models in understanding depression pathophysiology, including zebrafish, mice, and rats, which exhibit distinct sex differences in stress responses. Furthermore, we delve into the molecular bases of susceptible and resilient phenotypes, focusing on genetic aspects such as gene polymorphisms, mutations, and telomere length alterations. The review also examines epigenetic aspects including DNA methylation, histone acetylation and deacetylation, histone methylation and HMTs, and miRNA, which contribute to the development of MDD. Additionally, we explore the role of hormones such as estrogen, progesterone, and prolactin in modulating stress responses and influencing MDD susceptibility and resilience. Finally, we discuss the clinical implications of these findings, including recent clinical methods for determining MDD susceptibility and resiliency phenotypes. By consolidating the current knowledge and insights, this review aims to provide a comprehensive understanding of the molecular basis of susceptibility and resilience in mood disorders, contributing to the ongoing efforts in combating this debilitating disorder.
Collapse
Affiliation(s)
- Anushka Arvind
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, Telangana, India
| | - S Sreelekshmi
- Endocrinology Unit, Department of Zoology, Madras Christian College, East Tambaram, Chennai, 600059, Tamil Nadu, India
| | - Neelima Dubey
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Bhardwaj I, Singh S, Ansari AH, Rai SP, Singh D. Effect of stress on neuronal cell: Morphological to molecular approach. PROGRESS IN BRAIN RESEARCH 2025; 291:469-502. [PMID: 40222791 DOI: 10.1016/bs.pbr.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress can be characterized as any perceived or actual threat that necessitates compensatory actions to maintain homeostasis. It can alter an organism's behavior over time by permanently altering the composition and functionality of brain circuitry. The amygdala and prefrontal cortex are two interrelated brain regions that have been the focus of initial research on stress and brain structural and functional plasticity, with the hippocampus serving as the entry point for most of this knowledge. Prolonged stress causes significant morphological alterations in important brain regions such as the hippocampus, amygdala, and prefrontal cortex. Memory, learning, and emotional regulation are among the cognitive functions that are adversely affected by these changes, including neuronal shrinkage, dendritic retraction, and synaptic malfunction. Stress perturbs the equilibrium of neurotransmitters, neuronal plasticity, and mitochondrial function at the molecular level. On the other hand, chronic stress negatively impacts physiology and can result in neuropsychiatric diseases. Recent molecular research has linked various epigenetic processes, such as DNA methylation, histone modifications, and noncoding RNAs, to the dysregulation of genes in the impacted brain circuits responsible for the pathophysiology of chronic stress. Numerous disorders, including neurodegenerative diseases (NDDs) including Alzheimer's, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, multiple sclerosis, and Parkinson's disease, have been linked to oxidative stress as a possible cause.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India.
| |
Collapse
|
3
|
Saad HA, Marzouk M, Abdelrahman H, Moradikor N. Mechanisms underlying stress effects on the brain: Basic concepts and clinical implications. PROGRESS IN BRAIN RESEARCH 2025; 291:21-47. [PMID: 40222781 DOI: 10.1016/bs.pbr.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Chronic stress impacts the brain through complex physiological, neurological, and immunological responses. The stress response involves the activation of the sympathetic-adrenal-medullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis, releasing stress hormones like norepinephrine and cortisol. While these responses are adaptive short-term, chronic stress disrupts homeostasis, increasing the risk of cardiovascular diseases, neurodegenerative disorders, and psychiatric conditions such as depression. This dysregulation is linked to persistent neuroinflammation, oxidative stress, and neurotransmitter imbalances involving dopamine and serotonin, impairing neuroplasticity and leading to structural changes in critical brain areas, such as the hippocampus and prefrontal cortex. Moreover, stress affects gene expression, particularly neuroinflammatory pathways, contributing to long-term cognitive function and emotional regulation alterations. Advancements in neuroimaging and molecular techniques, including MRI, PET, and SPECT, hold promise for identifying biomarkers and better understanding stress-induced brain changes. These insights are critical for developing targeted interventions to mitigate the adverse effects of chronic stress on brain health.
Collapse
Affiliation(s)
- Hager Adel Saad
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt.
| | - Mahmoud Marzouk
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Hla Abdelrahman
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
4
|
Adeline Dorothy PD, Rajan KE. Prenatal maternal life adversity impacts on learning and memory in offspring: implication to transgenerational epigenetic inheritance. Front Neurosci 2025; 19:1518046. [PMID: 40018363 PMCID: PMC11865043 DOI: 10.3389/fnins.2025.1518046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Maternal stress exposure during pregnancy is known to affect offspring behavior, including learning and memory. We hypothesized that maternal stress-induced changes transmit this effect through maternal line mediated transgenerational epigenetic inheritance. To test our hypothesis, pregnant rats (F0) were undisturbed (Control, Ctrl)/exposed to social stress during gestational days (GD) 16-18 (PMS)/exposed to social stress and treated with oxytocin during GD-16 to 18 (PMS+OXT). Subsequently, F1 female offspring from Ctrl, PMS, and PMS+OXT were mated with Ctrl F1 males to examine maternal line mediated transgenerational impacts. Female animals (F1 and F2) were subjected to behavioral test and the levels of global H3K4me2/H3K4me3 methylation, methylation in the CRH promoter, expression of Crh, Crh receptors (Crhr1, Crhr2), and BDNF were determined. It was found that prenatal maternal stress (PMS) reduced reference and working memory in F1 and F2 offspring, increased global and specific H3K4me2, H3K4me3 methylation in the CRH promoter, expression of Crh, Crh receptors, and corticosterone (CORT), and down-regulated the expression of pro-and mature BDNF by differentially regulating Bdnf transcripts III, IV and VI in the amygdala. Oxytocin exposure reduced PMS-induced global and specific H3K4me2/3 changes, which repressed the expression of Crh, Crh receptors, reduced CORT levels, up-regulated the expression of pro-BDNF and mature BDNF, and improved memory in F1 and F2 offspring. Collectively, our study revealed that PMS reduced reference and working memory performance in F1 and F2 offspring through maternal line transgenerational inheritance of H3K4me2, H3K4me3 methylation, and associated mechanisms that regulate BDNF expression and synaptic plasticity.
Collapse
Affiliation(s)
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
5
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
6
|
Forastieri C, Romito E, Paplekaj A, Battaglioli E, Rusconi F. Dissecting the Hippocampal Regulation of Approach-Avoidance Conflict: Integrative Perspectives From Optogenetics, Stress Response, and Epigenetics. Hippocampus 2024; 34:753-766. [PMID: 39494726 DOI: 10.1002/hipo.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Psychiatric disorders are multifactorial conditions without clear biomarkers, influenced by genetic, environmental, and developmental factors. Understanding these disorders requires identifying specific endophenotypes that help break down their complexity. Here, we undertake an in-depth analysis of one such endophenotype, namely imbalanced approach-avoidance conflict (AAC), reviewing its significant dependency on the hippocampus. Imbalanced AAC is a transdiagnostic endophenotype, being a feature of many psychiatric conditions in humans. However, it is predominantly examined in preclinical research through paradigms that subject rodents to conflict-laden scenarios. This review offers an original perspective by discussing the AAC through three distinct lights: optogenetic modulation of the AAC, which updates our understanding of the hippocampal contribution to behavioral inhibition; the impact of environmental stress, which exacerbates conflict and strengthens the stress-psychopathology axis; and inherent epigenetic aspects, which uncover crucial molecular underpinnings of environmental (mal) adaptation. By integrating these perspectives, in this review we aim to underline a cross-species causal nexus between heightened hippocampal activity and avoidance behavior. In addition, we suggest a rationale to explore epigenetic pharmacology as a potential strategy to tackle AAC-related psychopathology. This review assumes greater significance when viewed through the lens of advancing AAC-centric diagnostics in human subjects. Unlike traditional questionnaires, which struggle to accurately measure individual differences in AAC-related dimensions, new approaches using virtual reality and computer games show promise in better focusing the magnitude of AAC contribution to psychopathology.
Collapse
Affiliation(s)
- C Forastieri
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Romito
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - A Paplekaj
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Battaglioli
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - F Rusconi
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Charrier M, Lumineau S, George I, Meurisse M, Georgelin M, Palme R, Angelier F, Coustham V, Nicolle C, Bertin A, Darmaillacq AS, Dickel L, Guémené D, Calandreau L, Houdelier C. Maternal stress effects across generations in a precocial bird. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231826. [PMID: 39205998 PMCID: PMC11349446 DOI: 10.1098/rsos.231826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Prenatal maternal stress (PMS) is known to shape the phenotype of the first generation offspring (F1) but according to some studies, it could also shape the phenotype of the offspring of the following generations. We previously showed in the Japanese quail that PMS increased the emotional reactivity of F1 offspring in relation to (i) a variation in the levels of some histone post-translational modification (H3K27me3) in their brains and (ii) a modulation of the hormonal composition of the eggs from which they hatched. Here, we wondered whether PMS could also influence the behaviour of the second (F2) and third (F3) generation offspring due to the persistence of the specific marks we identified. Using a principal component analysis, we found that PMS influenced F2 and F3 quail profiles with subtle differences between generations. It increased F2 neophobia, F3 fearfulness and F3 neophobia but only in females. Interestingly, we did not find any variations in the level of histone post-translational modification in F3 brains and we observed inconsistent modulations of androstenedione levels in F1 and F2 eggs. Although they may vary over generations, our results demonstrate that PMS can have phenotypical effects into the third generation.
Collapse
Affiliation(s)
- Marion Charrier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Sophie Lumineau
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Isabelle George
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Marion Georgelin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, 79360 Villiers en Bois, France
| | - Vincent Coustham
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France
| | - Céline Nicolle
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Aline Bertin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Anne-Sophie Darmaillacq
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine), UMR 6552, 14000 Caen, France
| | - Ludovic Dickel
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine), UMR 6552, 14000 Caen, France
| | - Daniel Guémené
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | | | - Cécilia Houdelier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| |
Collapse
|
8
|
Liu S, Zhang B, Guo H, Ding Z, Hou W, Hu X, Wang Y, Tan W, Zhou S. The antidepressant effects of protein arginine methyltransferase 2 involve neuroinflammation. Neurochem Int 2024; 176:105728. [PMID: 38561150 DOI: 10.1016/j.neuint.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Protein arginine methyltransferase (PRMT) 2 catalyzes the methylation of arginine residues in histones. Depression is associated with histone methylation; however, more comprehensive research is needed on how PRMT2 regulates depression. The present study aimed to investigate the effects and possible mechanism(s) of PRMT2 overexpression on depression-like behavior induced by chronic unpredictable mild stress (CUMS) in rats, and whether lentivirus-mediated PRMT2 overexpression in the hippocampus suppresses depression-like behavior. Furthermore, the PRMT2 inhibitor MS023 was administered to the animals to investigate whether the antidepressant effect of PRMT2 overexpression could be reversed. Behavioral experiments were performed to detect depression-like behavior in rats. Western blotting was used to determine protein expression levels of PRMT2, histone H3R8 asymmetric dimethylation (H3R8me2a), inducible nitric oxide synthase (iNOS), and arginase 1 (Arg1) in rat hippocampal tissues. Hippocampal microglia and PRMT2 were stained using immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine the levels of various inflammatory factors in rat hippocampal tissue. Results of analysis revealed that PRMT2 overexpression in the hippocampus exerted an antidepressant effect. PRMT2 overexpression in the hippocampus reduced the proportion of activated microglia in the hippocampus, upregulated Arg1 and H3R8me2a expression, and downregulated iNOS expression. PRMT2 overexpression in the hippocampus inhibited the release of pro-inflammatory factors and promoted the release of anti-inflammatory factors. In summary, PRMT2 overexpression in the hippocampus promoted the conversion of microglia from the M1 to M2 type, resulting in an antidepressant effect. These results suggest that PRMT2 may be a potential therapeutic target to prevent and treat depression.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical College, Guilin, 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China.
| | - Bei Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Haowei Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Zhanghua Ding
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Wenhui Hou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Xiaoli Hu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Yuchu Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Wupeng Tan
- Department of Gynaecology, Maternal and Child Health Hospital of Hengyang, Hengyang, 421001, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| |
Collapse
|
9
|
Girella A, Di Bartolomeo M, Dainese E, Buzzelli V, Trezza V, D'Addario C. Fatty Acid Amide Hydrolase and Cannabinoid Receptor Type 1 Genes Regulation is Modulated by Social Isolation in Rats. Neurochem Res 2024; 49:1278-1290. [PMID: 38368587 DOI: 10.1007/s11064-024-04117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.
Collapse
Affiliation(s)
- Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | | | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Dulka K, Lajkó N, Nacsa K, Gulya K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. EPIGENOMES 2024; 8:11. [PMID: 38534795 DOI: 10.3390/epigenomes8010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min. The patterns of unmodified H3 and its trimethylated form H3K9me3 were analyzed in frozen samples for Western blot analysis and in formalin-fixed tissues embedded in paraffin for confocal microscopy. We found that both the unmodified H3 and H3K9me3 showed time-dependent but opposite changes and were altered differently in the frontal cortex and hippocampus with respect to postmortem delay. In the frontal cortex, the H3K9me3 marks increased approximately 450% with a slow parallel 20% decrease in the unmodified H3 histones after 150 min. In the hippocampus, the change was opposite, since H3K9me3 marks decreased steadily by approximately 65% after 150 min with a concomitant rapid increase of 20-25% in H3 histones at the same time. Confocal microscopy located H3K9me3 marks in the heterochromatic regions of the nuclei of all major cell types in the control brains: oligodendrocytes, astrocytes, neurons, and microglia. Therefore, epigenetic marks could be affected differently by postmortem delay in different parts of the brain.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kálmán Nacsa
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
11
|
Li P, Yan Z. An epigenetic mechanism of social isolation stress in adolescent female mice. Neurobiol Stress 2024; 29:100601. [PMID: 38213831 PMCID: PMC10776430 DOI: 10.1016/j.ynstr.2023.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Social isolation during adolescence can increase the risk of mental disorders. Epigenetic changes induced by chronic social isolation may serve as a mechanism underlying emotional disturbances. To test this, we exposed female mice to a post-weaning 6-week social isolation (SI) stress. We found the significantly increased methylation of histone H3 at lysine 9 (H3K9), a histone mark linked to gene repression, as well as the increased H3K9 methyltransferases SUV39H1 and SETDB1, in prefrontal cortex (PFC) of SI females. To find out potential downstream genes affected by this epigenetic alteration, we examined genes linked to neuronal and synaptic functions. Activity-dependent genes, including Arc, c-Fos and Npas4, were significantly reduced in PFC of SI females, correlated with the increased H3K9me2 occupancy around Arc enhancer. Treatment of SI females with UNC0642, a selective inhibitor of H3K9 methylation, significantly attenuated the anxiety-like behavior and elevated Arc expression. These results have revealed an epigenetic mechanism and intervention avenue for anxiety induced by chronic social isolation.
Collapse
Affiliation(s)
- Pei Li
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
12
|
Ell MA, Schiele MA, Iovino N, Domschke K. Epigenetics of Fear, Anxiety and Stress - Focus on Histone Modifications. Curr Neuropharmacol 2024; 22:843-865. [PMID: 36946487 PMCID: PMC10845084 DOI: 10.2174/1570159x21666230322154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.
Collapse
Affiliation(s)
- Marco A. Ell
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Iovino
- Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
14
|
Borges JV, Pires VN, de Freitas BS, Rübensam G, Vieira VC, de Souza Dos Santos C, Schröder N, Bromberg E. Behavior, BDNF and epigenetic mechanisms in response to social isolation and social support in middle aged rats exposed to chronic stress. Behav Brain Res 2023; 441:114303. [PMID: 36657665 DOI: 10.1016/j.bbr.2023.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Social deprivation can be stressful for group-living mammals. On the other hand, an amazing response of these animals to stress is seeking social contact to give and receive joint protection in threatening situations. We explored the effects of social isolation and social support on epigenetic and behavioral responses to chronic stress. More specifically, we investigated the behavioral responses, corticosterone levels, BDNF gene expression, and markers of hippocampal epigenetic alterations (levels of H3K9 acetylation and methylation, H3K27 methylation, HDAC5, DNMT1, and DNMT3a gene expressions) in middle-aged adult rats maintained in different housing conditions (isolation or accompanied housing) and exposed to the chronic unpredictable stress protocol (CUS). Isolation was associated with decreased basal levels of corticosterone, impaired long-term memory, and decreased expression of the BDNF gene, besides altering the balance of H3K9 from acetylation to methylation and increasing the DNMT1 gene expression. The CUS protocol decreased H3K9 acetylation, besides increasing H3K27 methylation and DNMT1 gene expression, but had no significant effects on memory and BDNF gene expression. Interestingly, the effects of CUS on corticosterone and HDAC5 gene expression were seen only in isolated animals, whereas the effects of CUS on DNMT1 gene expression were more pronounced in isolated than accompanied animals. In conclusion, social isolation in middle age showed broader effects than chronic unpredictable stress on behavioral and epigenetic alterations potentially associated with decreased BDNF expression. Moreover, social support prevented the adverse effects of CUS on HPA axis functioning, HDAC5, and DNMT1 gene expressions.
Collapse
Affiliation(s)
- Juliano Viana Borges
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Gabriel Rübensam
- Center of Toxicology and Pharmacology Research, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Vitória Corrêa Vieira
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Cristophod de Souza Dos Santos
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.
| |
Collapse
|
15
|
Mezghani N, Yao A, Vasilyeva D, Kaplan N, Shackelford A, Yoon A, Phillipone E, Dubey S, Schwartz GK, Taylor AM, Momen-Heravi F. Molecular Subtypes of Head and Neck Cancer in Patients of African Ancestry. Clin Cancer Res 2023; 29:910-920. [PMID: 36508165 PMCID: PMC9991972 DOI: 10.1158/1078-0432.ccr-22-2258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to better understand the complex molecular biomarkers and signatures of head and neck cancer (HNC) among Black patients and identify possible molecular changes associated with HNC disparities. EXPERIMENTAL DESIGN Molecular subtypes and genomic changes in HNC samples from patients of African and European ancestry in The Cancer Genome Atlas, Memorial Sloan Kettering Cancer Center, Broad Institute, MD Anderson Cancer Center, and John Hopkins University were identified. Molecular features (genomic, proteomic, transcriptomic) associated with race and genomic alterations associated with clinical outcomes were determined. An independent cohort of HNC tumor specimens was used to validate the primary findings using IHC. RESULTS Black patients were found to have a younger age at diagnosis, more aggressive tumor types, higher rates of metastasis, and worse survival compared with White patients. Black patients had fewer human papillomavirus-positive tumor types and higher frequencies of laryngeal subtype tumors. Higher frequencies of TP53, MYO18B, KMT2D, and UNC13C mutations and a lower frequency of PIK3CA mutations were observed in Black patients. Tumors of Black patients showed significant enrichment of c-MYC and RET-tyrosine signaling and amplifications. A significant increase in tumor expression of c-MYC in Black patients was observed and was associated with poor survival outcomes in the independent cohort. CONCLUSIONS Novel genomic modifications and molecular signatures may be related to environmental, social, and behavioral factors associated with racial disparities in HNC. Unique tumor mutations and biological pathways have potential clinical utility in providing more targeted and individualized screening, diagnostic, and treatment modalities to improve health outcomes.
Collapse
Affiliation(s)
- Nadia Mezghani
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| | - Alex Yao
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Daria Vasilyeva
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole Kaplan
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Austin Shackelford
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Yoon
- Department of Pathology, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth Phillipone
- Department of Pathology, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil Dubey
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| | - Gary K. Schwartz
- Division of Hematology Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Lee YH, Suk C, Shin SI, Hong JY. Salivary cortisol, dehydroepiandrosterone, and chromogranin A levels in patients with gingivitis and periodontitis and a novel biomarker for psychological stress. Front Endocrinol (Lausanne) 2023; 14:1147739. [PMID: 37113482 PMCID: PMC10126469 DOI: 10.3389/fendo.2023.1147739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction This study aimed to investigate the neuroendocrine responses based on cortisol, dehydroepiandrosterone (DHEA), cortisol/DHEA ratio, and chromogranin A levels, which reflect the activity of the hypothalamic-pituitary-adrenal axis, according to the presence or absence of psychological stress in patients with gingivitis and periodontitis compared to that in healthy controls. Methods In total, 117 patients (60 women, mean age: 36.29 ± 19.03 years) participated in this case-control study, comprising 32 healthy controls, 49 patients with gingivitis, and 36 patients with periodontitis. We investigated the presence of psychological stress and salivary characteristics, and analyzed the stress-related biomarkers of cortisol, DHEA, cortisol/DHEA ratio, and chromogranin A in the stimulated saliva. Results Salivary cortisol and chromogranin A levels increased with the severity of periodontal disease; their levels were the highest in the periodontitis group and were significantly higher in the following descending order: periodontitis, gingivitis, and healthy control groups (all values of p < 0.001). Additionally, the DHEA levels and cortisol/DHEA ratio were higher in the periodontitis group than those in the healthy control group (all values of p < 0.001). A multivariate logistic regression analysis revealed that the factors predicting above-average cortisol levels were periodontitis (odds ratio [OR] = 256.829; p < 0.001), women (OR = 6.365; p = 0.004), and psychological stress (OR = 6.036; p = 0.007); those predicting above-average cortisol/DHEA ratios were periodontitis (OR = 11.436; p < 0.001), psychological stress (OR = 3.977; p = 0.003), and women (OR = 2.890; p = 0.026). Thus, periodontitis and psychological stress were significant and strong predictors of above-average cortisol levels and cortisol/DHEA ratios. In the gingivitis group, salivary cortisol levels (r = 0.381, p = 0.007) and cortisol/DHEA ratios (r = 0.479, p < 0.001) were correlated with the presence of psychological stress. In the periodontitis group, increased cortisol/DHEA ratios (r = 0.412, p = 0.013) and lowered salivary buffer capacities (r = -0.334, p = 0.047) were correlated with the presence of psychological stress. Conclusion Periodontitis is a multifactorial disease resulting in inflammatory tissue destruction, which differs from gingivitis and a healthy state. Differences in stress-related neuroendocrine markers were revealed based on the severity of periodontal disease. The biomarkers that could be classified according to disease severity were salivary cortisol and chromogranin A levels. Above-average cortisol levels and cortisol/DHEA ratios are significant predictors of psychological stress in patients with gingivitis and periodontitis.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University, Seoul, Republic of Korea
- *Correspondence: Yeon-Hee Lee,
| | - Chon Suk
- Department of Endocrinology, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Il Shin
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Youn Hong
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Dwivedi Y, Shelton RC. Genomics in Treatment Development. ADVANCES IN NEUROBIOLOGY 2023; 30:363-385. [PMID: 36928858 DOI: 10.1007/978-3-031-21054-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Human Genome Project mapped the 3 billion base pairs in the human genome, which ushered in a new generation of genomically focused treatment development. While this has been very successful in other areas, neuroscience has been largely devoid of such developments. This is in large part because there are very few neurological or mental health conditions that are related to single-gene variants. While developments in pharmacogenomics have been somewhat successful, the use of genetic information in practice has to do with drug metabolism and adverse reactions. Studies of drug metabolism related to genetic variations are an important part of drug development. However, outside of cancer biology, the actual translation of genomic information into novel therapies has been limited. Epigenetics, which relates in part to the effects of the environment on DNA, is a promising newer area of relevance to CNS disorders. The environment can induce chemical modifications of DNA (e.g., cytosine methylation), which can be induced by the environment and may represent either shorter- or longer-term changes. Given the importance of environmental influences on CNS disorders, epigenetics may identify important treatment targets in the future.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, Khatri DK. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 2022; 14:1048333. [PMID: 36583185 PMCID: PMC9794020 DOI: 10.3389/fnagi.2022.1048333] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
Collapse
Affiliation(s)
- Nusrat Begum
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aniket Mandhare
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,*Correspondence: Saurabh Srivastava,
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,Mohd Farooq Shaikh,
| | - Shashi Bala Singh
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,Dharmendra Kumar Khatri,
| |
Collapse
|
19
|
Chen LJ, Tu ZY, Wang Y, He YH, Wang X, Tao SZ, Xu YY, Li CR, Wang RL, Yang ZX, Sun J, Ma X, Zhang D. ATP5O Hypo-crotonylation Caused by HDAC2 Hyper-Phosphorylation Is a Primary Detrimental Factor for Downregulated Phospholipid Metabolism under Chronic Stress. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9834963. [PMID: 38645677 PMCID: PMC11030818 DOI: 10.34133/2022/9834963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/03/2022] [Indexed: 04/23/2024]
Abstract
Objective. Chronic stress (CS)-induced abnormal metabolism and other subsequent aspects of abnormality are threatening human health. Little is known regarding whether and how protein post-translational-modifications (PTMs) correlate with abnormal metabolism under CS. The aim of this study was to address this issue and also identify novel key protein PTM. Methods. First, we screened which pan-PTM had significant change between control and CS female mice and whether clinical CS females had similar pan-PTM change. Second, we performed quantitative PTM-omics and metabolomics to verify the correlation between abnormal protein PTMs and atypical metabolism. Third, we performed quantitative phospho-omics to identify the key PTM-regulating enzyme and investigate the interaction between PTM protein and PTM-regulating enzyme. Fourth, we attempted to rectify the abnormal metabolism by correcting the activity of the PTM-regulating enzyme. Finally, we examined whether the selected key protein was also correlated with stress scores and atypical metabolism in clinical women. Results. We initially found that multiple tissues of CS female mice have downregulated pan-crotonylation, and verified that the plasma of clinical CS females also had downregulated pan-crotonylation. Then we determined that ATP5O-K51 crotonylation decreased the most and also caused gross ATP5O decrement, whereas the plasma of CS mice had downregulated phospholipids. Next, downregulating ATP5O crotonylation partially recapitulated the downregulated phospholipid metabolism in CS mice. Next, we verified that HDAC2-S424 phosphorylation determined its decrotonylation activity on ATP5O-K51. Furthermore, correcting HDAC2 hyper-phosphorylation recovered the gross ATP5O level and partially rescued the downregulated phospholipid metabolism in CS mice. Finally, the ATP5O level was also significantly lower and correlated with high stress scores and downregulated phospholipid metabolism in clinical female plasma. Conclusion. This study discovered a novel PTM mechanism involving two distinct types of PTM in CS and provided a novel reference for the clinical precautions and treatments of CS.
Collapse
Affiliation(s)
- Liang-Jian Chen
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
- Department of Obstetrics and Gynecology,
Reproductive Medicine Center,
The First Affiliated Hospital of Anhui Medical University,
Hefei 230022,
China
| | - Zhi-Yuan Tu
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
- State Key Laboratory of Reproductive Medicine,
the Center for Clinical Reproductive Medicine,
The First Affiliated Hospital of Nanjing Medical University,
Nanjing,
210029,
China
| | - Yang Wang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Yu-Hao He
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Xin Wang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Shu-Zhen Tao
- State Key Laboratory of Reproductive Medicine,
the Center for Clinical Reproductive Medicine,
The First Affiliated Hospital of Nanjing Medical University,
Nanjing,
210029,
China
| | - Yang-Yang Xu
- State Key Laboratory of Reproductive Medicine,
the Center for Clinical Reproductive Medicine,
The First Affiliated Hospital of Nanjing Medical University,
Nanjing,
210029,
China
| | - Cong-Rong Li
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Ruo-Lei Wang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Zhi-Xia Yang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Jing Sun
- Department of Psychiatry,
Nanjing Brain Hospital affiliated to Nanjing Medical University,
Nanjing,
210029 Jiangsu,
China
| | - Xiang Ma
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
- Animal Core Facility,
Nanjing Medical University,
Nanjing,
211166,
Jiangsu,
P .R.,
China
| |
Collapse
|
20
|
Basavarajappa BS, Subbanna S. Molecular Insights into Epigenetics and Cannabinoid Receptors. Biomolecules 2022; 12:1560. [PMID: 36358910 PMCID: PMC9687363 DOI: 10.3390/biom12111560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/29/2022] [Accepted: 10/22/2022] [Indexed: 09/22/2023] Open
Abstract
The actions of cannabis are mediated by G protein-coupled receptors that are part of an endogenous cannabinoid system (ECS). ECS consists of the naturally occurring ligands N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1 and CB2 cannabinoid receptors. Epigenetics are heritable changes that affect gene expression without changing the DNA sequence, transducing external stimuli in stable alterations of the DNA or chromatin structure. Cannabinoid receptors are crucial candidates for exploring their functions through epigenetic approaches due to their significant roles in health and diseases. Epigenetic changes usually promote alterations in the expression of genes and proteins that can be evaluated by various transcriptomic and proteomic analyses. Despite the exponential growth of new evidence on the critical functions of cannabinoid receptors, much is still unknown regarding the contribution of various genetic and epigenetic factors that regulate cannabinoid receptor gene expression. Recent studies have identified several immediate and long-lasting epigenetic changes, such as DNA methylation, DNA-associated histone proteins, and RNA regulatory networks, in cannabinoid receptor function. Thus, they can offer solutions to many cellular, molecular, and behavioral impairments found after modulation of cannabinoid receptor activities. In this review, we discuss the significant research advances in different epigenetic factors contributing to the regulation of cannabinoid receptors and their functions under both physiological and pathological conditions. Increasing our understanding of the epigenetics of cannabinoid receptors will significantly advance our knowledge and could lead to the identification of novel therapeutic targets and innovative treatment strategies for diseases associated with altered cannabinoid receptor functions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
21
|
Gaszner T, Farkas J, Kun D, Ujvári B, Füredi N, Kovács LÁ, Hashimoto H, Reglődi D, Kormos V, Gaszner B. Epigenetic and Neuronal Activity Markers Suggest the Recruitment of the Prefrontal Cortex and Hippocampus in the Three-Hit Model of Depression in Male PACAP Heterozygous Mice. Int J Mol Sci 2022; 23:ijms231911739. [PMID: 36233039 PMCID: PMC9570135 DOI: 10.3390/ijms231911739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.
Collapse
Affiliation(s)
- Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Dániel Kun
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- ELKH-PTE PACAP Research Group Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
22
|
Šalamon Arčan I, Kouter K, Videtič Paska A. Depressive disorder and antidepressants from an epigenetic point of view. World J Psychiatry 2022; 12:1150-1168. [PMID: 36186508 PMCID: PMC9521527 DOI: 10.5498/wjp.v12.i9.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Depressive disorder is a complex, heterogeneous disease that affects approximately 280 million people worldwide. Environmental, genetic, and neurobiological factors contribute to the depressive state. Since the nervous system is susceptible to shifts in activity of epigenetic modifiers, these allow for significant plasticity and response to rapid changes in the environment. Among the most studied epigenetic modifications in depressive disorder is DNA methylation, with findings centered on the brain-derived neurotrophic factor gene, the glucocorticoid receptor gene, and the serotonin transporter gene. In order to identify biomarkers that would be useful in clinical settings, for diagnosis and for treatment response, further research on antidepressants and alterations they cause in the epigenetic landscape throughout the genome is needed. Studies on cornerstone antidepressants, such as selective serotonin reuptake inhibitors, selective serotonin and norepinephrine reuptake inhibitors, norepinephrine, and dopamine reuptake inhibitors and their effects on depressive disorder are available, but systematic conclusions on their effects are still hard to draw due to the highly heterogeneous nature of the studies. In addition, two novel drugs, ketamine and esketamine, are being investigated particularly in association with treatment of resistant depression, which is one of the hot topics of contemporary research and the field of precision psychiatry.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
23
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
24
|
Caradonna SG, Paul MR, Marrocco J. Evidence for an allostatic epigenetic memory on chromatin footprints after double-hit acute stress. Neurobiol Stress 2022; 20:100475. [PMID: 36032404 PMCID: PMC9400173 DOI: 10.1016/j.ynstr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Stress induces allostatic responses, whose limits depend on genetic background and the nature of the challenges. Allostatic load reflects the cumulation of these reponses over the course of life. Acute stress is usually associated with adaptive responses, although, depending on the intensity of the stress and individual differences , some may experience maladaptive coping that persists through life and may influence subsequent responses to stressful events, as is the case of post-traumatic stress disorder. We investigated the behavioral traits and epigenetic signatures in a double-hit mouse model of acute stress in which heterotypic stressors (acute swim stress and acute restraint stress) were applied within a 7-day interval period. The ventral hippocampus was isolated to study the footprints of chromatin accessibility driven by exposure to double-hit stress. Using ATAC sequencing to determine regions of open chromatin, we showed that depending on the number of acute stressors, several gene sets related to development, immune function, cell starvation, translation, the cytoskeleton, and DNA modification were reprogrammed in both males and females. Chromatin accessibility for transcription factor binding sites showed that stress altered the accessibility for androgen, glucocorticoid, and mineralocorticoid receptor binding sites (AREs/GREs) at the genome-wide level, with double-hit stressed mice displaying a profile unique from either single hit of acute stress. The investigation of AREs/GREs adjacent to gene coding regions revealed several stress-related genes, including Fkbp5, Zbtb16, and Ddc, whose chromatin accessibility was affected by prior exposure to stress. These data demonstrate that acute stress is not truly acute because it induces allostatic signatures that persist in the epigenome and may manifest when a second challenge hits later in life.
Collapse
Affiliation(s)
| | - Matthew R. Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Corresponding author. Department of Biology, Touro University, New York, NY, USA.
| |
Collapse
|
25
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
26
|
D’Ambrosio F, Caggiano M, Schiavo L, Savarese G, Carpinelli L, Amato A, Iandolo A. Chronic Stress and Depression in Periodontitis and Peri-Implantitis: A Narrative Review on Neurobiological, Neurobehavioral and Immune-Microbiome Interplays and Clinical Management Implications. Dent J (Basel) 2022; 10:49. [PMID: 35323251 PMCID: PMC8947556 DOI: 10.3390/dj10030049] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Besides the well-known systemic factors for periodontal and peri-implant diseases, additional co-factors, such as chronic stress and depression, may also affect disease onset and progression as well as treatment responsiveness. Neurobiological and neurobehavioral pathogenic links between chronic stress and depression, on the one side, and periodontitis and peri-implantitis, on the other side, which have been little investigated and principally related to necrotizing periodontal disease, have been reviewed, along with their putative interconnections with periodontal immune-microbiome balance. Rising evidence suggest that dysregulated neurobiological and neurobehavioral factors, as well as periodontal immune-microbiome unbalance, all related to chronic stress and depression, may crucially interact and thus represent contributing factors in the genesis and worsening not only of necrotizing periodontal lesions, but also of chronic periodontitis and peri-implantitis. Such potential interconnections may be even more relevant in recurrent and aggressive cases of periodontal and peri-implant disease, which are frequently refractory to therapy, and may, if corroborated, coherently pave the way for personalized prevention and treatment strategies, possibly targeting immune-microbiome unbalance and neurobehavioral factors and focusing on neurobiological ones, especially in chronically stressed and depressed subjects with periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.); (L.S.); (G.S.); (L.C.); (A.A.); (A.I.)
| | | | | | | | | | | | | |
Collapse
|
27
|
Charrier M, Lumineau S, Georgelin M, Meurisse M, Palme R, Angelier F, Cornilleau F, Constantin P, Coustham V, Nicolle C, Bertin A, Darmaillacq AS, Dickel L, Guémené D, Calandreau L, Houdelier C. Prenatal maternal stress is associated with behavioural and epigenetic changes in Japanese quail. Psychoneuroendocrinology 2022; 137:105661. [PMID: 35038662 DOI: 10.1016/j.psyneuen.2022.105661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Prenatal maternal stress (PMS) influences many facets of offspring's phenotype including morphology, behaviour and cognitive abilities. Recent research suggested that PMS also induced epigenetic modifications. In the present study, we analysed, in the Japanese quail, the effects of PMS on the emotional reactivity and cognitive abilities of the F1 offspring. We also investigated in the hippocampus, the paraventricular hypothalamic nucleus and subnuclei of the arcopallium/amygdala the level of two histone post-translational modifications, H3K4me2 and H3K27me3, known to be impacted by stress. We found that PMS does not affect F1 quail's learning abilities but increases their emotional reactivity. Moreover, we demonstrated that PMS induced an increased density of H3K27me3 positive cells, in the hippocampus, paraventricular hypothalamic nucleus and dorsal nucleus of the amygdala, but not variations of H3K4me2. As these brain regions are involved in the control of vertebrates' emotional responses, the effect of PMS on the epigenetic mark H3K27me3 could possibly be a mechanism involved in the behavioural effects we observed in F1 quail.
Collapse
Affiliation(s)
- Marion Charrier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine) - UMR 6552, Rennes, France; CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France.
| | - Sophie Lumineau
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine) - UMR 6552, Rennes, France
| | - Marion Georgelin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, 79360 Villiers en Bois, France
| | | | - Paul Constantin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Vincent Coustham
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France; Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France
| | - Céline Nicolle
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine) - UMR 6552, Rennes, France
| | - Aline Bertin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Anne-Sophie Darmaillacq
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000 Caen, France
| | - Ludovic Dickel
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000 Caen, France
| | - Daniel Guémené
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France; INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | | | - Cécilia Houdelier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine) - UMR 6552, Rennes, France
| |
Collapse
|
28
|
Krzystyniak A, Wesierska M, Petrazzo G, Gadecka A, Dudkowska M, Bielak-Zmijewska A, Mosieniak G, Figiel I, Wlodarczyk J, Sikora E. Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging (Albany NY) 2022; 14:572-595. [PMID: 35042834 PMCID: PMC8833137 DOI: 10.18632/aging.203835] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Aging is associated with cognitive decline and accumulation of senescent cells in various tissues and organs. Senolytic agents such as dasatinib and quercetin (D+Q) in combination have been shown to target senescent cells and ameliorate symptoms of aging-related disorders in mouse models. However, the mechanisms by which senolytics improve cognitive impairments have not been fully elucidated particularly in species other than mice. To study the effect of senolytics on aging-related multifactorial cognitive dysfunctions we tested the spatial memory of male Wistar rats in an active allothetic place avoidance task. Here we report that 8 weeks treatment with D+Q alleviated learning deficits and memory impairment observed in aged animals. Furthermore, treatment with D+Q resulted in a reduction of the peripheral inflammation measured by the levels of serum inflammatory mediators (including members of senescent cell secretome) in aged rats. Significant improvements in cognitive abilities observed in aged rats upon treatment with D+Q were associated with changes in the dendritic spine morphology of the apical dendritic tree from the hippocampal CA1 neurons and changes in the level of histone H3 trimethylation at lysine 9 and 27 in the hippocampus. The beneficial effects of D+Q on learning and memory in aged rats were long-lasting and persisted at least 5 weeks after the cessation of the drugs administration. Our results expand and provide new insights to the existing knowledge associated with effects of senolytics on alleviating age-related associated cognitive dysfunctions.
Collapse
Affiliation(s)
- Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Gregory Petrazzo
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Agnieszka Gadecka
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
29
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
30
|
Ionescu-Tucker A, Butler CW, Berchtold NC, Matheos DP, Wood MA, Cotman CW. Exercise Reduces H3K9me3 and Regulates Brain Derived Neurotrophic Factor and GABRA2 in an Age Dependent Manner. Front Aging Neurosci 2021; 13:798297. [PMID: 34970138 PMCID: PMC8712855 DOI: 10.3389/fnagi.2021.798297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Exercise improves cognition in the aging brain and is a key regulator of neuronal plasticity genes such as BDNF. However, the mechanism by which exercise modifies gene expression continues to be explored. The repressive histone modification H3K9me3 has been shown to impair cognition, reduce synaptic density and decrease BDNF in aged but not young mice. Treatment with ETP69, a selective inhibitor of H3K9me3's catalyzing enzyme (SUV39H1), restores synapses, BDNF and cognitive performance. GABA receptor expression, which modulates BDNF secretion, is also modulated by exercise and H3K9me3. In this study, we examined if exercise and ETP69 regulated neuronal plasticity genes by reducing H3K9me3 at their promoter regions. We further determined the effect of age on H3K9me3 promoter binding and neuronal plasticity gene expression. Exercise and ETP69 decreased H3K9me3 at BDNF promoter VI in aged mice, corresponding with an increase in BDNF VI expression with ETP69. Exercise increased GABRA2 in aged mice while increasing BDNF 1 in young mice, and both exercise and ETP69 reduced GABRA2 in young mice. Overall, H3K9me3 repression at BDNF and GABA receptor promoters decreased with age. Our findings suggest that exercise and SUV39H1 inhibition differentially modulate BDNF and GABRA2 expression in an age dependent manner.
Collapse
Affiliation(s)
- Andra Ionescu-Tucker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Christopher W. Butler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Nicole C. Berchtold
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Dina P. Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Carl W. Cotman
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
31
|
de Abreu MS, Demin KA, Giacomini ACVV, Amstislavskaya TG, Strekalova T, Maslov GO, Kositsin Y, Petersen EV, Kalueff AV. Understanding how stress responses and stress-related behaviors have evolved in zebrafish and mammals. Neurobiol Stress 2021; 15:100405. [PMID: 34722834 PMCID: PMC8536782 DOI: 10.1016/j.ynstr.2021.100405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Stress response is essential for the organism to quickly restore physiological homeostasis disturbed by various environmental insults. In addition to well-established physiological cascades, stress also evokes various brain and behavioral responses. Aquatic animal models, including the zebrafish (Danio rerio), have been extensively used to probe pathobiological mechanisms of stress and stress-related brain disorders. Here, we critically discuss the use of zebrafish models for studying mechanisms of stress and modeling its disorders experimentally, with a particular cross-taxon focus on the potential evolution of stress responses from zebrafish to rodents and humans, as well as its translational implications.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medcicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Gleb O Maslov
- Neuroscience Program, Sirius University, Sochi, Russia
| | - Yury Kositsin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neuroscience Program, Sirius University, Sochi, Russia
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
32
|
Decker AM, Kapila YL, Wang HL. The psychobiological links between chronic stress-related diseases, periodontal/peri-implant diseases, and wound healing. Periodontol 2000 2021; 87:94-106. [PMID: 34463997 PMCID: PMC8459609 DOI: 10.1111/prd.12381] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic stress is a relevant disease to periodontal practice, encompassing 25%-28% of the US population (American Psychological Association 2015). While it is well established that chronic psychologic stress can have significant deleterious systemic effects, only in recent decades have we begun to explore the biochemical, microbial, and physiologic impacts of chronic stress diseases on oral tissues. Currently, chronic stress is classified as a "risk indicator" for periodontal disease. However, as the evidence in this field matures with additional clinically controlled trials, more homogeneous data collection methods, and a better grasp of the biologic underpinnings of stress-mediated dysbiosis, emerging evidence suggests that chronic stress and related diseases (depression, anxiety) may be significant contributing factors in periodontal/peri-implant disease progression and inconsistent wound healing following periodontal-related therapeutics. Ideal solutions for these patients include classification of the disease process and de-escalation of chronic stress conditions through coping strategies. This paper also summarizes periodontal/implant-related therapeutic approaches to ensure predictable results for this specific patient subpopulation.
Collapse
Affiliation(s)
- Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
33
|
Corticosterone dynamically regulates retrotransposable element expression in the rat hippocampus and C6 cells. Neurobiol Stress 2021; 15:100397. [PMID: 34584909 PMCID: PMC8455483 DOI: 10.1016/j.ynstr.2021.100397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022] Open
Abstract
The hippocampus is a highly plastic brain region sensitive to environmental stress. It shows dynamic changes in epigenetic marks associated with stress related learning. Previous work has shown that acute stress induces substantial transient changes in histone H3 lysine 9 trimethylation (H3K9me3). Moreover, increased H3K9me3 is enriched in hippocampal gene deserts accumulating within endogenous retroviruses and transposable elements. We have found that in response to acute glucocorticoid treatment, a similar change in global H3K9me3 is observed. However, when localized we found that H3K9me3 is markedly decreased at B2 short interspersed nuclear elements but not within intracisternal-A particle endogenous retroviruses. Further, decreased H3K9me3 valence within B2 elements was associated with increased transcript abundance. These data demonstrate the capacity for acute glucocorticoids to mobilize transposable elements via epigenetic unmasking. Reconciled with previous findings following acute stress, this suggests the capacity for mobile elements to potentially function as novel regulators given their dynamic regulation by stress and glucocorticoids.
Collapse
|
34
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
35
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
36
|
Seo MK, Choi AJ, Seog DH, Lee JG, Park SW. Early Enriched Environment Prevents Epigenetic p11 Gene Changes Induced by Adulthood Stress in Mice. Int J Mol Sci 2021; 22:ijms22041928. [PMID: 33672075 PMCID: PMC7919643 DOI: 10.3390/ijms22041928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Positive experiences in early life may improve the capacity to cope with adulthood stress through epigenetic modification. We investigated whether an enriched environment (EE) in the postnatal period affected epigenetic changes in the p11 gene induced by chronic unpredictable stress (CUS) in adult C57BL/6J mice. EE was introduced for 5 weeks during postnatal days 21–55. After EE, the mice were subjected to CUS for 4 weeks. EE prevented depression-like behavior induced by adult CUS. EE prevented a decrease in p11 mRNA and histone H3 acetylation induced by CUS, with changes in the expression of histone deacetylase 5. Moreover, EE prevented changes in trimethylation of histone H3 lysine 4 (H3K4) and H3K27 induced by CUS. Furthermore, EE had positive effects on behavior and epigenetic alterations in adult mice without CUS. These results suggest that one of the underlying mechanisms of early-life EE may involve epigenetic modification of the hippocampal p11 gene promoter.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
| | | | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea;
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan 48108, Korea
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| |
Collapse
|
37
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
38
|
Helbling JC, Kinouchi K, Trifilieff P, Sassone-Corsi P, Moisan MP. Combined Gene Expression and Chromatin Immunoprecipitation From a Single Mouse Hippocampus. Curr Protoc 2021; 1:e33. [PMID: 33566459 DOI: 10.1002/cpz1.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
All neuronal cells hold the same genetic information but vary by their structural and functional plasticity depending on the brain area and environmental influences. Such variability involves specific gene regulation, which is driven by transcription factors (TFs). In the field of neuroscience, epigenetics is the main mechanism that has been investigated to understand the dynamic modulation of gene expression by behavioral responses, stress responses, memory processes, etc. Nowadays, gene expression analyzed by real-time quantitative PCR and TF binding estimated by chromatin immunoprecipitation (ChIP) enables one to dissect this regulation. Because of the wide range of transgenic models, as well as cost-effective aspects, mouse models are widely used neuroscience. Thus, we have set up a protocol that allows extraction of both RNA for gene expression analysis and chromatin for ChIP experiment from a single mouse hippocampus. Using such protocols, information regarding gene expression and regulatory molecular mechanisms from the same animal can be integrated and correlated with neurobiological and behavioral outcomes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Hippocampus isolation from mouse brain Basic Protocol 2: RNA extraction and gene expression analysis from a mouse half hippocampus Basic Protocol 3: ChIP from one hemisphere side mouse hippocampus.
Collapse
Affiliation(s)
| | - Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California Irvine, Irvine, California
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Pierre Trifilieff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California Irvine, Irvine, California
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, California
| | - Marie-Pierre Moisan
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
39
|
Effects of chronic stress on depressive-like behaviors and JMJD3 expression in the prefrontal cortex and hippocampus of C57BL/6 and ob/ob mice. J Psychiatr Res 2021; 133:142-155. [PMID: 33340793 DOI: 10.1016/j.jpsychires.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Depression is a psychiatric disorder which is accompanied by neuroinflammatory responses. Obesity is considered as a low-grade inflammatory state. Studies have found that obese individuals are more likely to suffer from depression, but its possible mechanism has not been specifically illuminated. The Jumonji domain protein 3 (JMJD3) is a specific histone demethylase of trimethylation at lysine 27 of histone-H3 (H3K27me3). Over-expressions of JMJD3 induces the demethylation of H3K27me3 and results in the expression of pro-inflammatory genes, while its upregulation may be limited by adiponectin (APN). However, the role of JMJD3 in susceptibility to neuroinflammation and depression in obesity has not been clarified. METHODS Chronic unpredictable mild stress (CUMS) was selected to build depression model in C57BL/6 and ob/ob mice. Sucrose preference test, tail suspension test, open field test and Morris water maze test were used to detect depressive-like behaviors and memory impairment. Microglial activation, pro-inflammatory cytokines, APN, NF-ĸB, JMJD3 and H3K27me3 expressions in the serum, prefrontal cortex (PFC) and hippocampus (HIP) were examined in C57BL/6 and ob/ob mice. Meanwhile, GSK-J4 was used to inhibit JMJD3 expression. RESULTS CUMS led to depressive-like behaviors and memory impairment, microglial activation, increased expressions of pro-inflammatory cytokines, NF-κB and JMJD3, decreased expression of H3K27me3 in the PFC and HIP in C57BL/6 and ob/ob mice. Meanwhile, ob/ob mice showed worse behavioral injury and memory impairment, microglial excessively activation, over-expression of pro-inflammatory cytokines and NF-ĸB and decreased H3K27me3 levels than C57BL/6 mice. CUMS also decreased the APN levels in the serum and brain tissues in ob/ob mice compared to C57BL/6 mice. But GSK-J4 could relieve these alterations. CONCLUSIONS JMJD3 might be involved in the susceptibility to depressive-like behaviors and neuroinflammation of obese mice by the demethylation of H3K27me3, and decreased levels of APN could reduce Enhancer of zeste homolog 2 (EZH2) binding with H3K27me3. The role of JMJD3 in severer inflammatory state in the comorbidity of obesity and depression was considered.
Collapse
|
40
|
Maitra S, Khandelwal N, Kootar S, Sant P, Pathak SS, Reddy S, K. AP, Murty US, Chakravarty S, Kumar A. Histone Lysine Demethylase JMJD2D/KDM4D and Family Members Mediate Effects of Chronic Social Defeat Stress on Mouse Hippocampal Neurogenesis and Mood Disorders. Brain Sci 2020; 10:brainsci10110833. [PMID: 33182385 PMCID: PMC7695311 DOI: 10.3390/brainsci10110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Depression, anxiety and related mood disorders are major psychiatric illnesses worldwide, and chronic stress appears to be one of the primary underlying causes. Therapeutics to treat these debilitating disorders without a relapse are limited due to the incomplete molecular understanding of their etiopathology. In addition to the well-studied genetic component, research in the past two decades has implicated diverse epigenetic mechanisms in mediating the negative effects of chronic stressful events on neural circuits. This includes the cognitive circuitry, where the dynamic hippocampal dentate gyrus (DG) neurogenesis gets affected in depression and related affective disorders. Most of these epigenetic studies have focused on the impact of acetylation/deacetylation and methylation of several histone lysine residues on neural gene expression. However, there is a dearth of investigation into the role of demethylation of these lysine residues in chronic stress-induced changes in neurogenesis that results in altered behaviour. Here, using the chronic social defeat stress (CSDS) paradigm to induce depression and anxiety in C57BL/6 mice and ex vivo DG neural stem/progenitor cell (NSCs/NPCs) culture we show the role of the members of the JMJD2/KDM4 family of histone lysine demethylases (KDMs) in mediating stress-induced changes in DG neurogenesis and mood disorders. The study suggests a critical role of JMJD2D in DG neurogenesis. Altered enrichment of JMJD2D on the promoters of Id2 (inhibitor of differentiation 2) and Sox2 (SRY-Box Transcription Factor 2) was observed during proliferation and differentiation of NSCs/NPCs obtained from the DG. This would affect the demethylation of repressive epigenetic mark H3K9, thus activating or repressing these and possibly other genes involved in regulating proliferation and differentiation of DG NSCs/NPCs. Treatment of the NSCs/NPCs culture with Dimethyloxallyl Glycine (DMOG), an inhibitor of JMJDs, led to attenuation in their proliferation capacity. Additionally, systemic administration of DMOG in mice for 10 days induced depression-like and anxiety-like phenotype without any stress exposure.
Collapse
Affiliation(s)
- Swati Maitra
- Applied Biology, CSIR—Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.M.); (U.S.M.)
| | - Nitin Khandelwal
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Scherazad Kootar
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Pooja Sant
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Salil S. Pathak
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Sujatha Reddy
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Annapoorna P. K.
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Upadhyayula Suryanarayana Murty
- Applied Biology, CSIR—Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.M.); (U.S.M.)
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Sumana Chakravarty
- Applied Biology, CSIR—Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.M.); (U.S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: (S.C.); (A.K.)
| | - Arvind Kumar
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: (S.C.); (A.K.)
| |
Collapse
|
41
|
Prados MB, Sica MP, Miranda S. Inflammatory conditions promote a switch of oligosaccharyltransferase (OST) catalytic subunit isoform expression. Arch Biochem Biophys 2020; 693:108538. [PMID: 32810478 DOI: 10.1016/j.abb.2020.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
Oligosaccharyltransferase (OST) complex catalyzes the N-glycosylation of nascent polypeptides in the endoplasmic reticulum. Glycoproteins are critical for normal cell-cell interactions, especially during an immune response. Abnormal glycosylation is an insignia of several inflammatory diseases. However, the mechanisms that regulate the differential N-glycosylation are not fully understood. The OST complex can be assembled with one out of two catalytic subunits, STT3A or STT3B, which have different enzymatic properties. In this work, we investigated the expression of STT3A and STT3B in several mouse models such as a crossbreeding of normal and abortion-prone mice and an intestinal inflammation model. These animals were either exposed or not to acoustic stress (acute or chronic). The expression of the isoforms was analysed by immunohistochemistry and protein immunoblot. Finally, we investigated the gene regulatory elements employing public databases. Results demonstrated that inflammation alters the balance between the expression of both isoforms in the affected tissues. In homoeostatic conditions, STT3A expression predominates over STT3B, especially in epithelial cells. This relation is reversed as a consequence of inflammation. An increase in STT3B activity was associated to the generation of mannose-rich N-glycans. Accordingly, this type of N-glycans were found to decorate diverse inflamed tissues. The STT3A and STT3B genes are differentially regulated, which could account for the differences in the expression levels observed here. Our results support the idea that these isoforms could play different roles in cellular physiology. This study opens the possibility of studying the STT3A/STT3B expression ratio as a biomarker in acute inflammation or chronic diseases.
Collapse
Affiliation(s)
- María Belén Prados
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires. CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina.
| | - Mauricio Pablo Sica
- Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, CONICET, Av. E. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina; Instituto Balseiro, Universidad Nacional de Cuyo, Centro Atómico Bariloche, Av. E. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina.
| | - Silvia Miranda
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires. CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Methionine mediates resilience to chronic social defeat stress by epigenetic regulation of NMDA receptor subunit expression. Psychopharmacology (Berl) 2020; 237:3007-3020. [PMID: 32564114 DOI: 10.1007/s00213-020-05588-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Previous studies suggested that methionine (Met) levels are decreased in depressed patients. However, whether the decrease in this amino acid is important for phenotypic behaviors associated with depression has not been deciphered. OBJECTIVE The response of individuals to chronic stress is variable, with some individuals developing depression and others becoming resilient to stress. In this study, our objective was to examine the effect of Met on susceptibility to stress. METHODS Male C57BL/6J mice were subjected to daily defeat sessions by a CD1 aggressor, for 10 days. On day 11, the behavior of mice was assessed using social interaction and open-field tests. Mice received Met 4 h before each defeat session. Epigenetic targets were assessed either through real-rime RTPCR or through Western Blots. RESULTS Met did not modulate anxiety-like behaviors, but rather promoted resilience to chronic stress, rescued social avoidance behaviors and reversed the increase in the cortical expression levels of N-methyl-D-aspartate receptor (NMDAR) subunits. Activating NMDAR activity abolished the ability of Met to promote resilience to stress and to rescue social avoidance behavior, whereas inhibiting NMDAR did not show any synergistic or additive protective effects. Indeed, Met increased the cortical levels of the histone methyltransferase SETDB1, and in turn, the levels of the repressive histone H3 lysine (K9) trimethylation (me3). CONCLUSIONS Our data indicate that Met rescues susceptibility to stress by inactivating cortical NMDAR activity through an epigenetic mechanism involving histone methylation.
Collapse
|
43
|
Epigenetic mechanisms underlying stress-induced depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:87-126. [PMID: 33461666 DOI: 10.1016/bs.irn.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stressful life events are a major contributor to the development of major depressive disorder. Environmental perturbations like stress change gene expression in the brain, leading to altered behavior. Gene expression is ultimately regulated by chromatin structure and the epigenetic modifications of DNA and the histone proteins that make up chromatin. Studies over the past two decades have demonstrated that stress alters the epigenetic landscape in several brain regions relevant for depressive-like behavior in rodents. This chapter will discuss epigenetic mechanisms of brain histone acetylation, histone methylation, and DNA methylation that contribute to adult stress-induced depressive-like behavior in rodents. Several biological themes have emerged from the examination of the brain transcriptome after stress such as alterations in the neuroimmune response, neurotrophic factors, and synaptic structure. The epigenetic mechanisms regulating these processes will be highlighted. Finally, pharmacological and genetic manipulations of epigenetic enzymes in rodent models of depression will be discussed as these approaches have demonstrated the ability to reverse stress-induced depressive-like behaviors and provide proof-of-concept as novel avenues for the treatment of clinical depression.
Collapse
|
44
|
Gapp K, van Steenwyk G, Germain PL, Matsushima W, Rudolph KLM, Manuella F, Roszkowski M, Vernaz G, Ghosh T, Pelczar P, Mansuy IM, Miska EA. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry 2020; 25:2162-2174. [PMID: 30374190 PMCID: PMC7473836 DOI: 10.1038/s41380-018-0271-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Psychiatric diseases have a strong heritable component known to not be restricted to DNA sequence-based genetic inheritance alone but to also involve epigenetic factors in germ cells. Initial evidence suggested that sperm RNA is causally linked to the transmission of symptoms induced by traumatic experiences. Here, we show that alterations in long RNA in sperm contribute to the inheritance of specific trauma symptoms. Injection of long RNA fraction from sperm of males exposed to postnatal trauma recapitulates the effects on food intake, glucose response to insulin and risk-taking in adulthood whereas the small RNA fraction alters body weight and behavioural despair. Alterations in long RNA are maintained after fertilization, suggesting a direct link between sperm and embryo RNA.
Collapse
Affiliation(s)
- K Gapp
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - G van Steenwyk
- Laboratory of Neuroepigenetics, University of Zürich and Swiss Federal Institute of Technology, Brain Research Institute, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - P L Germain
- Laboratory of Neuroepigenetics, University of Zürich and Swiss Federal Institute of Technology, Brain Research Institute, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - W Matsushima
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - K L M Rudolph
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - F Manuella
- Laboratory of Neuroepigenetics, University of Zürich and Swiss Federal Institute of Technology, Brain Research Institute, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - M Roszkowski
- Laboratory of Neuroepigenetics, University of Zürich and Swiss Federal Institute of Technology, Brain Research Institute, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - G Vernaz
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - T Ghosh
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - P Pelczar
- Center for Transgenic Models, University of Basel, Mattenstrasse 22, CH-4002, Basel, Switzerland
| | - I M Mansuy
- Laboratory of Neuroepigenetics, University of Zürich and Swiss Federal Institute of Technology, Brain Research Institute, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - E A Miska
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
45
|
Endocannabinoid-Epigenetic Cross-Talk: A Bridge toward Stress Coping. Int J Mol Sci 2020; 21:ijms21176252. [PMID: 32872402 PMCID: PMC7504015 DOI: 10.3390/ijms21176252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is no argument with regard to the physical and psychological stress-related nature of neuropsychiatric disorders. Yet, the mechanisms that facilitate disease onset starting from molecular stress responses are elusive. Environmental stress challenges individuals’ equilibrium, enhancing homeostatic request in the attempt to steer down arousal-instrumental molecular pathways that underlie hypervigilance and anxiety. A relevant homeostatic pathway is the endocannabinoid system (ECS). In this review, we summarize recent discoveries unambiguously listing ECS as a stress coping mechanism. As stress evokes huge excitatory responses in emotional-relevant limbic areas, the ECS limits glutamate release via 2-arachydonilglycerol (2-AG) stress-induced synthesis and retrograde cannabinoid 1 (CB1)-receptor activation at the synapse. However, ECS shows intrinsic vulnerability as 2-AG overstimulation by chronic stress rapidly leads to CB1-receptor desensitization. In this review, we emphasize the protective role of 2-AG in stress-response termination and stress resiliency. Interestingly, we discuss ECS regulation with a further nuclear homeostatic system whose nature is exquisitely epigenetic, orchestrated by Lysine Specific Demethylase 1. We here emphasize a remarkable example of stress-coping network where transcriptional homeostasis subserves synaptic and behavioral adaptation, aiming at reducing psychiatric effects of traumatic experiences.
Collapse
|
46
|
Effects of Maternal Chewing on Prenatal Stress-Induced Cognitive Impairments in the Offspring via Multiple Molecular Pathways. Int J Mol Sci 2020; 21:ijms21165627. [PMID: 32781547 PMCID: PMC7460630 DOI: 10.3390/ijms21165627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
We aimed to investigate the effects of maternal chewing on prenatal stress-induced cognitive impairments in the offspring and to explore the molecular pathways of maternal chewing in a mice model. Maternal chewing ameliorated spatial learning impairments in the offspring in a Morris water maze test. Immunohistochemistry and Western blot findings revealed that maternal chewing alleviated hippocampal neurogenesis impairment and increased the expression of hippocampal brain-derived neurotrophic factor in the offspring. In addition, maternal chewing increased the expression of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase isozyme 2 (11β-HSD2) and decreased the expression of 11β-HSD1 in the placenta, thereby attenuating the increase of glucocorticoid in the offspring. Furthermore, maternal chewing increased the expression of 11β-HSD2, FK506-binding protein 51 (FKBP51) and FKBP52 and decreased the expression of 11β-HSD1, thereby increasing hippocampal nuclear GR level. In addition, maternal chewing attenuated the increase in expression of DNMT1 and DNMT3a and the decrease in expression of histone H3 methylation at lysine 4, 9, 27 and histone H3 acetylation at lysine 9 induced by prenatal stress in the offspring. Our findings suggest that maternal chewing could ameliorate prenatal stress-induced cognitive impairments in the offspring at least in part by protecting placenta barrier function, alleviating hippocampal nuclear GR transport impairment and increasing the hippocampal brain-derived neurotrophic factor (BDNF) level.
Collapse
|
47
|
Hunter RG. Stress, Adaptation, and the Deep Genome: Why Transposons Matter. Integr Comp Biol 2020; 60:1495-1505. [DOI: 10.1093/icb/icaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synopsis
Stress is a common, if often unpredictable life event. It can be defined from an evolutionary perspective as a force an organism perceives it must adapt to. Thus stress is a useful tool to study adaptation and the adaptive capacity of organisms. The deep genome, long neglected as a pile of “junk” has emerged as a source of regulatory DNA and RNA as well as a potential stockpile of adaptive capacity at the organismal and species levels. Recent work on the regulation of transposable elements (TEs), the principle constituents of the deep genome, by stress has shown that these elements are responsive to host stress and other environmental cues. Further, we have shown that some are likely directly regulated by the glucocorticoid receptor (GR), one of the two major vertebrate stress steroid receptors in a fashion that appears adaptive. On the basis of this and other emerging evidence I argue that the deep genome may represent an adaptive toolkit for organisms to respond to their environments at both individual and evolutionary scales. This argues that genomes may be adapted for what Waddington called “trait adaptability” rather than being purely passive objects of natural selection and single nucleotide level mutation.
Collapse
Affiliation(s)
- Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, 100 William T. Morrissey Blvd, Boston, MA 02125, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
48
|
Bartlett AA, Hunter RG. Chromatin Immunoprecipitation Techniques in Neuropsychiatric Research. Methods Mol Biol 2020; 2011:633-645. [PMID: 31273725 DOI: 10.1007/978-1-4939-9554-7_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropsychiatric disorders are highly prevalent (e.g., affecting children 2-8 years old at a rate of 14%). Many of these disorders are highly heritable such as major depressive disorder and schizophrenia. Despite this, genome-wide association has failed to identify gene(s) significantly associated with diagnostic status suggesting a strong role for environmental factors and the epigenome. From a molecular standpoint, the study of DNA-protein interactions yields fruitful information regarding the regulation of cellular processes above the level of the nucleotide sequence. Understanding chromatin dynamics may continue to explain individual variation to environmental perturbation and subsequent behavioral response. Chromatin immunoprecipitation (ChIP) techniques have allowed for probing of epigenetic effectors at specific regions of the genome. The following article reviews the current techniques and considerations when incorporation ChIP into neuropsychiatric models.
Collapse
Affiliation(s)
- Andrew A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA. .,Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
49
|
Sun X, Zhang T, Zhao Y, Zhu H, Cai E. Protoilludane sesquiterpenoid aromatic esters from Armillaria mellea improve depressive-like behavior induced by chronic unpredictable mild stress in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
50
|
Jmjd3 is involved in the susceptibility to depression induced by maternal separation via enhancing the neuroinflammation in the prefrontal cortex and hippocampus of male rats. Exp Neurol 2020; 328:113254. [PMID: 32084453 DOI: 10.1016/j.expneurol.2020.113254] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
Adverse childhood experience is a major risk factor for the onset of depression in adulthood. Neuroinflammation characterized by microglial activation and cytokine secretion is involved in susceptibility to depression induced by early life stress. Jumonji domain-containing protein 3 (Jmjd3), a trimethylated lysine 27 in histone 3 (H3K27me3) demethylase, can be activated by nuclear factor-kappa B (NF-κB), further regulating the expression of pro-inflammatory cytokines and resulting in neuroinflammation. However, its involvement in susceptibility to early life stress-related depression is unknown. In the current study, maternal separation (MS) was utilized as a model of early life stress and systemic lipopolysaccharide (LPS) administration in adulthood was used as a later-life challenge. Depressive- and anxiety-like behaviors and memory impairment were detected by behavioral tests. Microglial activation, pro-inflammatory cytokine expression, and NF-κB, Jmjd3, and H3K27me3 expression were detected in the prefrontal cortex and hippocampus in both infant and adult rats. Meanwhile, the Jmjd3 inhibitor GSK-J4 was used as an intervention in vivo and in vitro. Our results showed that MS induced depression-like behaviors and synchronously caused microglial activation, pro-inflammatory cytokine over-expression, NF-κB and Jmjd3 over-expression, and decreased H3K27me3 expression in infant rats. All these alterations could also be detected in adulthood. Seven-day LPS administration in adult rats induced similar changes of behaviors and biomarkers. Interestingly, compared with rats not exposed to MS, MS-exposed rats receiving LPS administration developed more severe depression-like behaviors and neuroinflammatory status, higher levels of NF-κB and Jmjd3 expression, and lower levels of H3K27me3 expression. In addition, LPS induced microglial activation, pro-inflammatory cytokine expression and increased Jmjd3 expression in vitro. Furthermore, GSK-J4 treatment alleviated these alterations in vivo and in vitro. Thus, our data indicate that Jmjd3 is involved in the susceptibility to depression induced by MS via enhancement of neuroinflammation in the prefrontal cortex and hippocampus of rats.
Collapse
|