1
|
Harada C, Guo X, Harada T. Monogenic gene therapy for glaucoma and optic nerve injury. Neural Regen Res 2025; 20:815-816. [PMID: 38886952 PMCID: PMC11433919 DOI: 10.4103/nrr.nrr-d-24-00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
2
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Bourke L, O’Brien C. Fibrosis and Src Signalling in Glaucoma: From Molecular Pathways to Therapeutic Prospects. Int J Mol Sci 2025; 26:1009. [PMID: 39940776 PMCID: PMC11817269 DOI: 10.3390/ijms26031009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to address the underlying fibrotic changes that perpetuate neurodegeneration. The Src proto-oncogene, a non-receptor tyrosine kinase, has emerged as a key regulator of cellular processes, including fibroblast activation, ECM deposition, and metabolism, making it a promising target for glaucoma therapy. Beyond its well-established roles in cancer and fibrosis, Src influences pathways critical to trabecular meshwork function, aqueous humour outflow, and neurodegeneration. However, the complexity of Src signalling networks remains a challenge, necessitating further investigation into the role of Src in glaucoma pathogenesis. This paper explores the therapeutic potential of Src inhibition to mitigate fibrotic remodelling and elevated IOP in glaucoma, offering a novel approach to halting disease progression.
Collapse
Affiliation(s)
- Liam Bourke
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | | |
Collapse
|
4
|
Namekata K, Guo X, Harada C, Harada T. [Gene therapy for visual function recovery]. Nihon Yakurigaku Zasshi 2025; 160:19-22. [PMID: 39756897 DOI: 10.1254/fpj.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Glaucoma is an age-related neurodegenerative disease and the leading cause of blindness, but currently no fundamental treatment has been present. The main treatment is to reduce intraocular pressure, which is expected to delay the progression of the disease. However, there are many glaucoma patients for whom progression cannot be controlled by lowering intraocular pressure alone, and the development of a fundamental treatment is required. Meanwhile, the clinical application of gene therapy is increasing worldwide. Various gene therapy vectors are still being developed, and technological change is much faster in this field. Gene therapy has already been clinically applied to several neurodegenerative diseases, but gene therapy for glaucoma has not yet been established. Our group is investigating the development of a new treatment for glaucoma by gene therapy using neurotrophic factor signaling. And we aim not only to suppress disease progression by neuroprotection, but also to recover the visual function by axonal regeneration.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
5
|
Zhang L, Zhao ZW, Ma LX, Dong YW. Genome-wide sequencing reveals geographical variations in the thermal adaptation of an aquaculture species with frequent seedling introductions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172010. [PMID: 38575020 DOI: 10.1016/j.scitotenv.2024.172010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.
Collapse
Affiliation(s)
- Liang Zhang
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Zhan-Wei Zhao
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Lin-Xuan Ma
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Yun-Wei Dong
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China.
| |
Collapse
|
6
|
Namekata K, Noro T, Nishijima E, Sotozono A, Guo X, Harada C, Shinozaki Y, Mitamura Y, Nakano T, Harada T. Drug combination of topical ripasudil and brimonidine enhances neuroprotection in a mouse model of optic nerve injury. J Pharmacol Sci 2024; 154:326-333. [PMID: 38485351 DOI: 10.1016/j.jphs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE To determine whether combination of topical ripasudil and brimonidine has more effective neuroprotection on retinal ganglion cells (RGCs) following injury to axons composing the optic nerve. METHODS Topical ripasudil, brimonidine, or mixture of both drugs were administered to adult mice after optic nerve injury (ONI). The influence of drug conditions on RGC health were evaluated by the quantifications of surviving RGCs, phosphorylated p38 mitogen-activated protein kinase (phospho-p38), and expressions of trophic factors and proinflammatory mediators in the retina. RESULTS Topical ripasudil and brimonidine suppressed ONI-induced RGC death respectively, and mixture of both drugs further stimulated RGC survival. Topical ripasudil and brimonidine suppressed ONI-induced phospho-p38 in the whole retina. In addition, topical ripasudil suppressed expression levels of TNFα, IL-1β and monocyte chemotactic protein-1 (MCP-1), whereas topical brimonidine increased the expression level of basic fibroblast growth factor (bFGF). CONCLUSIONS Combination of topical ripasudil and brimonidine may enhance RGC protection by modulating multiple signaling pathways in the retina.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akiko Sotozono
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Alexander MS, Velinov M. DOCK3-Associated Neurodevelopmental Disorder-Clinical Features and Molecular Basis. Genes (Basel) 2023; 14:1940. [PMID: 37895289 PMCID: PMC10606569 DOI: 10.3390/genes14101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein product of DOCK3 is highly expressed in neurons and has a role in cell adhesion and neuronal outgrowth through its interaction with the actin cytoskeleton and key cell signaling molecules. The DOCK3 protein is essential for normal cell growth and migration. Biallelic variants in DOCK3 associated with complete or partial loss of function of the gene were recently reported in six patients with intellectual disability and muscle hypotonia. Only one of the reported patients had congenital malformations outside of the CNS. Further studies are necessary to better determine the prevalence of DOCK3-associated neurodevelopmental disorders and the frequency of non-CNS clinical manifestations in these patients. Since deficiency of the DOCK3 protein product is now an established pathway of this neurodevelopmental condition, supplementing the deficient gene product using a gene therapy approach may be an efficient treatment strategy.
Collapse
Affiliation(s)
- Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA;
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Civitan International Research Center (CIRC), University of Alabama at Birmingham, Birmingham, AL 35233, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Milen Velinov
- Department of Pediatrics, Division of Genetics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Samani A, Karuppasamy M, English KG, Siler CA, Wang Y, Widrick JJ, Alexander MS. DOCK3 regulates normal skeletal muscle regeneration and glucose metabolism. FASEB J 2023; 37:e23198. [PMID: 37742307 PMCID: PMC10539028 DOI: 10.1096/fj.202300386rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.
Collapse
Affiliation(s)
- Adrienne Samani
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Muthukumar Karuppasamy
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Katherine G. English
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Colin A. Siler
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Yimin Wang
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- UAB Center for Exercise Medicine at the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Civitan International Research Center (CIRC), at the University of Alabama at Birmingham, Birmingham, AL 35233
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, Shinozaki Y, Kimura A, Harada C, Harada T. Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation. Cell Death Discov 2023; 9:166. [PMID: 37188749 PMCID: PMC10184973 DOI: 10.1038/s41420-023-01460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Dedicator of cytokinesis 3 (DOCK3) is an atypical member of the guanine nucleotide exchange factors (GEFs) and plays important roles in neurite outgrowth. DOCK3 forms a complex with Engulfment and cell motility protein 1 (Elmo1) and effectively activates Rac1 and actin dynamics. In this study, we screened 462,169 low-molecular-weight compounds and identified the hit compounds that stimulate the interaction between DOCK3 and Elmo1, and neurite outgrowth in vitro. Some of the derivatives from the hit compound stimulated neuroprotection and axon regeneration in a mouse model of optic nerve injury. Our findings suggest that the low-molecular-weight DOCK3 activators could be a potential therapeutic candidate for treating axonal injury and neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Tsuji
- R&D Division, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Jun Takeyama
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Hirokazu Ishikawa
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
10
|
Kiyota N, Namekata K, Nishijima E, Guo X, Kimura A, Harada C, Nakazawa T, Harada T. Effects of constitutively active K-Ras on axon regeneration after optic nerve injury. Neurosci Lett 2023; 799:137124. [PMID: 36780941 DOI: 10.1016/j.neulet.2023.137124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Visual disturbance after optic nerve injury is a serious problem. Attempts have been made to enhance the intrinsic ability of retinal ganglion cells (RGCs) to regenerate their axons, and the importance of PI3K/Akt and RAF/MEK/ERK signal activation has been suggested. Since these signals are shared with oncogenic signaling cascades, in this study, we focused on a constitutively active form of K-Ras, K-RasV12, to determine if overexpression of this molecule could stimulate axon regeneration. We confirmed that K-RasV12 phosphorylated Akt and ERK in vitro. Intravitreal delivery of AAV2-K-RasV12 increased the number of surviving RGCs and promoted 1.0 mm of axon regeneration one week after optic nerve injury without inducing abnormal proliferative effects in the RGCs. In addition, AAV2-K-RasV12 induced robust RGC axon regeneration, reaching as far as approximately 2.5 mm from the injury site, in eight weeks. Our findings suggest that AAV2-K-RasV12 could provide a good model for speedy and efficient analysis of the mechanism underlying axon regeneration in vivo.
Collapse
Affiliation(s)
- Naoki Kiyota
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
11
|
Nishijima E, Honda S, Kitamura Y, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Murakami A, Matsuda A, Nakano T, Parada LF, Harada T. Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors. Mol Ther 2023; 31:810-824. [PMID: 36463402 PMCID: PMC10014229 DOI: 10.1016/j.ymthe.2022.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of neurotrophic factor signaling is a promising therapy for neurodegeneration. However, the transient nature of ligand-dependent activation limits its effectiveness. In this study, we solved this problem by inventing a system that forces membrane localization of the intracellular domain of tropomyosin receptor kinase B (iTrkB), which results in constitutive activation without ligands. Our system overcomes the small size limitation of the genome packaging in adeno-associated virus (AAV) and allows high expression of the transgene. Using AAV-mediated gene therapy in the eyes, we demonstrate that iTrkB expression enhances neuroprotection in mouse models of glaucoma and stimulates robust axon regeneration after optic nerve injury. In addition, iTrkB expression in the retina was also effective in an optic tract transection model, in which the injury site is near the superior colliculus. Regenerating axons successfully formed pathways to their brain targets, resulting in partial recovery of visual behavior. Our system may also be applicable to other trophic factor signaling pathways and lead to a significant advance in the field of gene therapy for neurotrauma and neurodegenerative disorders, including glaucoma.
Collapse
Affiliation(s)
- Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Luis F Parada
- Brain Tumor Center and Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
12
|
Samani A, Karuppasamy M, English KG, Siler CA, Wang Y, Widrick JJ, Alexander MS. DOCK3 regulates normal skeletal muscle regeneration and glucose metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529576. [PMID: 36865261 PMCID: PMC9980075 DOI: 10.1101/2023.02.22.529576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.
Collapse
Affiliation(s)
- Adrienne Samani
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Muthukumar Karuppasamy
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Katherine G. English
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Colin A. Siler
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Yimin Wang
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- UAB Center for Exercise Medicine at the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Civitan International Research Center (CIRC), at the University of Alabama at Birmingham, Birmingham, AL 35233
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10123186. [PMID: 36551942 PMCID: PMC9775075 DOI: 10.3390/biomedicines10123186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.
Collapse
|
14
|
Williams AM, Donoughe S, Munro E, Horne-Badovinac S. Fat2 polarizes the WAVE complex in trans to align cell protrusions for collective migration. eLife 2022; 11:e78343. [PMID: 36154691 PMCID: PMC9576270 DOI: 10.7554/elife.78343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
For a group of cells to migrate together, each cell must couple the polarity of its migratory machinery with that of the other cells in the cohort. Although collective cell migrations are common in animal development, little is known about how protrusions are coherently polarized among groups of migrating epithelial cells. We address this problem in the collective migration of the follicular epithelial cells in Drosophila melanogaster. In this epithelium, the cadherin Fat2 localizes to the trailing edge of each cell and promotes the formation of F-actin-rich protrusions at the leading edge of the cell behind. We show that Fat2 performs this function by acting in trans to concentrate the activity of the WASP family verprolin homolog regulatory complex (WAVE complex) at one long-lived region along each cell's leading edge. Without Fat2, the WAVE complex distribution expands around the cell perimeter and fluctuates over time, and protrusive activity is reduced and unpolarized. We further show that Fat2's influence is very local, with sub-micron-scale puncta of Fat2 enriching the WAVE complex in corresponding puncta just across the leading-trailing cell-cell interface. These findings demonstrate that a trans interaction between Fat2 and the WAVE complex creates stable regions of protrusive activity in each cell and aligns the cells' protrusions across the epithelium for directionally persistent collective migration.
Collapse
Affiliation(s)
- Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
15
|
Lu X, Lv C, Zhao Y, Wang Y, Li Y, Ji C, Wang Z, Ye W, Yu S, Bai J, Cai W. TSG-6 released from adipose stem cells-derived small extracellular vesicle protects against spinal cord ischemia reperfusion injury by inhibiting endoplasmic reticulum stress. Stem Cell Res Ther 2022; 13:291. [PMID: 35831906 PMCID: PMC9281104 DOI: 10.1186/s13287-022-02963-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Spinal cord ischemia reperfusion injury (SCIRI) is a complication of aortic aneurysm repair or spinal cord surgery that is associated with permanent neurological deficits. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been shown to be potential therapeutic options for improving motor functions after SCIRI. Due to their easy access and multi-directional differentiation potential, adipose‐derived stem cells (ADSCs) are preferable for this application. However, the effects of ADSC-derived sEVs (ADSC-sEVs) on SCIRI have not been reported. Results We found that ADSC-sEVs inhibited SCIRI-induced neuronal apoptosis, degradation of tight junction proteins and suppressed endoplasmic reticulum (ER) stress. However, in the presence of the ER stress inducer, tunicamycin, its anti-apoptotic and blood–spinal cord barrier (BSCB) protective effects were significantly reversed. We found that ADSC-sEVs contain tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) whose overexpression inhibited ER stress in vivo by modulating the PI3K/AKT pathway. Conclusions ADSC-sEVs inhibit neuronal apoptosis and BSCB disruption in SCIRI by transmitting TSG-6, which suppresses ER stress by modulating the PI3K/AKT pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02963-4.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.,Department of Orthopaedics, Dongtai Hospital Affiliated to Nantong University, Dongtai City, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yuechao Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Secondary Military Medical University, Shanghai, China.,Department of Orthopedic, PLA Navy No.905 Hospital, Secondary Military Medical University, Shanghai, China
| | - Yufei Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Haining, Zhejiang, China
| | - Yao Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China.
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
16
|
Mallery EL, Yanagisawa M, Zhang C, Lee Y, Robles LM, Alonso JM, Szymanski DB. Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. J Cell Sci 2022; 135:275003. [PMID: 35194638 DOI: 10.1242/jcs.259825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms use DOCK family guanine nucleotide exchange factors to activate Rac/Rho-of-Plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here we use combinations of transgene complementation and live cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.
Collapse
Affiliation(s)
- Eileen L Mallery
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Makoto Yanagisawa
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunhua Zhang
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Youngwoo Lee
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda M Robles
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jose M Alonso
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Daniel B Szymanski
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Reid AL, Wang Y, Samani A, Hightower RM, Lopez MA, Gilbert SR, Ianov L, Crossman DK, Dell’Italia LJ, Millay DP, van Groen T, Halade GV, Alexander MS. DOCK3 is a dosage-sensitive regulator of skeletal muscle and Duchenne muscular dystrophy-associated pathologies. Hum Mol Genet 2020; 29:2855-2871. [PMID: 32766788 PMCID: PMC7566544 DOI: 10.1093/hmg/ddaa173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.
Collapse
Affiliation(s)
- Andrea L Reid
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Yimin Wang
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Adrienne Samani
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, Birmingham, AL 35294, USA
| | - Michael A Lopez
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, Birmingham, AL 35294, USA
| | - Shawn R Gilbert
- Department of Orthopedic Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis J Dell’Italia
- Birmingham Veteran Affairs Medical Center, Birmingham, AL 35233, USA
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Thomas van Groen
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Matthew S Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Topical ripasudil stimulates neuroprotection and axon regeneration in adult mice following optic nerve injury. Sci Rep 2020; 10:15709. [PMID: 32973242 PMCID: PMC7515881 DOI: 10.1038/s41598-020-72748-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Optic nerve injury induces optic nerve degeneration and retinal ganglion cell (RGC) death that lead to visual disturbance. In this study, we examined if topical ripasudil has therapeutic potential in adult mice after optic nerve crush (ONC). Topical ripasudil suppressed ONC-induced phosphorylation of p38 mitogen-activated protein kinase and ameliorated RGC death. In addition, topical ripasudil significantly suppressed the phosphorylation of collapsin response mediator protein 2 and cofilin, and promoted optic nerve regeneration. These results suggest that topical ripasudil promotes RGC protection and optic nerve regeneration by modulating multiple signaling pathways associated with neural cell death, microtubule assembly and actin polymerization.
Collapse
|
20
|
Minutillo A, Panza G, Mauri MC. Musical practice and BDNF plasma levels as a potential marker of synaptic plasticity: an instrument of rehabilitative processes. Neurol Sci 2020; 42:1861-1867. [PMID: 32940801 PMCID: PMC8043880 DOI: 10.1007/s10072-020-04715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023]
Abstract
Background and objectives The aim of the study was to investigate the influence of musical practice on brain plasticity. BDNF (brain-derived neurotrophic factor) is a neurotrophin involved in neuroplasticity and synaptic function. Materials and methods We recruited 48 healthy subjects of equal age and sex (21 musicians and 27 non-musicians). All subjects were administered the AQ (Autism-Spectrum Questionnaire) and plasma levels (PLs) of BDNF, oxytocin (OT), and vasopressin (VP) were measured in the blood sample of every participant. Results. The difference between BDNF PLs in the two groups was found to be statistically significant (t = − 2.214, p = 0.03). Furthermore, oxytocin (OT) PLs and musical practice were found to be independent positive predictors of BDNF PLs (p < 0.04). We also found a negative correlation between BDNF PLs and AD (attention to detail) sub-scale score of AQ throughout the whole sample. Assuming BDNF PLs to be a marker of synaptic plasticity, higher PLs could be associated with the activation of alternative neural pathways: a lower score in the “attention to detail” sub-scale could imply greater flexibility of higher cerebral functions among musicians. Further researches should be conducted to assess the rehabilitative usefulness of these findings among patients affected by psychiatric disorders.
Collapse
Affiliation(s)
- Alessandro Minutillo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Gabriele Panza
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Carlo Mauri
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Zhang L, Li X. Toll-like receptor-9 (TLR-9) deficiency alleviates optic nerve injury (ONI) by inhibiting inflammatory response in vivo and in vitro. Exp Cell Res 2020; 396:112159. [PMID: 32652081 DOI: 10.1016/j.yexcr.2020.112159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Traumatic optic neuropathy is a common clinical problem. Damage to the optic nerve leads to shear stress and triggers secondary swelling within the optic canal. The study aims to explore the role of the inflammatory response following optic nerve injury (ONI) in toll-like receptor-9 knockout mice (TLR-9-/-) compared to wild-type mice (WT). At first, TLR-9-/- and WT mice were subjected to ONI. We then found that ONI significantly up-regulated TLR-9 expression levels in retinal tissues of WT mice. The retinal degeneration after ONI was alleviated in TLR-9-/- mice, as evidenced by the increased number of retinal ganglion cells (RGCs) and thickness of inner retinal layer (IRL). TUNEL staining and immunofluorescence staining of BRN3A indicated that TLR-9 knockout effectively improved the survival of RGCs. ONI-enhanced expression of Iba-1 and TMEM119 was markedly reduced in TLR-9-/- mice, indicating the suppression of microglial activation. Moreover, production of pro-inflammatory regulators, including inducible nitric oxide synthase (iNOS), macrophage chemo-attractant protein (MCP)-1, cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-18 and tumor necrosis factor-α (TNF-α), was significantly decreased in TLR-9-/- mice following ONI. TLR-9 knockout-attenuated inflammation was mainly through repressing myeloid differentiation factor 88 (MyD88) and IL-1 receptor-associated kinase 4 (IRAK4). Furthermore, ONI greatly up-regulated the protein expression levels of phosphorylated (p)-IKKα, p-IκBα and p-nuclear factor (NF)-κB, whereas being repressed in TLR-9-/- mice. The effects of TLR-9 on ONI were verified in lipopolysaccharide (LPS)-stimulated retinal microglial cells transfected with small interfering RNA TLR-9 (siTLR-9). As expected, promoting TLR-9 with its agonist markedly restored inflammation in TLR-9 knockdown cells stimulated by LPS. Therefore, all findings above suggested that suppressing TLR-9 showed neuroprotective effects against ONI through reducing inflammatory response, and TILR-9 might be a promising therapeutic target to develop effective strategies for the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an, 710068, China
| | - Xueying Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
22
|
Yang SG, Li CP, Peng XQ, Teng ZQ, Liu CM, Zhou FQ. Strategies to Promote Long-Distance Optic Nerve Regeneration. Front Cell Neurosci 2020; 14:119. [PMID: 32477071 PMCID: PMC7240020 DOI: 10.3389/fncel.2020.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian retinal ganglion cells (RGCs) in the central nervous system (CNS) often die after optic nerve injury and surviving RGCs fail to regenerate their axons, eventually resulting in irreversible vision loss. Manipulation of a diverse group of genes can significantly boost optic nerve regeneration of mature RGCs by reactivating developmental-like growth programs or suppressing growth inhibitory pathways. By injury of the vision pathway near their brain targets, a few studies have shown that regenerated RGC axons could form functional synapses with targeted neurons but exhibited poor neural conduction or partial functional recovery. Therefore, the functional restoration of eye-to-brain pathways remains a greatly challenging issue. Here, we review recent advances in long-distance optic nerve regeneration and the subsequent reconnecting to central targets. By summarizing our current strategies for promoting functional recovery, we hope to provide potential insights into future exploration in vision reformation after neural injuries.
Collapse
Affiliation(s)
- Shu-Guang Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chang-Ping Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Peng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Namekata K, Guo X, Kimura A, Arai N, Harada C, Harada T. DOCK8 is expressed in microglia, and it regulates microglial activity during neurodegeneration in murine disease models. J Biol Chem 2019; 294:13421-13433. [PMID: 31337702 DOI: 10.1074/jbc.ra119.007645] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Dedicator of cytokinesis 8 (DOCK8) is a guanine nucleotide exchange factor whose loss of function results in immunodeficiency, but its role in the central nervous system (CNS) has been unclear. Microglia are the resident immune cells of the CNS and are implicated in the pathogenesis of various neurodegenerative diseases, including multiple sclerosis (MS) and glaucoma, which affects the visual system. However, the exact roles of microglia in these diseases remain unknown. Herein, we report that DOCK8 is expressed in microglia but not in neurons or astrocytes and that its expression is increased during neuroinflammation. To define the role of DOCK8 in microglial activity, we focused on the retina, a tissue devoid of infiltrating T cells. The retina is divided into distinct layers, and in a disease model of MS/optic neuritis, DOCK8-deficient mice exhibited a clear reduction in microglial migration through these layers. Moreover, neuroinflammation severity, indicated by clinical scores, visual function, and retinal ganglion cell (RGC) death, was reduced in the DOCK8-deficient mice. Furthermore, using a glaucoma disease model, we observed impaired microglial phagocytosis of RGCs in DOCK8-deficient mice. Our data demonstrate that DOCK8 is expressed in microglia and regulates microglial activity in disease states. These findings contribute to a better understanding of the molecular pathways involved in microglial activation and implicate a role of DOCK8 in several neurological diseases.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Brain Pathology Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| |
Collapse
|
24
|
Abstract
Dr. Hideo Kimura is recognized as a redox pioneer because he has published an article in the field of antioxidant and redox biology that has been cited >1000 times, and 29 articles that have been cited >100 times. Since the first description of hydrogen sulfide (H2S) as a toxic gas 300 years ago, most studies have been devoted to its toxicity. In 1996, Dr. Kimura demonstrated a physiological role of H2S as a mediator of cognitive function and cystathionine β-synthase as an H2S-producing enzyme. In the following year, he showed H2S as a vascular smooth muscle relaxant in synergy with nitric oxide and its production by cystathionine γ-lyase in vasculature. Subsequently he reported the cytoprotective effect of H2S on neurons against oxidative stress. Since then, studies on H2S have unveiled numerous physiological roles such as the regulation of inflammation, cell growth, oxygen sensing, and senescence. He also discovered polysulfides (H2Sn), which have a higher number of sulfur atoms than H2S and are one of the active forms of H2S, as potent signaling molecules produced by 3-mercaptopyruvate sulfurtransferase. H2Sn regulate ion channels and transcription factors to upregulate antioxidant genes, tumor suppressors, and protein kinases to, in turn, regulate blood pressure. These findings led to the re-evaluation of other persulfurated molecules such as cysteine persulfide and glutathione persulfide. Dr. Kimura is a pioneer of studies on H2S and H2Sn as signaling molecules. It is fortunate to come across a secret of nature and pick it up. -Prof. Hideo Kimura.
Collapse
Affiliation(s)
- David Lefer
- CV Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
25
|
Wiltrout K, Ferrer A, van de Laar I, Namekata K, Harada T, Klee EW, Zimmerman MT, Cousin MA, Kempainen JL, Babovic-Vuksanovic D, van Slegtenhorst MA, Aarts-Tesselaar CD, Schnur RE, Andrews M, Shinawi M. Variants in DOCK3 cause developmental delay and hypotonia. Eur J Hum Genet 2019; 27:1225-1234. [PMID: 30976111 DOI: 10.1038/s41431-019-0397-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
The DOCK3 gene encodes the Dedicator of cytokinesis 3 (DOCK3) protein, which belongs to the family of guanine nucleotide exchange factors and is expressed almost exclusively in the brain and spinal cord. We used whole exome sequencing (WES) to investigate the molecular cause of developmental delay and hypotonia in three unrelated probands. WES identified truncating and splice site variants in Patient 1 and compound heterozygous and homozygous missense variants in Patients 2 and 3, respectively. We studied the effect of the three missense variants in vitro by using site-directed mutagenesis and pull-down assay and show that the induction of Rac1 activation was significantly lower in DOCK3 mutant cells compared with wild type human DOCK3 (P < 0.05). We generated a protein model to further examine the effect of the two missense variants within or adjacent to the DHR-2 domain in DOCK3 and this model supports pathogenicity. Our results support a loss of function mechanism but the data on the patients with missense variants should be cautiously interpreted because of the variability of the phenotypes and limited number of cases. Prior studies have described DOCK3 bi-allelic loss of function variants in two families with ataxia, hypotonia, and developmental delay. Here, we report on three patients with DOCK3-related developmental delay, wide-based or uncoordinated gait, and hypotonia, further supporting DOCK3's role in a neurodevelopmental syndrome and expanding the spectrum of phenotypic and genotypic variability.
Collapse
Affiliation(s)
- Kimberly Wiltrout
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ingrid van de Laar
- Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael T Zimmerman
- Genomics Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Marisa Andrews
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Chen Z, Hu Q, Xie Q, Wu S, Pang Q, Liu M, Zhao Y, Tu F, Liu C, Chen X. Effects of Treadmill Exercise on Motor and Cognitive Function Recovery of MCAO Mice Through the Caveolin-1/VEGF Signaling Pathway in Ischemic Penumbra. Neurochem Res 2019; 44:930-946. [DOI: 10.1007/s11064-019-02728-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
|
27
|
Branching mechanisms shaping dendrite architecture. Dev Biol 2018; 451:16-24. [PMID: 30550882 DOI: 10.1016/j.ydbio.2018.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
A neuron's contribution to the information flow within a neural circuit is governed by the structure of its dendritic arbor. The geometry of the dendritic arbor directly determines synaptic density and the size of the receptive field, both of which influence the firing pattern of the neuron. Importantly, the position of individual dendritic branches determines the identity of the neuron's presynaptic partner and thus the nature of the incoming sensory information. To generate the unique stereotypic architecture of a given neuronal subtype, nascent branches must emerge from the dendritic shaft at preprogramed branch points. Subsequently, a complex array of extrinsic factors regulates the degree and orientation of branch expansion to ensure maximum coverage of the receptive field whilst constraining growth within predetermined territories. In this review we focus on studies that best illustrate how environmental cues such as the Wnts and Netrins and their receptors sculpt the dendritic arbor. We emphasize the pivotal role played by the actin cytoskeleton and its upstream regulators in branch initiation, outgrowth and navigation. Finally, we discuss how protocadherin and DSCAM contact-mediated repulsion prevents inappropriate synapse formation between sister dendrites or dendrites and the axon from the same neuron. Together these studies highlight the clever ways evolution has solved the problem of constructing complex branch geometries.
Collapse
|
28
|
Harada C, Kimura A, Guo X, Namekata K, Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br J Ophthalmol 2018; 103:161-166. [PMID: 30366949 PMCID: PMC6362806 DOI: 10.1136/bjophthalmol-2018-312724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 12/18/2022]
Abstract
Glaucoma is one of the leading causes of vision loss in the world. Currently, pharmacological intervention for glaucoma therapy is limited to eye drops that reduce intraocular pressure (IOP). Recent studies have shown that various factors as well as IOP are involved in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. To date, various animal models of glaucoma have been established, including glutamate/aspartate transporter knockout (KO) mice, excitatory amino acid carrier 1 KO mice, optineurin E50K knock-in mice, DBA/2J mice and experimentally induced models. These animal models are very useful for elucidating the pathogenesis of glaucoma and for identifying potential therapeutic targets. However, each model represents only some aspects of glaucoma, never the whole disease. This review will summarise the benefits and limitations of using disease models of glaucoma and recent basic research in retinal protection using existing drugs.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
29
|
Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury. Sci Rep 2018; 8:10132. [PMID: 29973613 PMCID: PMC6031618 DOI: 10.1038/s41598-018-28425-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Neuritin is a small extracellular protein that plays important roles in the process of neural development, synaptic plasticity, and neural cell survival. Here we investigated the function of neuritin in a mouse model of optic nerve injury (ONI). ONI induced upregulation of neuritin mRNA in the retina of WT mice. The retinal structure and the number of retinal ganglion cells (RGCs) were normal in adult neuritin knockout (KO) mice. In vivo retinal imaging and histopathological analyses demonstrated that RGC death and inner retinal degeneration following ONI were more severe in neuritin KO mice. Immunoblot analyses revealed that ONI-induced phosphorylation of Akt and ERK were suppressed in neuritin KO mice. Our findings suggest that neuritin has neuroprotective effects following ONI and may be useful for treatment of posttraumatic complication.
Collapse
|
30
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
31
|
Iwata-Otsubo A, Ritter AL, Weckselbatt B, Ryan NR, Burgess D, Conlin LK, Izumi K. DOCK3-related neurodevelopmental syndrome: Biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia. Am J Med Genet A 2017; 176:241-245. [PMID: 29130632 DOI: 10.1002/ajmg.a.38517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 01/04/2023]
Abstract
Dedicator of cytokinesis (DOCK) family are evolutionary conserved guanine nucleotide exchange factors (GEFs) for the Rho GTPases, Rac, and Cdc42. DOCK3 functions as a GEF for Rac1, and plays an important role in promoting neurite and axonal growth by stimulating actin dynamics and microtubule assembly pathways in the central nervous system. Here we report a boy with developmental delay, hypotonia, and ataxia due to biallelic DOCK3 deletion. Chromosomal single nucleotide polymorphism (SNP) microarray analysis detected a 170 kb homozygous deletion including exons 6-12 of the DOCK3 gene at 3p21.2. Symptoms of our proband resembles a phenotype of Dock3 knockout mice exhibiting sensorimotor impairments. Furthermore, our proband has clinical similarities with two siblings with compound heterozygous loss-of-function mutations of DOCK3 reported in [Helbig, Mroske, Moorthy, Sajan, and Velinov (); https://doi.org/10.1111/cge.12995]. Biallelic DOCK3 mutations cause a neurodevelopmental disorder characterized by unsteady gait, hypotonia, and developmental delay.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - Alyssa L Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - Brooke Weckselbatt
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital, Pennsylvania, Philadelphia
| | - Nicole R Ryan
- Division of Neurology, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - David Burgess
- Division of Developmental Pediatrics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital, Pennsylvania, Philadelphia.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia.,Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital, Pennsylvania, Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Figueiró HV, Li G, Trindade FJ, Assis J, Pais F, Fernandes G, Santos SHD, Hughes GM, Komissarov A, Antunes A, Trinca CS, Rodrigues MR, Linderoth T, Bi K, Silveira L, Azevedo FCC, Kantek D, Ramalho E, Brassaloti RA, Villela PMS, Nunes ALV, Teixeira RHF, Morato RG, Loska D, Saragüeta P, Gabaldón T, Teeling EC, O’Brien SJ, Nielsen R, Coutinho LL, Oliveira G, Murphy WJ, Eizirik E. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. SCIENCE ADVANCES 2017; 3:e1700299. [PMID: 28776029 PMCID: PMC5517113 DOI: 10.1126/sciadv.1700299] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 05/05/2023]
Abstract
The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages.
Collapse
Affiliation(s)
- Henrique V. Figueiró
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Fernanda J. Trindade
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Assis
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiano Pais
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Fernandes
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah H. D. Santos
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg, Russia
| | - Agostinho Antunes
- Departamento de Biologia, Faculdade de Ciências and CIIMAR/CIMAR, Universidade do Porto, Porto, Portugal
| | - Cristine S. Trinca
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maíra R. Rodrigues
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tyler Linderoth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720–3140, USA
| | - Ke Bi
- Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Fernando C. C. Azevedo
- Universidade Federal de São João Del Rey, São João Del Rey, Minas Gerais, Brazil
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
| | - Daniel Kantek
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, Distrito Federal, Brazil
| | - Emiliano Ramalho
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Amazonas, Brazil
| | - Ricardo A. Brassaloti
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Piracicaba, São Paulo, Brazil
| | | | | | - Rodrigo H. F. Teixeira
- Zoológico Municipal de Sorocaba, Sorocaba, São Paulo, Brazil
- Programa de Pós-Graduação em Animais Selvagens, Universidade Estadual Paulista–Botucatu, São Paulo, Brazil
| | - Ronaldo G. Morato
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, Distrito Federal, Brazil
| | - Damian Loska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg, Russia
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720–3140, USA
| | - Luiz L. Coutinho
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Piracicaba, São Paulo, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
- Instituto Tecnológico Vale, Belém, Pará, Brazil
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
| |
Collapse
|
33
|
Helbig KL, Mroske C, Moorthy D, Sajan SA, Velinov M. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability. Clin Genet 2017; 92:430-433. [PMID: 28195318 DOI: 10.1111/cge.12995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
Abstract
DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine-nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorganization. Dock3 knockout mice exhibit motor deficiencies with abnormal ataxic gait and impaired learning. We report 2 siblings with biallelic loss-of-function variants in DOCK3. Diagnostic whole-exome sequencing (WES) and chromosomal microarray were performed on a proband with severe developmental disability, hypotonia, and ataxic gait. Testing was also performed on the proband's similarly affected brother. A paternally inherited 458 kb deletion in chromosomal region 3p21.2 disrupting the DOCK3 gene was identified in both affected siblings. WES identified a nonsense variant c.382C>G (p.Gln128*) in the DOCK3 gene (NM_004947) on the maternal allele in both siblings. Common features in both affected individuals include severe developmental disability, ataxic gait, and severe hypotonia, which recapitulates the Dock3 knockout mouse phenotype. We show that complete DOCK3 deficiency in humans leads to developmental disability with significant hypotonia and gait ataxia, probably due to abnormal axonal development.
Collapse
Affiliation(s)
- K L Helbig
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - C Mroske
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - D Moorthy
- The George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - S A Sajan
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - M Velinov
- The George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Cerikan B, Schiebel E. Mechanism of cell-intrinsic adaptation to Adams-Oliver Syndrome gene DOCK6 disruption highlights ubiquitin-like modifier ISG15 as a regulator of RHO GTPases. Small GTPases 2017; 10:210-217. [PMID: 28287327 DOI: 10.1080/21541248.2017.1297882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DOCK6 is a RAC1/CDC42 guanine nucleotide exchange factor, however, little is known about its function and sub-cellular localization. DOCK6 regulates the balance between RAC1 and RHOA activity during cell adhesion and is important for CDC42-dependent mitotic chromosome alignment. Surprisingly, a cell intrinsic adaptation mechanism compensates for errors in these DOCK6 functions that arise as a consequence of prolonged DOCK6 depletion or complete removal in DOCK6 knockout cells. Down-regulation of the ubiquitin-like modifier ISG15 accounts for this adaptation. Strikingly, although most other DOCK family proteins are deployed on the plasma membrane, here we show that DOCK6 localizes to the endoplasmic reticulum (ER) in dependence of its DHR-1 domain. ER localization of DOCK6 opens up new insights into its functions.
Collapse
Affiliation(s)
- Berati Cerikan
- a Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz , Heidelberg , Germany
| | - Elmar Schiebel
- a Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz , Heidelberg , Germany
| |
Collapse
|
35
|
Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2817252. [PMID: 28270908 PMCID: PMC5320364 DOI: 10.1155/2017/2817252] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease of the eye and it is one of the leading causes of blindness. Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons, namely, the optic nerve, usually associated with elevated intraocular pressure (IOP). Current glaucoma therapies target reduction of IOP, but since RGC death is the cause of irreversible vision loss, neuroprotection may be an effective strategy for glaucoma treatment. One of the risk factors for glaucoma is increased oxidative stress, and drugs with antioxidative properties including valproic acid and spermidine, as well as inhibition of apoptosis signal-regulating kinase 1, an enzyme that is involved in oxidative stress, have been reported to prevent glaucomatous retinal degeneration in mouse models of glaucoma. Optic neuritis is a demyelinating inflammation of the optic nerve that presents with visual impairment and it is commonly associated with multiple sclerosis, a chronic demyelinating disease of the central nervous system. Although steroids are commonly used for treatment of optic neuritis, reduction of oxidative stress by approaches such as gene therapy is effective in ameliorating optic nerve demyelination in preclinical studies. In this review, we discuss oxidative stress as a therapeutic target for glaucoma and optic neuritis.
Collapse
|
36
|
Cui HY, Wang SJ, Miao JY, Fu ZG, Feng F, Wu J, Yang XM, Chen ZN, Jiang JL. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling. Oncotarget 2016; 7:5613-29. [PMID: 26716413 PMCID: PMC4868709 DOI: 10.18632/oncotarget.6723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/31/2022] Open
Abstract
The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis.
Collapse
Affiliation(s)
- Hong-Yong Cui
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Shi-Jie Wang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Ji-Yu Miao
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-Guang Fu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fei Feng
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Jiao Wu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiang-Min Yang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-Nan Chen
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Jian-Li Jiang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
37
|
Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int J Mol Sci 2016; 17:ijms17091584. [PMID: 27657046 PMCID: PMC5037849 DOI: 10.3390/ijms17091584] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.
Collapse
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
38
|
Xu C, Fu X, Zhu S, Liu JJ. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth. Mol Biol Cell 2016; 27:3342-3356. [PMID: 27605705 PMCID: PMC5170866 DOI: 10.1091/mbc.e16-05-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Retrolinkin, a neuronal membrane protein, coordinates with endophilin A1 and mediates early endocytic trafficking and signal transduction of the ligand-receptor complex formed between brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), in dendrites of CNS neurons. Here we report that retrolinkin interacts with the CYFIP1/2 subunit of the WAVE1 complex, a member of the WASP/WAVE family of nucleation-promoting factors that binds and activates the Arp2/3 complex to promote branched actin polymerization. WAVE1, not N-WASP, is required for BDNF-induced TrkB endocytosis and dendrite outgrowth. Disruption of the interaction between retrolinkin and CYFIP1/2 impairs recruitment of WAVE1 to neuronal plasma membrane upon BDNF addition and blocks internalization of activated TrkB. We also show that WAVE1-mediated endocytosis of BDNF-activated TrkB is actin dependent and clathrin independent. These results not only reveal the mechanistic role of retrolinkin in BDNF-TrkB endocytosis, but also indicate that WASP/WAVE-dependent actin polymerization during endocytosis is regulated by cell type-specific and cargo-specific modulators.
Collapse
Affiliation(s)
- Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiuping Fu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shaoxia Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Bond ME, Brown R, Rallis C, Bähler J, Mole SE. A central role for TOR signalling in a yeast model for juvenile CLN3 disease. MICROBIAL CELL 2015; 2:466-480. [PMID: 28357272 PMCID: PMC5354605 DOI: 10.15698/mic2015.12.241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.
Collapse
Affiliation(s)
- Michael E Bond
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rachel Brown
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Charalampos Rallis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK. ; UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. ; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
40
|
Harada C, Azuchi Y, Noro T, Guo X, Kimura A, Namekata K, Harada T. TrkB Signaling in Retinal Glia Stimulates Neuroprotection after Optic Nerve Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3238-47. [PMID: 26476348 DOI: 10.1016/j.ajpath.2015.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/13/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neural cell survival mainly by activating TrkB receptors. Several lines of evidence support a key role for BDNF-TrkB signaling in survival of adult retinal ganglion cells in animal models of optic nerve injury (ONI), but the neuroprotective effect of exogenous BDNF is transient. Glial cells have recently attracted considerable attention as mediators of neural cell survival, and TrkB expression in retinal glia suggests its role in neuroprotection. To elucidate this point directly, we examined the effect of ONI on TrkB(flox/flox):glial fibrillary acidic protein (GFAP)-Cre+ (TrkB(GFAP)) knockout (KO) mice, in which TrkB is deleted in retinal glial cells. ONI markedly increased mRNA expression levels of basic fibroblast growth factor (bFGF) in wild-type (WT) mice but not in TrkB(GFAP) KO mice. Immunohistochemical analysis at 7 days after ONI (d7) revealed bFGF up-regulation mainly occurred in Müller glia. ONI-induced retinal ganglion cell loss in WT mice was consistently mild compared with TrkB(GFAP) KO mice at d7. On the other hand, ONI severely decreased TrkB expression in both WT and TrkB(GFAP) KO mice after d7, and the severity of retinal degeneration was comparable with TrkB(GFAP) KO mice at d14. Our data provide direct evidence that glial TrkB signaling plays an important role in the early stage of neural protection after traumatic injury.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
41
|
Dock3 Participate in Epileptogenesis Through rac1 Pathway in Animal Models. Mol Neurobiol 2015; 53:2715-25. [PMID: 26319681 DOI: 10.1007/s12035-015-9406-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common and severe neurologic diseases. The mechanisms of epilepsy are still not fully understood. Dock3 (dedicator of cytokinesis 3) is one of the new kinds of guanine-nucleotide exchange factors (GEF) and plays an important role in neuronal synaptic plasticity and cytoskeleton rearrangement; the same mechanisms were also found in epilepsy. However, little is known regarding the expression of Dock3 in the epileptic brain and whether Dock3 interventions affect the epileptic process. In this study, we showed that the expression of Dock3 significantly increased in IE patients and a lithium-pilocarpine epilepsy model compared with the controls. Inhibition of Dock3 by Dock3 shRNA impaired the severity of status epilepticus in the acute stage and decreased the spontaneous recurrent seizures times in the chronic stage of lithium-pilocarpine model and decreased the expression of rac1-GTP. Consistent with decreased expression of Dock3, the latent period in a pentylenetetrazole kindling model also increased. Our results demonstrated that the increased expression of Dock3 in the brain is associated with epileptogenesis and specific inhibition of Dock3 may be a potential target in preventing the development of epilepsy in patients.
Collapse
|
42
|
Noro T, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Nakano T, Tsuneoka H, Harada T. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death Dis 2015; 6:e1720. [PMID: 25880087 PMCID: PMC4650557 DOI: 10.1038/cddis.2015.93] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Spermidine acts as an endogenous free radical scavenger and inhibits the action of reactive oxygen species. In this study, we examined the effects of spermidine on retinal ganglion cell (RGC) death in a mouse model of optic nerve injury (ONI). Daily ingestion of spermidine reduced RGC death following ONI and sequential in vivo retinal imaging revealed that spermidine effectively prevented retinal degeneration. Apoptosis signal-regulating kinase-1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase kinase kinase and has an important role in ONI-induced RGC apoptosis. We demonstrated that spermidine suppresses ONI-induced activation of the ASK1-p38 mitogen-activated protein kinase pathway. Moreover, production of chemokines important for microglia recruitment was decreased with spermidine treatment and, consequently, accumulation of retinal microglia is reduced. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with spermidine treatment, particularly in microglia. Furthermore, daily spermidine intake enhanced optic nerve regeneration in vivo. Our findings indicate that spermidine stimulates neuroprotection as well as neuroregeneration, and may be useful for treatment of various neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- T Noro
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - X Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - H Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - T Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
43
|
Inhibition of RAC1-GEF DOCK3 by miR-512-3p contributes to suppression of metastasis in non-small cell lung cancer. Int J Biochem Cell Biol 2015; 61:103-14. [DOI: 10.1016/j.biocel.2015.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
|
44
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|
45
|
Namekata K, Kimura A, Harada C, Yoshida H, Matsumoto Y, Harada T. Dock3 protects myelin in the cuprizone model for demyelination. Cell Death Dis 2014; 5:e1395. [PMID: 25165881 PMCID: PMC4454328 DOI: 10.1038/cddis.2014.357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
Abstract
Dedicator of cytokinesis 3 (Dock3) belongs to an atypical family of the guanine nucleotide exchange factors. It is predominantly expressed in the neural tissues and causes cellular morphological changes by activating the small GTPase Rac1. We previously reported that Dock3 overexpression protects retinal ganglion cells from excitotoxic cell death. Oligodendrocytes are the myelinating cells of axons in the central nervous system and these cells are damaged in demyelinating disorders including multiple sclerosis (MS) and optic neuritis. In this study, we examined if Dock3 is expressed in oligodendrocytes and if increasing Dock3 signals can suppress demyelination in a cuprizone-induced demyelination model, an animal model of MS. We demonstrate that Dock3 is expressed in oligodendrocytes and Dock3 overexpression protects myelin in the corpus callosum following cuprizone treatment. Furthermore, we show that cuprizone demyelinates optic nerves and the extent of demyelination is ameliorated in mice overexpressing Dock3. Cuprizone treatment impairs visual function, which was demonstrated by multifocal electroretinograms, an established non-invasive method, and Dock3 overexpression prevented this effect. In mice overexpressing Dock3, Erk activation is increased, suggesting this may at least partly explain the observed protective effects. Our findings suggest that Dock3 may be a therapeutic target for demyelinating disorders including optic neuritis.
Collapse
Affiliation(s)
- K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Yoshida
- Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Y Matsumoto
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Harada
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
46
|
Semba K, Namekata K, Kimura A, Harada C, Katome T, Yoshida H, Mitamura Y, Harada T. Dock3 overexpression and p38 MAPK inhibition synergistically stimulate neuroprotection and axon regeneration after optic nerve injury. Neurosci Lett 2014; 581:89-93. [PMID: 25172145 DOI: 10.1016/j.neulet.2014.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
The dedicator of cytokinesis 3 (Dock3) is an atypical guanine nucleotide exchange factor that is predominantly expressed in the CNS. Dock3 exerts neuroprotective effects and stimulates optic nerve regeneration. The p38 mitogen-activated protein kinase acts downstream of apoptosis signal-regulating kinase 1 (ASK1) signaling and plays an important role in neural cell death. We assessed a therapeutic efficacy of Dock3 stimulation and p38 inhibition in retinal degeneration induced by optic nerve injury (ONI). In vivo retinal imaging using optical coherence tomography revealed that ONI-induced retinal degeneration was ameliorated in SB203580 (a p38 inhibitor)-treated WT mice and PBS-treated Dock3 overexpressing (Dock3 Tg) mice, and SB203580 further stimulated retinal protection in Dock3 Tg mice. In addition, SB203580 increased the number of regenerating axons after ONI in both WT and Dock3 Tg mice. ONI-induced phosphorylation of ASK1, p38 and the N-methyl-d-aspartate receptor 2B subunit were suppressed in the retina of Dock3 Tg mice. Inhibition of the ASK1 pathway in Dock3 Tg mice suggests that Dock3 may have an antioxidant-like property. These results indicate that overexpression of Dock3 and pharmacological interruption of p38 have synergistic effects for both neuroprotection and axon regeneration, thus combined application may be beneficial for the treatment of ONI.
Collapse
Affiliation(s)
- Kentaro Semba
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Katome
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroshi Yoshida
- Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan; Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan.
| |
Collapse
|
47
|
Semba K, Namekata K, Guo X, Harada C, Harada T, Mitamura Y. Renin-angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis 2014; 5:e1333. [PMID: 25032856 PMCID: PMC4123089 DOI: 10.1038/cddis.2014.296] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/13/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
Abstract
Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). In the present study, we found that expressions of angiotensin II type 1 receptor (AT1-R) and Toll-like receptor 4 (TLR4) are increased in RGCs and retinal Müller glia in EAAC1-deficient (KO) mice. The orally active AT1-R antagonist candesartan suppressed TLR4 and lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expressions in the EAAC1 KO mouse retina. Sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with candesartan was effective for RGC protection in EAAC1 KO mice without affecting IOP. In cultured Müller glia, candesartan suppressed LPS-induced iNOS production by inhibiting the TLR4-apoptosis signal-regulating kinase 1 pathway. These results suggest that the renin–angiotensin system is involved in the innate immune responses in both neural and glial cells, which accelerate neural cell death. Our findings raise intriguing possibilities for the management of glaucoma by utilizing widely prescribed drugs for the treatment of high blood pressure, in combination with conventional treatments to lower IOP.
Collapse
Affiliation(s)
- K Semba
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - X Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Harada
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Y Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
Namekata K, Kimura A, Kawamura K, Harada C, Harada T. Dock GEFs and their therapeutic potential: neuroprotection and axon regeneration. Prog Retin Eye Res 2014; 43:1-16. [PMID: 25016980 DOI: 10.1016/j.preteyeres.2014.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022]
Abstract
The dedicator of cytokinesis (Dock) family is composed of atypical guanine exchange factors (GEFs) that activate the Rho GTPases Rac1 and Cdc42. Rho GTPases are best documented for their roles in actin polymerization and they regulate important cellular functions, including morphogenesis, migration, neuronal development, and cell division and adhesion. To date, 11 Dock family members have been identified and their roles have been reported in diverse contexts. There has been increasing interest in elucidating the roles of Dock proteins in recent years and studies have revealed that they are potential therapeutic targets for various diseases, including glaucoma, Alzheimer's disease, cancer, attention deficit hyperactivity disorder and combined immunodeficiency. Among the Dock proteins, Dock3 is predominantly expressed in the central nervous system and recent studies have revealed that Dock3 plays a role in protecting retinal ganglion cells from neurotoxicity and oxidative stress as well as in promoting optic nerve regeneration. In this review, we discuss the current understanding of the 11 Dock GEFs and their therapeutic potential, with a particular focus on Dock3 as a novel target for the treatment of glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kazuto Kawamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
49
|
Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 2014; 93:466-77. [PMID: 25022758 DOI: 10.1016/j.ejcb.2014.06.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
Dock family proteins are evolutionary conserved exchange factors for the Rho GTPases Rac and Cdc42. There are 11 Dock proteins in mammals, named Dock1 (or Dock180) to Dock11 that play different cellular functions. In particular, Dock proteins regulate actin cytoskeleton, cell adhesion and migration. Not surprisingly, members of the Dock family have been involved in various pathologies, including cancer and defects in the central nervous and immune systems. This review proposes an update of the recent findings regarding the function of Dock proteins, focusing on their role in the control of cell migration and invasion and the consequences in human diseases.
Collapse
Affiliation(s)
- Gilles Gadea
- CNRS UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, France; Montpellier University, France
| | - Anne Blangy
- CNRS UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, France; Montpellier University, France.
| |
Collapse
|
50
|
Abstract
Rho GTPases regulate many essential processes during development, yet the full impact of their upstream regulation through guanine nucleotide exchange factors (GEFs) is only beginning to be appreciated. In this review, Laurin and Côté focus on emerging biological functions of the mammalian Dock family of GEFs in development and disease and discuss how recent discoveries might be exploited for novel therapeutic strategies. Rho GTPases play key regulatory roles in many aspects of embryonic development, regulating processes such as differentiation, proliferation, morphogenesis, and migration. Two families of guanine nucleotide exchange factors (GEFs) found in metazoans, Dbl and Dock, are responsible for the spatiotemporal activation of Rac and Cdc42 proteins and their downstream signaling pathways. This review focuses on the emerging roles of the mammalian DOCK family in development and disease. We also discuss, when possible, how recent discoveries concerning the biological functions of these GEFs might be exploited for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mélanie Laurin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec H2W 1R7, Canada
| | | |
Collapse
|