1
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025; 200:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anmin Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Fava F, Martini-Lösch D, Peratoner G, Robatscher P, Matteazzi A, Soini E, Österreicher A, Volgger S, de Andrade Moral R, Scampicchio MM, Eisenstecken D, Venir E. Effect of Diet on CPFAs Used as Markers in Milk for the Detection of Silage in the Ration of Dairy Cows. Foods 2025; 14:476. [PMID: 39942069 PMCID: PMC11816875 DOI: 10.3390/foods14030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
In hay milk production, fermented feed, like silage, is forbidden. This study aims to reveal the presence of silages made from maize or grass in the diet of dairy cows through the detection of cyclopropane fatty acids (CPFAs) in their milk. It also investigates how CPFAs in their milk declines when the diets of the cows are transitioned from one containing silage to one that does not include silage. CPFAs were quantified in silages collected on the farm, and the relationship between the dietary intake of CPFAs from silages and the marker concentration in milk was investigated. Except for one sample (below LOQ), CPFAs were never detected in hay milk, while they were found in 98% and 85% of milk samples obtained from cows whose diet included maize or grass silage as the only fermented component, respectively. CPFAs were found to still be detectable in milk 56 days after the removal of maize silage from the diet, while they were no longer detectable about three weeks after removing grass silage from the ration. A quantitative positive relationship was detected between CPFAs content in the milk and the dietary intake of CPFAs from silages. CPFAs can be regarded as reliable markers to detect the occurrence of silages in the ration, but it is more effective for maize than for grass silage.
Collapse
Affiliation(s)
- Federico Fava
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | - Demian Martini-Lösch
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | - Giovanni Peratoner
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | - Peter Robatscher
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | - Aldo Matteazzi
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | - Evelyn Soini
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | | | - Simon Volgger
- BRING Beratungsring Berglandwirtschaft, Via Galvani 38, 39100 Bozen/Bolzano, BZ, Italy;
| | | | - Matteo Mario Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen/Bolzano, BZ, Italy;
| | - Daniela Eisenstecken
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| | - Elena Venir
- Laimburg Research Centre, Laimburg 6—Pfatten/Vadena, 39040 Auer/Ora, BZ, Italy; (F.F.); (D.M.-L.); (P.R.); (A.M.); (E.S.); (D.E.); (E.V.)
| |
Collapse
|
3
|
Ezeduru V, Shao ARQ, Venegas FA, McKay G, Rich J, Nguyen D, Thibodeaux CJ. Defining the functional properties of cyclopropane fatty acid synthase from Pseudomonas aeruginosa PAO1. J Biol Chem 2024; 300:107618. [PMID: 39095026 PMCID: PMC11387697 DOI: 10.1016/j.jbc.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA), an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid-binding domain of CFAS enzymes, perhaps suggesting distinct membrane-binding properties among different orthologs. This work lays an important foundation for further characterization of CFAS in P. aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
Collapse
Affiliation(s)
- Vivian Ezeduru
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Felipe A Venegas
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jacquelyn Rich
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Iannone F, Eltemur D, Morozova K, Fava F, Martini-Lösch D, Robatscher P, Ferrentino G, Asma U, Peratoner G, Venir E, Eisenstecken D, Oberhuber M, Scampicchio M. Establishing authenticity of hay milk: Detection of silage feeding through cyclopropane fatty acids analysis using 1H NMR spectroscopy. Food Chem 2024; 438:138048. [PMID: 38000157 DOI: 10.1016/j.foodchem.2023.138048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Cyclopropane fatty acids (CPFAs) serve as indicators of silage feeding, verifying the authenticity of hay milk where silage feeding is forbidden. In this study, the authenticity of hay milk was determined by detecting CPFAs using proton nuclear magnetic resonance (1H NMR) spectroscopy. 245 milk samples were collected in South Tyrol (Italy), categorized as follows: 98 from grass silage-fed cows, 98 from maize silage-fed cows, and 49 authentic hay milk. The limit of detection of CPFAs was 12 µM, corresponding to 70 mg/kg of freeze-dried milk. The CPFAs were absent in all of the hay milk samples, verifying their authenticity. In contrast, 97 % of maize silage and 77 % of grass silage samples exhibited distinct CPFAs signals. These findings were further corroborated by gas chromatography-mass detector (GC-MS) analysis. The study highlights 1H NMR as a robust, and rapid technique for hay milk authentication, supporting alpine dairy production and increasing consumer trust in food authenticity.
Collapse
Affiliation(s)
- Francesco Iannone
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università 5, Bolzano, Italy
| | - Dilek Eltemur
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università 5, Bolzano, Italy; Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università 5, Bolzano, Italy
| | - Federico Fava
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer, Italy
| | | | - Peter Robatscher
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università 5, Bolzano, Italy
| | - Umme Asma
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università 5, Bolzano, Italy
| | - Giovanni Peratoner
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer, Italy
| | - Elena Venir
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer, Italy
| | | | - Michael Oberhuber
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer, Italy.
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università 5, Bolzano, Italy
| |
Collapse
|
5
|
Buckner DK, Anderson MJ, Wisnosky S, Alvarado W, Nuevo M, Williams AJ, Ricco AJ, Anamika, Debic S, Friend L, Hoac T, Jahnke L, Radosevich L, Williams R, Wilhelm MB. Quantifying Global Origin-Diagnostic Features and Patterns in Biotic and Abiotic Acyclic Lipids for Life Detection. ASTROBIOLOGY 2024; 24:1-35. [PMID: 38150549 DOI: 10.1089/ast.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.
Collapse
Affiliation(s)
- Denise K Buckner
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Morgan J Anderson
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Axient Corporation, Huntsville, Alabama, USA
| | - Sydney Wisnosky
- Axient Corporation, Huntsville, Alabama, USA
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Walter Alvarado
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Michel Nuevo
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Antonio J Ricco
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Electrical Engineering-Integrated Circuits Laboratory, Stanford University, Stanford, California, USA
| | - Anamika
- Department of Space Studies, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sara Debic
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Trinh Hoac
- Axient Corporation, Huntsville, Alabama, USA
| | - Linda Jahnke
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Ross Williams
- Civil & Environmental Engineering & Earth Sciences, Notre Dame University, Notre Dame, Indiana, USA
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
6
|
Hajib A, El Harkaoui S, Choukri H, Khouchlaa A, Aourabi S, El Menyiy N, Bouyahya A, Matthaeus B. Apiaceae Family an Important Source of Petroselinic Fatty Acid: Abundance, Biosynthesis, Chemistry, and Biological Proprieties. Biomolecules 2023; 13:1675. [PMID: 38002357 PMCID: PMC10669383 DOI: 10.3390/biom13111675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 11/26/2023] Open
Abstract
Petroselinic fatty acid (PeFA) is considered a rare fatty acid and one of the most important fatty acids in the Apiaceae family. Its content varies depending on plant species, geographical origin, extraction method, ripeness, etc. Indeed, reported levels of petroselinic fatty acid range from 10.4 to 75.6% (in anise seed oil), 1 to 81.9% (in coriander seed oil), 28.5 to 57.6% (in caraway seed oil), 49.4 to 75.6% (in celery seed oil), 41.3 to 61.8% (in caraway seed oil), 79.9 to 87.2% (in dill seed oil), 43.1 to 81.9% (in fennel seed oil), and 35 to 75.1% (parsley seed oil). In this review, we also show current knowledge about genes encoding biosynthesis, from the desaturation of 16:0-ACP to petroselinic acid stored in triacylglycerol in the seeds. Furthermore, petroselinic acid is not related to the synthesis of ABA. PeFA was successfully isolated from Apiaceae family plant seeds in order to study their reactivity and biological activities. Several investigations showed that this fatty acid has a wide range of biological potentials, including antidiabetic, antibacterial, and antifungal activities. In cosmetics, PeFA alone or in association with other active compounds has interesting applications as an anti-inflammatory agent for the treatment of skin, hair, and nail disorders.
Collapse
Affiliation(s)
- Ahmed Hajib
- Laboratory of Bioactive and Molecules of Interest, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Said El Harkaoui
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Insitute for Nutrition and Food, Schützenberg 12, D-32756 Detmold, Germany
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas, Rabat 10000, Morocco
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Sarra Aourabi
- Laboratory of Bioactive and Molecules of Interest, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Bertrand Matthaeus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Insitute for Nutrition and Food, Schützenberg 12, D-32756 Detmold, Germany
| |
Collapse
|
7
|
Vallarino JG, Jun H, Wang S, Wang X, Sade N, Orf I, Zhang D, Shi J, Shen S, Cuadros-Inostroza Á, Xu Q, Luo J, Fernie AR, Brotman Y. Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111748. [PMID: 37230189 DOI: 10.1016/j.plantsci.2023.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.
Collapse
Affiliation(s)
- José G Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Hong Jun
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany; Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria.
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
8
|
Shockey J, Parchuri P, Thyssen GN, Bates PD. Assessing the biotechnological potential of cotton type-1 and type-2 diacylglycerol acyltransferases in transgenic systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:940-951. [PMID: 36889233 DOI: 10.1016/j.plaphy.2023.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The chemical and physical properties of vegetable oils are largely dictated by the ratios of 4-6 common fatty acids contained within each oil. However, examples of plant species that accumulate from trace amounts to >90% of certain unusual fatty acids in seed triacylglycerols have been reported. Many of the general enzymatic reactions that drive both common and unusual fatty acid biosynthesis and accumulation in stored lipids are known, but which isozymes have evolved to specifically fill this role and how they coordinate in vivo is still poorly understood. Cotton (Gossypium sp.) is the very rare example of a commodity oilseed that produces biologically relevant amounts of unusual fatty acids in its seeds and other organs. In this case, unusual cyclopropyl fatty acids (named after the cyclopropane and cyclopropene moieties within the fatty acids) are found in membrane and storage glycerolipids (e.g. seed oils). Such fatty acids are useful in the synthesis of lubricants, coatings, and other types of valuable industrial feedstocks. To characterize the role of cotton acyltransferases in cyclopropyl fatty acid accumulation for bioengineering applications, we cloned and characterized type-1 and type-2 diacylglycerol acyltransferases from cotton and compared their biochemical properties to that of litchi (Litchi chinensis), another cyclopropyl fatty acid-producing plant. The results presented from transgenic microbes and plants indicate both cotton DGAT1 and DGAT2 isozymes efficiently utilize cyclopropyl fatty acid-containing substrates, which helps to alleviate biosynthetic bottlenecks and enhances total cyclopropyl fatty acid accumulation in the seed oil.
Collapse
Affiliation(s)
- Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA, 70124.
| | - Prasad Parchuri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA, 99164
| | - Gregory N Thyssen
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA, 70124
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA, 99164
| |
Collapse
|
9
|
Cai Y, Yu XH, Shanklin J. A toolkit for plant lipid engineering: Surveying the efficacies of lipogenic factors for accumulating specialty lipids. FRONTIERS IN PLANT SCIENCE 2022; 13:1064176. [PMID: 36589075 PMCID: PMC9795026 DOI: 10.3389/fpls.2022.1064176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plants produce energy-dense lipids from carbohydrates using energy acquired via photosynthesis, making plant oils an economically and sustainably attractive feedstock for conversion to biofuels and value-added bioproducts. A growing number of strategies have been developed and optimized in model plants, oilseed crops and high-biomass crops to enhance the accumulation of storage lipids (mostly triacylglycerols, TAGs) for bioenergy applications and to produce specialty lipids with increased uses and value for chemical feedstock and nutritional applications. Most successful metabolic engineering strategies involve heterologous expression of lipogenic factors that outperform those from other sources or exhibit specialized functionality. In this review, we summarize recent progress in engineering the accumulation of triacylglycerols containing - specialized fatty acids in various plant species and tissues. We also provide an inventory of specific lipogenic factors (including accession numbers) derived from a wide variety of organisms, along with their reported efficacy in supporting the accumulation of desired lipids. A review of previously obtained results serves as a foundation to guide future efforts to optimize combinations of factors to achieve further enhancements to the production and accumulation of desired lipids in a variety of plant tissues and species.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
10
|
Wu M, Pei W, Wedegaertner T, Zhang J, Yu J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:864850. [PMID: 35360295 PMCID: PMC8961181 DOI: 10.3389/fpls.2022.864850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 05/17/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the world's leading fiber crop and one of the most important oilseed crops. Genetic improvement of cotton has primarily focused on fiber yield and quality. However, there is an increased interest and demand for enhanced cottonseed traits, including protein, oil, fatty acids, and amino acids for broad food, feed and biofuel applications. As a byproduct of cotton production, cottonseed is an important source of edible oil in many countries and could also be a vital source of protein for human consumption. The focus of cotton breeding on high yield and better fiber quality has substantially reduced the natural genetic variation available for effective cottonseed quality improvement within Upland cotton. However, genetic variation in cottonseed oil and protein content exists within the genus of Gossypium and cultivated cotton. A plethora of genes and quantitative trait loci (QTLs) (associated with cottonseed oil, fatty acids, protein and amino acids) have been identified, providing important information for genetic improvement of cottonseed quality. Genetic engineering in cotton through RNA interference and insertions of additional genes of other genetic sources, in addition to the more recent development of genome editing technology has achieved considerable progress in altering the relative levels of protein, oil, fatty acid profile, and amino acids composition in cottonseed for enhanced nutritional value and expanded industrial applications. The objective of this review is to summarize and discuss the cottonseed oil biosynthetic pathway and major genes involved, genetic basis of cottonseed oil and protein content, genetic engineering, genome editing through CRISPR/Cas9, and QTLs associated with quantity and quality enhancement of cottonseed oil and protein.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Otyama PI, Chamberlin K, Ozias-Akins P, Graham MA, Cannon EKS, Cannon SB, MacDonald GE, Anglin NL. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.). G3 (BETHESDA, MD.) 2022; 12:jkab382. [PMID: 34751378 PMCID: PMC8728033 DOI: 10.1093/g3journal/jkab382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here, we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect-increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanuts, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (P-value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.
Collapse
Affiliation(s)
- Paul I Otyama
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, IA 50011, USA
- Agronomy Department, Iowa State University, Ames, IA 50011, USA
| | - Kelly Chamberlin
- USDA—Agricultural Research Service, Stillwater, OK 740752714, USA
| | - Peggy Ozias-Akins
- Genetics, and Genomics and Department of Horticulture, Institute of Plant Breeding, University of Georgia, Tifton, GA 31793-5766, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | - Ethalinda K S Cannon
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | | | - Noelle L Anglin
- USDA-ARS Small Grains and Potato Research Laboratory, Aberdeen, ID 83210, USA
| |
Collapse
|
12
|
Dąbrowski G, Konopka I. Update on food sources and biological activity of odd-chain, branched and cyclic fatty acids –– A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Mokbli S, Sbihi HM, Nehdi IA, Azam M, Fadhila A, Romdhani-Younes M, Al-Resayes SI. Chemical and Fatty Acid Compositions of Crude and Purified Extracts Obtained from Datura innoxia Seeds Extracted with Different Solvents. J Oleo Sci 2021; 70:321-332. [PMID: 33658465 DOI: 10.5650/jos.ess19331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oils play a key role as raw materials in a variety of industries. The aim of this study was to evaluate the potential of Datura innoxia seed oil cultivated in Saudi Arabia for industrial purpose and to study the effects of hexane, chloroform, and isopropanol as extraction solvents on the compositions of the extracts. The results showed that the hexane and chloroform extracts were mainly neutral oils which were rich in linoleic (≈46%) and oleic (≈31%) acids. However, the isopropanol extract contained large amount of neutral oil and organic acids. Neutral oil contained mainly palmitic acid (40.2%) and some important and valuable epoxy (15.4%) and cyclopropane (13.2%) fatty acids. Analysis of the sterol and tocopherol levels of the crude and purified oil extracted revealed that they were significantly affected by the extraction solvent used.
Collapse
Affiliation(s)
- Sadok Mokbli
- Superior Institute of Biotechnology of Sidi Thabet
| | | | | | - Mohammad Azam
- King Saud University, College of Science, Chemistry Department
| | | | - Moufida Romdhani-Younes
- Faculty of Sciences of Tunis, Department of Chemistry, Laboratory of Structural Organic Chemistry, 2092 University of Tunis El Manar Tunis
| | | |
Collapse
|
14
|
Li X, Lv JM, Hu D, Abe I. Biosynthesis of alkyne-containing natural products. RSC Chem Biol 2021; 2:166-180. [PMID: 34458779 PMCID: PMC8341276 DOI: 10.1039/d0cb00190b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
Alkyne-containing natural products are important molecules that are widely distributed in microbes and plants. Inspired by the advantages of acetylenic products used in the fields of medicinal chemistry, organic synthesis and material science, great efforts have focused on discovering the biosynthetic enzymes and pathways for alkyne formation. Here, we summarize the biosyntheses of alkyne-containing natural products and introduce de novo biosynthetic strategies for alkyne-tagged compound production.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
15
|
Lolli V, Dall’Asta M, Del Rio D, Caligiani A. Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods. Nutrients 2020; 12:nu12113347. [PMID: 33143177 PMCID: PMC7693023 DOI: 10.3390/nu12113347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Cyclopropane fatty acids (CPFAs) are an investigated class of secondary fatty acids of microbial origin recently identified in foods. Even though the dietary daily intake of this class of compounds it has been recently estimated as not negligible, to date, no studies specifically have investigated their presence in human plasma after consumption of CPFA-rich sources. Therefore, the aims of this study were (i) to test CPFAs concentration in human plasma, thus demonstrating their in vivo bioaccessibility and potential bioavailability, (ii) to investigate a dose-response relationship between medium term chronic intake of CPFAs-rich foods and both CPFAs and plasma total fatty acid profiles in healthy subjects. Ten healthy normal weight adults were enrolled for conducting an in vivo study. Participants were asked to follow a CPFA-controlled diet for 3 weeks, consuming 50 g of Grana Padano cheese (GP) and 250 mL of whole cow milk, which correspond to a total of 22.1 mg of CPFAs. Fasting CPFAs concentration were monitored for eight timepoints during the whole study and plasma total fatty acids composition was determined by GC-MS. CPFAs, mainly dihydrosterculic acid (DHSA), were identified in plasma total fatty acids profile at the beginning of the study and after dietary treatment. A significant (p < 0.05) increase of CPFAs mean plasma concentration (n = 10) were observed at the end of the dietary intervention. Contrarily, the total fatty acids composition of the general plasma fatty acids profile did not significantly change (p ≥ 0.05) during the dietary intervention period. This is the first investigation demonstrating that CPFAs are bioaccessible in vivo and, as expected, their plasmatic concentration may be affected by consumption of CPFAs-rich foods. This research will open the door to further detailed research, which may better elucidate the role of these compounds in human health.
Collapse
Affiliation(s)
- Veronica Lolli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (V.L.); (A.C.)
| | - Margherita Dall’Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Correspondence:
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy;
- School of Advanced Studies on Food and Nutrition, University of Parma, 43124 Parma, Italy
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (V.L.); (A.C.)
| |
Collapse
|
16
|
Lolli V, Toral PG, Caligiani A, Gómez-Cortés P. Determination of Cyclopropenoid Fatty Acids in Ewe Milk Fat by GC-MS after Intravenous Administration of Sterculic Acid. Foods 2020; 9:foods9070901. [PMID: 32650618 PMCID: PMC7404631 DOI: 10.3390/foods9070901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclopropenoid fatty acids (CPEFA), found in oilseeds from Malvaceae and Sterculiaceae, have been shown to interfere with the endogenous synthesis of several bioactive lipids of dairy fat, such as cis-9, trans-11 18:2 and cis-9 18:1, by inhibiting Δ9-desaturase. No previous study has reported the presence of sterculic acid in animal fat and its incorporation in tissues after its administration, due to the lack of a proper methodology. In the present research, a GC-MS method based on cold base derivatization to fatty acids methylesters was developed to determine CPEFA in ewe milk triglycerides, after infusing sterculic acid (0.5 g/day) to six lactating ewes. An alternative derivatization based on silanyzation followed by GC-MS analysis was also tested, showing its possible applicability when CPEFA are present in the form of free fatty acids. Sterculic acid was detected in ewe milk triglycerides, demonstrating its incorporation from the bloodstream into milk by the mammary gland. The mean transfer rate represented 8.0 ± 1.0% of the daily dose. This study provides, for the first time, the presence of sterculic acid in milk fat, supporting the importance of understanding its occurrence in vivo and encouraging further research to determine whether it can be present in foods, such as dairy products, obtained under practical farming conditions.
Collapse
Affiliation(s)
- Veronica Lolli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521-905407
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña, CSIC-University of León, 24346 Grulleros, Spain;
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain;
| |
Collapse
|
17
|
Sobhi HF, Zhao X, Plomgaard P, Hoene M, Hansen JS, Karus B, Niess AM, Häring HU, Lehmann R, Adams SH, Xu G, Weigert C. Identification and regulation of the xenometabolite derivatives cis- and trans-3,4-methylene-heptanoylcarnitine in plasma and skeletal muscle of exercising humans. Am J Physiol Endocrinol Metab 2020; 318:E701-E709. [PMID: 32101032 DOI: 10.1152/ajpendo.00510.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about xenometabolites in human metabolism, particularly under exercising conditions. Previously, an exercise-modifiable, likely xenometabolite derivative, cis-3,4-methylene-heptanoylcarnitine, was reported in human plasma. Here, we identified trans-3,4-methylene-heptanoylcarnitine, and its cis-isomer, in plasma and skeletal muscle by liquid chromatography-mass spectrometry. We analyzed the regulation by exercise and the arterial-to-venous differences of these cyclopropane ring-containing carnitine esters over the hepatosplanchnic bed and the exercising leg in plasma samples obtained in three separate studies from young, lean and healthy males. Compared with other medium-chain acylcarnitines, the plasma concentrations of the 3,4-methylene-heptanoylcarnitine isomers only marginally increased with exercise. Both isomers showed a more than twofold increase in the skeletal muscle tissue of the exercising leg; this may have been due to the net effect of fatty acid oxidation in the exercising muscle and uptake from blood. The latter idea is supported by a more than twofold increased net uptake in the exercising leg only. Both isomers showed a constant release from the hepatosplanchnic bed, with an increased release of the trans-isomer after exercise. The isomers differ in their plasma concentration, with a four times higher concentration of the cis-isomer regardless of the exercise state. This is the first approach studying kinetics and fluxes of xenolipid isomers from tissues under exercise conditions, supporting the hypothesis that hepatic metabolism of cyclopropane ring-containing fatty acids is one source of these acylcarnitines in plasma. The data also provide clear evidence for an exercise-dependent regulation of xenometabolites, opening perspectives for future studies about the physiological role of this largely unknown class of metabolites.
Collapse
Affiliation(s)
- Hany F Sobhi
- Department of Natural Sciences, Center for Organic Synthesis, Coppin State University, Baltimore, Maryland
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital, Tuebingen, Germany
| | - Jakob S Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Copenhagen, Denmark
| | - Benedikt Karus
- Department for Sports Medicine, University Hospital, Tuebingen, Germany
| | - Andreas M Niess
- Department for Sports Medicine, University Hospital, Tuebingen, Germany
| | - Hans U Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Oberschleissheim, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Oberschleissheim, Germany
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Oberschleissheim, Germany
| |
Collapse
|
18
|
Imatoukene N, Back A, Nonus M, Thomasset B, Rossignol T, Nicaud JM. Fermentation process for producing CFAs using Yarrowia lipolytica. J Ind Microbiol Biotechnol 2020; 47:403-412. [PMID: 32372295 DOI: 10.1007/s10295-020-02276-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Past research has sought to improve the production of cyclopropane fatty acids by the oleaginous yeast Yarrowia lipolytica by heterologously expressing the E. coli fatty acid synthase gene and improving cultivation processes. Cyclopropane fatty acids display properties that hold promise for biofuel applications. The E. coli fatty acid synthase gene was introduced into several genetic backgrounds of the yeast Y. lipolytica to optimize lipid synthesis; the mean cyclopropane fatty acid productivity was 43 mg L-1 h-1 on glucose, and the production rate reached its maximum (3.06 g L-1) after 72 h of cultivation in a bioreactor. The best strain (JMY6851) overexpressed simultaneously the E. coli cyclopropane fatty acid synthase gene under a hybrid promoter (hp8d) and Y. lipolytica LRO1 gene. In fed-batch process using crude glycerol as carbon source, JMY6851 strain displayed high lipid accumulation (78% of dry cell weight) and high biomass production (56 g L-1). After 165 h of cultivation, cyclopropane fatty acids represented 22% of the lipids produced; cyclopropane fatty acid productivity (103.3 mg L-1 h-1) was maximal at 72.5 h of cultivation.
Collapse
Affiliation(s)
- Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France.
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Centre Européen de Biotechnologie Et de Bioéconomie, Agro-Biotechnologies Industrielles, Rue des Rouges Terres, 51110, Pomacle, France.
| | - Alexandre Back
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| |
Collapse
|
19
|
Okada S, Taylor M, Zhou XR, Naim F, Marshall D, Blanksby SJ, Singh SP, Wood CC. Producing Cyclopropane Fatty Acid in Plant Leafy Biomass via Expression of Bacterial and Plant Cyclopropane Fatty Acid Synthases. FRONTIERS IN PLANT SCIENCE 2020; 11:30. [PMID: 32117373 PMCID: PMC7020751 DOI: 10.3389/fpls.2020.00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
Saturated mid-chain branched fatty acids (SMCBFAs) are widely used in the petrochemical industry for their high oxidative stability and low melting temperature. Dihydrosterculic acid (DHSA) is a cyclopropane fatty acid (CPA) that can be converted to SMCBFA via hydrogenation, and therefore oils rich in DHSA are a potential feedstock for SMCBFA. Recent attempts to produce DHSA in seed oil by recombinant expression of cyclopropane fatty acid synthases (CPFASes) resulted in decreased oil content and poor germination or low DHSA accumulation. Here we explored the potential for plant vegetative tissue to produce DHSA by transiently expressing CPFAS enzymes in leaf. When CPFASes from plant and bacterial origin were transiently expressed in Nicotiana benthamiana leaf, it accumulated up to 1 and 3.7% DHSA in total fatty acid methyl ester (FAME), respectively, which increased up to 4.8 and 11.8%, respectively, when the N. benthamiana endogenous oleoyl desaturase was silenced using RNA interference (RNAi). Bacterial CPFAS expression produced a novel fatty acid with a cyclopropane ring and two carbon-carbon double bonds, which was not seen with plant CPFAS expression. We also observed a small but significant additive effect on DHSA accumulation when both plant and bacterial CPFASes were co-expressed, possibly due to activity upon different oleoyl substrates within the plant cell. Lipidomics analyses found that CPFAS expression increased triacylglycerol (TAG) accumulation relative to controls and that DHSA was distributed across a range of lipid species, including diacylglycerol and galactolipids. DHSA and the novel CPA were present in phosphatidylethanolamine when bacterial CPFAS was expressed in leaf. Finally, when plant diacylglycerol acyltransferase was coexpressed with the CPFASes DHSA accumulated up to 15% in TAG. This study shows that leaves can readily produce and accumulate DHSA in leaf oil. Our findings are discussed in line with current knowledge in leaf oil production for a possible route to DHSA production in vegetative tissue.
Collapse
Affiliation(s)
- Shoko Okada
- CSIRO Land and Water, Canberra, ACT, Australia
| | | | - Xue-Rong Zhou
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Fatima Naim
- Center for Crop Disease Management, Faculty of Science and Engineering, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - David Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Craig C. Wood
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
20
|
Molecular mapping and candidate gene analysis of the semi-dominant gene Vestigial glume1 in maize. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Yu XH, Cai Y, Chai J, Schwender J, Shanklin J. Expression of a Lychee PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE with an Escherichia coli CYCLOPROPANE SYNTHASE Enhances Cyclopropane Fatty Acid Accumulation in Camelina Seeds. PLANT PHYSIOLOGY 2019; 180:1351-1361. [PMID: 31123096 PMCID: PMC6752900 DOI: 10.1104/pp.19.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 05/13/2023]
Abstract
Cyclopropane fatty acids (CPAs) are useful feedstocks for biofuels and bioproducts such as lubricants and biodiesel. Our goal is to identify factors that can facilitate the accumulation of CPA in seed triacylglycerol (TAG) storage oil. We hypothesized that the poor metabolism of CPA through the TAG biosynthetic network could be overcome by the addition of enzymes from species that naturally accumulate CPA in their seed oil, such as lychee (Litchi chinensis), which contains approximately 40% CPA in TAG. Our previous work on engineering CPA accumulation in crop and model plants identified a metabolic bottleneck between phosphatidylcholine (PC), the site of CPA biosynthesis, diacylglycerol (DAG), and TAG. Here, we report the cloning and heterologous expression in camelina (Camelina sativa) of a lychee PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT), which encodes the enzyme that catalyzes the transfer of the phosphocholine headgroup from PC to DAG. Camelina lines coexpressing LcPDCT and Escherichia coli CYCLOPROPANE SYNTHASE (EcCPS) showed up to a 50% increase of CPA in mature seed, relative to the EcCPS background. Stereospecific lipid compositional analysis showed that the expression of LcPDCT strongly reduced the level of C18:1 substrate at PC-sn-1 and PC-sn-2 (i.e. the sites of CPA synthesis), while the levels of CPA increased in PC-sn-2, DAG-sn-1 and DAG-sn-2, and both sn-1/3 and sn-2 positions in TAG. Taken together, these data suggest that the addition of PDCT facilitates more efficient movement of CPA from PC to DAG and establishes LcPDCT as a useful factor to combine with others to enhance CPA accumulation in plant seed oil.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Yuanheng Cai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
22
|
Ma Y, Pan C, Wang Q. Crystal structure of bacterial cyclopropane-fatty-acyl-phospholipid synthase with phospholipid. J Biochem 2019; 166:139-147. [PMID: 30828715 DOI: 10.1093/jb/mvz018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/27/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractThe lipids containing cyclopropane-fatty-acid (CFA) protect bacteria from adverse conditions such as acidity, freeze-drying desiccation and exposure to pollutants. CFA is synthesized when cyclopropane-fatty-acyl-phospholipid synthase (CFA synthase, CFAS) transfers a methylene group from S-adenosylmethionine (SAM) across the cis double bonds of unsaturated fatty acyl chains. Here, we reported a 2.7-Å crystal structure of CFAS from Lactobacillus acidophilus. The enzyme is composed of N- and C-terminal domain, which belong to the sterol carrier protein and methyltransferase superfamily, respectively. A phospholipid in the substrate binding site and a bicarbonate ion (BCI) acting as a general base in the active site were discovered. To elucidate the mechanism, a docking experiment using CFAS from L. acidophilus and SAM was carried out. The analysis of this structure demonstrated that three groups, the carbons from the substrate, the BCI and the methyl of S(CHn)3 group, were close enough to form a cyclopropane ring with the help of amino acids in the active site. Therefore, the structure supports the hypothesis that CFAS from L. acidophilus catalyzes methyl transfer via a carbocation mechanism. These findings provide a structural basis to more deeply understand enzymatic cyclopropanation.
Collapse
Affiliation(s)
- Yulong Ma
- School of Bioengineering, Jingchu University of Technology, Jingmen, China
- Department of Stomatology, Jingmen No. 2 People’s Hospital, Jingmen, China
| | - Chunli Pan
- Surgery Center, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Qihai Wang
- School of Bioengineering, Jingchu University of Technology, Jingmen, China
| |
Collapse
|
23
|
Czerwiec Q, Idrissitaghki A, Imatoukene N, Nonus M, Thomasset B, Nicaud JM, Rossignol T. Optimization of cyclopropane fatty acids production in Yarrowia lipolytica. Yeast 2019; 36:143-151. [PMID: 30677185 DOI: 10.1002/yea.3379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 11/11/2022] Open
Abstract
Cyclopropane fatty acids, which can be simply converted to methylated fatty acids, are good unusual fatty acid candidates for long-term resistance to oxidization and low-temperature fluidity useful for oleochemistry and biofuels. Cyclopropane fatty acids are present in low amounts in plants or bacteria. In order to develop a process for large-scale biolipid production, we expressed 10 cyclopropane fatty acid synthases from various organisms in the oleaginous yeast Yarrowia lipolytica, a model yeast for lipid metabolism and naturally capable of producing large amounts of lipids. The Escherichia coli cyclopropane fatty acid synthase expression in Y. lipolytica allows the production of two classes of cyclopropane fatty acids, a C17:0 cyclopropanated form and a C19:0 cyclopropanated form, whereas others produce only the C17:0 form. Expression optimization and fed-batch fermentation set-up enable us to reach a specific productivity of 0.032 g·L-1 ·hr-1 with a genetically modified strain containing cyclopropane fatty acid up to 45% of the total lipid content corresponding to a titre of 2.3 ± 0.2 g/L and a yield of 56.2 ± 4.4 mg/g.
Collapse
Affiliation(s)
- Quentin Czerwiec
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Abdelghani Idrissitaghki
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
24
|
Bai W, Geng W, Wang S, Zhang F. Biosynthesis, regulation, and engineering of microbially produced branched biofuels. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:84. [PMID: 31011367 PMCID: PMC6461809 DOI: 10.1186/s13068-019-1424-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 05/13/2023]
Abstract
The steadily increasing demand on transportation fuels calls for renewable fuel replacements. This has attracted a growing amount of research to develop advanced biofuels that have similar physical, chemical, and combustion properties with petroleum-derived fossil fuels. Early generations of biofuels, such as ethanol, butanol, and straight-chain fatty acid-derived esters or hydrocarbons suffer from various undesirable properties and can only be blended in limited amounts. Recent research has shifted to the production of branched-chain biofuels that, compared to straight-chain fuels, have higher octane values, better cold flow, and lower cloud points, making them more suitable for existing engines, particularly for diesel and jet engines. This review focuses on several types of branched-chain biofuels and their immediate precursors, including branched short-chain (C4-C8) and long-chain (C15-C19)-alcohols, alkanes, and esters. We discuss their biosynthesis, regulation, and recent efforts in their overproduction by engineered microbes.
Collapse
Affiliation(s)
- Wenqin Bai
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Weitao Geng
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
25
|
Shockey J, Kuhn D, Chen T, Cao H, Freeman B, Mason C. Cyclopropane fatty acid biosynthesis in plants: phylogenetic and biochemical analysis of Litchi Kennedy pathway and acyl editing cycle genes. PLANT CELL REPORTS 2018; 37:1571-1583. [PMID: 30083958 DOI: 10.1007/s00299-018-2329-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
This report describes the most extensive known gene discovery study from an oilseed that produces cyclopropane fatty acids, a novel industrial feedstock. Nature contains hundreds of examples of plant species that accumulate unusual fatty acids in seed triacylglycerols (TAG). Although lipid metabolic genes have been cloned from several exotic plant species, the underlying mechanisms that control the production of novel TAG species are still poorly understood. One such class of unusual fatty acids contain in-chain cyclopropane or cyclopropene functionalities that confer chemical and physical properties useful in the synthesis of lubricants, cosmetics, dyes, coatings, and other types of valuable industrial feedstocks. These cyclopropyl fatty acids, or CPFAs, are only produced by a small number of plants, primarily in the order Malvidae. Litchi chinensis is one member of this group; its seed oil contains at least 40 mol% CPFAs. Several genes, representing early, middle, and late steps in the Litchi fatty acid and TAG biosynthetic pathways have been cloned and characterized here. The tissue-specific and developmental transcript expression profiles and biochemical characteristics observed indicate which enzymes might play a larger role in Litchi seed TAG biosynthesis and accumulation. These data, therefore, provide insights into which genes likely represent the best targets for either silencing or overexpression, in future metabolic engineering strategies aimed at altering CPFA content.
Collapse
Affiliation(s)
- Jay Shockey
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| | - David Kuhn
- Subtropical Horticulture Research Station, United States Department of Agriculture-Agricultural Research Service, Miami, FL, 33158, USA
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, 518004, Guangdong, China
| | - Heping Cao
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Barbara Freeman
- Subtropical Horticulture Research Station, United States Department of Agriculture-Agricultural Research Service, Miami, FL, 33158, USA
| | - Catherine Mason
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| |
Collapse
|
26
|
Iwasaki T, Terahigashi S, Wang Y, Tanaka A, Zhao H, Fujimoto Y, Fukase K, Kambe N. Synthesis of Cyclopropane Fatty Acids by C( sp3)−C( sp3) Cross-Coupling Reaction and Formal Synthesis of α-Mycolic Acid. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takanori Iwasaki
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shohei Terahigashi
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Yufei Wang
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Arisa Tanaka
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Hanqing Zhao
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science; Osaka University, Toyonaka; Osaka 560-0043 Japan
| | - Nobuaki Kambe
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| |
Collapse
|
27
|
A gas chromatography full scan high resolution Orbitrap mass spectrometry method for separation and characterization of 3-hydroxymethyl pyridine ester of fatty acids at low levels. J Chromatogr A 2018; 1575:72-79. [PMID: 30217382 DOI: 10.1016/j.chroma.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022]
Abstract
Fatty acid methyl esters (FAMEs), which are commonly used to characterize lipids, have several limitations to conclude on many structures. 3-Pyridylcarbinol esters (3-PCE) are used to characterize fatty acid structures [1], in particular, to identify ring and double bond positions on the carbon chain. Chromatographic separation of these esters is complex due to their polarity and high boiling points. In this study, we used a column with high resolutive power based on ionic liquids to increase the separation quality in gas chromatography (GC). In addition, we used a high-resolution detector (Orbitrap) to limit non-specific signals and improve the detection limits. This detector could be used with a mass filter at 5 ppm for the rapid determination of 3-PCE from its characteristic ions (m/z = 108.0441 and 92.0495). This filter allowed the identification of derivative fatty acids with good sensibility. Thus, it was possible to characterize 3-PCE by measuring the exact fragment masses to confirm structures such as C19:2n12cycloΔ9.
Collapse
|
28
|
Abstract
Studying seed oil metabolism. The seeds of higher plants represent valuable factories capable of converting photosynthetically derived sugars into a variety of storage compounds, including oils. Oils are the most energy-dense plant reserves and fatty acids composing these oils represent an excellent nutritional source. They supply humans with much of the calories and essential fatty acids required in their diet. These oils are then increasingly being utilized as renewable alternatives to petroleum for the chemical industry and for biofuels. Plant oils therefore represent a highly valuable agricultural commodity, the demand for which is increasing rapidly. Knowledge regarding seed oil production is extensively exploited in the frame of breeding programs and approaches of metabolic engineering for oilseed crop improvement. Complementary aspects of this research include (1) the study of carbon metabolism responsible for the conversion of photosynthetically derived sugars into precursors for fatty acid biosynthesis, (2) the identification and characterization of the enzymatic actors allowing the production of the wide set of fatty acid structures found in seed oils, and (3) the investigation of the complex biosynthetic pathways leading to the production of storage lipids (waxes, triacylglycerols). In this review, we outline the most recent developments in our understanding of the underlying biochemical and molecular mechanisms of seed oil production, focusing on fatty acids and oils that can have a significant impact on the emerging bioeconomy.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
29
|
Devaraj NK. The Future of Bioorthogonal Chemistry. ACS CENTRAL SCIENCE 2018; 4:952-959. [PMID: 30159392 PMCID: PMC6107859 DOI: 10.1021/acscentsci.8b00251] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Bioorthogonal reactions have found widespread use in applications ranging from glycan engineering to in vivo imaging. Researchers have devised numerous reactions that can be predictably performed in a biological setting. Depending on the requirements of the intended application, one or more reactions from the available toolkit can be readily deployed. As an increasing number of investigators explore and apply chemical reactions in living systems, it is clear that there are a myriad of ways in which the field may advance. This article presents an outlook on the future of bioorthogonal chemistry. I discuss currently emerging opportunities and speculate on how bioorthogonal reactions might be applied in research and translational settings. I also outline hurdles that must be cleared if progress toward these goals is to be made. Given the incredible past successes of bioorthogonal chemistry and the rapid pace of innovations in the field, the future is undoubtedly very bright.
Collapse
|
30
|
Hari SB, Grant RA, Sauer RT. Structural and Functional Analysis of E. coli Cyclopropane Fatty Acid Synthase. Structure 2018; 26:1251-1258.e3. [PMID: 30057024 DOI: 10.1016/j.str.2018.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 01/17/2023]
Abstract
Cell membranes must adapt to different environments. In Gram-negative bacteria, the inner membrane can be remodeled directly by modification of lipids embedded in the bilayer. For example, when Escherichia coli enters stationary phase, cyclopropane fatty acid (CFA) synthase converts most double bonds in unsaturated inner-membrane lipids into cyclopropyl groups. Here we report the crystal structure of E. coli CFA synthase. The enzyme is a dimer in the crystal and in solution, with each subunit containing a smaller N-domain that associates tightly with a larger catalytic C-domain, even following cleavage of the inter-domain linker or co-expression of each individual domain. Efficient catalysis requires dimerization and proper linkage of the two domains. These findings support an avidity-based model in which one subunit of the dimer stabilizes membrane binding, while the other subunit carries out catalysis.
Collapse
Affiliation(s)
- Sanjay B Hari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Lolli V, Marseglia A, Palla G, Zanardi E, Caligiani A. Determination of Cyclopropane Fatty Acids in Food of Animal Origin by 1H NMR. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:8034042. [PMID: 29805838 PMCID: PMC5902066 DOI: 10.1155/2018/8034042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Cyclopropane fatty acids (CPFAs) are unusual fatty acids of microbial origin, recently detected in milk and dairy products. CPFAs have been demonstrated to be interesting molecular markers for authentication of dairy products obtained without ensiled feeds. Moreover, they can also be recognized as a new secondary component of human diet. Information is lacking on the presence of cyclic fatty acids in other food sources. Cyclopropane fatty acids have been detected by GC-MS analysis in cheese and other animal fats in concentration ranging from 200 to 1000 mg/kg fat, but in some cases, the complex fatty acid profile and the possible presence of interfering peaks make the separation not straightforward and the quantification uneasy. Therefore, a new reliable 1H NMR method was developed to detect and measure CPFA content in different foods of animal origin, based on the detection of the characteristic signals of cyclopropane ring. The 1H NMR (600 MHz) method showed detection limits comparable with those of full scan GC-MS, and it allowed the identification and quantitation of the cyclopropane fatty acids in different foods.
Collapse
Affiliation(s)
- Veronica Lolli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Angela Marseglia
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Gerardo Palla
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Emanuela Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
32
|
Yu X, Cahoon RE, Horn PJ, Shi H, Prakash RR, Cai Y, Hearney M, Chapman KD, Cahoon EB, Schwender J, Shanklin J. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:926-938. [PMID: 28929610 PMCID: PMC5866947 DOI: 10.1111/pbi.12839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co-expression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.
Collapse
Affiliation(s)
- Xiao‐Hong Yu
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
| | - Rebecca E. Cahoon
- Center for Plant Science InnovationDepartment of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Patrick J. Horn
- Department of Biological SciencesBioDiscovery InstituteUniversity of North TexasDentonTXUSA
- Present address:
DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Hai Shi
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Richa R. Prakash
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
- Present address:
Department of Natural SciencesSuffolk County Community CollegeBrentwoodNYUSA
| | - Yuanheng Cai
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
| | - Maegan Hearney
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Kent D. Chapman
- Department of Biological SciencesBioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Edgar B. Cahoon
- Center for Plant Science InnovationDepartment of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Jorg Schwender
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - John Shanklin
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|
33
|
Xu W, Mukherjee S, Ning Y, Hsu FF, Zhang K. Cyclopropane fatty acid synthesis affects cell shape and acid resistance in Leishmania mexicana. Int J Parasitol 2017; 48:245-256. [PMID: 29180119 DOI: 10.1016/j.ijpara.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Cyclopropane fatty acid synthase (CFAS) catalyzes the transfer of a methylene group from S-adenosyl methionine to an unsaturated fatty acid, generating a cyclopropane fatty acid (CFA). The gene encoding CFAS is present in many bacteria and several Leishmania spp. including Leishmania mexicana, Leishmania infantum and Leishmania braziliensis. In this study, we characterised the CFAS-null and -overexpression mutants in L. mexicana, the causative agent for cutaneous leishmaniasis in Mexico and central America. Our data indicate that L. mexicana CFAS modifies the fatty acid chain of plasmenylethanolamine (PME), the dominant class of ethanolamine glycerophospholipids in Leishmania, generating CFA-PME. While the endogenous level of CFA-PME is extremely low in wild type L. mexicana, overexpression of CFAS results in a significant increase. CFAS-null mutants (cfas-) exhibit altered cell shape, increased sensitivity to acidic pH, and aberrant growth in serum-free media. In addition, the CFAS protein is preferentially expressed during the proliferative stage of L. mexicana and is required for the cell membrane targeting of lipophosphoglycan. Finally, the maturation and localization of CFAS protein are dependent upon the downstream sequence of the CFAS coding region. Without the downstream sequence, the mis-localised CFAS protein cannot fully rescue the defects of cfas-. Our data suggest that CFA modification of phospholipids can significantly affect the parasite's response to certain adverse conditions. These findings are distinct from the roles of CFAS in L. infantum, highlighting the functional divergence in lipid modification among Leishmania spp.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
34
|
Salehi M, Moieni A, Safaie N. A Novel Medium for Enhancing Callus Growth of Hazel (Corylus avellana L.). Sci Rep 2017; 7:15598. [PMID: 29142273 PMCID: PMC5688170 DOI: 10.1038/s41598-017-15703-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
Paclitaxel is a powerful antimitotic agent with excellent activity against a range of cancers. Hazel has been described as a paclitaxel-producing species among angiosperms. Fast-growing callus is a prerequisite for the success of callus production and then paclitaxel production. Therefore, optimizing the medium culture for enhancing callus growth is a crucial step for paclitaxel production. In this research, Murashige and Skoog (1962) (MS) medium was optimized for improving callus growth of hazel (Corylus avellana L.). The M10 medium (MS medium with pH 6.0 and supplemented with 1000 mg l-1 spirulina powder, 1000 mg l-1 casein hydrolysate and 3 g l-1 gelrite) significantly improved hazel callus growth. This modified MS medium increased callus fresh weight (55.8%) as compared to the control. M10 medium increased fatty acids yield of callus (66.7%) as compared to the control. Liquid M10 medium maintained growth over a longer period of time and also increased slightly, the paclitaxel production as compared to the control. This novel medium is promising for facilitating the mass production of hazel callus as a source of valuable metabolites including paclitaxel, linoleic and oleic acids.
Collapse
Affiliation(s)
- Mina Salehi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, P.O. Box: 14115-336, Iran
| | - Ahmad Moieni
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, P.O. Box: 14115-336, Iran.
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, P.O. Box: 14115-336, Iran
| |
Collapse
|
35
|
Inuki S, Ohta I, Ishibashi S, Takamatsu M, Fukase K, Fujimoto Y. Total Synthesis of Cardiolipins Containing Chiral Cyclopropane Fatty Acids. J Org Chem 2017; 82:7832-7838. [PMID: 28682614 DOI: 10.1021/acs.joc.7b00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiolipin (CL) is a phospholipid located in both the eukaryotic mitochondrial inner membrane and the bacterial cell membrane. Some bacterial CLs are known to contain cyclopropane moieties in their acyl chains. Although the CLs are thought to be involved in the innate immune response, there have been few attempts at chemical synthesis of the CLs, and detailed studies of their biological activities are scarce. Thus, we have developed a synthetic route to CLs containing chiral cyclopropane moieties.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ippei Ohta
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunichi Ishibashi
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masayuki Takamatsu
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
36
|
Ravasco JMJM, Monteiro CM, Trindade AF. Cyclopropenes: a new tool for the study of biological systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00054e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclopropenes have become an important mini-tag tool in chemical biology, participating in fast inverse electron demand Diels–Alder and photoclick reactions in biological settings.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Alexandre F. Trindade
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
37
|
Maeda K, Kohira K, Kubota H, Yamanaka K, Saito K, Irie M. Effect of dietary kapok oil supplementation on growth performance, carcass traits, meat quality and sensory traits of pork in finishing-pigs. Anim Sci J 2016; 88:1066-1074. [PMID: 27891709 DOI: 10.1111/asj.12731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 11/29/2022]
Abstract
Kapok seed and oil from the tropical zone are widely used as pig feed to harden porcine fat in Japan. This study evaluated the effect of dietary kapok oil supplementation on pork quality and sensory traits. Five Duroc pigs each were assigned to an experimental group supplemented with kapok oil and a control group. Dietary kapok oil supplementation had no effect on growth performance and intramuscular fat content in the Longissimus dorsi muscle (LM). Supplemental kapok oil increased saturated fatty acid contents in subcutaneous and intramuscular fat and decreased monounsaturated fatty acid levels (P < 0.05). Off-flavor detection by a trained panel was higher in the experimental than the control group (P < 0.05), but tenderness, juiciness, texture and flavor intensity of LM chops were similar in both groups. The overall palatability of pork as judged by a consumer panel decreased with kapok oil supplementation (P < 0.01). These results indicate that while growth performance, intramuscular fat contents and carcass characteristics were unchanged, while dietary kapok oil supplementation makes firm fat to prevent inferior soft fat in pork, it can lower the palatability of pork due to a decrease in monounsaturated fatty acids.
Collapse
Affiliation(s)
- Keisuke Maeda
- Livestock Experiment Station of Wakayama Prefecture, Wakayama, Japan
| | - Kimiko Kohira
- National Livestock Breeding Center, Fukushima, Japan
| | - Hiroki Kubota
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kousuke Yamanaka
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kaoru Saito
- National Livestock Breeding Center, Fukushima, Japan
| | - Masakazu Irie
- Faculty of Biology-Oriented Science Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
38
|
Increased Serum Level of Cyclopropaneoctanoic Acid 2-Hexyl in Patients with Hypertriglyceridemia-Related Disorders. Lipids 2016; 51:867-73. [PMID: 27003900 PMCID: PMC4903102 DOI: 10.1007/s11745-016-4141-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022]
Abstract
We recently reported the presence of various cyclopropane fatty acids—among them, cyclopropaneoctanoic acid 2-hexyl—in the adipose tissue of obese women. The aim of this study was to verify whether the presence of cyclopropaneoctanoic acid 2-hexyl in human serum was associated with obesity or chronic kidney disease (both being related to dyslipidemia), and to find potential associations between the serum level of this compound and specific markers of the these conditions. The serum concentration of cyclopropaneoctanoic acid 2-hexyl was determined by gas chromatography–mass spectrometry (GC–MS) in non-obese controls, obese patients, obese patients after a 3-month low-calorie diet, and individuals with chronic kidney disease. Obese patients and those with chronic kidney disease presented with higher serum levels of cyclopropaneoctanoic acid 2-hexyl than controls. Switching obese individuals to a low-calorie (low-lipid) diet resulted in a reduction in this fatty acid concentration to the level observed in controls. Cyclopropaneoctanoic acid 2-hexyl was also found in foods derived from animal fat. Serum concentrations of triacylglycerols in the analyzed groups followed a pattern similar to that for serum cyclopropaneoctanoic acid 2-hexyl, and these variables were positively correlated with each other among the studied groups. Patients with hypertriglyceridemia-related conditions presented with elevated serum levels of cyclopropaneoctanoic acid 2-hexyl. Our findings suggest that its high serum level is related to high serum triacylglycerol concentrations rather than to body mass or BMI.
Collapse
|
39
|
Dersch LM, Beckers V, Wittmann C. Green pathways: Metabolic network analysis of plant systems. Metab Eng 2016; 34:1-24. [DOI: 10.1016/j.ymben.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
|
40
|
Li-Beisson Y, Nakamura Y, Harwood J. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications. Subcell Biochem 2016; 86:1-18. [PMID: 27023229 DOI: 10.1007/978-3-319-25979-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Institut de Biologie Environnementale et Biotechnologie, UMR 7265 CEA - CNRS - Université Aix Marseille, CEA Cadarache, Saint-Paul-lez-Durance, 13108, France.
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - John Harwood
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
41
|
Ríos-Gutiérrez M, Layeb H, Domingo LR. A DFT study of the mechanism of Brønsted acid catalysed Povarov reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Granafei S, Losito I, Trotta M, Italiano F, de Leo V, Agostiano A, Palmisano F, Cataldi TRI. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)). Anal Chim Acta 2015; 903:110-20. [PMID: 26709304 DOI: 10.1016/j.aca.2015.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 11/15/2022]
Abstract
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides.
Collapse
Affiliation(s)
- Sara Granafei
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Massimo Trotta
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Francesca Italiano
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Vincenzo de Leo
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Angela Agostiano
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy.
| |
Collapse
|
43
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
44
|
Lee KR, Chen GQ, Kim HU. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. PLANT CELL REPORTS 2015; 34:603-615. [PMID: 25577331 DOI: 10.1007/s00299-015-1736-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Hydroxy fatty acids produced in plant seed oil are important industrial material. This review focuses on the use of metabolic engineering approaches for the production of hydroxy fatty acids in transgenic plants. Vegetable oil is not only edible but can also be used for industrial purposes. The industrial demand for vegetable oil will increase with the continued depletion of fossil fuels and ensuing environmental issues such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high levels of unusual fatty acids in their seeds, and these fatty acids (FAs) have properties that make them suitable for industrial applications. Hydroxy fatty acids (HFAs) are some of the most important of these industrial FAs. Castor oil is the conventional source of HFA. However, due to the presence of toxin ricin in its seeds, castor is not cultivated on a large scale. Lesquerella is another HFA accumulator and is currently being developed as a new crop for a safe source of HFAs. The mechanisms of HFA synthesis and accumulation have been extensively studied using castor genes and the model plant Arabidopsis. HFAs accumulated to 17% in the seed oil of Arabidopsis expressing a FA hydroxylase gene from castor (RcFAH12), but its seed oil content and plant growth decreased. When RcFAH12 gene was coexpressed with additional castor gene(s) in Arabidopsis, ~30% HFAs were accumulated and the seed oil content and plant growth was almost restored to the wild-type level. Further advancement of our understanding of pathways, genes and regulatory mechanisms underlying synthesis and accumulation of HFAs is essential to developing and implementing effective genetic approaches for enhancing HFA production in oilseeds.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | | | | |
Collapse
|
45
|
Zheng M, Meng Y, Yang C, Zhou Z, Wang Y, Chen B. Protein expression changes during cotton fiber elongation in response to drought stress and recovery. Proteomics 2015; 14:1776-95. [PMID: 24889071 DOI: 10.1002/pmic.201300123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022]
Abstract
An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.
Collapse
Affiliation(s)
- Mi Zheng
- College of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
46
|
Braga AA, e Lacerda RR, de Vasconcelos Medeiros GKV, Gonçalves GF, de Luna Freire Pessoa H, Cardoso JD, de Almeida Gadelha CA, da Silva BA, Santi-Gadelha T. Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L. Appl Biochem Biotechnol 2014; 175:1689-99. [DOI: 10.1007/s12010-014-1390-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 11/12/2014] [Indexed: 11/29/2022]
|
47
|
Shah S, White JM, Williams SJ. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid. Org Biomol Chem 2014; 12:9427-38. [DOI: 10.1039/c4ob01863j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Heise R, Arrivault S, Szecowka M, Tohge T, Nunes-Nesi A, Stitt M, Nikoloski Z, Fernie AR. Flux profiling of photosynthetic carbon metabolism in intact plants. Nat Protoc 2014; 9:1803-24. [DOI: 10.1038/nprot.2014.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. eLife 2014; 3:e02286. [PMID: 24859755 PMCID: PMC4067076 DOI: 10.7554/elife.02286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023] Open
Abstract
Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001.
Collapse
Affiliation(s)
- Setsuko Wakao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Brian L Chin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Heidi K Ledford
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Rachel M Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - David Casero
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States
| | - Sabeeha S Merchant
- Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
50
|
Horn PJ, Chapman KD. Lipidomics in situ: Insights into plant lipid metabolism from high resolution spatial maps of metabolites. Prog Lipid Res 2014; 54:32-52. [DOI: 10.1016/j.plipres.2014.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/31/2022]
|