1
|
Voronov D, Paganos P, Magri MS, Cuomo C, Maeso I, Gómez-Skarmeta JL, Arnone MI. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level. Development 2024; 151:dev202278. [PMID: 39058236 DOI: 10.1242/dev.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Drafting gene regulatory networks (GRNs) requires embryological knowledge pertaining to the cell type families, information on the regulatory genes, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis. We use multi-omics involving next-generation sequencing to obtain the necessary information for drafting the Strongylocentrotus purpuratus (Sp) posterior gut GRN. Here, we present an update to the GRN using: (1) a single-cell RNA-sequencing-derived cell atlas highlighting the 2 day-post-fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at the single-cell level; (2) a set of putative cis-regulatory modules and transcription factor-binding sites obtained from chromatin accessibility ATAC-seq data; and (3) interactions directionality obtained from differential bulk RNA sequencing following knockdown of the transcription factor Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1-positive cells in the 2 dpf gastrula embryo. Overall, our data suggest the complex connectivity of the posterior gut GRN and increase the resolution of gene regulatory cascades operating within it.
Collapse
Affiliation(s)
- Danila Voronov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Marta S Magri
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
2
|
Finch CE. Senolytics and cell senescence: historical and evolutionary perspectives. Evol Med Public Health 2024; 12:82-85. [PMID: 38757096 PMCID: PMC11097598 DOI: 10.1093/emph/eoae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Indexed: 05/18/2024] Open
Abstract
Senolytics are a new class of anti-aging drugs developed to selectively kill 'senescent' cells that are considered harmful in normal aging. More than 20 drug trials are ongoing with diverse 'senolytic cocktails'. This commentary on recent reviews of senolytics gives a historical context of mammalian cell senescence that enabled these new drugs. While cell senescence is considered harmful to aging tissues, many studies show its essential role in some regenerative and developmental processes for which senolytic drugs may interfere. Longer-term studies of side effects are needed before senolytics are considered for general clinical practice. The wide occurrence of cell senescence in eukaryotes, yeast to fish to humans, and suggests an ancient eukaryotic process that evolved multiple phenotypes.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Cui M, Bezprozvannaya S, Hao T, Elnwasany A, Szweda LI, Liu N, Bassel-Duby R, Olson EN. Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during mouse fetal heart development. Dev Cell 2023; 58:2867-2880.e7. [PMID: 37972593 PMCID: PMC11000264 DOI: 10.1016/j.devcel.2023.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Cardiomyocytes are highly metabolic cells responsible for generating the contractile force in the heart. During fetal development and regeneration, these cells actively divide but lose their proliferative activity in adulthood. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the role of the transcription factor NFYa in developing mouse hearts. Loss of NFYa alters cardiomyocyte composition, causing a decrease in immature regenerative cells and an increase in trabecular and mature cardiomyocytes, as identified by spatial and single-cell transcriptome analyses. NFYa-deleted cardiomyocytes exhibited reduced proliferation and impaired mitochondrial metabolism, leading to cardiac growth defects and embryonic death. NFYa, interacting with cofactor SP2, activates genes linking metabolism and proliferation at the transcription level. Our study identifies a nodal role of NFYa in regulating prenatal cardiac growth and a previously unrecognized transcriptional control mechanism of heart metabolism, highlighting the importance of mitochondrial metabolism during heart development and regeneration.
Collapse
Affiliation(s)
- Miao Cui
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tian Hao
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Abdallah Elnwasany
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Petak C, Frati L, Brennan RS, Pespeni MH. Whole-Genome Sequencing Reveals That Regulatory and Low Pleiotropy Variants Underlie Local Adaptation to Environmental Variability in Purple Sea Urchins. Am Nat 2023; 202:571-586. [PMID: 37792925 DOI: 10.1086/726013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractOrganisms experience environments that vary across both space and time. Such environmental heterogeneity shapes standing genetic variation and may influence species' capacity to adapt to rapid environmental change. However, we know little about the kind of genetic variation that is involved in local adaptation to environmental variability. To address this gap, we sequenced the whole genomes of 140 purple sea urchins (Strongylocentrotus purpuratus) from seven populations that vary in their degree of pH variability. Despite no evidence of global population structure, we found a suite of single-nucleotide polymorphisms (SNPs) tightly correlated with local pH variability (outlier SNPs), which were overrepresented in regions putatively involved in gene regulation (long noncoding RNA and enhancers), supporting the idea that variation in regulatory regions is important for local adaptation to variability. In addition, outliers in genes were found to be (i) enriched for biomineralization and ion homeostasis functions related to low pH response, (ii) less central to the protein-protein interaction network, and (iii) underrepresented among genes highly expressed during early development. Taken together, these results suggest that loci that underlie local adaptation to pH variability in purple sea urchins fall in regions with potentially low pleiotropic effects (based on analyses involving regulatory regions, network centrality, and expression time) involved in low pH response (based on functional enrichment).
Collapse
|
5
|
Waters CT, Gisselbrecht SS, Sytnikova YA, Cafarelli TM, Hill DE, Bulyk ML. Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biol 2021; 22:348. [PMID: 34930411 PMCID: PMC8686523 DOI: 10.1186/s13059-021-02574-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.
Collapse
Affiliation(s)
- Colin T Waters
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuliya A Sytnikova
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiziana M Cafarelli
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Arenas-Mena C, Miljovska S, Rice EJ, Gurges J, Shashikant T, Wang Z, Ercan S, Danko CG. Identification and prediction of developmental enhancers in sea urchin embryos. BMC Genomics 2021; 22:751. [PMID: 34666684 PMCID: PMC8527612 DOI: 10.1186/s12864-021-07936-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Background The transcription of developmental regulatory genes is often controlled by multiple cis-regulatory elements. The identification and functional characterization of distal regulatory elements remains challenging, even in tractable model organisms like sea urchins. Results We evaluate the use of chromatin accessibility, transcription and RNA Polymerase II for their ability to predict enhancer activity of genomic regions in sea urchin embryos. ATAC-seq, PRO-seq, and Pol II ChIP-seq from early and late blastula embryos are manually contrasted with experimental cis-regulatory analyses available in sea urchin embryos, with particular attention to common developmental regulatory elements known to have enhancer and silencer functions differentially deployed among embryonic territories. Using the three functional genomic data types, machine learning models are trained and tested to classify and quantitatively predict the enhancer activity of several hundred genomic regions previously validated with reporter constructs in vivo. Conclusions Overall, chromatin accessibility and transcription have substantial power for predicting enhancer activity. For promoter-overlapping cis-regulatory elements in particular, the distribution of Pol II is the best predictor of enhancer activity in blastula embryos. Furthermore, ATAC- and PRO-seq predictive value is stage dependent for the promoter-overlapping subset. This suggests that the sequence of regulatory mechanisms leading to transcriptional activation have distinct relevance at different levels of the developmental gene regulatory hierarchy deployed during embryogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07936-0.
Collapse
Affiliation(s)
- César Arenas-Mena
- College of Staten Island, The City University of New York (CUNY), Staten Island, NY, 10314, USA. .,Programs in Biology and Biochemistry, The Graduate Center, CUNY, New York, NY, 10016, USA.
| | - Sofija Miljovska
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Justin Gurges
- College of Staten Island, The City University of New York (CUNY), Staten Island, NY, 10314, USA
| | - Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zihe Wang
- College of Staten Island, The City University of New York (CUNY), Staten Island, NY, 10314, USA
| | - Sevinç Ercan
- Department of Biology, New York University, New York, NY, 10003, USA.,Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
He D, Wu D, Muller S, Wang L, Saha P, Ahanger SH, Liu SJ, Cui M, Hong SJ, Jain M, Olson HE, Akeson M, Costello JF, Diaz A, Lim DA. miRNA-independent function of long noncoding pri-miRNA loci. Proc Natl Acad Sci U S A 2021; 118:e2017562118. [PMID: 33758101 PMCID: PMC8020771 DOI: 10.1073/pnas.2017562118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among the large, diverse set of mammalian long noncoding RNAs (lncRNAs), long noncoding primary microRNAs (lnc-pri-miRNAs) are those that host miRNAs. Whether lnc-pri-miRNA loci have important biological function independent of their cognate miRNAs is poorly understood. From a genome-scale lncRNA screen, lnc-pri-miRNA loci were enriched for function in cell proliferation, and in glioblastoma (i.e., GBM) cells with DGCR8 or DROSHA knockdown, lnc-pri-miRNA screen hits still regulated cell growth. To molecularly dissect the function of a lnc-pri-miRNA locus, we studied LOC646329 (also known as MIR29HG), which hosts the miR-29a/b1 cluster. In GBM cells, LOC646329 knockdown reduced miR-29a/b1 levels, and these cells exhibited decreased growth. However, genetic deletion of the miR-29a/b1 cluster (LOC646329-miR29Δ) did not decrease cell growth, while knockdown of LOC646329-miR29Δ transcripts reduced cell proliferation. The miR-29a/b1-independent activity of LOC646329 corresponded to enhancer-like activation of a neighboring oncogene (MKLN1), regulating cell propagation. The LOC646329 locus interacts with the MKLN1 promoter, and antisense oligonucleotide knockdown of the lncRNA disrupts these interactions and reduces the enhancer-like activity. More broadly, analysis of genome-wide data from multiple human cell types showed that lnc-pri-miRNA loci are significantly enriched for DNA looping interactions with gene promoters as well as genomic and epigenetic characteristics of transcriptional enhancers. Functional studies of additional lnc-pri-miRNA loci demonstrated cognate miRNA-independent enhancer-like activity. Together, these data demonstrate that lnc-pri-miRNA loci can regulate cell biology via both miRNA-dependent and miRNA-independent mechanisms.
Collapse
Affiliation(s)
- Daniel He
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Developmental and Stem Cell Biology Graduate Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - David Wu
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Soren Muller
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Lin Wang
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Parna Saha
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Surgery, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Sajad Hamid Ahanger
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Surgery, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Siyuan John Liu
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Miao Cui
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Sung Jun Hong
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Developmental and Stem Cell Biology Graduate Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Miten Jain
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Hugh E Olson
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Mark Akeson
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Joseph F Costello
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Aaron Diaz
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Daniel A Lim
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143;
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Surgery, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| |
Collapse
|
8
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis. Development 2019; 146:dev.180653. [PMID: 31331943 DOI: 10.1242/dev.180653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Alx1 is a conserved regulator of skeletogenesis in echinoderms and evolutionary changes in Alx1 sequence and expression have played a pivotal role in modifying programs of skeletogenesis within the phylum. Alx1 regulates a large suite of effector genes that control the morphogenetic behaviors and biomineral-forming activities of skeletogenic cells. To better understand the gene regulatory control of skeletogenesis by Alx1, we used genome-wide ChIP-seq to identify Alx1-binding sites and direct gene targets. Our analysis revealed that many terminal differentiation genes receive direct transcriptional inputs from Alx1. In addition, we found that intermediate transcription factors previously shown to be downstream of Alx1 all receive direct inputs from Alx1. Thus, Alx1 appears to regulate effector genes by indirect, as well as direct, mechanisms. We tested 23 high-confidence ChIP-seq peaks using GFP reporters and identified 18 active cis-regulatory modules (CRMs); this represents a high success rate for CRM discovery. Detailed analysis of a representative CRM confirmed that a conserved, palindromic Alx1-binding site was essential for expression. Our work significantly advances our understanding of the gene regulatory circuitry that controls skeletogenesis in sea urchins and provides a framework for evolutionary studies.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Buckley KM, Dong P, Cameron RA, Rast JP. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Brief Funct Genomics 2019; 17:362-371. [PMID: 29045542 DOI: 10.1093/bfgp/elx031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequences contain all the necessary information-both coding and regulatory sequences-to construct an organism. The developmental process translates this genomic information into a three-dimensional form. One interpretation of this translation process can be described using gene regulatory network (GRN) models, which are maps of interactions among regulatory gene products in time and space. As high throughput investigations reveal increasing complexity within these GRNs, it becomes apparent that efficient methods are required to test the necessity and sufficiency of regulatory interactions. One of the most complete GRNs for early development has been described in the purple sea urchin, Strongylocentrotus purpuratus. This work has been facilitated by two resources: a well-annotated genome sequence and transgenes generated in bacterial artificial chromosome (BAC) constructs. BAC libraries played a central role in assembling the S. purpuratus genome sequence and continue to serve as platforms for generating reporter constructs for use in expression and regulatory analyses. Optically transparent echinoderm larvae are highly amenable to transgenic approaches and are therefore particularly well suited for experiments that rely on BAC-based reporter transgenes. Here, we discuss the experimental utility of BAC constructs in the context of understanding developmental processes in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Ping Dong
- California Institute of Technology, California, USA
| | - R Andrew Cameron
- Beckman Institute Center for Computational Regulatory Genomics, California Institute for Technology, California, USA
| | | |
Collapse
|
10
|
Wang L, Koppitch K, Cutting A, Dong P, Kudtarkar P, Zeng J, Cameron RA, Davidson EH. Developmental effector gene regulation: Multiplexed strategies for functional analysis. Dev Biol 2019; 445:68-79. [PMID: 30392838 DOI: 10.1016/j.ydbio.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/18/2023]
Abstract
The staggering complexity of the genome controls for developmental processes is revealed through massively parallel cis-regulatory analysis using new methods of perturbation and readout. The choice of combinations of these new methods is tailored to the system, question and resources at hand. Our focus is on issues that include the necessity or sufficiency of given cis-regulatory modules, cis-regulatory function in the normal spatial genomic context, and easily accessible high throughput and multiplexed analysis methods. In the sea urchin embryonic model, recombineered BACs offer new opportunities for consecutive modes of cis-regulatory analyses that answer these requirements, as we here demonstrate on a diverse suite of previously unstudied sea urchin effector genes expressed in skeletogenic cells. Positively active cis-regulatory modules were located in single Nanostring experiments per BAC containing the gene of interest, by application of our previously reported "barcode" tag vectors of which> 100 can be analyzed at one time. Computational analysis of DNA sequences that drive expression, based on the known skeletogenic regulatory state, then permitted effective identification of functional target site clusters. Deletion of these sub-regions from the parent BACs revealed module necessity, as simultaneous tests of the same regions in short constructs revealed sufficiency. Predicted functional inputs were then confirmed by site mutations, all generated and tested in multiplex formats. There emerged the simple conclusion that each effector gene utilizes a small subset of inputs from the skeletogenic GRN. These inputs may function to only adjust expression levels or in some cases necessary for expression. Since we know the GRN architecture upstream of the effector genes, we could then conceptually isolate and compare the wiring of the effector gene driver sub-circuits and identify the inputs whose removal abolish expression.
Collapse
Affiliation(s)
- Lijun Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Kari Koppitch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ann Cutting
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ping Dong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Parul Kudtarkar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Jenny Zeng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - R Andrew Cameron
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Eric H Davidson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
11
|
Caianiello S. Mechanistic philosophies of development: Theodor Boveri and Eric H. Davidson. Mar Genomics 2018; 44:32-51. [PMID: 30297161 DOI: 10.1016/j.margen.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Theodor Boveri's (1862-1915) and Eric Davidson's (1937-2015) achievements represent thoroughly two quite distant time frames in the history of the mechanistic approaches to development, that Jane Maienschein (2014) has characterized respectively as the era of the "experimental embryo" and of the "computed embryo". Nonetheless, Davidson's special bond to Boveri is meant to emphasize the genealogical continuity of an embryological tradition of mechanistic philosophy that, differently from molecular biology, is committed to an explanation of the hereditary transmission of organization. Davidson's genealogical claim is reconsidered through a contextualized analysis of the function of machine-like models and of the role of experiment in the making of their respective mechanistic philosophies. This analysis may help to shed light on resilience and change in the understanding of a mechanistic approach to development.
Collapse
Affiliation(s)
- Silvia Caianiello
- National Research Council (CNR), Institute for the History of Philosophy and Science in Modern Age (ISPF), Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
12
|
Lowe EK, Cuomo C, Arnone MI. Omics approaches to study gene regulatory networks for development in echinoderms. Brief Funct Genomics 2018; 16:299-308. [PMID: 28957458 DOI: 10.1093/bfgp/elx012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) describe the interactions for a developmental process at a given time and space. Historically, perturbation experiments represent one of the key methods for analyzing and reconstructing a GRN, and the GRN governing early development in the sea urchin embryo stands as one of the more deeply dissected so far. As technology progresses, so do the methods used to address different biological questions. Next-generation sequencing (NGS) has become a standard experimental technique for genome and transcriptome sequencing and studies of protein-DNA interactions and DNA accessibility. While several efforts have been made toward the integration of different omics approaches for the study of the regulatory genome in many animals, in a few cases, these are applied with the purpose of reconstructing and experimentally testing developmental GRNs. Here, we review emerging approaches integrating multiple NGS technologies for the prediction and validation of gene interactions within echinoderm GRNs. These approaches can be applied to both 'model' and 'non-model' organisms. Although a number of issues still need to be addressed, advances in NGS applications, such as assay for transposase-accessible chromatin sequencing, combined with the availability of embryos belonging to different species, all separated by various evolutionary distances and accessible to experimental regulatory biology, place echinoderms in an unprecedented position for the reconstruction and evolutionary comparison of developmental GRNs. We conclude that sequencing technologies and integrated omics approaches allow the examination of GRNs on a genome-wide scale only if biological perturbation and cis-regulatory analyses are experimentally accessible, as in the case of echinoderm embryos.
Collapse
|
13
|
Cui M, Lin CY, Su YH. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Brief Funct Genomics 2018; 16:309-318. [PMID: 28605407 DOI: 10.1093/bfgp/elx011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development.
Collapse
|
14
|
Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development. Proc Natl Acad Sci U S A 2018; 114:5854-5861. [PMID: 28584099 DOI: 10.1073/pnas.1610611114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea stars and sea urchins are model systems for interrogating the types of deep evolutionary changes that have restructured developmental gene regulatory networks (GRNs). Although cis-regulatory DNA evolution is likely the predominant mechanism of change, it was recently shown that Tbrain, a Tbox transcription factor protein, has evolved a changed preference for a low-affinity, secondary binding motif. The primary, high-affinity motif is conserved. To date, however, no genome-wide comparisons have been performed to provide an unbiased assessment of the evolution of GRNs between these taxa, and no study has attempted to determine the interplay between transcription factor binding motif evolution and GRN topology. The study here measures genome-wide binding of Tbrain orthologs by using ChIP-sequencing and associates these orthologs with putative target genes to assess global function. Targets of both factors are enriched for other regulatory genes, although nonoverlapping sets of functional enrichments in the two datasets suggest a much diverged function. The number of low-affinity binding motifs is significantly depressed in sea urchins compared with sea star, but both motif types are associated with genes from a range of functional categories. Only a small fraction (∼10%) of genes are predicted to be orthologous targets. Collectively, these data indicate that Tbr has evolved significantly different developmental roles in these echinoderms and that the targets and the binding motifs in associated cis-regulatory sequences are dispersed throughout the hierarchy of the GRN, rather than being biased toward terminal process or discrete functional blocks, which suggests extensive evolutionary tinkering.
Collapse
|
15
|
Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis. G3-GENES GENOMES GENETICS 2017. [PMID: 28634244 PMCID: PMC5555475 DOI: 10.1534/g3.117.043810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eggshell patterning has been extensively studied in Drosophila melanogaster. However, the cis-regulatory modules (CRMs), which control spatiotemporal expression of these patterns, are vastly unexplored. The FlyLight collection contains >7000 intergenic and intronic DNA fragments that, if containing CRMs, can drive the transcription factor GAL4. We cross-listed the 84 genes known to be expressed during D. melanogaster oogenesis with the ∼1200 listed genes of the FlyLight collection, and found 22 common genes that are represented by 281 FlyLight fly lines. Of these lines, 54 show expression patterns during oogenesis when crossed to an UAS-GFP reporter. Of the 54 lines, 16 recapitulate the full or partial pattern of the associated gene pattern. Interestingly, while the average DNA fragment size is ∼3 kb in length, the vast majority of fragments show one type of spatiotemporal pattern in oogenesis. Mapping the distribution of all 54 lines, we found a significant enrichment of CRMs in the first intron of the associated genes’ model. In addition, we demonstrate the use of different anteriorly active FlyLight lines as tools to disrupt eggshell patterning in a targeted manner. Our screen provides further evidence that complex gene patterns are assembled combinatorially by different CRMs controlling the expression of genes in simple domains.
Collapse
|
16
|
Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis- Regulatory Module of Sea Urchin hox11/13b. Cell Rep 2017; 19:364-374. [DOI: 10.1016/j.celrep.2017.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/27/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023] Open
|
17
|
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol 2017; 427:203-211. [PMID: 28185788 DOI: 10.1016/j.ydbio.2017.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States.
| |
Collapse
|
18
|
Guay CL, McQuade ST, Nam J. Single embryo-resolution quantitative analysis of reporters permits multiplex spatial cis -regulatory analysis. Dev Biol 2017; 422:92-104. [DOI: 10.1016/j.ydbio.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/31/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022]
|
19
|
|
20
|
Abstract
Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Bertolino E, Reinitz J, Manu. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Dev Biol 2016; 413:128-44. [PMID: 26945717 DOI: 10.1016/j.ydbio.2016.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
Collapse
Affiliation(s)
- Eric Bertolino
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - John Reinitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Statistics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Manu
- Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
| |
Collapse
|
22
|
Barsi JC, Davidson EH. cis -Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo. Dev Biol 2016; 409:310-318. [DOI: 10.1016/j.ydbio.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/01/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023]
|
23
|
White MA. Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics 2015; 106:165-170. [PMID: 26072432 DOI: 10.1016/j.ygeno.2015.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/09/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
Genome-scale methods have identified thousands of candidate cis-regulatory elements (CREs), but methods to directly assay the regulatory function of these elements on a comparably large scale have not been available. The inability to directly test and perturb the regulatory activity of large numbers of DNA sequences has hindered efforts to discover how cis-regulatory function is encoded in genomic sequence. Recently developed massively parallel reporter gene assays combine next generation sequencing with high-throughput oligonucleotide synthesis to offer the capacity to test and mutationally perturb thousands of specifically chosen or designed cis-regulatory sequences in a single experiment. These assays are the basis of recent studies that include large-scale functional validation of genomic CREs, exhaustive mutational analyses of individual regulatory sequences, and tests of large libraries of synthetic CREs. The results demonstrate how massively parallel reporter assays with libraries of designed sequences provide the statistical power required to address previously intractable questions about cis-regulatory function.
Collapse
Affiliation(s)
- Michael A White
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
24
|
Dickel DE, Zhu Y, Nord AS, Wylie JN, Akiyama JA, Afzal V, Plajzer-Frick I, Kirkpatrick A, Göttgens B, Bruneau BG, Visel A, Pennacchio LA. Function-based identification of mammalian enhancers using site-specific integration. Nat Methods 2014; 11:566-71. [PMID: 24658141 PMCID: PMC4008384 DOI: 10.1038/nmeth.2886] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/03/2014] [Indexed: 01/22/2023]
Abstract
The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe site-specific integration fluorescence-activated cell sorting followed by sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Targeted single-copy genomic integration into pluripotent cells, reporter assays and flow cytometry are coupled with high-throughput DNA sequencing to enable parallel screening of large numbers of DNA sequences. By functionally interrogating >500 kilobases (kb) of mouse and human sequence in mouse embryonic stem cells for enhancer activity we identified enhancers at pluripotency loci including NANOG. In in vitro-differentiated cardiomyocytes and neural progenitor cells, we identified cardiac enhancers and neuronal enhancers, respectively. SIF-seq is a powerful and flexible method for de novo functional identification of mammalian enhancers in a potentially wide variety of cell types.
Collapse
Affiliation(s)
- Diane E Dickel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yiwen Zhu
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alex S Nord
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John N Wylie
- 1] Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA. [2] Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes, San Francisco, California, USA
| | - Jennifer A Akiyama
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Veena Afzal
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ingrid Plajzer-Frick
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aileen Kirkpatrick
- 1] Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. [2] Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- 1] Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. [2] Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Benoit G Bruneau
- 1] Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA. [2] Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes, San Francisco, California, USA. [3] Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA. [4] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Axel Visel
- 1] Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA. [2] US Department of Energy Joint Genome Institute, Walnut Creek, California, USA. [3] School of Natural Sciences, University of California, Merced, Merced, California, USA
| | - Len A Pennacchio
- 1] Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA. [2] US Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|
25
|
Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F. Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 2014; 9:e93076. [PMID: 24714200 PMCID: PMC3979674 DOI: 10.1371/journal.pone.0093076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/03/2014] [Indexed: 01/22/2023] Open
Abstract
The advent of high-throughput sequencing technology facilitates the exploration of a variety of reference species outside the few established molecular genetic model systems. Bioinformatic and gene expression analyses provide new ways for comparative analyses between species, for instance, in the field of evolution and development. Despite these advances, a critical bottleneck for the exploration of new model species remains the establishment of functional tools, such as the ability to experimentally express genes in specific cells of an organism. We recently established a first transgenic strain of the annelid Platynereis, using a Tc1/mariner-type Mos1 transposon vector. Here, we compare Mos1 with Tol2, a member of the hAT family of transposons. In Platynereis, Tol2-based constructs showed a higher frequency of nuclear genome insertion and sustained gene expression in the G0 generation. However, in contrast to Mos1-mediated transgenes, Tol2-mediated insertions failed to retain fluorescence in the G1 generation, suggesting a germ line-based silencing mechanism. Furthermore, we present three novel expression constructs that were generated by a simple fusion-PCR approach and allow either ubiquitous or cell-specific expression of a reporter gene. Our study indicates the versatility of Tol2 for transient transgenesis, and provides a template for transgenesis work in other emerging reference species.
Collapse
Affiliation(s)
- Benjamin Backfisch
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Vitaly V. Kozin
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Stephan Kirchmaier
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Florian Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
26
|
FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nat Methods 2014; 11:559-65. [PMID: 24658142 PMCID: PMC4020622 DOI: 10.1038/nmeth.2885] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Abstract
Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a high-throughput functional assay for directly identifying active promoter and enhancer elements called FIREWACh (Functional Identification of Regulatory Elements Within Accessible Chromatin), which we used to simultaneously assess over 80,000 DNA fragments derived from nucleosome-free regions within the chromatin of embryonic stem cells (ESCs) and identify 6,364 active regulatory elements. Many of these represent newly discovered ESC-specific enhancers, showing enriched binding-site motifs for ESC-specific transcription factors including SOX2, POU5F1 (OCT4) and KLF4. The application of FIREWACh to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics.
Collapse
|
27
|
Abstract
Microinjection into cells and embryos is a common technique that is used to study a wide range of biological processes. In this method a small amount of treatment solution is loaded into a microinjection needle that is used to physically inject individual immobilized cells or embryos. Despite the need for initial training to perform this procedure for high-throughput delivery, microinjection offers maximum efficiency and reproducible delivery of a wide variety of treatment solutions (including complex mixtures of samples) into cells, eggs or embryos. Applications to microinjections include delivery of DNA constructs, mRNAs, recombinant proteins, gain of function, and loss of function reagents. Fluorescent or colorimetric dye is added to the injected solution to enable instant visualization of efficient delivery as well as a tool for reliable normalization of the amount of the delivered solution. The described method enables microinjection of 100-400 sea urchin zygotes within 10-15 min.
Collapse
|
28
|
Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus. Biochem Biophys Res Commun 2013; 440:413-8. [PMID: 24090975 DOI: 10.1016/j.bbrc.2013.09.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 01/06/2023]
Abstract
Cyclin D genes regulate the cell cycle, growth and differentiation in response to intercellular signaling. While the promoters of vertebrate cyclin D genes have been analyzed, the cis-regulatory sequences across an entire cyclin D locus have not. Doing so would increase understanding of how cyclin D genes respond to the regulatory states established by developmental gene regulatory networks, linking cell cycle and growth control to the ontogenetic program. Therefore, we conducted a cis-regulatory analysis on the cyclin D gene, SpcycD, of the sea urchin, Strongylocentrotus purpuratus, during embryogenesis, identifying upstream and intronic sequences, located within six defined regions bearing one or more cis-regulatory modules each.
Collapse
|
29
|
Li E, Materna SC, Davidson EH. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Dev Biol 2013; 382:268-79. [PMID: 23933172 DOI: 10.1016/j.ydbio.2013.07.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
Abstract
The sea urchin oral ectoderm gene regulatory network (GRN) model has increased in complexity as additional genes are added to it, revealing its multiple spatial regulatory state domains. The formation of the oral ectoderm begins with an oral-aboral redox gradient, which is interpreted by the cis-regulatory system of the nodal gene to cause its expression on the oral side of the embryo. Nodal signaling drives cohorts of regulatory genes within the oral ectoderm and its derived subdomains. Activation of these genes occurs sequentially, spanning the entire blastula stage. During this process the stomodeal subdomain emerges inside of the oral ectoderm, and bilateral subdomains defining the lateral portions of the future ciliary band emerge adjacent to the central oral ectoderm. Here we examine two regulatory genes encoding repressors, sip1 and ets4, which selectively prevent transcription of oral ectoderm genes until their expression is cleared from the oral ectoderm as an indirect consequence of Nodal signaling. We show that the timing of transcriptional de-repression of sip1 and ets4 targets which occurs upon their clearance explains the dynamics of oral ectoderm gene expression. In addition two other repressors, the direct Nodal target not, and the feed forward Nodal target goosecoid, repress expression of regulatory genes in the central animal oral ectoderm thereby confining their expression to the lateral domains of the animal ectoderm. These results have permitted construction of an enhanced animal ectoderm GRN model highlighting the repressive interactions providing precise temporal and spatial control of regulatory gene expression.
Collapse
Affiliation(s)
- Enhu Li
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
30
|
Gubelmann C, Waszak SM, Isakova A, Holcombe W, Hens K, Iagovitina A, Feuz JD, Raghav SK, Simicevic J, Deplancke B. A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks. Mol Syst Biol 2013; 9:682. [PMID: 23917988 PMCID: PMC3779800 DOI: 10.1038/msb.2013.38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
The comprehensive mapping of gene promoters and enhancers has significantly improved our understanding of how the mammalian regulatory genome is organized. An important challenge is to elucidate how these regulatory elements contribute to gene expression by identifying their trans-regulatory inputs. Here, we present the generation of a mouse-specific transcription factor (TF) open-reading frame clone library and its implementation in yeast one-hybrid assays to enable large-scale protein-DNA interaction detection with mouse regulatory elements. Once specific interactions are identified, we then use a microfluidics-based method to validate and precisely map them within the respective DNA sequences. Using well-described regulatory elements as well as orphan enhancers, we show that this cross-platform pipeline characterizes known and uncovers many novel TF-DNA interactions. In addition, we provide evidence that several of these novel interactions are relevant in vivo and aid in elucidating the regulatory architecture of enhancers.
Collapse
Affiliation(s)
- Carine Gubelmann
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gisselbrecht SS, Barrera LA, Porsch M, Aboukhalil A, Estep PW, Vedenko A, Palagi A, Kim Y, Zhu X, Busser BW, Gamble CE, Iagovitina A, Singhania A, Michelson AM, Bulyk ML. Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat Methods 2013; 10:774-80. [PMID: 23852450 PMCID: PMC3733245 DOI: 10.1038/nmeth.2558] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/03/2013] [Indexed: 01/12/2023]
Abstract
Transcriptional enhancers are a primary mechanism by which tissue-specific gene expression is achieved. Despite the importance of these regulatory elements in development, responses to environmental stresses and disease, testing enhancer activity in animals remains tedious, with a minority of enhancers having been characterized. Here we describe 'enhancer-FACS-seq' (eFS) for highly parallel identification of active, tissue-specific enhancers in Drosophila melanogaster embryos. Analysis of enhancers identified by eFS as being active in mesodermal tissues revealed enriched DNA binding site motifs of known and putative, previously uncharacterized mesodermal transcription factors. Naive Bayes classifiers using transcription factor binding site motifs accurately predicted mesodermal enhancer activity. Application of eFS to other cell types and organisms should accelerate the cataloging of enhancers and understanding how transcriptional regulation is encoded in them.
Collapse
Affiliation(s)
- Stephen S Gisselbrecht
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thattai M. Using topology to tame the complex biochemistry of genetic networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20110548. [PMID: 23277605 PMCID: PMC3538440 DOI: 10.1098/rsta.2011.0548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Living cells are controlled by networks of interacting genes, proteins and biochemicals. Cells use the emergent collective dynamics of these networks to probe their surroundings, perform computations and generate appropriate responses. Here, we consider genetic networks, interacting sets of genes that regulate one another's expression. It is possible to infer the interaction topology of genetic networks from high-throughput experimental measurements. However, such experiments rarely provide information on the detailed nature of each interaction. We show that topological approaches provide powerful means of dealing with the missing biochemical data. We first discuss the biochemical basis of gene regulation, and describe how genes can be connected into networks. We then show that, given weak constraints on the underlying biochemistry, topology alone determines the emergent properties of certain simple networks. Finally, we apply these approaches to the realistic example of quorum-sensing networks: chemical communication systems that coordinate the responses of bacterial populations.
Collapse
Affiliation(s)
- Mukund Thattai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
33
|
Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 2012; 374:245-54. [PMID: 23211652 DOI: 10.1016/j.ydbio.2012.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of oral and aboral regulatory states. However, a causal understanding of the regulation of aboral ectoderm specification has been lacking. In this work control of aboral ectoderm regulatory state specification was revealed by combining detailed regulatory gene expression studies, perturbation and cis-regulatory analyses. Our analysis illuminates a dynamic system where different factors dominate at different developmental times. We found that the initial activation of aboral genes depends directly on the redox sensitive transcription factor, hypoxia inducible factor 1α (HIF-1α). Two BMP ligands, BMP2/4 and BMP5/8, then significantly enhance aboral regulatory gene transcription. Ultimately, encoded feedback wiring lockdown the aboral ectoderm regulatory state. Our study elucidates the different regulatory mechanisms that sequentially dominate the spatial localization of aboral regulatory states.
Collapse
Affiliation(s)
- Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|
34
|
Nam J, Davidson EH. Barcoded DNA-tag reporters for multiplex cis-regulatory analysis. PLoS One 2012; 7:e35934. [PMID: 22563420 PMCID: PMC3339872 DOI: 10.1371/journal.pone.0035934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of "barcoded" DNA-tag reporters, "Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs). The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics.
Collapse
Affiliation(s)
- Jongmin Nam
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America.
| | | |
Collapse
|
35
|
Pantropic retroviruses as a transduction tool for sea urchin embryos. Proc Natl Acad Sci U S A 2012; 109:5334-9. [PMID: 22431628 DOI: 10.1073/pnas.1117846109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sea urchins are an important model for experiments at the intersection of development and systems biology, and technical innovations that enhance the utility of this model are of great value. This study explores pantropic retroviruses as a transduction tool for sea urchin embryos, and demonstrates that pantropic retroviruses infect sea urchin embryos with high efficiency and genomically integrate at a copy number of one per cell. We successfully used a self-inactivation strategy to both insert a sea urchin-specific enhancer and disrupt the endogenous viral enhancer. The resulting self-inactivating viruses drive global and persistent gene expression, consistent with genomic integration during the first cell cycle. Together, these data provide substantial proof of principle for transduction technology in sea urchin embryos.
Collapse
|
36
|
Schütte J, Moignard V, Göttgens B. Establishing the stem cell state: insights from regulatory network analysis of blood stem cell development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:285-95. [PMID: 22334489 DOI: 10.1002/wsbm.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) have long been recognized as powerful regulators of cell-type identity and differentiation. As TFs function as constituents of regulatory networks, identification and functional characterization of key interactions within these wider networks will be required to understand how TFs exert their powerful biological functions. The formation of blood cells (hematopoiesis) represents a widely used model system for the study of cellular differentiation. Moreover, specific TFs or groups of TFs have been identified to control the various cell fate choices that must be made when blood stem cells differentiate into more than a dozen distinct mature blood lineages. Because of the relative ease of accessibility, the hematopoietic system represents an attractive experimental system for the development of regulatory network models. Here, we review the modeling efforts carried out to date, which have already provided new insights into the molecular control of blood cell development. We also explore potential areas of future study such as the need for new high-throughput technologies and a focus on studying dynamic cellular systems. Many leukemias arise as the result of mutations that cause transcriptional dysregulation, thus suggesting that a better understanding of transcriptional control mechanisms in hematopoiesis is of substantial biomedical relevance. Moreover, lessons learned from regulatory network analysis in the hematopoietic system are likely to inform research on less experimentally tractable tissues.
Collapse
Affiliation(s)
- Judith Schütte
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
37
|
Evolutionary systems biology: historical and philosophical perspectives on an emerging synthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 751:1-28. [PMID: 22821451 DOI: 10.1007/978-1-4614-3567-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systems biology (SB) is at least a decade old now and maturing rapidly. A more recent field, evolutionary systems biology (ESB), is in the process of further developing system-level approaches through the expansion of their explanatory and potentially predictive scope. This chapter will outline the varieties of ESB existing today by tracing the diverse roots and fusions that make up this integrative project. My approach is philosophical and historical. As well as examining the recent origins of ESB, I will reflect on its central features and the different clusters of research it comprises. In its broadest interpretation, ESB consists of five overlapping approaches: comparative and correlational ESB; network architecture ESB; network property ESB; population genetics ESB; and finally, standard evolutionary questions answered with SB methods. After outlining each approach with examples, I will examine some strong general claims about ESB, particularly that it can be viewed as the next step toward a fuller modern synthesis of evolutionary biology (EB), and that it is also the way forward for evolutionary and systems medicine. I will conclude with a discussion of whether the emerging field of ESB has the capacity to combine an even broader scope of research aims and efforts than it presently does.
Collapse
|
38
|
Lyons DC, Kaltenbach SL, McClay DR. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:231-52. [PMID: 23801438 DOI: 10.1002/wdev.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The nonskeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events, an increasingly complex input of transcription factors controls the specification and the cell biological events that conduct the gastrulation movements.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Biology, French Family Science Center, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
39
|
Abstract
Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
40
|
Damle S, Davidson EH. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus. Dev Biol 2011; 357:505-17. [PMID: 21723273 DOI: 10.1016/j.ydbio.2011.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
Deployment of the gene-regulatory network (GRN) responsible for skeletogenesis in the embryo of the sea urchin Strongylocentrotus purpuratus is restricted to the large micromere lineage by a double negative regulatory gate. The gate consists of a GRN subcircuit composed of the pmar1 and hesC genes, which encode repressors and are wired in tandem, plus a set of target regulatory genes under hesC control. The skeletogenic cell state is specified initially by micromere-specific expression of these regulatory genes, viz. alx1, ets1, tbrain and tel, plus the gene encoding the Notch ligand Delta. Here we use a recently developed high throughput methodology for experimental cis-regulatory analysis to elucidate the genomic regulatory system controlling alx1 expression in time and embryonic space. The results entirely confirm the double negative gate control system at the cis-regulatory level, including definition of the functional HesC target sites, and add the crucial new information that the drivers of alx1 expression are initially Ets1, and then Alx1 itself plus Ets1. Cis-regulatory analysis demonstrates that these inputs quantitatively account for the magnitude of alx1 expression. Furthermore, the Alx1 gene product not only performs an auto-regulatory role, promoting a fast rise in alx1 expression, but also, when at high levels, it behaves as an auto-repressor. A synthetic experiment indicates that this behavior is probably due to dimerization. In summary, the results we report provide the sequence level basis for control of alx1 spatial expression by the double negative gate GRN architecture, and explain the rising, then falling temporal expression profile of the alx1 gene in terms of its auto-regulatory genetic wiring.
Collapse
Affiliation(s)
- Sagar Damle
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
41
|
High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation. Genome Res 2011; 21:566-77. [PMID: 21383317 DOI: 10.1101/gr.104018.109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cis-regulatory modules (CRMs) function by binding sequence specific transcription factors, but the relationship between in vivo physical binding and the regulatory capacity of factor-bound DNA elements remains uncertain. We investigate this relationship for the well-studied Twist factor in Drosophila melanogaster embryos by analyzing genome-wide factor occupancy and testing the functional significance of Twist occupied regions and motifs within regions. Twist ChIP-seq data efficiently identified previously studied Twist-dependent CRMs and robustly predicted new CRM activity in transgenesis, with newly identified Twist-occupied regions supporting diverse spatiotemporal patterns (>74% positive, n = 31). Some, but not all, candidate CRMs require Twist for proper expression in the embryo. The Twist motifs most favored in genome ChIP data (in vivo) differed from those most favored by Systematic Evolution of Ligands by EXponential enrichment (SELEX) (in vitro). Furthermore, the majority of ChIP-seq signals could be parsimoniously explained by a CABVTG motif located within 50 bp of the ChIP summit and, of these, CACATG was most prevalent. Mutagenesis experiments demonstrated that different Twist E-box motif types are not fully interchangeable, suggesting that the ChIP-derived consensus (CABVTG) includes sites having distinct regulatory outputs. Further analysis of position, frequency of occurrence, and sequence conservation revealed significant enrichment and conservation of CABVTG E-box motifs near Twist ChIP-seq signal summits, preferential conservation of ±150 bp surrounding Twist occupied summits, and enrichment of GA- and CA-repeat sequences near Twist occupied summits. Our results show that high resolution in vivo occupancy data can be used to drive efficient discovery and dissection of global and local cis-regulatory logic.
Collapse
|
42
|
Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G. Root hair systems biology. TRENDS IN PLANT SCIENCE 2010; 15:641-50. [PMID: 20851035 DOI: 10.1016/j.tplants.2010.08.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 05/20/2023]
Abstract
Plant functional genomic studies have largely measured the response of whole plants, organs and tissues, resulting in the dilution of the signal from individual cells. Methods are needed where the full repertoire of functional genomic tools can be applied to a single plant cell. Root hair cells are an attractive model to study the biology of a single, differentiated cell type because of their ease of isolation, polar growth, and role in water and nutrient uptake, as well as being the site of infection by nitrogen-fixing bacteria. This review highlights the recent advances in our understanding of plant root hair biology and examines whether the root hair has potential as a model for plant cell systems biology.
Collapse
Affiliation(s)
- Marc Libault
- Division of Plant Sciences, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The enigmatic MYC oncogene, which participates broadly in cancers, revealed itself recently as the maestro of an unfolding symphony of cell growth, proliferation, death, and metabolism. The study of MYC is arguably most challenging to its students but at the same time exhilarating when MYC reveals its deeply held secrets. It is the excitement of our richer understanding of MYC that is captured in each review of this special issue of Genes & Cancer. Collectively, our deeper understanding of MYC reveals that it is a symphony conductor, controlling a large orchestra of target genes. Although MYC controls many orchestra sections, which are necessary but not sufficient for Myc function, ribosome biogenesis stands out to reveal Myc's primordial function particularly in fruit flies. Because ribosome biogenesis and the associated translational machinery are bioenergetically demanding, Myc's other target genes involved in energy metabolism must be coupled with energy demand to ensure that cells can replicate their genome and produce daughter cells. Normal cells have feedback loops that diminish MYC expression when nutrients are scarce. On the other hand, when deregulated Myc transforms cells, their constitutive bioenergetic demand can trigger cell death when energy is unavailable. This special issue captures the unfolding symphony of MYC-mediated tumorigenesis through reviews that span from a timeline of MYC research, fundamental understanding of how the MYC gene itself is regulated, the study of Myc in model organisms, Myc function, and target genes to translational research in search of new therapeutic modalities for the treatment of cancer.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology, Department of Medicine, and Departments of Cell Biology, Oncology, Pathology, and Molecular Biology & Genetics, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Ben-Tabou de-Leon S. Perturbation analysis analyzed--athematical modeling of intact and perturbed gene regulatory circuits for animal development. Dev Biol 2010; 344:1110-8. [PMID: 20599898 DOI: 10.1016/j.ydbio.2010.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/29/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
Abstract
Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development.
Collapse
|
45
|
News in brief. Nat Methods 2010. [DOI: 10.1038/nmeth0410-255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|