1
|
Mao Y, Zhao Y, Zhou Q, Li W. Chromosome Engineering: Technologies, Applications, and Challenges. Annu Rev Anim Biosci 2025; 13:25-47. [PMID: 39541223 DOI: 10.1146/annurev-animal-111523-102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
Collapse
Affiliation(s)
- Yihuan Mao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Yulong Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
2
|
Ohzeki JI, Otake K, Masumoto H. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B. Exp Cell Res 2020; 389:111900. [PMID: 32044309 DOI: 10.1016/j.yexcr.2020.111900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The centromere is a specialized chromosomal locus required for accurate chromosome segregation. Heterochromatin also assembles around centromere chromatin and forms a base that supports sister chromatid cohesion until anaphase begins. Both centromere chromatin and heterochromatin assemble on a centromeric DNA sequence, a highly repetitive sequence called alphoid DNA (α-satellite DNA) in humans. Alphoid DNA can form a de novo centromere and subsequent human artificial chromosome (HAC) when introduced into the human culture cells HT1080. HAC is maintained stably as a single chromosome independent of other human chromosomes. For de novo centromere assembly and HAC formation, the centromere protein CENP-B and its binding sites, CENP-B boxes, are required in the repeating units of alphoid DNA. CENP-B has multiple roles in de novo centromere chromatin assembly and stabilization and in heterochromatin formation upon alphoid DNA introduction into the cells. Here we review recent progress in human artificial chromosome construction and centromere/heterochromatin assembly and maintenance, focusing on the involvement of human centromere DNA and CENP-B protein.
Collapse
Affiliation(s)
- Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan.
| |
Collapse
|
3
|
Gambogi CW, Dawicki-McKenna JM, Logsdon GA, Black BE. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA. Exp Cell Res 2020; 391:111978. [PMID: 32246994 DOI: 10.1016/j.yexcr.2020.111978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
Centromeres are essential components of all eukaryotic chromosomes, including artificial/synthetic ones built in the laboratory. In humans, centromeres are typically located on repetitive α-satellite DNA, and these sequences are the "major ingredient" in first-generation human artificial chromosomes (HACs). Repetitive centromeric sequences present a major challenge for the design of synthetic mammalian chromosomes because they are difficult to synthesize, assemble, and characterize. Additionally, in most eukaryotes, centromeres are defined epigenetically. Here, we review the role of the genetic and epigenetic contributions to establishing centromere identity, highlighting recent work to hijack the epigenetic machinery to initiate centromere identity on a new generation of HACs built without α-satellite DNA. We also discuss the opportunities and challenges in developing useful unique sequence-based HACs.
Collapse
Affiliation(s)
- Craig W Gambogi
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Logsdon GA, Gambogi CW, Liskovykh MA, Barrey EJ, Larionov V, Miga KH, Heun P, Black BE. Human Artificial Chromosomes that Bypass Centromeric DNA. Cell 2019; 178:624-639.e19. [PMID: 31348889 PMCID: PMC6657561 DOI: 10.1016/j.cell.2019.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mikhail A Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Evelyne J Barrey
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karen H Miga
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Commun Biol 2018; 1:84. [PMID: 30271965 PMCID: PMC6123737 DOI: 10.1038/s42003-018-0089-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
The wild relatives of rice have adapted to different ecological environments and constitute a useful reservoir of agronomic traits for genetic improvement. Here we present the ~777 Mb de novo assembled genome sequence of Oryza granulata. Recent bursts of long-terminal repeat retrotransposons, especially RIRE2, led to a rapid twofold increase in genome size after O. granulata speciation. Universal centromeric tandem repeats are absent within its centromeres, while gypsy-type LTRs constitute the main centromere-specific repetitive elements. A total of 40,116 protein-coding genes were predicted in O. granulata, which is close to that of Oryza sativa. Both the copy number and function of genes involved in photosynthesis and energy production have undergone positive selection during the evolution of O. granulata, which might have facilitated its adaptation to the low light habitats. Together, our findings reveal the rapid genome expansion, distinctive centromere organization, and adaptive evolution of O. granulata. Zhigang Wu, Dongming Fang, Rui Yang, et al. present the genome assembly of a wild rice species Oryza granulata, revealing critical insights about the rapid genome expansion and evolution observed in the Oryza genus. They find that recent bursts of LTR retrotransposons have led to the rapid increase in O. granulate genome size following speciation.
Collapse
|
6
|
Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 2017; 44:531-539. [DOI: 10.1016/j.jgg.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
|
7
|
Ohzeki JI, Larionov V, Earnshaw WC, Masumoto H. Genetic and epigenetic regulation of centromeres: a look at HAC formation. Chromosome Res 2015; 23:87-103. [PMID: 25682171 DOI: 10.1007/s10577-015-9470-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The centromere is a specialized chromosomal locus required for accurate chromosome segregation. A specific histone H3 variant, CENP-A, assembles at centromeres. CENP-A is required for kinetochore protein assembly and is an epigenetic marker for the maintenance of a functional centromere. Human CENP-A chromatin normally assembles on α-satellite DNA (alphoid DNA), a centromeric repetitive sequence. Using alphoid DNA arrays, human artificial chromosomes (HACs) have been constructed in human HT1080 cells and used to dissect the requirements for CENP-A assembly on DNA sequence. However, centromere formation is not a simple genetic event. In other commonly used human cell lines, such as HeLa and U2OS cells, no functional de novo centromere formation occurs efficiently with the same centromeric alphoid DNA sequences. Recent studies using protein tethering combined with the HAC system and/or genetic manipulation have revealed that epigenetic chromatin regulation mechanisms are also involved in the CENP-A chromatin assembly pathway and subsequent centromere/kinetochore formation. We summarize the DNA sequence requirements for CENP-A assembly and discuss the epigenetic regulation of human centromeres.
Collapse
Affiliation(s)
- Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | | | | | | |
Collapse
|
8
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proc Natl Acad Sci U S A 2014; 111:17003-10. [PMID: 25378705 DOI: 10.1073/pnas.1414399111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the "telomerator," a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes.
Collapse
|
10
|
Tóth A, Fodor K, Praznovszky T, Tubak V, Udvardy A, Hadlaczky G, Katona RL. Novel method to load multiple genes onto a mammalian artificial chromosome. PLoS One 2014; 9:e85565. [PMID: 24454889 PMCID: PMC3893256 DOI: 10.1371/journal.pone.0085565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.
Collapse
Affiliation(s)
- Anna Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Fodor
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tünde Praznovszky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vilmos Tubak
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyula Hadlaczky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Robert L. Katona
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
11
|
Abstract
Advances in human genomics have accelerated studies in evolution, disease, and cellular regulation. However, centromere sequences, defining the chromosomal interface with spindle microtubules, remain largely absent from ongoing genomic studies and disconnected from functional, genome-wide analyses. This disparity results from the challenge of predicting the linear order of multi-megabase-sized regions that are composed almost entirely of near-identical satellite DNA. Acknowledging these challenges, the field of human centromere genomics possesses the potential to rapidly advance given the availability of individual, or personalized, genome projects matched with the promise of long-read sequencing technologies. Here I review the current genomic model of human centromeres in consideration of those studies involving functional datasets that examine the role of sequence in centromere identity.
Collapse
|
12
|
Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. THE PLANT CELL 2012; 24:3559-74. [PMID: 22968715 PMCID: PMC3480287 DOI: 10.1105/tpc.112.100511] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/18/2012] [Accepted: 08/30/2012] [Indexed: 05/18/2023]
Abstract
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.
Collapse
Affiliation(s)
- Zhiyun Gong
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Andrea Koblížková
- Institute of Plant Molecular Biology, Biology Centre, Academy of Sciences of the Czech Republic, CZ-37005 Ceske Budejovice, Czech Republic
| | - Giovana A. Torres
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
- Departmento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais 37200, Brazil
| | - Kai Wang
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Marina Iovene
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Pavel Neumann
- Institute of Plant Molecular Biology, Biology Centre, Academy of Sciences of the Czech Republic, CZ-37005 Ceske Budejovice, Czech Republic
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Petr Novák
- Institute of Plant Molecular Biology, Biology Centre, Academy of Sciences of the Czech Republic, CZ-37005 Ceske Budejovice, Czech Republic
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jiří Macas
- Institute of Plant Molecular Biology, Biology Centre, Academy of Sciences of the Czech Republic, CZ-37005 Ceske Budejovice, Czech Republic
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
13
|
Xu C, Cheng Z, Yu W. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1070-1079. [PMID: 22268496 DOI: 10.1111/j.1365-313x.2012.04916.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Telomere truncation has been shown to be an efficient technology for the creation of mini-chromosomes that can be used as artificial chromosome platforms for genetic engineering. Artificial chromosome-based genetic engineering is considered to be superior to the existing techniques of randomized gene integration by Agrobacterium or biolistic-mediated genetic transformation. It organizes multiple transgenes as a unique genetic linkage block for subsequent manipulations in breeding. Telomere truncation technology relies on three components: the telomere sequence that mediates chromosomal truncation, a selection marker that allows the selection of transgenic events, and a site-specific recombination system that can be used to accept future genes into the mini-chromosome by gene targeting. These elements are usually pre-assembled before transformation, a process that is both time and labor consuming. We found in this research that the three elements could be mixed to transform plant cells in a biolistic transformation, and produced efficient chromosomal truncations and mini-chromosomes in rice. This system will allow rapid construction of mini-chromosomes with a flexible selection of resistant markers, site-specific recombination systems and other desirable elements. In addition, a rice telotrisomic line was used as the starting material for chromosomal truncations. Mini-chromosomes from the truncations of both the telocentric chromosome and other chromosomes were recovered. The mini-chromosomes remained stable during 2 years of subculture. The construction of mini-chromosomes in rice, an economically important crop, will provide a platform for future artificial chromosome-based genetic engineering of rice for stacking multiple genes.
Collapse
Affiliation(s)
- Chunhui Xu
- State Key Laboratory for Agrobiotechnology, Institute of Plant Molecular Biology and Agricultural Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
14
|
Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 2012; 109:1979-84. [PMID: 22308327 DOI: 10.1073/pnas.1108705109] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcription of the centromeric regions has been reported to occur in G1 and S phase in different species. Here, we investigate whether transcription also occurs and plays a functional role at the mammalian centromere during mitosis. We show the presence of actively transcribing RNA polymerase II (RNAPII) and its associated transcription factors, coupled with the production of centromere satellite transcripts at the mitotic kinetochore. Specific inhibition of RNAPII activity during mitosis leads to a decrease in centromeric α-satellite transcription and a concomitant increase in anaphase-lagging cells, with the lagging chromosomes showing reduced centromere protein C binding. These findings demonstrate an essential role of RNAPII in the transcription of α-satellite DNA, binding of centromere protein C, and the proper functioning of the mitotic kinetochore.
Collapse
|
15
|
Kazuki Y, Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 2011; 19:1591-601. [PMID: 21750534 DOI: 10.1038/mt.2011.136] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Random integration of conventional gene delivery vectors such as viruses, plasmids, P1 phage-derived artificial chromosomes, bacterial artificial chromosomes and yeast artificial chromosomes can be associated with transgene silencing. Furthermore, integrated viral sequences can activate oncogenes adjacent to the insertion site resulting in cancer. Various human artificial chromosomes (HACs) exhibit several potential characteristics desired for an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci with their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. HACs have been generated mainly using either a "top-down approach" (engineered chromosomes), or a "bottom-up approach" (de novo artificial chromosomes). The recent emergence of stem cell-based tissue engineering has opened up new avenues for gene and cell therapies. This review describes the lessons learned and prospects identified mainly from studies in the construction of HACs and HAC-mediated gene expression systems in cultured cells, as well as in animals.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | | |
Collapse
|
16
|
Dhar MK, Kaul S, Kour J. Towards the development of better crops by genetic transformation using engineered plant chromosomes. PLANT CELL REPORTS 2011; 30:799-806. [PMID: 21249368 DOI: 10.1007/s00299-011-1001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, "top-down" or "bottom-up" have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.
Collapse
Affiliation(s)
- Manoj K Dhar
- Plant Genomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| | | | | |
Collapse
|
17
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
18
|
Telomere truncation in plants. Methods Mol Biol 2010. [PMID: 21181527 DOI: 10.1007/978-1-61737-957-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Telomeres are highly repetitive sequences at the ends of chromosomes that act as protection structure for chromosome stability. The integration of telomere sequences into the genome by genetic transformation can create chromosome instability because the integrated telomere sequences tend to form de novo telomeres at the site of integration. Thus, telomere repeats can be used to generate minichromosomes by telomere-mediated chromosome truncation in both plants and animals for chromosome studies as well as the applications in genetic engineering as engineered minichromosomes or artificial chromosomes. This protocol describes the procedure for telomere truncation of maize chromosomes by genetic transformation of telomere-containing constructs by both Agrobacterium- and biolistic-mediated transformations.
Collapse
|
19
|
Panchenko T, Black BE. The epigenetic basis for centromere identity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:1-32. [PMID: 19521810 DOI: 10.1007/978-3-642-00182-6_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The centromere serves as the control locus for chromosome segregation at mitosis and meiosis. In most eukaryotes, including mammals, the location of the centromere is epigenetically defined. The contribution of both genetic and epigenetic determinants to centromere function is the subject of current investigation in diverse eukaryotes. Here we highlight key findings from several organisms that have shaped the current view of centromeres, with special attention to experiments that have elucidated the epigenetic nature of their specification. Recent insights into the histone H3 variant, CENP-A, which assembles into centromeric nucleosomes that serve as the epigenetic mark to perpetuate centromere identity, have added important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
Collapse
Affiliation(s)
- Tanya Panchenko
- Department of Biochemistry, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
20
|
Nagaki K, Walling J, Hirsch C, Jiang J, Murata M. Structure and evolution of plant centromeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:153-79. [PMID: 19521815 DOI: 10.1007/978-3-642-00182-6_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
21
|
Artificial chromosome formation in maize (Zea mays L.). Chromosoma 2008; 118:157-77. [DOI: 10.1007/s00412-008-0191-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/11/2022]
|
22
|
Italiano A, Maire G, Sirvent N, Nuin PAS, Keslair F, Foa C, Louis C, Aurias A, Pedeutour F. Variability of origin for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well-differentiated liposarcomas. Cancer Lett 2008; 273:323-30. [PMID: 18823700 DOI: 10.1016/j.canlet.2008.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 05/20/2008] [Accepted: 08/14/2008] [Indexed: 01/15/2023]
Abstract
Well-differentiated liposarcomas (WDLPS) and dedifferentiated liposarcomas are cytogenetically characterized by the presence of supernumerary ring or giant chromosomes containing amplified material from the 12q14-15 region. These chromosomes contain neocentromeres, which are able to bind the kinetochore proteins and to ensure a stable mitotic transmission although they do not show detectable alpha-satellite sequences. WDLPS is the sole solid tumor for which the presence of a neocentromere is a consistent and specific feature. By immunostaining with anti-centromere antibodies in combination with FISH analysis (immunoFISH) in four cases of WDLPS, we have shown that sequences from the region 12q14-21 region were not located at the neocentromere site. In addition, we have microdissected the neocentromeric region from a giant supernumerary chromosome in the 94T778 WDLPS cell line. By using immunoFISH and positional cloning we have shown that the neocentromere of this cell line originated from a region at 4p16.1, rich in AT sequences and in long interspersed nucleotide element (LINE)1, that was co-amplified with 12q14-15. We have observed that this 4p sequence was not involved in the neocentromere of the supernumerary giant chromosome present in the 93T449 WDLPS cell line derived from a metachronous recurrence of the same primary WDLPS than 94T778. Altogether, these results indicate that the neocentromeres in WDLPS originate from amplified chromosomal regions other than 12q14-15 and do not involve a specific and recurrent DNA sequence. These sequences might be activated for centromeric function by epigenetic mechanisms.
Collapse
Affiliation(s)
- Antoine Italiano
- Laboratory of Solid Tumors Genetics, Nice University Hospital and CNRS UMR 6543, Faculty of Medicine, 28 avenue de Valombrose, 06107 Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vagnarelli P, Ribeiro SA, Earnshaw WC. Centromeres: old tales and new tools. FEBS Lett 2008; 582:1950-9. [PMID: 18435926 DOI: 10.1016/j.febslet.2008.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/11/2008] [Indexed: 01/07/2023]
Abstract
The centromere is a specialised region of the eukaryotic chromosome that directs the equal segregation of sister chromatids into two daughter cells during mitosis. In mitosis, the kinetochores mediate (1) microtubule capture and chromosome alignment at a metaphase plate; (2) the correction of improper microtubule attachments; (3) the maintenance of an active checkpoint until bi-orientation is achieved by the whole complement of chromosomes; (4) the establishment of tension within the centromere which, in turn, contributes to silencing of the spindle checkpoint and triggers the onset of anaphase. In this review, we will analyse how centromeres are organised with respect to chromatin types and arrangements.
Collapse
Affiliation(s)
- P Vagnarelli
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
24
|
Marshall OJ, Chueh AC, Wong LH, Choo KA. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 2008; 82:261-82. [PMID: 18252209 PMCID: PMC2427194 DOI: 10.1016/j.ajhg.2007.11.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the first human neocentromere in 1993, these spontaneous, ectopic centromeres have been shown to be an astonishing example of epigenetic change within the genome. Recent research has focused on the role of neocentromeres in evolution and speciation, as well as in disease development and the understanding of the organization and epigenetic maintenance of the centromere. Here, we review recent progress in these areas of research and the significant insights gained.
Collapse
Affiliation(s)
- Owen J. Marshall
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anderly C. Chueh
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lee H. Wong
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - K.H. Andy Choo
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
25
|
Okamoto Y, Nakano M, Ohzeki JI, Larionov V, Masumoto H. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 2007; 26:1279-91. [PMID: 17318187 PMCID: PMC1817632 DOI: 10.1038/sj.emboj.7601584] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 01/09/2007] [Indexed: 12/14/2022] Open
Abstract
Chromatin clusters containing CENP-A, a histone H3 variant, are found in centromeres of multicellular eukaryotes. This study examines the ability of alpha-satellite (alphoid) DNA arrays in different lengths to nucleate CENP-A chromatin and form functional kinetochores de novo. Kinetochore assembly was followed by measuring human artificial chromosome formation in cultured human cells and by chromatin immunoprecipitation analysis. The results showed that both the length of alphoid DNA arrays and the density of CENP-B boxes had a strong impact on nucleation, spreading and/or maintenance of CENP-A chromatin, and formation of functional kinetochores. These effects are attributed to a change in the dynamic balance between assembly of chromatin containing trimethyl histone H3-K9 and chromatin containing CENP-A/C. The data presented here suggest that a functional minimum core stably maintained on 30-70 kb alphoid DNA arrays represents an epigenetic memory of centromeric chromatin.
Collapse
Affiliation(s)
- Yasuhide Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Megumi Nakano
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun-ichirou Ohzeki
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir Larionov
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hiroshi Masumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. Tel.: +81 52 789 2985; Fax: +81 52 789 5732; E-mail:
| |
Collapse
|
26
|
Yu W, Lamb JC, Han F, Birchler JA. Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 2006; 103:17331-6. [PMID: 17085598 PMCID: PMC1859930 DOI: 10.1073/pnas.0605750103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct repeats of Arabidopsis telomeric sequence were constructed to test telomere-mediated chromosomal truncation in maize. Two constructs with 2.6 kb of telomeric sequence were used to transform maize immature embryos by Agrobacterium-mediated transformation. One hundred seventy-six transgenic lines were recovered in which 231 transgene loci were revealed by a FISH analysis. To analyze chromosomal truncations that result in transgenes located near chromosomal termini, Southern hybridization analyses were performed. A pattern of smear in truncated lines was seen as compared with discrete bands for internal integrations, because telomeres in different cells are elongated differently by telomerase. When multiple restriction enzymes were used to map the transgene positions, the size of the smears shifted in accordance with the locations of restriction sites on the construct. This result demonstrated that the transgene was present at the end of the chromosome immediately before the integrated telomere sequence. Direct evidence for chromosomal truncation came from the results of FISH karyotyping, which revealed broken chromosomes with transgene signals at the ends. These results demonstrate that telomere-mediated chromosomal truncation operates in plant species. This technology will be useful for chromosomal engineering in maize as well as other plant species.
Collapse
Affiliation(s)
- Weichang Yu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Jonathan C. Lamb
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Fangpu Han
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Basu J, Willard HF. Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin North Am 2006; 53:843-53, viii. [PMID: 17027613 DOI: 10.1016/j.pcl.2006.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human artificial chromosomes demonstrate promise as a novel class of nonintegrative gene therapy vectors. The authors outline current developments in human artificial chromosome technology and examine their potential for clinical application.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences & Policy, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | | |
Collapse
|
28
|
Lavigne MD, Górecki DC. Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin Emerg Drugs 2006; 11:541-57. [PMID: 16939390 DOI: 10.1517/14728214.11.3.541] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until recently, nonviral vectors were outside the mainstream of gene transfer technology. Recent problems in clinical trials using viral vectors renewed interest in these methods. The clinical usefulness of nonviral methods is still hindered by their relatively low gene delivery/transgene expression efficiencies. Vectors must navigate a series of obstacles before the therapeutic gene can be expressed. This review considers these barriers and the properties of components of nonviral vectors that are essential for nucleic acid transfer. Although developments of new physical methods (hydrodynamic delivery, ultrasound, electroporation) have made a significant impact on gene transfer efficiency, various chemical carriers (lipids and polymers) have been shown to achieve high-level gene delivery and functional expression. Success of nonviral gene targeting will depend not only on the efficacy, but also safety of this methodology, and this aspect is also discussed. Understanding problems associated with nonviral targeting can also help in designing better viral vectors. In fact, interplay between viral and nonviral technologies should lead to a continued refinement of both methodologies.
Collapse
Affiliation(s)
- Matthieu D Lavigne
- University of Portsmouth, School of Pharmacy and Biomedical Sciences, St. Michael's Building, White Swan Road, Portsmouth, UK
| | | |
Collapse
|
29
|
Kalitsis P, Griffiths B, Choo KHA. Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. Proc Natl Acad Sci U S A 2006; 103:8786-91. [PMID: 16731628 PMCID: PMC1482656 DOI: 10.1073/pnas.0600250103] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The telomere and centromere are two specialized structures of eukaryotic chromosomes that are essential for chromosome stability and segregation. These structures are usually characterized by large tracts of tandemly repeated DNA. In mouse, the two structures are often located in close proximity to form telocentric chromosomes. To date, no detailed sequence information is available across the mouse telocentric regions. The antagonistic mechanisms for the stable maintenance of the mouse telocentric karyotype and the occurrence of whole-arm Robertsonian translocations remain enigmatic. We have identified large-insert fosmid clones that span the telomere and centromere of several mouse chromosome ends. Sequence analysis shows that the distance between the telomeric T2AG3 and centromeric minor satellite repeats range from 1.8 to 11 kb. The telocentric regions of different mouse chromosomes comprise a contiguous linear order of T2AG3 repeats, a highly conserved truncated long interspersed nucleotide element 1 repeat, and varying amounts of a recently discovered telocentric tandem repeat that shares considerable identity with, and is inverted relative to, the centromeric minor satellite DNA. The telocentric domain as a whole exhibits the same polarity and a high sequence identity of >99% between nonhomologous chromosomes. This organization reflects a mechanism of frequent recombinational exchange between nonhomologous chromosomes that should promote the stable evolutionary maintenance of a telocentric karyotype. It also provides a possible mechanism for occasional inverted mispairing and recombination between the oppositely oriented TLC and minor satellite repeats to result in Robertsonian translocations.
Collapse
Affiliation(s)
- Paul Kalitsis
- *Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia; and
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- To whom correspondence may be addressed. E-mail:
or
| | - Belinda Griffiths
- *Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia; and
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - K. H. Andy Choo
- *Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia; and
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
30
|
Kato A, Zheng YZ, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA. Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 2005; 109:156-65. [PMID: 15753572 DOI: 10.1159/000082395] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 02/20/2004] [Indexed: 11/19/2022] Open
Abstract
Fourteen minichromosomes derived from the B chromosome of maize are described. The centromeric region of the B chromosome contains a specific repetitive DNA element called the B repeat. This sequence was used to determine the transmission frequency of the different types of minichromosomes over several generations via Southern blot analysis at each generation. In general, the minichromosomes have transmission rates below the theoretical 50% frequency of a univalent chromosome. The gross structure of each minichromosome was determined using fluorescence in situ hybridization (FISH) on root tip chromosome spreads. The presence of the B centromeric repeat and of the adjacent heterochromatic knob sequences was determined for each minichromosome. In two cases, the amount of the centromeric knob repeat is increased relative to the progenitor chromosome. Other isolates have reduced or undetectable levels of the knob sequence. Potential uses of the minichromosomes are discussed.
Collapse
Affiliation(s)
- A Kato
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Irvine DV, Shaw ML, Choo KHA, Saffery R. Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol 2005; 23:575-83. [PMID: 16242803 DOI: 10.1016/j.tibtech.2005.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/03/2005] [Accepted: 10/06/2005] [Indexed: 02/02/2023]
Abstract
The ability to create fully functional human chromosome vectors represents a potentially exciting gene-delivery system for the correction of human genetic disorders with several advantages over viral delivery systems. However, for the full potential of chromosome-based gene-delivery vectors to be realized, several key obstacles must be overcome. Methods must be developed to insert therapeutic genes reliably and efficiently and to enable the stable transfer of the resulting chromosomal vectors to different therapeutic cell types. Research to achieve these outcomes continues to encounter major challenges; however recent developments have reiterated the potential of chromosome-based vectors for therapeutic gene delivery. Here we review the different strategies under development and discuss the advantages and problems associated with each.
Collapse
Affiliation(s)
- Danielle V Irvine
- Chromosome Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Flemington Road, Parkville 3052, Australia
| | | | | | | |
Collapse
|
32
|
Grimes BR, Monaco ZL. Artificial and engineered chromosomes: developments and prospects for gene therapy. Chromosoma 2005; 114:230-41. [PMID: 16133351 DOI: 10.1007/s00412-005-0017-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 01/15/2023]
Abstract
At the gene therapy session of the ICCXV Chromosome Conference (2004), recent advances in the construction of engineered chromosomes and de novo human artificial chromosomes were presented. The long-term aims of these studies are to develop vectors as tools for studying genome and chromosome function and for delivering genes into cells for therapeutic applications. There are two primary advantages of chromosome-based vector systems over most conventional vectors for gene delivery. First, the transferred DNA can be stably maintained without the risks associated with insertion, and second, large DNA segments encompassing genes and their regulatory elements can be introduced, leading to more reliable transgene expression. There is clearly a need for safe and effective gene transfer vectors to correct genetic defects. Among the topics discussed at the gene therapy session and the main focus of this review are requirements for de novo human artificial chromosome formation, assembly of chromatin on de novo human artificial chromosomes, advances in vector construction, and chromosome transfer to cells and animals.
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut St, IB130, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
33
|
Meaburn KJ, Parris CN, Bridger JM. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 2005; 114:263-74. [PMID: 16133353 DOI: 10.1007/s00412-005-0014-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/29/2005] [Accepted: 06/21/2005] [Indexed: 12/20/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) was a technique originally developed in the 1970s to transfer exogenous chromosome material into host cells. Although, the methodology has not changed considerably since this time it is being used to great success in progressing several different fields in modern day biology. MMCT is being employed by groups all over the world to hunt for tumour suppressor genes associated with specific cancers, DNA repair genes, senescence-inducing genes and telomerase suppression genes. Some of these genomic discoveries are being investigated as potential treatments for cancer. Other fields have taken advantage of MMCT, and these include assessing genomic stability, genomic imprinting, chromatin modification and structure and spatial genome organisation. MMCT has also been a very useful method in construction and manipulation of artificial chromosomes for potential gene therapies. Indeed, MMCT is used to transfer mainly fragmented mini-chromosome between cell types and into embryonic stem cells for the construction of transgenic animals. This review briefly discusses these various uses and some of the consequences and advancements made by different fields utilising MMCT technology.
Collapse
Affiliation(s)
- Karen J Meaburn
- Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | |
Collapse
|
34
|
Long YC, Jaichandran S, Ho LP, Tien SL, Tan SY, Kon OL. FVIII gene delivery by muscle electroporation corrects murine hemophilia A. J Gene Med 2005; 7:494-505. [PMID: 15521095 DOI: 10.1002/jgm.683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hemophilia A treatment relies on costly factor VIII (FVIII) replacement that may transmit iatrogenic viral diseases. Viral vectors and cell implants are being developed as improvements. We investigated in vivo electroporation of naked DNA as a safe and simple method for correcting FVIII deficiency. METHODS B-domain-deleted murine FVIII cDNA expression plasmids were constructed with CMV and elongation factor 1alpha promoters for characterisation in murine C2C12 myoblasts. The construct conferring highest in vitro FVIII secretion was electroporated into skeletal muscle of FVII null mice in vivo for phenotypic correction using a protocol that minimised tissue injury. RESULTS B-domain-deleted murine FVIII cDNA plasmids induced FVIII secretion from stably transfected C2C12 myoblasts (0.54+/-0.20 mU/day/10(5) cells). Phenotypic correction of hemophilic mice was more consistently achieved using a protocol for in vivo electroporation of gastrocnemius muscle with FVIII cDNA that reduced tissue injury by the use of plate electrodes, hyaluronidase pre-treatment and lower field strength. This technique was associated with <10% muscle necrosis. Activated partial thromboplastin time decreased from 51.4+/-3.3 to 34.7+/-1.1 (mean+/-s.e.m.) seconds (p=0.0004) following in vivo electroporation (0.1 mg plasmid/limb; 8x20 ms pulses, 175 V/cm, 1 Hz) of hemophilic mice. All hemophilic mice (8/8) survived hemostatic challenge after muscle electroporation with FVIII cDNA, whereas all (9/9) untreated hemophilic mice died. Plasmid DNA was detectable only in electroporated muscle and not in all other organs tested, including gonads. CONCLUSION In vivo intramuscular electroporation of naked FVIII plasmid successfully corrects murine hemophilia.
Collapse
Affiliation(s)
- Yun Chau Long
- National Cancer Centre, 11 Hospital Drive, Singapore 169610, National University Medical Institute and Department of Biochemistry, National University of Singapore, 10 Kent Ridge Crescent, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
35
|
Basu J, Willard HF. Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 2005; 11:251-8. [PMID: 15882613 DOI: 10.1016/j.molmed.2005.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-integrating gene-delivery platforms demonstrate promise as potentially ideal gene-therapy vector systems. Although several approaches are under development, there is little consensus as to what constitutes a true 'artificial' versus an 'engineered' human chromosome. Recent progress must be evaluated in light of significant technical challenges that remain before such vectors achieve clinical utility. Here, we examine the principal classes of non-integrating vectors, ranging from episomes to engineered mini-chromosomes to true human artificial chromosomes. We compare their potential as practical gene-transfer platforms and summarize recent advances towards eventual applications in gene therapy. Although chromosome-engineering technology has advanced considerably within recent years, difficulties in establishing composition of matter and effective vector delivery currently prevent artificial or engineered chromosomes being accepted as viable gene-delivery platforms.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
36
|
Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KHA, Saffery R. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 2005; 12:805-15. [PMID: 15702419 DOI: 10.1007/s10577-005-5377-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/25/2004] [Indexed: 12/12/2022]
Abstract
We have expressed an EGFP-CENP-A fusion protein in human cells in order to quantitate the level of CENP-A incorporated into normal and variant human centromeres. The results revealed a 3.2-fold difference in the level of CENP-A incorporation into alpha-satellite repeat DNA-based centromeres, with the Y centromere showing the lowest level of all normal human chromosomes. Identification of individual chromosomes revealed a statistically significant, though not absolute, correlation between chromosome size and CENP-A incorporation. Analysis of three independent neocentromeres revealed a significantly reduced level of CENP-A compared to normal centromeres. Truncation of a neocentric marker chromosome to produce a minichromosome further reduced CENP-A levels, indicating a remodelling of centromeric chromatin. These results suggest a role for increased CENP-A incorporation in the faithful segregation of larger chromosomes and support a model of centromere evolution in which neocentromeres represent ancestral centromeres that, through adaptive evolution, acquire satellite repeats to facilitate the incorporation of higher numbers of CENP-A containing nucleosomes, thereby facilitating the assembly of larger kinetochore structures.
Collapse
Affiliation(s)
- Danielle V Irvine
- The Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Mahjoubi F, Peters GB, Malafiej P, Shalhoub C, Turner A, Daniel A, Hill RJ. An analphoid marker chromosome inv dup(15)(q26.1qter), detected during prenatal diagnosis and characterized via chromosome microdissection. Cytogenet Genome Res 2005; 109:485-90. [PMID: 15905642 DOI: 10.1159/000084207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
A small, mosaic, C-band negative marker chromosome was detected in amniocyte cultures during prenatal diagnosis due to advanced maternal age. Following spontaneous premature labor at 29 weeks gestation, a dysmorphic infant was delivered, with flat nasal bridge, short palpebral fissures, micrognathia, high forehead, low-set ears, telecanthus and corneal dystrophy. Additional folds of skin were present behind the neck, and feet, fingers and toes were abnormally long. The child died at age five days, after two days of renal failure. The origin of the marker chromosome was subsequently identified from a cord blood sample, via chromosome microdissection. Through reverse FISH, we found the marker to be an inverted duplication of the region 15q26.1-->qter. FISH with alphoid satellite probe was negative, while whole chromosome 15 paint was positive. Both ends of the marker chromosome were positive for the telomeric TTAGGG probe. These data, plus the G-banding pattern, identified the marker as an analphoid, inverted duplicated chromosome, lacking any conventional centromere. We discuss the etiology and clinical effects of this marker chromosome, comparing it to the few reported cases of "tetrasomy 15q" syndrome. We also discuss the possible mechanisms that are likely responsible for this neocentromere formation.
Collapse
Affiliation(s)
- F Mahjoubi
- Clinical Genetic Department, National Research Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bunnell BA, Izadpanah R, Ledebur HC, Perez CF. Development of mammalian artificial chromosomes for the treatment of genetic diseases: Sandhoff and Krabbe diseases. Expert Opin Biol Ther 2005; 5:195-206. [PMID: 15757381 DOI: 10.1517/14712598.5.2.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian artificial chromosomes (MACs) are being developed as alternatives to viral vectors for gene therapy applications, as they allow for the introduction of large payloads of genetic information in a non-integrating, autonomously replicating format. One class of MACs, the satellite DNA-based artificial chromosome expression vehicle (ACE), is uniquely suited for gene therapy applications, in that it can be generated denovo in cells, along with being easily purified and readily transferred into a variety of recipient cell lines and primary cells. To facilitate the rapid engineering of ACEs, the ACE System was developed, permitting the efficient and reproducible loading of pre-existing ACEs with DNA sequences and/or target gene(s). As a result, the ACE System and ACEs are unique and versatile platforms for ex vivo gene therapy strategies that circumvent and alleviate existing safety and delivery limitations surrounding conventional gene therapy vectors. This review will focus on the status of MAC technologies and, in particular, the application of the ACE System towards an ex vivo gene therapy treatment of lysosomal storage diseases, specifically Sandhoff (MIM #268800) and Krabbe (MIM #245200) diseases.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Tulane University Health Sciences Center, Center for Gene Therapy, Department of Pharmacology, Division of Gene Therapy, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | | | |
Collapse
|
39
|
Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005; 6:299-310. [PMID: 15761468 DOI: 10.1038/nrg1577] [Citation(s) in RCA: 427] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential dangers of using viruses to deliver and integrate DNA into host cells in gene therapy have been poignantly highlighted in recent clinical trials. Safer, non-viral gene delivery approaches have been largely ignored in the past because of their inefficient delivery and the resulting transient transgene expression. However, recent advances indicate that efficient, long-term gene expression can be achieved by non-viral means. In particular, integration of DNA can be targeted to specific genomic sites without deleterious consequences and it is possible to maintain transgenes as small episomal plasmids or artificial chromosomes. The application of these approaches to human gene therapy is gradually becoming a reality.
Collapse
Affiliation(s)
- Dominic J Glover
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
40
|
Kakeda M, Hiratsuka M, Nagata K, Kuroiwa Y, Kakitani M, Katoh M, Oshimura M, Tomizuka K. Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Ther 2005; 12:852-6. [PMID: 15750614 DOI: 10.1038/sj.gt.3302483] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human artificial chromosomes (HACs) segregating freely from host chromosomes are potentially useful to ensure both safety and duration of gene expression in therapeutic gene delivery. However, low transfer efficiency of intact HACs to the cells has hampered the studies using normal human primary cells, the major targets for ex vivo gene therapy. To elucidate the potential of HACs to be vectors for gene therapy, we studied the introduction of the HAC vector, which is reduced in size and devoid of most expressed genes, into normal primary human fibroblasts (hPFs) with microcell-mediated chromosome transfer (MMCT). We demonstrated the generation of cytogenetically normal hPFs harboring the structurally defined and extra HAC vector. This introduced HAC vector was retained stably in hPFs without translocation of the HAC on host chromosomes. We also achieved the long-term production of human erythropoietin for at least 12 weeks in them. These results revealed the ability of HACs as novel options to circumvent issues of conventional vectors for gene therapy.
Collapse
Affiliation(s)
- M Kakeda
- Pharmaceutical Research Laboratories, Pharmaceutical Division, Kirin Brewery Co., Ltd, Takasaki-shi, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bridger JM. Mammalian artificial chromosomes: modern day feats of engineering--Isambard Kingdom Brunel style. Cytogenet Genome Res 2005; 107:5-8. [PMID: 15305048 DOI: 10.1159/000079563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 06/14/2004] [Indexed: 11/19/2022] Open
Affiliation(s)
- J M Bridger
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Department of Biological Sciences, Brunel University, West London, UK.
| |
Collapse
|
42
|
Masumoto H, Nakano M, Ohzeki JI. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 2005; 12:543-56. [PMID: 15289662 DOI: 10.1023/b:chro.0000036593.72788.99] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The centromere is an essential functional domain responsible for the correct inheritance of eukaryotic chromosomes during cell division. Eukaryotic centromeres include the highly conserved centromere-specific histone H3 variant, CENP-A, which has provided a powerful tool for investigating the recruitment of centromere components. However, the trigger that targets CENP-A to a specific genomic locus during centromere assembly remains unknown. Although, on rare occasions, CENP-A chromatin may assemble at non-centromeric DNA, all normal human centromeres are assembled and maintained on alpha-satellite (alphoid) DNA. The importance of alphoid DNA and CENP-B binding sites (CENP-B boxes), typical of normal human centromere DNA configurations, has been demonstrated through their requirement in de novo centromere assembly and Human Artificial Chromosome (HAC) assays. Mechanisms to link the centromere tightly to specific genomic sequences exist in humans and the two yeast species.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm 5040, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
43
|
Wong LH, Saffery R, Anderson MA, Earle E, Quach JM, Stafford AJ, Fowler KJ, Choo KHA. Analysis of mitotic and expression properties of human neocentromere-based transchromosomes in mice. J Biol Chem 2004; 280:3954-62. [PMID: 15557333 DOI: 10.1074/jbc.m410047200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human neocentromeres are functional centromeres that are devoid of the typical human centromeric alpha-satellite DNA. We have transferred a 60-Mb chromosome 10-derived neocentric marker chromosome, mardel(10), and its truncated 3.5-Mb derivative, NC-MiC1, into mouse embryonic stem cell and have demonstrated a relatively high structural and mitotic stability of the transchromosomes in a heterologous genetic background. We have also produced chimeric mice carrying mardel(10) or NC-MiC1. Both transchromosomes were detected as intact episomal entities in a variety of adult chimeric mouse tissues including hemopoietic stem cells. Genes residing on these transchromosomes were expressed in the different tissues tested. Meiotic transmission of both transchromosomes in the chimeric mice was evident from the detection of DNA from these chromosomes in sperm samples. In particular, germ line transmission of NC-MiC1 was demonstrated in the F1 embryos of the chimeric mice. Variable (low in mardel(10)- or NC-MiC1-containing embryonic stem cells and chimeric mouse tissues and relatively high in NC-MiC1-containing F1 embryos) levels of missegregation of these transchromosomes were detected, suggesting that they are not optimally predisposed to full mitotic regulation in the mouse background, particularly during early embryogenesis. These results provide promising data in support of the potential use of neocentromere-based human marker chromosomes and minichromosomes as a tool for the study of centromere, neocentromere, and chromosome biology and for gene therapy studies in a mouse model system. They also highlight the need to further understand and overcome the factors that are responsible for the definable rates of instability of these transchromosomes in a mouse model.
Collapse
Affiliation(s)
- Lee H Wong
- Murdoch Childrens Research Institute & Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Katoh M, Ayabe F, Norikane S, Okada T, Masumoto H, Horike SI, Shirayoshi Y, Oshimura M. Construction of a novel human artificial chromosome vector for gene delivery. Biochem Biophys Res Commun 2004; 321:280-90. [PMID: 15358173 DOI: 10.1016/j.bbrc.2004.06.145] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 11/27/2022]
Abstract
Potential problems of conventional transgenes include insertional disruption of the host genome and unpredictable, irreproducible expression of the transgene by random integration. Alternatively, human artificial chromosomes (HACs) can circumvent some of the problems. Although several HACs were generated and their mitotic stability was assessed, a practical way for introducing exogenous genes by the HACs has yet to be explored. In this study, we developed a novel HAC from sequence-ready human chromosome 21 by telomere-directed chromosome truncation and added a loxP sequence for site-specific insertion of circular DNA by the Cre/loxP system. This 21HAC vector, delivered to a human cell line HT1080 by microcell fusion, bound centromere proteins A, B, and C and was mitotically stable during long-term culture without selection. The EGFP gene inserted in the HAC vector expressed persistently. These results suggest that the HAC vector provides useful system for functional studies of genes in isogenic cell lines.
Collapse
Affiliation(s)
- Motonobu Katoh
- Department of Human Genome Sciences (Kirin Brewery), Graduate School of Medical Science, Tottori University, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rudd MK, Mays RW, Schwartz S, Willard HF. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol Cell Biol 2003; 23:7689-97. [PMID: 14560014 PMCID: PMC207596 DOI: 10.1128/mcb.23.21.7689-7697.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.
Collapse
Affiliation(s)
- M Katharine Rudd
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
46
|
Nakano M, Okamoto Y, Ohzeki JI, Masumoto H. Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 2003; 116:4021-34. [PMID: 12953060 DOI: 10.1242/jcs.00697] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the mechanism of chromatin assembly at human centromeres, we isolated cultured human cell lines in which a transfected alpha-satellite (alphoid) YAC was integrated ectopically into the terminal region of host chromosome 16, where it was stably maintained. Centromere activity of the alphoid YAC was suppressed at ectopic locations on the host chromosome, as indicated by the absent or reduced assembly of CENP-A and -C. However, long-term culture in selective medium, or short-term treatment with the histone deacetylase inhibitor Trichostatin A (TSA), promoted the re-assembly of CENPA, -B and -C at the YAC site and the release of minichromosomes containing the YAC integration site. Chromatin immunoprecipitation analyses of the re-formed minichromosome and the alphoid YAC-based stable human artificial chromosome both indicated that CENP-A and CENP-B assembled only on the inserted alphoid array but not on the YAC arms. On the YAC arms at the alphoid YAC integration sites, TSA treatment increased both the acetylation level of histone H3 and the transcriptional level of a marker gene. An increase in the level of transcription was also observed after long-term culture in selective medium. These activities, which are associated with changes in chromatin structure, might reverse the suppressed chromatin state of the YAC at ectopic loci, and thus might be involved in the epigenetic change of silent centromeres on ectopic alphoid loci.
Collapse
Affiliation(s)
- Megumi Nakano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
47
|
Craig JM, Wong LH, Lo AWI, Earle E, Choo KHA. Centromeric chromatin pliability and memory at a human neocentromere. EMBO J 2003; 22:2495-504. [PMID: 12743043 PMCID: PMC155990 DOI: 10.1093/emboj/cdg232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We show that Trichostatin A (TSA)-induced partial histone hyperacetylation causes a unidirectional shift in the position of a previously defined binding domain for the centromere-specific histone H3 homologue CENP-A at a human neocentromere. The shift of approximately 320 kb is fully reversible when TSA is removed, but is accompanied by an apparent reduction in the density of CENP-A per unit length of genomic DNA at the neocentromere. TSA treatment also instigates a reversible abolition of a previously defined major domain of differentially delayed replication timing that was originally established at the neocentromeric site. None of these changes has any measurable deleterious effects on mitosis or neocentromere function. The data suggest pliability of centromeric chromatin in response to epigenetic triggers, and the non-essential nature of the regions of delayed replication for centromere function. Reversibility of the CENP-A-binding position and the predominant region of delayed replication timing following removal of TSA suggest strong memory at the original site of neocentromeric chromatin formation.
Collapse
Affiliation(s)
- Jeffrey M Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Melbourne, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
48
|
Abstract
Currently used vectors in human gene therapy suffer from a number of limitations with respect to safety and reproducibility. There is increasing agreement that the ideal vector for gene therapy should be completely based on chromosomal elements and behave as an independent functional unit after integration into the genome or when retained as an episome. In this review we will first discuss the chromosomal elements, such as enhancers, locus control regions, boundary elements, insulators and scaffold- or matrix-attachment regions, involved in the hierarchic regulation of mammalian gene expression and replication. These elements have been used to design vectors that behave as artificial domains when integrating into the genome. We then discuss recent progress in the use of mammalian artificial chromosomes and small circular non-viral vectors for their use as expression systems in mammalian cells.
Collapse
Affiliation(s)
- H J Lipps
- Institut für Zellbiologie, Universität Witten/Herdecke, Stockumer Strasse 10, D-58448, Witten, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Centromeres are key to the correct segregation and inheritance of genetic information. Eukaryotic centromeres, which are located in large blocks of highly repetitive DNA, have been notoriously difficult to sequence. Several groups have recently succeeded in analyzing centromeric sequences in human, Drosophila and Arabidopsis, providing new insights into the importance of DNA sequence for centromere function.
Collapse
Affiliation(s)
- Jonathan C Lamb
- University of Missouri, Division of Biological Sciences, Columbia, MO 65211, USA
| | - James A Birchler
- University of Missouri, Division of Biological Sciences, Columbia, MO 65211, USA
| |
Collapse
|
50
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|