1
|
Zhang N, Liu H. Switch on and off: Phospho-events in light signaling pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40243236 DOI: 10.1111/jipb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Light is a fundamental environmental cue that dynamically orchestrates plant growth and development through spatiotemporally regulated molecular networks. Among these, phosphorylation, a key post-translational modification, plays a crucial role in controlling the function, stability, subcellular localization, and protein-protein interactions of light signaling components. This review systematically examines phosphorylation-dependent regulatory events within the Arabidopsis light signaling cascade, focusing on its regulatory mechanisms, downstream functional consequences, and crosstalk with other signaling pathways. We underscore the pivotal role of phosphorylation in light signaling transduction, elucidating how the phosphorylation-decoding framework transduces light information into growth and developmental plasticity to modulate plant-environment interactions.
Collapse
Affiliation(s)
- Nan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
2
|
Liu Y, Wang J, Liu X, Liao T, Ren H, Liu L, Huang X. The UV-B photoreceptor UVR8 interacts with the LOX1 enzyme to promote stomatal closure through the LOX-derived oxylipin pathway. THE PLANT CELL 2025; 37:koaf060. [PMID: 40123505 PMCID: PMC11979336 DOI: 10.1093/plcell/koaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Ultraviolet-B (UV-B) light-induced stomatal closure requires the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) and nitric oxide (NO). However, the signaling pathways by which UV-B light regulates stomatal closure remain elusive. Here, we reveal that UVR8 signaling in the epidermis mediates stomatal closure in a tissue-specific manner in Arabidopsis (Arabidopsis thaliana). UV-B light promotes PHOSPHOLIPASE 1 (PLIP1)/PLIP3-mediated linoleic acid and α-linolenic acid accumulation and induces LIPOXYGENASE 1 (LOX1) expression. LOX1, which catabolizes linoleic acid and α-linolenic acid to produce oxylipin derivatives, acts downstream of UVR8 and upstream of the salicylic acid (SA) pathway associated with stomatal defense. Photoactivated UVR8 interacts with LOX1 and enhances its activity. Protein crystallography demonstrates that A. thaliana LOX1 and its ortholog in soybean (Glycine max) share overall structural similarity and conserved residues in the oxygen cavity, substrate cavity, and metal-binding site that are required for 9-LOX activity. The disruption of UVR8-LOX1 contact sites near the LOX1 oxygen and substrate cavities prevents UVR8-enhanced LOX1 activity and compromises stomatal closure upon UV-B exposure. Overall, our study uncovers a noncanonical UV-B signaling module, consisting of the UVR8 photoreceptor and the cytoplasmic lipoxygenase, that mediates stomatal responses to UV-B light.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Jue Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Xiaotian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Ting Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Liu W, Jenkins GI. Recent advances in UV-B signalling: interaction of proteins with the UVR8 photoreceptor. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:873-881. [PMID: 38525857 PMCID: PMC11805588 DOI: 10.1093/jxb/erae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates many plant responses to UV-B and short wavelength UV-A light. UVR8 functions through interactions with other proteins which lead to extensive changes in gene expression. Interactions with particular proteins determine the nature of the response to UV-B. It is therefore important to understand the molecular basis of these interactions: how are different proteins able to bind to UVR8 and how is differential binding regulated? This concise review highlights recent developments in addressing these questions. Key advances are discussed with regard to: identification of proteins that interact with UVR8; the mechanism of UVR8 accumulation in the nucleus; the photoactivation of UVR8 monomer; the structural basis of interaction between UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins; and the role of UVR8 phosphorylation in modulating interactions and responses to UV-B. Nevertheless, much remains to be understood, and the need to extend future research to the growing list of interactors is emphasized.
Collapse
Affiliation(s)
- Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Ren J, Li T, Guo M, Zhang Q, Ren S, Wang L, Wu Q, Niu S, Yi K, Ruan W. A PHR-dependent reciprocal antagonistic interplay between UV response and P-deficiency adaptation in plants. PLANT COMMUNICATIONS 2025; 6:101140. [PMID: 39367602 PMCID: PMC11783903 DOI: 10.1016/j.xplc.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Plants are often simultaneously stressed by both UV radiation and phosphorus (P) deficiency in agricultural ecosystems. Coordinated responses and adaptations to these stressors are critical for plant growth, development, and survival. However, the underlying molecular response and adaptation mechanisms in plants are not fully understood. Here, we show that plants use a reciprocal antagonistic strategy in response to UV radiation and P deficiency. UV radiation inhibits P-starvation response processes and disrupts phosphate (Pi) homeostasis by suppressing the function of PHOSPHATE STARVATION RESPONSE PROTEINS (PHRs), the Pi central regulators. Conversely, P availability modulates plant UV tolerance and the expression of UV radiation response genes in a PHR-dependent manner. Therefore, reducing the P supply or increasing PHR activities can improve tolerance to UV stress in rice. Moreover, this antagonistic interaction is conserved across various plant species. Our meta-analysis showed that the increase in global UV radiation over the last 40 years may have reduced crop P-utilization efficiency worldwide. Our findings provide insights for optimizing P fertilizer management and breeding smart crops that are resilient to fluctuations in UV radiation and soil P levels.
Collapse
Affiliation(s)
- Jianhao Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources/National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suna Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shihui Niu
- State Key Laboratory of Efficient Production of Forest Resources/National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Singh D, Mitra O, Mahapatra K, Raghuvanshi AS, Kulkarni R, Datta S. REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins target ABSCISIC ACID INSENSITIVE 5 for degradation to promote early plant development. PLANT PHYSIOLOGY 2024; 196:2490-2503. [PMID: 39196775 DOI: 10.1093/plphys/kiae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/30/2024]
Abstract
REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) are WD-40 domain-containing proteins that have been extensively characterized for their role in UV-B signaling. However, the roles of the RUP proteins outside the canonical UV-signaling pathway are less known. Here, we identify that RUP1 and RUP2 play important roles in ABA signaling to regulate seed germination and early seedling development in Arabidopsis thaliana. Our protein interaction studies confirmed that RUP1 and RUP2 physically interact with ABA INSENSITIVE 5 (ABI5). In the presence of abscisic acid, rup1, rup2, and rup1rup2 exhibited reduced germination and seedling establishment compared with the wild type. Germination and seedling establishment in rup1rup2abi5-8 were similar to abi5-8, suggesting that RUP1 and RUP2 suppress ABA-mediated inhibition of germination and early seedling development in an ABI5-dependent manner. The DDB1-binding WD40 protein RUP2 promoted the ubiquitination of ABI5 to regulate its degradation. ABI5, in turn, establishes a negative feedback loop to inhibit the expression of RUP1/RUP2. ABI5 also inhibited the direct binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of RUP1 and RUP2 under ABA. This study highlights the coordinated action of RUP1, RUP2, ABI5, and HY5 in regulating early plant development.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Oihik Mitra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Akshat Singh Raghuvanshi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Rucha Kulkarni
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
6
|
Anum H, Li K, Tabusam J, Saleh SAA, Cheng RF, Tong YX. Regulation of anthocyanin synthesis in red lettuce in plant factory conditions: A review. Food Chem 2024; 458:140111. [PMID: 38968716 DOI: 10.1016/j.foodchem.2024.140111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.
Collapse
Affiliation(s)
- Hadiqa Anum
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Kun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Javaria Tabusam
- National Key Laboratory of Cotton Bio-Breeding and Integration Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Said Abdelhalim Abdelaty Saleh
- Horticultural Crops Technology Department, Agricultural & Biological Research Institute, National Research Centre, Giza, Egypt
| | - Rui-Feng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| | - Yu-Xin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
7
|
Huang K, Shi Y, Lin J, Qin C, Qin C, Lu X, Lan C. Mechanism research of Tollip negative feedback regulation in TLR4 signaling pathways based on spinal tuberculosis: Detection of Tollip and NF-κB expression levels. Int J Biol Macromol 2024; 281:136458. [PMID: 39389477 DOI: 10.1016/j.ijbiomac.2024.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The emergence of drug-resistant mycobacterium tuberculosis (MTB, or TB) strains has led to an increasing incidence of TB. Spinal tuberculosis is the most common extrapulmonary tuberculosis. In the present study, tollip, a negative feedback regulatory factor in TLR4 signaling pathway was chosen based on previous studies on osteoarticular tuberculosis. U937 cells were transfected with recombinant lentivirus containing shRNA (RNA interference, RNAi) or overexpression vector containing Tollip gene and tested in vitro. The expression levels of Tollip and TLR4 were detected by Real-time PCR and immunofluorescence techniques, and the cell morphology and infection effect were observed by DAPI staining. The results suggested that Tollip gene could negatively inhibit the expression of related factors in TLR4 signaling pathway, and thus is a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Ke Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Yu Shi
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Jiajie Lin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Chengyi Qin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Changshuai Qin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Xianzhe Lu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Changgong Lan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China.
| |
Collapse
|
8
|
Leonardelli M, Tissot N, Podolec R, Ares-Orpel F, Glauser G, Ulm R, Demarsy E. Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1518-1533. [PMID: 38918833 PMCID: PMC11444301 DOI: 10.1093/plphys/kiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet (UV) radiation. Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B, phytochrome red, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the basic leucine zipper transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG that function downstream of all 3 photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely, coumaroyl glucose and feruloyl glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds are key protective mechanisms to mitigate damage, preserve photosynthetic performance, and ensure plant survival under UV.
Collapse
Affiliation(s)
- Manuela Leonardelli
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Ares-Orpel
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
9
|
Hu S, Chen Y, Qian C, Ren H, Liang X, Tao W, Chen Y, Wang J, Dong Y, Han J, Ouyang X, Huang X. Nuclear accumulation of rice UV-B photoreceptors is UV-B- and OsCOP1-independent for UV-B responses. Nat Commun 2024; 15:6396. [PMID: 39080288 PMCID: PMC11289442 DOI: 10.1038/s41467-024-50755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In plants, the conserved plant-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) perceives ultraviolet-B (UV-B) light and mediates UV-B-induced photomorphogenesis and stress acclimation. In this study, we reveal that UV-B light treatment shortens seedlings, increases stem thickness, and enhances UV-B stress tolerance in rice (Oryza sativa) via its two UV-B photoreceptors OsUVR8a and OsUVR8b. Although the rice and Arabidopsis (Arabidopsis thaliana) UVR8 (AtUVR8) photoreceptors all form monomers in response to UV-B light, OsUVR8a, and OsUVR8b function is only partially conserved with respect to AtUVR8 in UV-B-induced photomorphogenesis and stress acclimation. UV-B light and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) promote the nuclear accumulation of AtUVR8; by contrast, OsUVR8a and OsUVR8b constitutively localize to the nucleus via their own nuclear localization signals, independently of UV-B light and the RING-finger mutation of OsCOP1. We show that OsCOP1 negatively regulates UV-B responses, and shows weak interaction with OsUVR8s, which is ascribed to the N terminus of OsCOP1, which is conserved in several monocots. Furthermore, transcriptome analysis demonstrates that UV-B-responsive gene expression differs globally between Arabidopsis and rice, illuminating the evolutionary divergence of UV-B light signaling pathways between monocot and dicot plants.
Collapse
Affiliation(s)
- Shan Hu
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yihan Chen
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinwen Liang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenjing Tao
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanling Chen
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jue Wang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Chen YL, Zhong YB, Leung DWM, Yan XY, Ouyang MN, Ye YZ, Li SM, Peng XX, Liu EE. OsUVR8b, rather than OsUVR8a, plays a predominant role in rice UVR8-mediated UV-B response. PHYSIOLOGIA PLANTARUM 2024; 176:e14471. [PMID: 39129657 DOI: 10.1111/ppl.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) has been identified in Arabidopsis thaliana as the receptor mediating responses to UV-B radiation. However, UVR8-mediated UV-B signaling pathways in rice, which possesses two proteins (UVR8a and UVR8b) with high identities to AtUVR8, remain largely unknown. Here, UVR8a/b were found to be predominantly expressed in rice leaves and leaf sheaths, while the levels of UVR8b transcript and UVR8b protein were both higher than those of UVR8a. Compared to wild-type (WT) plants, uvr8b and uvr8a uvr8b rice mutants exposed to UV-B showed reduced UV-B-induced growth inhibition and upregulation of CHS and HY5 transcripts alongside UV-B acclimation. However, uvr8a mutant was similar to WT plants and exhibited changes comparable with WT. Overexpressing OsUVR8a/b enhanced UV-B-induced growth inhibition and acclimation to UV-B. UV-B was able to enhance the interaction between E3 ubiquitin ligase OsCOP1 and OsUVR8a/b, whereas the interaction of the homologous protein of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS2 (AtRUP2) in rice with OsUVR8a/b was independent of UV-B. Additionally, OsUVR8a/b proteins were also found in the nucleus and cytoplasm even in the absence of UV-B. The abundance of OsUVR8 monomer showed an invisible change in the leaves of rice seedlings transferred from white light to that supplemented with UV-B, even though UV-B was able to weaken the interactions between OsUVR8a and OsUVR8b homo and heterodimers. Therefore, both OsUVR8a and OsUVR8b, which have different localization and response patterns compared with AtUVR8, function in the response of rice to UV-B radiation, whereas OsUVR8b plays a predominant role in this process.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - You-Bin Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - David W M Leung
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Xiao-Yu Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Meng-Ni Ouyang
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Yu-Zhen Ye
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Shi-Mei Li
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Xin-Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - E-E Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
11
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
12
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
13
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
14
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
15
|
Chen S, Podolec R, Arongaus AB, Fuchs C, Loubéry S, Demarsy E, Ulm R. Functional divergence of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 in repression of flowering. PLANT PHYSIOLOGY 2024; 194:1563-1576. [PMID: 37956407 PMCID: PMC10904346 DOI: 10.1093/plphys/kiad606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time.
Collapse
Affiliation(s)
- Song Chen
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Adriana B Arongaus
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Christelle Fuchs
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Sylvain Loubéry
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
16
|
Liu X, Xie Z, Xin J, Yuan S, Liu S, Sun Y, Zhang Y, Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:498. [PMID: 38502046 PMCID: PMC10893026 DOI: 10.3390/plants13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
In plants exposed to ultraviolet B radiation (UV-B; 280-315 nm), metabolic responses are activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-B stress have been identified in plants, the accumulation of these metabolites at different time points under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H. Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in regulating UV-B stress responses in rice.
Collapse
Affiliation(s)
- Xueqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyang Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiajun Xin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiqing Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Liu W, Giuriani G, Havlikova A, Li D, Lamont DJ, Neugart S, Velanis CN, Petersen J, Hoecker U, Christie JM, Jenkins GI. Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation. Nat Commun 2024; 15:1221. [PMID: 38336824 PMCID: PMC10858049 DOI: 10.1038/s41467-024-45575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation.
Collapse
Affiliation(s)
- Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Giovanni Giuriani
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Anezka Havlikova
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dezhi Li
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, Discovery Centre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Susanne Neugart
- Department of Crop Sciences, Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, D-37075, Göttingen, Germany
| | - Christos N Velanis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Maths, Venables Building, The Open University, Walton Hall Campus, Milton Keynes, MK7 6AA, UK
| | - Jan Petersen
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, 07743, Jena, Germany
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Köln, 50923, Köln, Germany
| | - John M Christie
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
19
|
Stockenhuber R, Akiyama R, Tissot N, Milosavljevic S, Yamazaki M, Wyler M, Arongaus AB, Podolec R, Sato Y, Widmer A, Ulm R, Shimizu KK. UV RESISTANCE LOCUS 8-Mediated UV-B Response Is Required Alongside CRYPTOCHROME 1 for Plant Survival in Sunlight under Field Conditions. PLANT & CELL PHYSIOLOGY 2024; 65:35-48. [PMID: 37757822 PMCID: PMC10799719 DOI: 10.1093/pcp/pcad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
As sessile, photoautotrophic organisms, plants are subjected to fluctuating sunlight that includes potentially detrimental ultraviolet-B (UV-B) radiation. Experiments under controlled conditions have shown that the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) controls acclimation and tolerance to UV-B in Arabidopsis thaliana; however, its long-term impact on plant fitness under naturally fluctuating environments remain poorly understood. Here, we quantified the survival and reproduction of different Arabidopsis mutant genotypes under diverse field and laboratory conditions. We found that uvr8 mutants produced more fruits than wild type when grown in growth chambers under artificial low-UV-B conditions but not under natural field conditions, indicating a fitness cost in the absence of UV-B stress. Importantly, independent double mutants of UVR8 and the blue light photoreceptor gene CRYPTOCHROME 1 (CRY1) in two genetic backgrounds showed a drastic reduction in fitness in the field. Experiments with UV-B attenuation in the field and with supplemental UV-B in growth chambers demonstrated that UV-B caused the cry1 uvr8 conditional lethal phenotype. Using RNA-seq data of field-grown single and double mutants, we explicitly identified genes showing significant statistical interaction of UVR8 and CRY1 mutations in the presence of UV-B in the field. They were enriched in Gene Ontology categories related to oxidative stress, photoprotection and DNA damage repair in addition to UV-B response. Our study demonstrates the functional importance of the UVR8-mediated response across life stages in natura, which is partially redundant with that of cry1. Moreover, these data provide an integral picture of gene expression associated with plant responses under field conditions.
Collapse
Affiliation(s)
- Reinhold Stockenhuber
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Michele Wyler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland
| | - Adriana B Arongaus
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich 8092, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama 244-0813, Japan
| |
Collapse
|
20
|
Yamashita H, Wada KC, Inagaki N, Fujimoto Z, Yonemaru JI, Itoh H. Deciphering transcriptomic signatures explaining the phenotypic plasticity of nonheading lettuce genotypes under artificial light conditions. PLANT, CELL & ENVIRONMENT 2023; 46:3971-3985. [PMID: 37533309 DOI: 10.1111/pce.14677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Elucidating the mechanisms and pathways involved in genotype-environment (G×E) interactions and phenotypic plasticity is critical for improving plant growth. Controlled environment agricultural systems allow growers to modulate the environment for particular genotypes. In this study, we evaluated the effects of interactions among 14 genotypes and four artificial light environments on leaf lettuce phenotypes and dissected the underlying molecular mechanism via transcriptome-based modeling. Variations in morphological traits and phytochemical concentrations in response to artificial light treatments revealed significant G×E interactions. The appropriate genotype and artificial light combinations for maximizing phenotypic expression were determined on the basis of a joint regression analysis and the additive main effect and multiplicative interaction model for these G×E interactions. Transcriptome-based regression modeling explained approximately 50%-90% of the G×E variations. Further analyzes indicated Red Lettuce Leaves 4 (RLL4) regulates UV-B and blue light signaling through the effects of the HY5-MBW pathway on flavonoid biosynthesis and contributes to natural variations in the light-responsive plasticity of lettuce traits. Our study represents an important step toward elucidating the phenotypic variations due to G×E interactions in nonheading lettuce under artificial light conditions.
Collapse
Affiliation(s)
- Hiroto Yamashita
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kaede C Wada
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Zui Fujimoto
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Yonemaru
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hironori Itoh
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Chen J, Wu W, Ding X, Zhang D, Dai C, Pan H, Shi P, Wu C, Zhang J, Zhao J, Liao B, Qiu X, Huang Z. Genome-wide characterization of regulator of chromosome condensation 1 (RCC1) gene family in Artemisia annua L. revealed a conservation evolutionary pattern. BMC Genomics 2023; 24:692. [PMID: 37980503 PMCID: PMC10657572 DOI: 10.1186/s12864-023-09786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Artemisia annua is the major source for artemisinin production. The artemisinin content in A. annua is affected by different types of light especially the UV light. UVR8, a member of RCC1 gene family was found to be the UV-B receptor in plants. The gene structures, evolutionary history and expression profile of UVR8 or RCC1 genes remain undiscovered in A. annua. RESULTS Twenty-two RCC1 genes (AaRCC1) were identified in each haplotype genome of two diploid strains of A. annua, LQ-9 and HAN1. Varied gene structures and sequences among paralogs were observed. The divergence of most RCC1 genes occurred at 46.7 - 51 MYA which overlapped with species divergence of core Asteraceae during the Eocene, while no recent novel RCC1 members were found in A. annua genome. The number of RCC1 genes remained stable among eudicots and RCC1 genes underwent purifying selection. The expression profile of AaRCC1 is analogous to that of Arabidopsis thaliana (AtRCC1) when responding to environmental stress. CONCLUSIONS This study provided a comprehensive characterization of the AaRCC1 gene family and suggested that RCC1 genes were conserved in gene number, structures, constitution of amino acids and expression profiles among eudicots.
Collapse
Affiliation(s)
- Jieting Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenguang Wu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoxia Ding
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Danchun Zhang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyan Dai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hengyu Pan
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Peiqi Shi
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | | | - Jun Zhang
- Sunribio Co.Ltd, Shenzhen, 518101, China
| | | | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
23
|
Abramova A, Vereshchagin M, Kulkov L, Kreslavski VD, Kuznetsov VV, Pashkovskiy P. Potential Role of Phytochromes A and B and Cryptochrome 1 in the Adaptation of Solanum lycopersicum to UV-B Radiation. Int J Mol Sci 2023; 24:13142. [PMID: 37685948 PMCID: PMC10488226 DOI: 10.3390/ijms241713142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
UV-B causes both damage to the photosynthetic apparatus (PA) and the activation of specific mechanisms that protect the PA from excess energy and trigger a cascade of regulatory interactions with different photoreceptors, including phytochromes (PHYs) and cryptochromes (CRYs). However, the role of photoreceptors in plants' responses to UV-B radiation remains undiscovered. This study explores some of these responses using tomato photoreceptor mutants (phya, phyb1, phyab2, cry1). The effects of UV-B exposure (12.3 µmol (photons) m-2 s-1) on photosynthetic rates and PSII photochemical activity, the contents of photosynthetic and UV-absorbing pigments and anthocyanins, and the nonenzymatic antioxidant capacity (TEAC) were studied. The expression of key light-signaling genes, including UV-B signaling and genes associated with the biosynthesis of chlorophylls, carotenoids, anthocyanins, and flavonoids, was also determined. Under UV-B, phyab2 and cry1 mutants demonstrated a reduction in the PSII effective quantum yield and photosynthetic rate, as well as a reduced value of TEAC. At the same time, UV-B irradiation led to a noticeable decrease in the expression of the ultraviolet-B receptor (UVR8), repressor of UV-B photomorphogenesis 2 (RUP2), cullin 4 (CUL4), anthocyanidin synthase (ANT), phenylalanine ammonia-lease (PAL), and phytochrome B2 (PHYB2) genes in phyab2 and RUP2, CUL4, ANT, PAL, and elongated hypocotyl 5 (HY5) genes in the cry1 mutant. The results indicate the mutual regulation of UVR8, PHYB2, and CRY1 photoreceptors, but not PHYB1 and PHYA, in the process of forming a response to UV-B irradiation in tomato.
Collapse
Affiliation(s)
- Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Leonid Kulkov
- Department of Technologies for the Production of Vegetable, Medicinal and Essential Oils, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127550, Russia;
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| |
Collapse
|
24
|
Liao Y, Zhao S, Zhang W, Zhao P, Lu B, Moody ML, Tan N, Chen L. Chromosome-level genome and high nitrogen stress response of the widespread and ecologically important wetland plant Typha angustifolia. FRONTIERS IN PLANT SCIENCE 2023; 14:1138498. [PMID: 37265642 PMCID: PMC10230045 DOI: 10.3389/fpls.2023.1138498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Typha angustifolia L., known as narrowleaf cattail, is widely distributed in Eurasia but has been introduced to North America. Typha angustifolia is a semi-aquatic, wetland obligate plant that is widely distributed in Eurasia and North America. It is ecologically important for nutrient cycling in wetlands where it occurs and is used in phytoremediation and traditional medicine. In order to construct a high-quality genome for Typha angustifolia and investigate genes in response to high nitrogen stress, we carried out complete genome sequencing and high-nitrogen-stress experiments. We generated a chromosomal-level genome of T. angustifolia, which had 15 pseudochromosomes, a size of 207 Mb, and a contig N50 length of 13.57 Mb. Genome duplication analyses detected no recent whole-genome duplication (WGD) event for T. angustifolia. An analysis of gene family expansion and contraction showed that T. angustifolia gained 1,310 genes and lost 1,426 genes. High-nitrogen-stress experiments showed that a high nitrogen level had a significant inhibitory effect on root growth and differential gene expression analyses using 24 samples found 128 differentially expressed genes (DEGs) between the nitrogen-treated and control groups. DEGs in the roots and leaves were enriched in alanines, aspartate, and glutamate metabolism, nitrogen metabolism, photosynthesis, phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase pathways, among others. This study provides genomic data for a medicinal and ecologically important herb and lays a theoretical foundation for plant-assisted water pollution remediation.
Collapse
Affiliation(s)
- Yang Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuying Zhao
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Wenda Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Puguang Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Michael L. Moody
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ninghua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Takagi H, Hempton AK, Imaizumi T. Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. PLANT COMMUNICATIONS 2023; 4:100552. [PMID: 36681863 PMCID: PMC10203454 DOI: 10.1016/j.xplc.2023.100552] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
The timing of flowering affects the success of sexual reproduction. This developmental event also determines crop yield, biomass, and longevity. Therefore, this mechanism has been targeted for improvement along with crop domestication. The underlying mechanisms of flowering are highly conserved in angiosperms. Central to these mechanisms is how environmental and endogenous conditions control transcriptional regulation of the FLOWERING LOCUS T (FT) gene, which initiates floral development under long-day conditions in Arabidopsis. Since the identification of FT as florigen, efforts have been made to understand the regulatory mechanisms of FT expression. Although many transcriptional regulators have been shown to directly influence FT, the question of how they coordinately control the spatiotemporal expression patterns of FT still requires further investigation. Among FT regulators, CONSTANS (CO) is the primary one whose protein stability is tightly controlled by phosphorylation and ubiquitination/proteasome-mediated mechanisms. In addition, various CO interaction partners, some of them previously identified as FT transcriptional regulators, positively or negatively modulate CO protein activity. The FT promoter possesses several transcriptional regulatory "blocks," highly conserved regions among Brassicaceae plants. Different transcription factors bind to specific blocks and affect FT expression, often causing topological changes in FT chromatin structure, such as the formation of DNA loops. We discuss the current understanding of the regulation of FT expression mainly in Arabidopsis and propose future directions related to this topic.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Andrew K Hempton
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
26
|
Wang L, Wang Y, Chang H, Ren H, Wu X, Wen J, Guan Z, Ma L, Qiu L, Yan J, Zhang D, Huang X, Yin P. RUP2 facilitates UVR8 redimerization via two interfaces. PLANT COMMUNICATIONS 2023; 4:100428. [PMID: 36065466 PMCID: PMC9860181 DOI: 10.1016/j.xplc.2022.100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.
Collapse
Affiliation(s)
- Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinquan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Couée I, Gouesbet G. Protein-Protein Interactions in Abiotic Stress Signaling: An Overview of Biochemical and Biophysical Methods of Characterization. Methods Mol Biol 2023; 2642:319-330. [PMID: 36944886 DOI: 10.1007/978-1-0716-3044-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The identification and characterization of bona fide abiotic stress signaling proteins can occur at different levels of the complete in vivo signaling cascade or network. Knowledge of a particular abiotic stress signaling protein could theoretically lead to the characterization of complete networks through the analysis of unknown proteins that interact with the previously known protein. Such signaling proteins of interest can indeed be experimentally used as bait proteins to catch interacting prey proteins, provided that the association of bait proteins and prey proteins should yield a biochemical or biophysical signal that can be detected. To this end, several biochemical and biophysical techniques are available to provide experimental evidence for specific protein-protein interactions, such as co-immunoprecipitation, bimolecular fluorescence complementation, tandem affinity purification coupled to mass spectrometry, yeast two hybrid, protein microarrays, Förster resonance energy transfer, or fluorescence correlation spectroscopy. This array of methods can be implemented to establish the biochemical reality of putative protein-protein interactions between two proteins of interest or to identify previously unknown partners related to an initially known protein of interest. The ultimate validity of these methods however depends on the in vitro/in vivo nature of the approach and on the heterologous/homologous context of the analysis. This chapter will review the application and success of some classical methods of protein-protein interaction analysis in the field of plant abiotic stress signaling.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), CNRS, Université de Rennes, Brittany, France.
| | - Gwenola Gouesbet
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), CNRS, Université de Rennes, Brittany, France
| |
Collapse
|
28
|
Chen Z, Dong Y, Huang X. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. STRESS BIOLOGY 2022; 2:51. [PMID: 37676395 PMCID: PMC10441900 DOI: 10.1007/s44154-022-00076-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023]
Abstract
Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth's surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Zhang J, Zhang S, Zheng Z, Lu Z, Yang Y. Genomic divergence between two sister Ostrya species through linked selection and recombination. Ecol Evol 2022; 12:e9611. [PMID: 36540075 PMCID: PMC9754895 DOI: 10.1002/ece3.9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Studying the evolution of genomic divergence between lineages is a topical issue in evolutionary biology. However, the evolutionary forces that shape the heterogeneous divergence of the genomic landscape are still poorly understood. Here, two wind-pollinated sister-species (Ostrya japonica and O. chinensis) are used to explore what these potential forces might be. A total of 40 individuals from 16 populations across their main distribution areas in China were sampled for genome-wide resequencing. Population demography analyses revealed that these two sister-species diverged at 3.06-4.43 Mya. Both population contraction and increased gene flow were detected during glacial periods, suggesting secondary contact at those times. All three parameters (D XY, π, and ρ) decreased in those regions showing high levels of differentiation (F ST). These findings indicate that linked selection and recombination played a key role in the genomic heterogeneous differentiation between the two Ostrya species. Genotype-environment association analyses showed that precipitation was the most important ecological factor for speciation. Such environmentally related genes and positive selection genes may have contributed to local adaptation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
30
|
Fang F, Lin L, Zhang Q, Lu M, Skvortsova MY, Podolec R, Zhang Q, Pi J, Zhang C, Ulm R, Yin R. Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics. THE NEW PHYTOLOGIST 2022; 236:1824-1837. [PMID: 36089828 PMCID: PMC9825989 DOI: 10.1111/nph.18468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Light regulates the subcellular localization of plant photoreceptors, a key step in light signaling. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS 8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is unknown. With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of UVR8 nuclear dynamics in Arabidopsis thaliana. We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1, which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation. Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation, most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer, thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8-COP1 interaction, allowing UVR8 to exit the nucleus. Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 monomer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and RUP2.
Collapse
Affiliation(s)
- Fang Fang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Li Lin
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
- Key Laboratory of Urban Agriculture Ministry of AgricultureShanghai Jiao Tong UniversityShanghai200240China
- Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Qianwen Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Mariya Y. Skvortsova
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH‐1211Geneva 4Switzerland
| | - Qinyun Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Jiahao Pi
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Chunli Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH‐1211Geneva 4Switzerland
| | - Ruohe Yin
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
- Key Laboratory of Urban Agriculture Ministry of AgricultureShanghai Jiao Tong UniversityShanghai200240China
- Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
31
|
Wan S, Yang M, Ni F, Chen W, Wang Y, Chu P, Guan R. A small chromosomal inversion mediated by MITE transposons confers cleistogamy in Brassica napus. PLANT PHYSIOLOGY 2022; 190:1841-1853. [PMID: 36005931 PMCID: PMC9614453 DOI: 10.1093/plphys/kiac395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Cleistogamy, self-pollination within closed flowers, can help maintain seed purity, accelerate breeding speed, and aid in the development of ornamental flowers. However, the mechanism underlying petal closing/opening behavior remains elusive. Here, we found that a Brassica napus petal closing/opening behavior was inherited in a Mendelian manner. Fine mapping and positional cloning experiments revealed that the Mendelian factor originated from a short (29.8 kb) inversion mediated by BnDTH9 miniature inverted-repeat transposable elements (MITEs) on chromosome C03. This inversion led to tissue-specific gene promoter exchange between BnaC03.FBA (BnaC03G0156800ZS encoding an F-Box-associated domain-containing protein) and BnaC03.EFO1 (BnaC03G0157400ZS encoding an EARLY FLOWERING BY OVEREXPRESSION 1 protein) positioned near the respective inversion breakpoints. Our genetic transformation work demonstrated that the cleistogamy originated from high tissue-specific expression of the BnaC03.FBA gene caused by promoter changes due to the MITE-mediated inversion. BnaC03.FBA is involved in the formation of an SCF (Skp1-Cullin-F-box) complex, which participates in ubiquitin-mediated protein targeting for degradation through the ubiquitin 26S-proteasome system. Our results shed light on a molecular model of petal-closing behavior.
Collapse
Affiliation(s)
- Shubei Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Ni
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Pu Chu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongzhan Guan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia. PLANTS 2022; 11:plants11192527. [PMID: 36235393 PMCID: PMC9571203 DOI: 10.3390/plants11192527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Alpine plants are exposed to demanding environmental conditions, such as high ultraviolet (UV) and photosynthetic radiation, extreme temperatures, drought, and nutrient deficiencies. Alpine plants adapt and acclimate to harsh conditions, developing several strategies, including biochemical, physiological, and optical responses. However, alpine plants’ survival strategies are hardly researched due to time-consuming and complex experimental conditions, which are supported by scarce studies. Our study focused on the functional traits of the alpine plant Alchemilla monticola Opiz (hairy lady’s mantle) growing at two different altitudes (1500, 2000 m a.s.l.) and two different UV exposures per altitude. Near-ambient (UV) and reduced (UV-) UV radiations were provided by using two sorts of UV absorbing filters; temperatures were monitored hourly. The experimental plots were located at Tegoška Gora, Karavanke, Slovenia. Functional traits: physiological, biochemical, and optical characteristics were recorded three times during the growing season. A. monticola showed high maximum photochemical efficiency at both altitudes throughout the season, which confirms good adaptation and acclimatization of the plant. Furthermore, significantly higher maximum photochemical efficiency at the subalpine altitude coincided with significantly higher UV absorbing compounds (UV AC) contents at the subalpine compared to the montane altitude in August. A. monticola manifested high UV AC contents throughout the season, with significantly increased synthesis of UV AC contents in the subalpine conditions in August and September. The stomatal conductance rate increased with altitude and was correlated mostly to a lower temperature. A. monticola leaves did not transmit any UV spectrum, which corresponded to high total UV AC contents. The leaf transmittance of the photosynthetic spectrum increased at the subalpine altitude, while the transmittance of the green and yellow spectra increased under the reduced UV radiation in the autumn. A. monticola’s high photosynthetic spectrum transmittance at the subalpine altitude in the autumn might therefore be due to subalpine harsh environmental conditions, as well as plant ontogenetical phase.
Collapse
|
33
|
Liu J, Xia C, Dong H, Liu P, Yang R, Zhang L, Liu X, Jia J, Kong X, Sun J. Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1. MOLECULAR PLANT 2022; 15:1428-1439. [PMID: 35864748 DOI: 10.1016/j.molp.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 05/22/2023]
Abstract
Ms2 is an important dominant male-sterile gene in wheat, but the biochemical function of Ms2 and the mechanism by which it causes male sterility remain elusive. Here, we report the molecular basis underlying Ms2-induced male sterility in wheat. We found that activated Ms2 specifically reduces the reactive oxygen species (ROS) signals in anthers and thereby induces termination of wheat anther development at an early stage. Furthermore, our results indicate that Ms2 is localized in mitochondria, where it physically interacts with a wheat homolog of ROS modulator 1 (TaRomo1). Romo1 positively regulates the ROS levels in humans but has never been studied in plants. We found that single amino acid substitutions in the Ms2 protein that rescue the ms2 male-sterile phenotype abolish the interaction between Ms2 and TaRomo1. Significantly, Ms2 promotes the transition of TaRomo1 proteins from active monomers to inactive oligomers. Taken together, our findings unravel the molecular basis of Ms2-induced male sterility and reveal a regulatory mechanism in which ROS act as essential signals guiding the anther development program in wheat.
Collapse
Affiliation(s)
- Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chuan Xia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruizhen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
34
|
Carranco R, Prieto‐Dapena P, Almoguera C, Jordano J. A seed-specific transcription factor, HSFA9, anticipates UV-B light responses by mimicking the activation of the UV-B receptor in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1439-1452. [PMID: 35811570 PMCID: PMC9540186 DOI: 10.1111/tpj.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Sunflower heat shock factor A9 (HSFA9, hereafter A9) is a transcription factor involved in seed desiccation tolerance and longevity. A9 also links the regulation of seed maturation with that of seedling photomorphogenesis through visible light receptors. Analyses in transgenic Nicotiana tabacum (tobacco) indicated that A9 also affects responses mediated by NtUVR8, the receptor of ultraviolet light B (UV-B). We compared the effects of A9 and UV-B illumination on the nuclear localization of GFP-NtUVR8 in Nicotiana benthamiana leaves. We also used co-immunoprecipitation and limited proteolysis for analyzing the interaction between A9 and NtUVR8. We found that A9, by binding to NtUVR8, induced structural changes that resulted in enhancing the nuclear localization of NtUVR8 by hindering its nuclear export. The localization of UVR8 is crucial for receptor activation and function in Arabidopsis, where UV-B-activated nuclear UVR8 binds the E3 ubiquitin ligase COP1, leading to enhanced UV-B responses and photoprotection. A9 similarly activated NtUVR8 by enhancing COP1 binding without UV-B light. Seedlings and dark-germinated seeds that overexpress A9 showed primed UV-B light stress protection. Our results unveil a UV-B-independent activation mechanism and a role for UVR8 in plant seeds that might contribute to early stress protection, facilitating seedling establishment.
Collapse
Affiliation(s)
- Raúl Carranco
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| | - Pilar Prieto‐Dapena
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| | - Concepción Almoguera
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| | - Juan Jordano
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| |
Collapse
|
35
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
36
|
Wada KC, Inagaki N, Sakai H, Yamashita H, Nakai Y, Fujimoto Z, Yonemaru J, Itoh H. Genetic effects of Red Lettuce Leaf genes on red coloration in leaf lettuce under artificial lighting conditions. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:179-192. [PMID: 37283610 PMCID: PMC10168059 DOI: 10.1002/pei3.10089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/08/2023]
Abstract
Some cultivars of lettuce accumulate anthocyanins, which act as functional food ingredients. Leaf lettuce has been known to be erratic in exhibiting red color when grown under artificial light, and there is a need for cultivars that more stably exhibit red color in artificial light cultivation. In this study, we aimed to dissect the genetic architecture for red coloring in various leaf lettuce cultivars grown under artificial light. We investigated the genotype of Red Lettuce Leaf (RLL) genes in 133 leaf lettuce strains, some of which were obtained from publicly available resequencing data. By studying the allelic combination of RLL genes, we further analyzed the contribution of these genes to producing red coloring in leaf lettuce. From the quantification of phenolic compounds and corresponding transcriptome data, we revealed that gene expression level-dependent regulation of RLL1 (bHLH) and RLL2 (MYB) is the underlying mechanism conferring high anthocyanin accumulation in red leaf lettuce under artificial light cultivation. Our data suggest that different combinations of RLL genotypes cause quantitative differences in anthocyanin accumulation among cultivars, and some genotype combinations are more effective at producing red coloration even under artificial lighting.
Collapse
Affiliation(s)
- Kaede C. Wada
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Noritoshi Inagaki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroaki Sakai
- Bioinformatics Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroto Yamashita
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yusuke Nakai
- Greenhouse Vegetable Production Group, Division of Field Crop and Vegetable Research, Kyushu‐Okinawa Agricultural Research CenterNational Agriculture and Food Research OrganizationKurumeJapan
| | - Zui Fujimoto
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Jun‐ichi Yonemaru
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hironori Itoh
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
37
|
Liao X, Jenkins GI. Cysteines have a role in conformation of the UVR8 photoreceptor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:583-594. [PMID: 35608127 PMCID: PMC9546227 DOI: 10.1111/tpj.15841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates plant responses to Ultraviolet-B (UV-B) wavelengths. The UVR8 dimer dissociates into monomers following UV-B photoreception, a process accompanied by conformational changes that facilitate interaction of UVR8 with proteins that initiate responses. However, the importance of particular amino acids in maintaining UVR8 conformation and modulating protein interactions is poorly understood. Here we examine the roles of cysteine amino acids C231 and C335 in UVR8 structure and function. UVR8C231S,C335S mutant protein forms dimers and monomerizes similarly to wild-type UVR8. UVR8C231S,C335S interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) in plants to initiate photomorphogenic responses to UV-B, although the interaction is weaker when examined in yeast two-hybrid assays. Similarly, the interaction of UVR8C231S,C335S with REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins is weaker in both plants and yeast compared with wild-type UVR8. Re-dimerization of UVR8 in plants, which is mediated by RUP proteins, occurs with reduced efficiency in UVR8C231S,C335S . Fluorescence resonance energy transfer analysis indicates that UVR8C231S,C335S has an altered conformation in plants, in that the N- and C-termini appear closer together, which may explain the altered protein interactions.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower BuildingUniversity of GlasgowGlasgowG12 8QQUK
| | - Gareth I. Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower BuildingUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
38
|
Podolec R, Wagnon TB, Leonardelli M, Johansson H, Ulm R. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:422-439. [PMID: 35555928 PMCID: PMC9541035 DOI: 10.1111/tpj.15806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/01/2023]
Abstract
Plants undergo photomorphogenic development in the presence of light. Photomorphogenesis is repressed by the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), which binds to substrates through their valine-proline (VP) motifs. The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor senses UV-B and inhibits COP1 through the cooperative binding of its own VP motif and photosensing core to COP1, thereby preventing COP1 binding to substrates, including the basic leucine zipper (bZIP) transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). As a key promoter of visible light and UV-B photomorphogenesis, HY5 requires coregulators for its function. The B-box family transcription factors BBX20-BBX22 were recently described as HY5 rate-limiting coactivators under red light, but their role in UVR8 signaling was unknown. Here we describe a hypermorphic bbx21-3D mutant with enhanced photomorphogenesis, carrying a proline-to-leucine mutation at position 314 in the VP motif that impairs the interaction with and regulation by COP1. We show that BBX21 and BBX22 are UVR8-dependently stabilized after UV-B exposure, which is counteracted by a repressor induced by HY5/BBX activity. bbx20 bbx21 bbx22 mutants under UV-B are impaired in hypocotyl growth inhibition, photoprotective pigment accumulation and the expression of several HY5-dependent genes under continuous UV-B, but the immediate induction of marker genes after exposure to UV-B remains surprisingly rather unaffected. We conclude that BBX20-BBX22 contribute to HY5 activity in a subset of UV-B responses, but that additional, presently unknown, coactivators for HY5 are functional in early UVR8 signaling.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| | - Timothée B. Wagnon
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Manuela Leonardelli
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Henrik Johansson
- Institute of Biology/Applied GeneticsDahlem Centre of Plant Sciences (DCPS), Freie Universität BerlinBerlinGermany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
39
|
Yang M, He G, Hou Q, Fan Y, Duan L, Li K, Wei X, Qiu Z, Chen E, He T. Systematic analysis and expression profiles of TCP gene family in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stress. BMC Genomics 2022; 23:415. [PMID: 35655134 PMCID: PMC9164426 DOI: 10.1186/s12864-022-08618-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background As transcription factors, the TCP genes are considered to be promising targets for crop enhancement for their responses to abiotic stresses. However, information on the systematic characterization and functional expression profiles under abiotic stress of TCPs in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) is limited. Results In this study, we identified 26 FtTCPs and named them according to their position on the chromosomes. Phylogenetic tree, gene structure, duplication events, and cis-acting elements were further studied and syntenic analysis was conducted to explore the bioinformatic traits of the FtTCP gene family. Subsequently, 12 FtTCP genes were selected for expression analysis under cold, dark, heat, salt, UV, and waterlogging (WL) treatments by qRT-PCR. The spatio-temporal specificity, correlation analysis of gene expression levels and interaction network prediction revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stresses. Moreover, subcellular localization confirmed that FtTCP15 and FtTCP18 localized in the nucleus function as transcription factors. Conclusions In this research, 26 TCP genes were identified in Tartary buckwheat, and their structures and functions have been systematically explored. Our results reveal that the FtTCP15 and FtTCP18 have special cis-elements in response to abiotic stress and conserved nature in evolution, indicating they could be promising candidates for further functional verification under multiple abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08618-1.
Collapse
|
40
|
Giustozzi M, Freytes SN, Jaskolowski A, Lichy M, Mateos J, Falcone Ferreyra ML, Rosano GL, Cerdán P, Casati P. Arabidopsis mediator subunit 17 connects transcription with DNA repair after UV-B exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1047-1067. [PMID: 35220621 DOI: 10.1111/tpj.15722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Mediator 17 (MED17) is a subunit of the Mediator complex that regulates transcription initiation in eukaryotic organisms. In yeast and humans, MED17 also participates in DNA repair, physically interacting with proteins of the nucleotide excision DNA repair system, but this function in plants has not been investigated. We studied the role of MED17 in Arabidopsis plants exposed to UV-B radiation. Our results demonstrate that med17 and OE MED17 plants have altered responses to UV-B, and that MED17 participates in various aspects of the DNA damage response (DDR). Comparison of the med17 transcriptome with that of wild-type (WT) plants showed that almost one-third of transcripts with altered expression in med17 plants were also changed by UV-B exposure in WT plants. Increased sensitivity to DNA damage after UV-B in med17 plants could result from the altered regulation of UV-B responsive transcripts but MED17 also physically interacts with DNA repair proteins, suggesting a direct role of this Mediator subunit during repair. Finally, we show that MED17 is necessary to regulate the DDR activated by ataxia telangiectasia and Rad3 related (ATR), and that programmed cell death 5 (PDCD5) overexpression reverts the deficiencies in DDR shown in med17 mutants. Our data demonstrate that MED17 is an important regulator of DDR after UV-B irradiation in Arabidopsis.
Collapse
Affiliation(s)
- Marisol Giustozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | | | - Aime Jaskolowski
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Micaela Lichy
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Julieta Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Pablo Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Casati
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
41
|
Yang G, Zhang C, Dong H, Liu X, Guo H, Tong B, Fang F, Zhao Y, Yu Y, Liu Y, Lin L, Yin R. Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21-SlHY5 transcription factor module in UV-B signaling. THE PLANT CELL 2022; 34:2038-2055. [PMID: 35188198 PMCID: PMC9048894 DOI: 10.1093/plcell/koac064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
In tomato (Solanum lycopersicum) and other plants, the photoreceptor UV-RESISTANCE LOCUS 8 regulates plant UV-B photomorphogenesis by modulating the transcription of many genes, the majority of which depends on the transcription factor ELONGATED HYPOCOTYL 5 (HY5). HY5 transcription is induced and then rapidly attenuated by UV-B. However, neither the transcription factors that activate HY5 transcription nor the mechanism for its attenuation during UV-B signaling is known. Here, we report that the tomato B-BOX (BBX) transcription factors SlBBX20 and SlBBX21 interact with SlHY5 and bind to the SlHY5 promoter to activate its transcription. UV-B-induced SlHY5 expression and SlHY5-controlled UV-B responses are normal in slbbx20 and slbbx21 single mutants, but strongly compromised in the slbbx20 slbbx21 double mutant. Surprisingly, UV-B responses are also compromised in lines overexpressing SlBBX20 or SlBBX21. Both SlHY5 and SlBBX20 bind to G-box1 in the SlHY5 promoter. SlHY5 outcompetes SlBBX20 for binding to the SlHY5 promoter in vitro, and inhibits the association of SlBBX20 with the SlHY5 promoter in vivo. Overexpressing 35S:SlHY5-FLAG in the WT background inhibits UV-B-induced endogenous SlHY5 expression. Together, our results reveal the critical role of the SlBBX20/21-SlHY5 module in activating the expression of SlHY5, the gene product of which inhibits its own gene transcription under UV-B, forming an autoregulatory negative feedback loop that balances SlHY5 transcription in plants.
Collapse
Affiliation(s)
- Guoqian Yang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunli Zhang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaxi Dong
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaorui Liu
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huicong Guo
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boqin Tong
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Fang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Zhao
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunji Yu
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Liu
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Lin
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruohe Yin
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Wang Y, Wang L, Guan Z, Chang H, Ma L, Shen C, Qiu L, Yan J, Zhang D, Li J, Deng XW, Yin P. Structural insight into UV-B-activated UVR8 bound to COP1. SCIENCE ADVANCES 2022; 8:eabn3337. [PMID: 35442727 PMCID: PMC9020657 DOI: 10.1126/sciadv.abn3337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 (COP1-SPA) complex is a central repressor of photomorphogenesis. This complex acts as an E3 ubiquitin ligase downstream of various light signaling transduced from multiple photoreceptors in plants. How the COP1-SPA activity is regulated by divergent light-signaling pathways remains largely elusive. Here, we reproduced the regulation pathway of COP1-SPA in ultraviolet-B (UV-B) signaling in vitro and determined the cryo-electron microscopy structure of UV-B receptor UVR8 in complex with COP1. The complex formation is mediated by two-interface interactions between UV-B-activated UVR8 and COP1. Both interfaces are essential for the competitive binding of UVR8 against the signaling hub component HY5 to the COP1-SPA complex. We also show that RUP2 dissociates UVR8 from the COP1-SPA41-464-UVR8 complex and facilitates its redimerization. Our results support a UV-B signaling model that the COP1-SPA activity is repressed by UV-B-activated UVR8 and derepressed by RUP2, owing to competitive binding, and provide a framework for studying the regulatory roles of distinct photoreceptors on photomorphogenesis.
Collapse
Affiliation(s)
- Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
43
|
Zioutopoulou A, Patitaki E, O’Donnell L, Kaiserli E. Low Fluence Ultraviolet-B Promotes Ultraviolet Resistance 8-Modulated Flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:840720. [PMID: 35432431 PMCID: PMC9009151 DOI: 10.3389/fpls.2022.840720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Ultraviolet-B (UV-B) irradiation (280-320 nm) is an integral part of sunlight and a pivotal environmental cue that triggers various plant responses, from photoprotection to photomorphogenesis and metabolic processes. UV-B is perceived by ULTRAVIOLET RESISTANCE 8 (UVR8), which orchestrates UV-B signal transduction and transcriptional control of UV-B-responsive genes. However, there is limited information on the molecular mechanism underlying the UV-B- and UVR8-dependent regulation of flowering time in plants. Here, we investigate the role of UV-B and UVR8 in photoperiodic flowering in Arabidopsis thaliana. Our findings suggest that UV-B controls photoperiodic flowering in an ecotype-specific manner and that UVR8 acts as a negative regulator of UV-B-induced flowering. Overall, our research shows that UV-B modulates flowering initiation through the action of UVR8 at the transcriptional level.
Collapse
|
44
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
45
|
Zhang Z, Xu C, Zhang S, Shi C, Cheng H, Liu H, Zhong B. Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization. PLANT PHYSIOLOGY 2022; 188:332-346. [PMID: 34662425 PMCID: PMC8774840 DOI: 10.1093/plphys/kiab486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses and acclimation to UV-B radiation by regulating the transcription of a series of transcription factors (TFs). However, the origin and evolution of UVR8-mediated signaling pathways remain largely unknown. In this study, we investigated the origin and evolution of the major components of the UVR8-mediated signaling pathway (UVR8, REPRESSOR OF UV-B PHOTOMORPHOGENESIS [RUP], BRI1-EMS-SUPPRESSOR1 [BES1], BES1-INTERACTING MYC-LIKE 1 (BIM1), WRKY DNA-BINDING PROTEIN 36 (WRKY36), MYB DOMAIN PROTEIN 73/77/13 [MYB73/MYB77/MYB13], and PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 and PIF5]) using comparative genomics and phylogenetic approaches. We showed that the central regulator UVR8 presented a conservative evolutionary route during plant evolution, and the evolutionary history of downstream negative regulators and TFs was different from that of green plant phylogeny. The canonical UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC 1(COP1)/SUPPRESSOR OF PHYA-105 (SPA)-ELONGATED HYPOCOTYL 5 (HY5)-RUP signaling pathway originated in chlorophytes and conferred green algae the additional ability to cope with UV-B radiation. Moreover, the emergence of multiple UVR8-mediated signaling pathways in charophytes laid the foundations for the cross-talk between UV-B signals and endogenous hormone responses. Importantly, we observed signatures that reflect plant adaptations to high UV-B irradiance in subaerial/terrestrial environments, including positive selection in UVR8 and RUPs and increased copy number of some vital TFs. These results revealed that green plants not only experienced adaptive modifications in the canonical UVR8-COP1/SPA-HY5-RUP signaling pathway, but also diversified their UV-B signal transduction mechanisms through increasing cross-talk with other pathways, such as those associated with brassinosteroids and auxin. This study greatly expands our understanding of molecular evolution and adaptive mechanisms underlying plant UV-B acclimation.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chen Shi
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
46
|
Shen J, Chen Q, Li Z, Zheng Q, Xu Y, Zhou H, Mao H, Shen Q, Liu P. Proteomic and metabolomic analysis of Nicotiana benthamiana under dark stress. FEBS Open Bio 2022; 12:231-249. [PMID: 34792288 PMCID: PMC8727940 DOI: 10.1002/2211-5463.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 11/08/2022] Open
Abstract
Exposure to extended periods of darkness is a common source of abiotic stress that significantly affects plant growth and development. To understand how Nicotiana benthamiana responds to dark stress, the proteomes and metabolomes of leaves treated with darkness were studied. In total, 5763 proteins and 165 primary metabolites were identified following dark treatment. Additionally, the expression of autophagy-related gene (ATG) proteins was transiently upregulated. Weighted gene coexpression network analysis (WGCNA) was utilized to find the protein modules associated with the response to dark stress. A total of four coexpression modules were obtained. The results indicated that heat-shock protein (HSP70), SnRK1-interacting protein 1, 2A phosphatase-associated protein of 46 kDa (Tap46), and glutamate dehydrogenase (GDH) might play crucial roles in N. benthamiana's response to dark stress. Furthermore, a protein-protein interaction (PPI) network was constructed and top-degreed proteins were predicted to identify potential key factors in the response to dark stress. These proteins include isopropylmalate isomerase (IPMI), eukaryotic elongation factor 5A (ELF5A), and ribosomal protein 5A (RPS5A). Finally, metabolic analysis suggested that some amino acids and sugars were involved in the dark-responsive pathways. Thus, these results provide a new avenue for understanding the defensive mechanism against dark stress at the protein and metabolic levels in N. benthamiana.
Collapse
Affiliation(s)
- Juan‐Juan Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
- Chemistry Research Institution of Henan Academy of SciencesZhengzhouChina
| | - Qian‐Si Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ze‐Feng Li
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Qing‐Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ya‐Long Xu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hui‐Na Zhou
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hong‐Yan Mao
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Qi Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Ping‐Ping Liu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| |
Collapse
|
47
|
Shi C, Liu H. How plants protect themselves from ultraviolet-B radiation stress. PLANT PHYSIOLOGY 2021; 187:1096-1103. [PMID: 34734275 PMCID: PMC8566272 DOI: 10.1093/plphys/kiab245] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation has a wavelength range of 280-315 nm. Plants perceive UV-B as an environmental signal and a potential abiotic stress factor that affects development and acclimation. UV-B regulates photomorphogenesis including hypocotyl elongation inhibition, cotyledon expansion, and flavonoid accumulation, but high intensity UV-B can also harm plants by damaging DNA, triggering accumulation of reactive oxygen species, and impairing photosynthesis. Plants have evolved "sunscreen" flavonoids that accumulate under UV-B stress to prevent or limit damage. The UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) plays a critical role in promoting flavonoid biosynthesis to enhance UV-B stress tolerance. Recent studies have clarified several UVR8-mediated and UVR8-independent pathways that regulate UV-B stress tolerance. Here, we review these additions to our understanding of the molecular pathways involved in UV-B stress tolerance, highlighting the important roles of ELONGATED HYPOCOTYL 5, BRI1-EMS-SUPPRESSOR1, MYB DOMAIN PROTEIN 13, MAP KINASE PHOSPHATASE 1, and ATM- and RAD3-RELATED. We also summarize the known interactions with visible light receptors and the contribution of melatonin to UV-B stress responses. Finally, we update a working model of the UV-B stress tolerance pathway.
Collapse
Affiliation(s)
- Chen Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
48
|
Li Z, Zhou W, Wang P, Chen Y, Huo S, Wang J, Tian D, Niu J, Zhao Y, Song X. Transcriptome Analysis Reveals the Senescence Process Controlling the Flower Opening and Closure Rhythm in the Waterlilies ( Nymphaea L.). FRONTIERS IN PLANT SCIENCE 2021; 12:701633. [PMID: 34671367 PMCID: PMC8521120 DOI: 10.3389/fpls.2021.701633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Most waterlily flowers open at dawn and close after noon usually for three to four days, and thereafter wilt. The short lifespan of flowers restricts the development of the flower postharvest industry. The termination of flower movements is a key event during flower aging process. However, it is still unclear when the senescence process initiates and how it terminates the movement rhythm. In this study, we observed that the opening diameter of flowers was the smallest on the fourth (last) flowering day. Subsequent transcriptome profiles generated from petals at different flowering stages showed that the multiple signaling pathways were activated at the last closure stage (Time 3, T3) of the flowers, including Ca2+, reactive oxygen species and far red light signaling pathways, as well as auxin, ethylene and jasmonic acid signaling pathways. Moreover, In terms of cell metabolism regulation, the genes related to hydrolase (protease, phospholipase, nuclease) were upregulated at T3 stage, indicating that petals entered the senescence stage at that time; and the genes related to water transport and cell wall modification were also differentially regulated at T3 stage, which would affect the ability of cell expand and contract, and eventually lead to petal not open after the fourth day. Collectively, our data provided a new insight into the termination of flower opening in the waterlilies, and a global understanding of the senescence process of those opening-closure rhythm flowers.
Collapse
Affiliation(s)
- Zhaoji Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Weijuan Zhou
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanfu Chen
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Shaojie Huo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jun Niu
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
49
|
Serrano AM, Vanhaelewyn L, Vandenbussche F, Boccalandro HE, Maldonado B, Van Der Straeten D, Ballaré CL, Arana MV. Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. PLANT, CELL & ENVIRONMENT 2021; 44:3246-3256. [PMID: 34181245 DOI: 10.1111/pce.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.
Collapse
Affiliation(s)
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - Belén Maldonado
- Instituto Argentino de Investigación de las Zonas Áridas, Mendoza, Argentina
| | | | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
50
|
Meyer P, Van de Poel B, De Coninck B. UV-B light and its application potential to reduce disease and pest incidence in crops. HORTICULTURE RESEARCH 2021; 8:194. [PMID: 34465753 PMCID: PMC8408258 DOI: 10.1038/s41438-021-00629-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Ultraviolet-B radiation (280-315 nm), perceived by the plant photoreceptor UVR8, is a key environmental signal that influences plant growth and development and can reduce disease and pest incidence. The positive effect of UV-B on disease resistance and incidence in various plant species supports the implementation of supplemental UV-B radiation in sustainable crop production. However, despite many studies focusing on UV-B light, there is no consensus on the best mode of application. This review aims to analyze, evaluate, and organize the different application strategies of UV-B radiation in crop production with a focus on disease resistance. We summarize the physiological effects of UV-B light on plants and discuss how plants perceive and transduce UV-B light by the UVR8 photoreceptor as well as how this perception alters plant specialized metabolite production. Next, we bring together conclusions of various studies with respect to different UV-B application methods to improve plant resistance. In general, supplemental UV-B light has a positive effect on disease resistance in many plant-pathogen combinations, mainly through the induction of the production of specialized metabolites. However, many variables (UV-B light source, plant species, dose and intensity, timing during the day, duration, background light, etc.) make it difficult to compare and draw general conclusions. We compiled the information of recent studies on UV-B light applications, including e.g., details on the UV-B light source, experimental set-up, calculated UV-B light dose, intensity, and duration. This review provides practical insights and facilitates future research on UV-B radiation as a promising tool to reduce disease and pest incidence.
Collapse
Affiliation(s)
- Prisca Meyer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|