1
|
Hu XP, Brahmantio B, Bartoszek K, Lercher MJ. Most bacterial gene families are biased toward specific chromosomal positions. Science 2025; 388:186-191. [PMID: 40208975 DOI: 10.1126/science.adm9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/12/2025]
Abstract
The arrangement of genes along bacterial chromosomes influences their expression through growth rate-dependent gene copy number changes during DNA replication. Although translation- and transcription-related genes often cluster near the origin of replication, the extent of positional biases across gene families remains unclear. We hypothesized that natural selection broadly favors specific chromosomal positions to optimize growth rate-dependent expression. Analyzing 910 bacterial species and proteomics data from Escherichia coli and Bacillus subtilis, we found that about two-thirds of bacterial gene families are positionally biased. Natural selection drives genes mainly toward the origin or terminus of replication, with the strongest selection in fast-growing species. Our findings reveal chromosomal positioning as a fundamental mechanism for coordinating gene expression with growth rate, highlighting evolutionary constraints on bacterial genome architecture.
Collapse
Affiliation(s)
- Xiao-Pan Hu
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Bayu Brahmantio
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Vásquez A, Ferreiro MD, Martínez-Rodríguez L, Gallegos MT. Expression, regulation and physiological roles of the five Rsm proteins in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 289:127926. [PMID: 39437643 DOI: 10.1016/j.micres.2024.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5. This work aims to provide a comprehensive analysis of the expression of these five rsm protein-encoding genes, elucidate the regulatory mechanisms governing their expression, as well as the physiological relevance of each variant. To achieve this, we examined the expression of rsmA, rsmE, rsmC, rsmD, and rsmH within their genetic contexts, identified their promoter regions, and assessed the impact of both their deletion and overexpression on various Pto DC3000 phenotypes. A novel finding is that rsmA and rsmC are part of an operon with the upstream genes, whereas rsmH seems to be co-transcribed with two downstream genes. We also observed significant variability in expression levels and RpoS dependence among the five rsm paralogs. Thus, despite the extensive repertoire of rsm genes in Pto DC3000, only rsmA, rsmE and rsmH were significantly expressed under all tested conditions (swarming, minimal and T3SS-inducing liquid media). Among these, RsmE and RsmA were corroborated as the most important paralogs at the functional level, whereas RsmH played a minor role in regulating free life and plant-associated phenotypes. Conversely, RsmC and RsmD did not seem to be functional under the conditions tested.
Collapse
Affiliation(s)
- Adriana Vásquez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Dolores Ferreiro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Laura Martínez-Rodríguez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
3
|
Tenenbaum D, Inlow K, Friedman LJ, Cai A, Gelles J, Kondev J. RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons. Proc Natl Acad Sci U S A 2023; 120:e2301402120. [PMID: 37459525 PMCID: PMC10372574 DOI: 10.1073/pnas.2301402120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 07/20/2023] Open
Abstract
DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of posttermination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance and timescales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant interoperon coupling can occur and the time required. These quantities depend on molecular association and dissociation rate constants between DNA, RNAP, and the transcription initiation factor σ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼1,000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the Escherichia coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.
Collapse
Affiliation(s)
- Debora Tenenbaum
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- Department of Physics, Brandeis University, Waltham, MA02453
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | | | - Anthony Cai
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02453
| |
Collapse
|
4
|
Tenenbaum D, Inlow K, Friedman L, Cai A, Gelles J, Kondev J. RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528045. [PMID: 36798213 PMCID: PMC9934669 DOI: 10.1101/2023.02.10.528045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of post-termination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance- and time-scales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant inter-operon coupling can occur and the time required. These quantities depend on previously uncharacterized molecular association and dissociation rate constants between DNA, RNAP and the transcription initiation factor σ 70 ; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ 70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼ 1, 000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the E. coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA. SIGNIFICANCE STATEMENT After transcribing an operon, a bacterial RNA polymerase can stay bound to DNA, slide along it, and reini-tiate transcription of the same or a different operon. Quantitative single-molecule biophysics experiments combined with mathematical theory demonstrate that this reinitiation process can be quick and efficient over gene spacings typical of a bacterial genome. Reinitiation may provide a mechanism to orchestrate the transcriptional activities of groups of nearby operons.
Collapse
Affiliation(s)
- Debora Tenenbaum
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
- Department of Physics, Brandeis University, Waltham, MA, United States
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Larry Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Anthony Cai
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, United States
| |
Collapse
|
5
|
Béchade B, Hu Y, Sanders JG, Cabuslay CS, Łukasik P, Williams BR, Fiers VJ, Lu R, Wertz JT, Russell JA. Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny. FEMS Microbiol Ecol 2022; 98:6602351. [PMID: 35660864 DOI: 10.1093/femsec/fiac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America.,State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Christian S Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Piotr Łukasik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Bethany R Williams
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Valerie J Fiers
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Richard Lu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Duffner C, Kublik S, Fösel B, Frostegård Å, Schloter M, Bakken L, Schulz S. Genotypic and phenotypic characterization of hydrogenotrophic denitrifiers. Environ Microbiol 2022; 24:1887-1901. [PMID: 35106904 DOI: 10.1111/1462-2920.15921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3 - , but it often entails accumulation of the cytotoxic intermediate NO2 - and the greenhouse gas N2 O. To explore if these high NO2 - and N2 O concentrations are caused by differences in the genomic composition, the regulation of gene transcription or the kinetics of the reductases involved, we isolated hydrogenotrophic denitrifiers from a polluted aquifer, performed whole-genome sequencing and investigated their phenotypes. We therefore assessed the kinetics of NO2 - , NO, N2 O, N2 and O2 as they depleted O2 and transitioned to denitrification with NO3 - as the only electron acceptor and hydrogen as the electron donor. Isolates with a complete denitrification pathway, although differing intermediate accumulation, were closely related to Dechloromonas denitrificans, Ferribacterium limneticum or Hydrogenophaga taeniospiralis. High NO2 - accumulation was associated with the reductases' kinetics. While available, electrons only flowed towards NO3 - in the narG-containing H. taeniospiralis but flowed concurrently to all denitrification intermediates in the napA-containing D. denitrificans and F. limneticum. The denitrification regulator RegAB, present in the napA strains, may further secure low intermediate accumulation. High N2 O accumulation only occurred during the transition to denitrification and is thus likely caused by delayed N2 O reductase expression.
Collapse
Affiliation(s)
- Clara Duffner
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bärbel Fösel
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Michael Schloter
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lars Bakken
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
7
|
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 2021; 6:1118-1128. [PMID: 34446927 DOI: 10.1038/s41564-021-00952-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.
Collapse
|
8
|
Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform 2021; 22:1639-1655. [PMID: 32047891 PMCID: PMC7986608 DOI: 10.1093/bib/bbaa005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Together with various hosts and environments, ubiquitous microbes interact closely with each other forming an intertwined system or community. Of interest, shifts of the relationships between microbes and their hosts or environments are associated with critical diseases and ecological changes. While advances in high-throughput Omics technologies offer a great opportunity for understanding the structures and functions of microbiome, it is still challenging to analyse and interpret the omics data. Specifically, the heterogeneity and diversity of microbial communities, compounded with the large size of the datasets, impose a tremendous challenge to mechanistically elucidate the complex communities. Fortunately, network analyses provide an efficient way to tackle this problem, and several network approaches have been proposed to improve this understanding recently. Here, we systemically illustrate these network theories that have been used in biological and biomedical research. Then, we review existing network modelling methods of microbial studies at multiple layers from metagenomics to metabolomics and further to multi-omics. Lastly, we discuss the limitations of present studies and provide a perspective for further directions in support of the understanding of microbial communities.
Collapse
Affiliation(s)
- Zhaoqian Liu
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Ewy Mathé
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Marlena Merling
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Seitzer P, Yao AI, Cisneros A, Facciotti MT. The Exploration of Novel Regulatory Relationships Drives Haloarchaeal Operon-Like Structural Dynamics over Short Evolutionary Distances. Microorganisms 2020; 8:E1900. [PMID: 33266086 PMCID: PMC7760734 DOI: 10.3390/microorganisms8121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Operons are a dominant feature of bacterial and archaeal genome organization. Numerous investigations have related aspects of operon structure to operon function, making operons exemplars for studies aimed at deciphering Nature's design principles for genomic organization at a local scale. We consider this understanding to be both fundamentally important and ultimately useful in the de novo design of increasingly complex synthetic circuits. Here we analyze the evolution of the genomic context of operon-like structures in a set of 76 sequenced and annotated species of halophilic archaea. The phylogenetic depth and breadth of this dataset allows insight into changes in operon-like structures over shorter evolutionary time scales than have been studied in previous cross-species analysis of operon evolution. Our analysis, implemented in the updated software package JContextExplorer finds that operon-like context as measured by changes in structure frequently differs from a sequence divergence model of whole-species phylogeny and that changes seem to be dominated by the exploration of novel regulatory relationships.
Collapse
Affiliation(s)
- Phillip Seitzer
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Andrew I. Yao
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Ariana Cisneros
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
| | - Marc T. Facciotti
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Liu Z, Feng J, Yu B, Ma Q, Liu B. The functional determinants in the organization of bacterial genomes. Brief Bioinform 2020; 22:5892344. [PMID: 32793986 DOI: 10.1093/bib/bbaa172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial genomes are now recognized as interacting intimately with cellular processes. Uncovering organizational mechanisms of bacterial genomes has been a primary focus of researchers to reveal the potential cellular activities. The advances in both experimental techniques and computational models provide a tremendous opportunity for understanding these mechanisms, and various studies have been proposed to explore the organization rules of bacterial genomes associated with functions recently. This review focuses mainly on the principles that shape the organization of bacterial genomes, both locally and globally. We first illustrate local structures as operons/transcription units for facilitating co-transcription and horizontal transfer of genes. We then clarify the constraints that globally shape bacterial genomes, such as metabolism, transcription and replication. Finally, we highlight challenges and opportunities to advance bacterial genomic studies and provide application perspectives of genome organization, including pathway hole assignment and genome assembly and understanding disease mechanisms.
Collapse
Affiliation(s)
| | | | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University
| | | |
Collapse
|
11
|
Cao H, Ma Q, Chen X, Xu Y. DOOR: a prokaryotic operon database for genome analyses and functional inference. Brief Bioinform 2020; 20:1568-1577. [PMID: 28968679 DOI: 10.1093/bib/bbx088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/13/2017] [Indexed: 11/14/2022] Open
Abstract
The rapid accumulation of fully sequenced prokaryotic genomes provides unprecedented information for biological studies of bacterial and archaeal organisms in a systematic manner. Operons are the basic functional units for conducting such studies. Here, we review an operon database DOOR (the Database of prOkaryotic OpeRons) that we have previously developed and continue to update. Currently, the database contains 6 975 454 computationally predicted operons in 2072 complete genomes. In addition, the database also contains the following information: (i) transcriptional units for 24 genomes derived using publicly available transcriptomic data; (ii) orthologous gene mapping across genomes; (iii) 6408 cis-regulatory motifs for transcriptional factors of some operons for 203 genomes; (iv) 3 456 718 Rho-independent terminators for 2072 genomes; as well as (v) a suite of tools in support of applications of the predicted operons. In this review, we will explain how such data are computationally derived and demonstrate how they can be used to derive a wide range of higher-level information needed for systems biology studies to tackle complex and fundamental biology questions.
Collapse
|
12
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
13
|
Ma Q, Bücking H, Gonzalez Hernandez JL, Subramanian S. Single-Cell RNA Sequencing of Plant-Associated Bacterial Communities. Front Microbiol 2019; 10:2452. [PMID: 31736899 PMCID: PMC6828647 DOI: 10.3389/fmicb.2019.02452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022] Open
Abstract
Plants in soil are not solitary, hence continually interact with and obtain benefits from a community of microbes ("microbiome"). The meta-functional output from the microbiome results from complex interactions among the different community members with distinct taxonomic identities and metabolic capacities. Particularly, the bacterial communities of the root surface are spatially organized structures composed of root-attached biofilms and planktonic cells arranged in complex layers. With the distinct but coordinated roles among the different member cells, bacterial communities resemble properties of a multicellular organism. High throughput sequencing technologies have allowed rapid and large-scale analysis of taxonomic composition and metabolic capacities of bacterial communities. However, these methods are generally unable to reconstruct the assembly of these communities, or how the gene expression patterns in individual cells/species are coordinated within these communities. Single-cell transcriptomes of community members can identify how gene expression patterns vary among members of the community, including differences among different cells of the same species. This information can be used to classify cells based on functional gene expression patterns, and predict the spatial organization of the community. Here we discuss strategies for the isolation of single bacterial cells, mRNA enrichment, library construction, and analysis and interpretation of the resulting single-cell RNA-Seq datasets. Unraveling regulatory and metabolic processes at the single cell level is expected to yield an unprecedented discovery of mechanisms involved in bacterial recruitment, attachment, assembly, organization of the community, or in the specific interactions among the different members of these communities.
Collapse
Affiliation(s)
- Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Jose L. Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
14
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
15
|
González JM, Hernández L, Manzano I, Pedrós-Alió C. Functional annotation of orthologs in metagenomes: a case study of genes for the transformation of oceanic dimethylsulfoniopropionate. ISME JOURNAL 2019; 13:1183-1197. [PMID: 30643200 DOI: 10.1038/s41396-019-0347-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/22/2018] [Accepted: 12/25/2018] [Indexed: 11/09/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is produced mainly by phytoplankton and bacteria. It is relatively abundant and ubiquitous in the marine environment, where bacterioplankton make use of it readily as both carbon and sulfur sources. In one transformation pathway, part of the molecule becomes dimethylsulfide (DMS), which escapes into the atmosphere and plays an important role in the sulfur exchange between oceans and atmosphere. Through its other dominant catabolic pathway, bacteria are able to use it as sulfur source. During the past few years, a number of genes involved in its transformation have been characterized. Identifying genes in taxonomic groups not amenable to conventional methods of cultivation is challenging. Indeed, functional annotation of genes in environmental studies is not straightforward, considering that particular taxa are not well represented in the available sequence databases. Furthermore, many genes belong to families of paralogs with similar sequences but perhaps different functions. In this study, we develop in silico approaches to infer protein function of an environmentally important gene (dmdA) that carries out the first step in the sulfur assimilation from DMSP. The method combines a set of tools to annotate a targeted gene in genome databases and metagenome assemblies. The method will be useful to identify genes that carry out key biochemical processes in the environment.
Collapse
Affiliation(s)
- José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain.
| | - Laura Hernández
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Iris Manzano
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Carlos Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
16
|
Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp. Appl Environ Microbiol 2019; 85:AEM.02050-18. [PMID: 30413477 DOI: 10.1128/aem.02050-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Soft-rot Enterobacteriaceae (SRE), typified by Pectobacterium and Dickeya genera, are phytopathogenic bacteria inflicting soft-rot disease in crops worldwide. By combining genomic information from 100 SRE with whole-transcriptome data sets, we identified novel genomic and transcriptional associations among key pathogenicity themes in this group. Comparative genomics revealed solid linkage between the type I secretion system (T1SS) and the carotovoricin bacteriophage (Ctv) conserved in 96.7% of Pectobacterium genomes. Moreover, their coactivation during infection indicates a novel functional association involving T1SS and Ctv. Another bacteriophage-borne genomic region, mostly confined to less than 10% of Pectobacterium strains, was found, presumably comprising a novel lineage-specific prophage in the genus. We also detected the transcriptional coregulation of a previously predicted toxin/immunity pair (WHH and SMI1_KNR4 families), along with the type VI secretion system (T6SS), which includes hcp and/or vgrG genes, suggesting a role in disease development as T6SS-dependent effectors. Further, we showed that another predicted T6SS-dependent endonuclease (AHH family) exhibited toxicity in ectopic expression assays, indicating antibacterial activity. Additionally, we report the striking conservation of the group 4 capsule (GFC) cluster in 100 SRE strains which consistently features adjacently conserved serotype-specific gene arrays comprising a previously unknown organization in GFC clusters. Also, extensive sequence variations found in gfcA orthologs suggest a serotype-specific role in the GfcABCD machinery.IMPORTANCE Despite the considerable loss inflicted on important crops yearly by Pectobacterium and Dickeya diseases, investigations on key virulence and interbacterial competition assets relying on extensive comparative genomics are still surprisingly lacking for these genera. Such approaches become more powerful over time, underpinned by the growing amount of genomic information in public databases. In particular, our findings point to new functional associations among well-known genomic themes enabling alternative means of neutralizing SRE diseases through disruption of pivotal virulence programs. By elucidating novel transcriptional and genomic associations, this study adds valuable information on virulence candidates that could be decisive in molecular applications in the near future. The utilization of 100 genomes of Pectobacterium and Dickeya strains in this study is unprecedented for comparative analyses in these taxa, and it provides novel insights on the biology of economically important plant pathogens.
Collapse
|
17
|
Hacker WC, Li S, Elcock AH. Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res 2017. [PMID: 28645155 PMCID: PMC5570083 DOI: 10.1093/nar/gkx541] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of ‘fractal globules,’ and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome.
Collapse
Affiliation(s)
- William C Hacker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Shuxiang Li
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Jun SR, Nookaew I, Hauser L, Gorin A. Assessment of genome annotation using gene function similarity within the gene neighborhood. BMC Bioinformatics 2017; 18:345. [PMID: 28724412 PMCID: PMC5517811 DOI: 10.1186/s12859-017-1761-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/13/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Functional annotation of bacterial genomes is an obligatory and crucially important step of information processing from the genome sequences into cellular mechanisms. However, there is a lack of computational methods to evaluate the quality of functional assignments. RESULTS We developed a genome-scale model that assigns Bayesian probability to each gene utilizing a known property of functional similarity between neighboring genes in bacteria. CONCLUSIONS Our model clearly distinguished true annotation from random annotation with Bayesian annotation probability >0.95. Our model will provide a useful guide to quantitatively evaluate functional annotation methods and to detect gene sets with reliable annotations.
Collapse
Affiliation(s)
- Se-Ran Jun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Loren Hauser
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Andrey Gorin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
19
|
Pang TY, Lercher MJ. Supra-operonic clusters of functionally related genes (SOCs) are a source of horizontal gene co-transfers. Sci Rep 2017; 7:40294. [PMID: 28067311 PMCID: PMC5220362 DOI: 10.1038/srep40294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
Adaptation of bacteria occurs predominantly via horizontal gene transfer (HGT). While it is widely recognized that horizontal acquisitions frequently encompass multiple genes, it is unclear what the size distribution of successfully transferred DNA segments looks like and what evolutionary forces shape this distribution. Here, we identified 1790 gene family pairs that were consistently co-gained on the same branches across a phylogeny of 53 E. coli strains. We estimated a lower limit of their genomic distances at the time they were transferred to their host genomes; this distribution shows a sharp upper bound at 30 kb. The same gene-pairs can have larger distances (up to 70 kb) in other genomes. These more distant pairs likely represent recent acquisitions via transduction that involve the co-transfer of excised prophage genes, as they are almost always associated with intervening phage-associated genes. The observed distribution of genomic distances of co-transferred genes is much broader than expected from a model based on the co-transfer of genes within operons; instead, this distribution is highly consistent with the size distribution of supra-operonic clusters (SOCs), groups of co-occurring and co-functioning genes that extend beyond operons. Thus, we propose that SOCs form a basic unit of horizontal gene transfer.
Collapse
Affiliation(s)
- Tin Yau Pang
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, 40225, Germany
| |
Collapse
|
20
|
Junier I, Rivoire O. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation. PLoS One 2016; 11:e0155740. [PMID: 27195891 PMCID: PMC4873041 DOI: 10.1371/journal.pone.0155740] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. Here, we analyze hundreds of bacterial genomes to identify supra-operonic segments of genes that are proximal in a large number of genomes. We show that these synteny segments correspond to genomic units of strong transcriptional co-expression. Structurally, the segments contain operons with specific relative orientations (co-directional or divergent) and nucleoid-associated proteins are found to bind at their boundaries. Functionally, operons inside a same segment are highly co-expressed even in the apparent absence of regulatory factors at their promoter regions. Remote operons along DNA can also be co-expressed if their corresponding segments share a transcriptional or sigma factor, without requiring these factors to bind directly to the promoters of the operons. As evidence that these results apply across the bacterial kingdom, we demonstrate them both in the Gram-negative bacterium Escherichia coli and in the Gram-positive bacterium Bacillus subtilis. The underlying process that we propose involves only RNA-polymerases and DNA: it implies that the transcription of an operon mechanically enhances the transcription of adjacent operons. In support of a primary role of this regulation by facilitated co-transcription, we show that the transcription en bloc of successive operons as a result of transcriptional read-through is strongly and specifically enhanced in synteny segments. Finally, our analysis indicates that facilitated co-transcription may be evolutionary primitive and may apply beyond bacteria.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, TIMC-IMAG, F-38000 Grenoble, France.,Univ. Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - Olivier Rivoire
- CNRS, LIPhy, F-38000 Grenoble, France.,Univ. Grenoble Alpes, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
21
|
Touchon M, Rocha EPC. Coevolution of the Organization and Structure of Prokaryotic Genomes. Cold Spring Harb Perspect Biol 2016; 8:a018168. [PMID: 26729648 DOI: 10.1101/cshperspect.a018168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytoplasm of prokaryotes contains many molecular machines interacting directly with the chromosome. These vital interactions depend on the chromosome structure, as a molecule, and on the genome organization, as a unit of genetic information. Strong selection for the organization of the genetic elements implicated in these interactions drives replicon ploidy, gene distribution, operon conservation, and the formation of replication-associated traits. The genomes of prokaryotes are also very plastic with high rates of horizontal gene transfer and gene loss. The evolutionary conflicts between plasticity and organization lead to the formation of regions with high genetic diversity whose impact on chromosome structure is poorly understood. Prokaryotic genomes are remarkable documents of natural history because they carry the imprint of all of these selective and mutational forces. Their study allows a better understanding of molecular mechanisms, their impact on microbial evolution, and how they can be tinkered in synthetic biology.
Collapse
Affiliation(s)
- Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 75015 Paris, France CNRS, UMR3525, 75015 Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 75015 Paris, France CNRS, UMR3525, 75015 Paris, France
| |
Collapse
|
22
|
Mao X, Ma Q, Liu B, Chen X, Zhang H, Xu Y. Revisiting operons: an analysis of the landscape of transcriptional units in E. coli. BMC Bioinformatics 2015; 16:356. [PMID: 26538447 PMCID: PMC4634151 DOI: 10.1186/s12859-015-0805-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Bacterial operons are considerably more complex than what were thought. At least their components are dynamically rather than statically defined as previously assumed. Here we present a computational study of the landscape of the transcriptional units (TUs) of E. coli K12, revealed by the available genomic and transcriptomic data, providing new understanding about the complexity of TUs as a whole encoded in the genome of E. coli K12. Results and conclusion Our main findings include that (i) different TUs may overlap with each other by sharing common genes, giving rise to clusters of overlapped TUs (TUCs) along the genomic sequence; (ii) the intergenic regions in front of the first gene of each TU tend to have more conserved sequence motifs than those of the other genes inside the TU, suggesting that TUs each have their own promoters; (iii) the terminators associated with the 3’ ends of TUCs tend to be Rho-independent terminators, substantially more often than terminators of TUs that end inside a TUC; and (iv) the functional relatedness of adjacent gene pairs in individual TUs is higher than those in TUCs, suggesting that individual TUs are more basic functional units than TUCs. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0805-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xizeng Mao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,Present address: MD Anderson Cancer Center, Houston, TX, 77054, USA.
| | - Qin Ma
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,BioEnergy Research Center (BESC), Athens, GA, USA. .,Present address: Department of Plant Science, South Dakota State University, Brookings, SD, 57006, USA. .,Present address: BioSNTR, Brookings, SD, USA.
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China.
| | - Xin Chen
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,College of Computer Sciences and Technology, Changchun, Jilin, China.
| | - Hanyuan Zhang
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,Present address: Systems Biology and Biomedical Informatics (SBBI) Laboratory University of Nebraska-Lincoln 122B/122C Avery Hall, 1144 T St, Lincoln, NE, 68588-0115, USA.
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,BioEnergy Research Center (BESC), Athens, GA, USA. .,College of Computer Sciences and Technology, Changchun, Jilin, China. .,School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
23
|
Lagomarsino MC, Espéli O, Junier I. From structure to function of bacterial chromosomes: Evolutionary perspectives and ideas for new experiments. FEBS Lett 2015; 589:2996-3004. [PMID: 26171924 DOI: 10.1016/j.febslet.2015.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
The link between chromosome structure and function is a challenging open question because chromosomes in vivo are highly dynamic and arduous to manipulate. Here, we examine several promising approaches to tackle this question specifically in bacteria, by integrating knowledge from different sources. Toward this end, we first provide a brief overview of experimental tools that have provided insights into the description of the bacterial chromosome, including genetic, biochemical and fluorescence microscopy techniques. We then explore the possibility of using comparative genomics to isolate functionally important features of chromosome organization, exploiting the fact that features shared between phylogenetically distant bacterial species reflect functional significance. Finally, we discuss possible future perspectives from the field of experimental evolution. Specifically, we propose novel experiments in which bacteria could be screened and selected on the basis of the structural properties of their chromosomes.
Collapse
Affiliation(s)
| | - Olivier Espéli
- CIRB-Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| | - Ivan Junier
- Laboratoire Adaptation et Pathogénie des Micro-organismes - UMR 5163, Université Grenoble 1, CNRS, BP 170, F-38042 Grenoble Cedex 9, France; Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
24
|
Xie T, Fu LY, Yang QY, Xiong H, Xu H, Ma BG, Zhang HY. Spatial features for Escherichia coli genome organization. BMC Genomics 2015; 16:37. [PMID: 25652224 PMCID: PMC4326437 DOI: 10.1186/s12864-015-1258-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background In bacterial genomes, the compactly encoded genes and operons are well organized, with genes in the same biological pathway or operons in the same regulon close to each other on the genome sequence. In addition, the linearly close genes have a higher probability of co-expression and their protein products tend to form protein–protein interactions. However, the organization features of bacterial genomes in a three-dimensional space remain elusive. The DNA interaction data of Escherichia coli, measured by the genome conformation capture (GCC) technique, have recently become available, which allowed us to investigate the spatial features of bacterial genome organization. Results By renormalizing the GCC data, we compared the interaction frequency of operon pairs in the same regulon with that of random operon pairs. The results showed that arrangements of operons in the E. coli genome tend to minimize the spatial distance between operons in the same regulon. A similar global organization feature exists for genes in biological pathways of E. coli. In addition, the genes close to each other spatially (even if they are far from each other on the genome sequence) tend to be co-expressed and form protein–protein interactions. These results provided new insights into the organization principles of bacterial genomes and support the notion of transcription factory. Conclusions This study revealed the organization features of Escherichia coli genomic functional units in the 3D space and furthered our understanding of the link between the three-dimensional structure of chromosomes and biological function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1258-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Xie
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Liang-Yu Fu
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Heng Xiong
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Hongrui Xu
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bin-Guang Ma
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Hong-Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
25
|
Nuñez PA, Romero H, Farber MD, Rocha EPC. Natural selection for operons depends on genome size. Genome Biol Evol 2014; 5:2242-54. [PMID: 24201372 PMCID: PMC3845653 DOI: 10.1093/gbe/evt174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In prokaryotes, genome size is associated with metabolic versatility, regulatory complexity, effective population size, and horizontal transfer rates. We therefore analyzed the covariation of genome size and operon conservation to assess the evolutionary models of operon formation and maintenance. In agreement with previous results, intraoperonic pairs of essential and of highly expressed genes are more conserved. Interestingly, intraoperonic pairs of genes are also more conserved when they encode proteins at similar cell concentrations, suggesting a role of cotranscription in diminishing the cost of waste and shortfall in gene expression. Larger genomes have fewer and smaller operons that are also less conserved. Importantly, lower conservation in larger genomes was observed for all classes of operons in terms of gene expression, essentiality, and balanced protein concentration. We reached very similar conclusions in independent analyses of three major bacterial clades (α- and β-Proteobacteria and Firmicutes). Operon conservation is inversely correlated to the abundance of transcription factors in the genome when controlled for genome size. This suggests a negative association between the complexity of genetic networks and operon conservation. These results show that genome size and/or its proxies are key determinants of the intensity of natural selection for operon organization. Our data fit better the evolutionary models based on the advantage of coregulation than those based on genetic linkage or stochastic gene expression. We suggest that larger genomes with highly complex genetic networks and many transcription factors endure weaker selection for operons than smaller genomes with fewer alternative tools for genetic regulation.
Collapse
Affiliation(s)
- Pablo A Nuñez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
26
|
Kumwenda B, Litthauer D, Reva O. Analysis of genomic rearrangements, horizontal gene transfer and role of plasmids in the evolution of industrial important Thermus species. BMC Genomics 2014; 15:813. [PMID: 25257245 PMCID: PMC4180962 DOI: 10.1186/1471-2164-15-813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 09/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. RESULTS Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. CONCLUSION Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.
Collapse
Affiliation(s)
- Benjamin Kumwenda
- />Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria, Pretoria, South Africa
| | - Derek Litthauer
- />Department of Microbial Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa
| | - Oleg Reva
- />Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Ma Q, Chen X, Liu C, Mao X, Zhang H, Ji F, Wu C, Xu Y. Understanding the commonalities and differences in genomic organizations across closely related bacteria from an energy perspective. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1121-30. [DOI: 10.1007/s11427-014-4734-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/11/2014] [Indexed: 12/15/2022]
|
28
|
Junier I. Conserved patterns in bacterial genomes: a conundrum physically tailored by evolutionary tinkering. Comput Biol Chem 2014; 53 Pt A:125-33. [PMID: 25239779 DOI: 10.1016/j.compbiolchem.2014.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/17/2022]
Abstract
The proper functioning of bacteria is encoded in their genome at multiple levels or scales, each of which is constrained by specific physical forces. At the smallest spatial scales, interatomic forces dictate the folding and function of proteins and nucleic acids. On longer length scales, stochastic forces emerging from the thermal jiggling of proteins and RNAs impose strong constraints on the organization of genes along chromosomes, more particularly in the context of the building of nucleoprotein complexes and the operational mode of regulatory agents. At the cellular level, transcription, replication and cell division activities generate forces that act on both the internal structure and cellular location of chromosomes. The overall result is a complex multi-scale organization of genomes that reflects the evolutionary tinkering of bacteria. The goal of this review is to highlight avenues for deciphering this complexity by focusing on patterns that are conserved among evolutionarily distant bacteria. To this end, I discuss three different organizational scales: the protein structures, the chromosomal organization of genes and the global structure of chromosomes.
Collapse
Affiliation(s)
- Ivan Junier
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
29
|
Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FAO, Drew JC, Farmerie WG, Daroub SH, Triplett EW. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 2014; 9:e101648. [PMID: 24999826 PMCID: PMC4084955 DOI: 10.1371/journal.pone.0101648] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.
Collapse
Affiliation(s)
- Kateryna V. Zhalnina
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raquel Dias
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Michael T. Leonard
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | | | - Flavio A. O. Camargo
- Soil Science Department, Federal Unviersity of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jennifer C. Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - William G. Farmerie
- Genome Sequencing Services Laboratory, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Samira H. Daroub
- Everglades Research and Education Center, University of Florida, Belle Glade, Florida, United States of America
| | - Eric W. Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
30
|
Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol 2014; 80:2193-205. [PMID: 24487526 DOI: 10.1128/aem.03887-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae.
Collapse
|
31
|
Luo Y, Battistuzzi F, Lin K. Evolutionary dynamics of overlapped genes in Salmonella. PLoS One 2013; 8:e81016. [PMID: 24312259 PMCID: PMC3843671 DOI: 10.1371/journal.pone.0081016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Presence of overlapping genes (OGs) is a common phenomenon in bacterial genomes. Most frequently, overlapping genes share coding regions with as few as one nucleotide to as many as thousands of nucleotides. Overlapping genes are often co-regulated, transcriptionally and translationally. Overlapping genes are also subject to the whims of evolution, as the gene overlap is known to be disrupted in some species/strains and participating genes are sometimes lost in independent lineages. Therefore, a better understanding of evolutionary patterns and rates of the disruption of overlapping genes is an important component of genome structure and evolution of gene function. In this study, we investigate the fate of ancestrally overlapping genes in complete genomes from 15 contemporary strains of Salmonella species. We find that the fates of overlapping genes inside and outside operons are distinctly different. A larger fraction of overlapping genes inside operons conserves their overlap as compared to gene pairs outside of the operons (average 0.89 vs. 0.83 per genome). However, when overlapping genes in the operons separate, one partner is lost more frequently than in those separated genes outside of operons (average 0.02 vs. 0.01 per genome). We also investigate the fate of a pan set of overlapping genes at the present and ancestral nodes over a phylogenetic tree based on genome sequence data, respectively. We propose that co-regulation plays important roles on the fates of genes. Furthermore, a vast majority of disruptions occurred prior to the common ancestor of all 15 Salmonella strains, which enables us to obtain an estimate of disruptions between Salmonella and E. coli.
Collapse
Affiliation(s)
- Yingqin Luo
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Fabia Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Kui Lin
- College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
32
|
Xu G, Liu B, Wang F, Wei C, Zhang Y, Sheng J, Wang G, Li F. High-throughput screen of essential gene modules in Mycobacterium tuberculosis: a bibliometric approach. BMC Infect Dis 2013; 13:227. [PMID: 23687949 PMCID: PMC3680244 DOI: 10.1186/1471-2334-13-227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 05/15/2013] [Indexed: 01/24/2023] Open
Abstract
Background Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). The annotation of functional genome and signaling network in M. tuberculosis are still not systematic. Essential gene modules are a collection of functionally related essential genes in the same signaling or metabolic pathway. The determination of essential genes and essential gene modules at genomic level may be important for better understanding of the physiology and pathology of M. tuberculosis, and also helpful for the development of drugs against this pathogen. The establishment of genomic operon database (DOOR) and the annotation of gene pathways have felicitated the genomic analysis of the essential gene modules of M. tuberculosis. Method Bibliometric approach has been used to perform a High-throughput screen for essential genes of M. tuberculosis strain H37Rv. Ant colony algorithm were used to identify the essential genes in other M. tuberculosis reference strains. Essential gene modules were analyzed by operon database DOOR. The pathways of essential genes were assessed by Biocarta, KEGG, NCI-PID, HumanCyc and Reactome. The function prediction of essential genes was analyzed by Pfam. Results A total approximately 700 essential genes were identified in M. tuberculosis genome. 40% of operons are consisted of two or more essential genes. The essential genes were distributed in 92 pathways in M. tuberculosis. In function prediction, 61.79% of essential genes were categorized into virulence, intermediary metabolism/respiration,cell wall related and lipid metabolism, which are fundamental functions that exist in most bacteria species. Conclusion We have identified the essential genes of M. tuberculosis using bibliometric approach at genomic level. The essential gene modules were further identified and analyzed.
Collapse
Affiliation(s)
- Guangyu Xu
- Key Laboratory of Zoonosis, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ma Q, Yin Y, Schell MA, Zhang H, Li G, Xu Y. Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions. Nucleic Acids Res 2013; 41:5594-603. [PMID: 23599001 PMCID: PMC3675479 DOI: 10.1093/nar/gkt261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The circular chromosome of Escherichia coli has been suggested to fold into a collection of sequentially consecutive domains, genes in each of which tend to be co-expressed. It has also been suggested that such domains, forming a partition of the genome, are dynamic with respect to the physiological conditions. However, little is known about which DNA segments of the E. coli genome form these domains and what determines the boundaries of these domain segments. We present a computational model here to partition the circular genome into consecutive segments, theoretically suggestive of the physically folded supercoiled domains, along with a method for predicting such domains under specified conditions. Our model is based on a hypothesis that the genome of E. coli is partitioned into a set of folding domains so that the total number of unfoldings of these domains in the folded chromosome is minimized, where a domain is unfolded when a biological pathway, consisting of genes encoded in this DNA segment, is being activated transcriptionally. Based on this hypothesis, we have predicted seven distinct sets of such domains along the E. coli genome for seven physiological conditions, namely exponential growth, stationary growth, anaerobiosis, heat shock, oxidative stress, nitrogen limitation and SOS responses. These predicted folding domains are highly stable statistically and are generally consistent with the experimental data of DNA binding sites of the nucleoid-associated proteins that assist the folding of these domains, as well as genome-scale protein occupancy profiles, hence supporting our proposed model. Our study established for the first time a strong link between a folded E. coli chromosomal structure and the encoded biological pathways and their activation frequencies.
Collapse
Affiliation(s)
- Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ma Q, Xu Y. Global genomic arrangement of bacterial genes is closely tied with the total transcriptional efficiency. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:66-71. [PMID: 23434046 PMCID: PMC4357662 DOI: 10.1016/j.gpb.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 01/03/2023]
Abstract
The availability of a large number of sequenced bacterial genomes allows researchers not only to derive functional and regulation information about specific organisms but also to study the fundamental properties of the organization of a genome. Here we address an important and challenging question regarding the global arrangement of operons in a bacterial genome: why operons in a bacterial genome are arranged in the way they are. We have previously studied this question and found that operons of more frequently activated pathways tend to be more clustered together in a genome. Specifically, we have developed a simple sequential distance-based pseudo energy function and found that the arrangement of operons in a bacterial genome tend to minimize the clusteredness function (C value) in comparison with artificially-generated alternatives, for a variety of bacterial genomes. Here we extend our previous work, and report a number of new observations: (a) operons of the same pathways tend to group into a few clusters rather than one; and (b) the global arrangement of these operon clusters tend to minimize a new “energy” function (C+ value) that reflects the efficiency of the transcriptional activation of the encoded pathways. These observations provide insights into further study of the genomic organization of genes in bacteria.
Collapse
Affiliation(s)
- Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
35
|
Zhang H, Yin Y, Olman V, Xu Y. Genomic arrangement of regulons in bacterial genomes. PLoS One 2012; 7:e29496. [PMID: 22235300 PMCID: PMC3250446 DOI: 10.1371/journal.pone.0029496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles.
Collapse
Affiliation(s)
- Han Zhang
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Automation and Intelligent Science, College of Information Technical Science, Nankai University, Tianjin, China
| | - Yanbin Yin
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- BioEnergy Science Center, United States of America
| | - Victor Olman
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- BioEnergy Science Center, United States of America
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
36
|
Kuhlman TE, Cox EC. Gene location and DNA density determine transcription factor distributions in Escherichia coli. Mol Syst Biol 2012; 8:610. [PMID: 22968444 PMCID: PMC3472691 DOI: 10.1038/msb.2012.42] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
The diffusion coefficient of the transcription factor LacI within living Escherichia coli has been measured directly by in vivo tracking to be D = 0.4 μm(2)/s. At this rate, simple models of diffusion lead to the expectation that LacI and other proteins will rapidly homogenize throughout the cell. Here, we test this expectation of spatial homogeneity by single-molecule visualization of LacI molecules non-specifically bound to DNA in fixed cells. Contrary to expectation, we find that the distribution depends on the spatial location of its encoding gene. We demonstrate that the spatial distribution of LacI is also determined by the local state of DNA compaction, and that E. coli can dynamically redistribute proteins by modifying the state of its nucleoid. Finally, we show that LacI inhomogeneity increases the strength with which targets located proximally to the LacI gene are regulated. We propose a model for intranucleoid diffusion that can reconcile these results with previous measurements of LacI diffusion, and we discuss the implications of these findings for gene regulation in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Thomas E Kuhlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | | |
Collapse
|
37
|
Expression during host infection and localization of Yersinia pestis autotransporter proteins. J Bacteriol 2011; 193:5936-49. [PMID: 21873491 DOI: 10.1128/jb.05877-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yersinia pestis CO92 has 12 open reading frames encoding putative conventional autotransporters (yaps), nine of which appear to produce functional proteins. Here, we demonstrate the ability of the Yap proteins to localize to the cell surface of both Escherichia coli and Yersinia pestis and show that a subset of these proteins undergoes processing by bacterial surface omptins to be released into the supernatant. Numerous autotransporters have been implicated in pathogenesis, suggesting a role for the Yaps as virulence factors in Y. pestis. Using the C57BL/6 mouse models of bubonic and pneumonic plague, we determined that all of these genes are transcribed in the lymph nodes during bubonic infection and in the lungs during pneumonic infection, suggesting a role for the Yaps during mammalian infection. In vitro transcription studies did not identify a particular environmental stimulus responsible for transcriptional induction. The primary sequences of the Yaps reveal little similarity to any characterized autotransporters; however, two of the genes are present in operons, suggesting that the proteins encoded in these operons may function together. Further work aims to elucidate the specific functions of the Yaps and clarify the contributions of these proteins to Y. pestis pathogenesis.
Collapse
|