1
|
Lin C, Yang YS, Ma H, Chen Z, Chen D, John AA, Xie J, Gao G, Shim JH. Engineering a targeted and safe bone anabolic gene therapy to treat osteoporosis in alveolar bone loss. Mol Ther 2024; 32:3080-3100. [PMID: 38937970 PMCID: PMC11403231 DOI: 10.1016/j.ymthe.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.
Collapse
Affiliation(s)
- Chujiao Lin
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Hong Ma
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Viral Vector Core, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Zhihao Chen
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Dong Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Aijaz Ahmad John
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Jun Xie
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Viral Vector Core, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Viral Vector Core, UMass Chan Medical School, Worcester, MA 01655, USA; Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01655, USA.
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
2
|
Yallowitz AR, Shim JH, Xu R, Greenblatt MB. An angiogenic approach to osteoanabolic therapy targeting the SHN3-SLIT3 pathway. Bone 2023; 172:116761. [PMID: 37030497 PMCID: PMC10198948 DOI: 10.1016/j.bone.2023.116761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Often, disorders of impaired bone formation involve not only a cell intrinsic defect in the ability of osteoblasts to form bone, but moreover a broader dysfunction of the skeletal microenvironment that limits osteoblast activity. Developing approaches to osteoanabolic therapy that not only augment osteoblast activity but moreover correct this microenvironmental dysfunction may enable both more effective osteoanabolic therapies and also addressing a broader set of indications where vasculopathy or other forms microenvironment dysfunction feature prominently. We here review evidence that SHN3 acts as a suppressor of not only the cell intrinsic bone formation activity of osteoblasts, but moreover of the creation of a local osteoanabolic microenvironment. Mice lacking Schnurri3 (SHN3, HIVEP3) display a very robust increase in bone formation, that is due to de-repression of ERK pathway signaling in osteoblasts. In addition to loss of SHN3 augmenting the differentiation and bone formation activity of osteoblasts, loss of SHN3 increases secretion of SLIT3 by osteoblasts, which in a skeletal context acts as an angiogenic factor. Through this angiogenic activity, SLIT3 creates an osteoanabolic microenvironment, and accordingly treatment with SLIT3 can increase bone formation and enhance fracture healing. These features both validate vascular endothelial cells as a therapeutic target for disorders of low bone mass alongside the traditionally targeted osteoblasts and osteoclasts and indicate that targeting the SHN3/SLIT3 pathway provides a new mechanism to induce therapeutic osteoanabolic responses.
Collapse
Affiliation(s)
- Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, United States of America
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, United States of America; Research Division, Hospital for Special Surgery, New York, NY 10065, United States of America.
| |
Collapse
|
3
|
Oh WT, Yang YS, Xie J, Ma H, Kim JM, Park KH, Oh DS, Park-Min KH, Greenblatt MB, Gao G, Shim JH. WNT-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects. Mol Ther 2023; 31:435-453. [PMID: 36184851 PMCID: PMC9931550 DOI: 10.1016/j.ymthe.2022.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Treating osteoporosis and associated bone fractures remains challenging for drug development in part due to potential off-target side effects and the requirement for long-term treatment. Here, we identify recombinant adeno-associated virus (rAAV)-mediated gene therapy as a complementary approach to existing osteoporosis therapies, offering long-lasting targeting of multiple targets and/or previously undruggable intracellular non-enzymatic targets. Treatment with a bone-targeted rAAV carrying artificial microRNAs (miRNAs) silenced the expression of WNT antagonists, schnurri-3 (SHN3), and sclerostin (SOST), and enhanced WNT/β-catenin signaling, osteoblast function, and bone formation. A single systemic administration of rAAVs effectively reversed bone loss in both postmenopausal and senile osteoporosis. Moreover, the healing of bone fracture and critical-sized bone defects was also markedly improved by systemic injection or transplantation of AAV-bound allograft bone to the osteotomy sites. Collectively, our data demonstrate the clinical potential of bone-specific gene silencers to treat skeletal disorders of low bone mass and impaired fracture repair.
Collapse
Affiliation(s)
- Won-Taek Oh
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA; Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA
| | - Jung-Min Kim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA
| | - Kwang-Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | | | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Research Division, Hospital for Special Surgery, New York, NY 10021, USA
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, NY 10021, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA.
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Yang YS, Xie J, Wang D, Kim JM, Tai PWL, Gravallese E, Gao G, Shim JH. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat Commun 2019; 10:2958. [PMID: 31273195 PMCID: PMC6609711 DOI: 10.1038/s41467-019-10809-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
RNAi-based bone anabolic gene therapy has demonstrated initial success, but many practical challenges are still unmet. Here, we demonstrate that a recombinant adeno-associated virus 9 (rAAV9) is highly effective for transducing osteoblast lineage cells in the bone. The adaptor protein Schnurri-3 (SHN3) is a promising therapeutic target for osteoporosis, as deletion of shn3 prevents bone loss in osteoporotic mice and short-term inhibition of shn3 in adult mice increases bone mass. Accordingly, systemic and direct joint administration of an rAAV9 vector carrying an artificial-microRNA that targets shn3 (rAAV9-amiR-shn3) in mice markedly enhanced bone formation via augmented osteoblast activity. Additionally, systemic delivery of rAAV9-amiR-shn3 in osteoporotic mice counteracted bone loss and enhanced bone mechanical properties. Finally, we rationally designed a capsid that exhibits improved specificity to bone by grafting the bone-targeting peptide motif (AspSerSer)6 onto the AAV9-VP2 capsid protein. Collectively, our results identify a bone-targeting rAAV-mediated gene therapy for osteoporosis.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jung-Min Kim
- Department of Medicine/Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ellen Gravallese
- Department of Medicine/Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
6
|
Qi H, Kim JK, Ha P, Chen X, Chen E, Chen Y, Li J, Pan HC, Yu M, Mohazeb Y, Azer S, Baik L, Kwak JH, Ting K, Zhang X, Hu M, Soo C. Inactivation of Nell-1 in Chondrocytes Significantly Impedes Appendicular Skeletogenesis. J Bone Miner Res 2019; 34:533-546. [PMID: 30352124 PMCID: PMC6677149 DOI: 10.1002/jbmr.3615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 12/29/2022]
Abstract
NELL-1, an osteoinductive protein, has been shown to regulate skeletal ossification. Interestingly, an interstitial 11p14.1-p15.3 deletion involving the Nell-1 gene was recently reported in a patient with short stature and delayed fontanelle closure. Here we sought to define the role of Nell-1 in endochondral ossification by investigating Nell-1-specific inactivation in Col2α1-expressing cell lineages. Nell-1flox/flox ; Col2α1-Cre+ (Nell-1Col2α1 KO) mice were generated for comprehensive analysis. Nell-1Col2α1 KO mice were born alive but displayed subtle femoral length shortening. At 1 and 3 months postpartum, Nell-1 inactivation resulted in dwarfism and premature osteoporotic phenotypes. Specifically, Nell-1Col2α1 KO femurs and tibias exhibited significantly reduced length, bone mineral density (BMD), bone volume per tissue volume (BV/TV), trabecular number/thickness, cortical volume/thickness/density, and increased trabecular separation. The decreased bone formation rate revealed by dynamic histomorphometry was associated with altered numbers and/or function of osteoblasts and osteoclasts. Furthermore, longitudinal observations by in vivo micro-CT showed delayed and reduced mineralization at secondary ossification centers in mutants. Histologically, reduced staining intensities of Safranin O, Col-2, Col-10, and fewer BrdU-positive chondrocytes were observed in thinner Nell-1Col2α1 KO epiphyseal plates along with altered distribution and weaker expression level of Ihh, Patched-1, PTHrP, and PTHrP receptor. Primary Nell-1Col2α1 KO chondrocytes also exhibited decreased proliferation and differentiation, and its downregulated expression of the Ihh-PTHrP signaling molecules can be partially rescued by exogenous Nell-1 protein. Moreover, intranuclear Gli-1 protein and gene expression of the Gli-1 downstream target genes, Hip-1 and N-Myc, were also significantly decreased with Nell-1 inactivation. Notably, the rescue effects were diminished/reduced with application of Ihh signaling inhibitors, cyclopamine or GANT61. Taken together, these findings suggest that Nell-1 is a pivotal modulator of epiphyseal homeostasis and endochondral ossification. The cumulative chondrocyte-specific Nell-1 inactivation significantly impedes appendicular skeletogenesis resulting in dwarfism and premature osteoporosis through inhibiting Ihh signaling and predominantly altering the Ihh-PTHrP feedback loop. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Huichuan Qi
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, P. R. China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Xiaoyan Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yao Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jiayi Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Hsin Chuan Pan
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Mengliu Yu
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
- Center of Stomatology, China-Japan Friendship Hospital, 2nd Yinghuayuan East Street, Chaoyang District, Beijing, P. R. China
| | - Yasamin Mohazeb
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Sophia Azer
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Lloyd Baik
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jin Hee Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, P. R. China
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Bradley EW, Carpio LR, Newton AC, Westendorf JJ. Deletion of the PH-domain and Leucine-rich Repeat Protein Phosphatase 1 (Phlpp1) Increases Fibroblast Growth Factor (Fgf) 18 Expression and Promotes Chondrocyte Proliferation. J Biol Chem 2015; 290:16272-80. [PMID: 25953896 DOI: 10.1074/jbc.m114.612937] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 01/14/2023] Open
Abstract
Endochondral ossification orchestrates formation of the vertebrate skeleton and is often induced during disease and repair processes of the musculoskeletal system. Here we show that the protein phosphatase Phlpp1 regulates endochondral ossification. Phlpp1 null mice exhibit decreased bone mass and notable changes in the growth plate, including increased BrdU incorporation and matrix production. Phosphorylation of known Phlpp1 substrates, Akt2, PKC, and p70 S6 kinase, were enhanced in ex vivo cultured Phlpp1(-/-) chondrocytes. Furthermore, Phlpp1 deficiency diminished FoxO1 levels leading to increased expression of Fgf18, Mek/Erk activity, and chondrocyte metabolic activity. Phlpp inhibitors also increased matrix content, Fgf18 production and Erk1/2 phosphorylation. Chemical inhibition of Fgfr-signaling abrogated elevated Erk1/2 phosphorylation and metabolic activity in Phlpp1-null cultures. These results demonstrate that Phlpp1 controls chondrogenesis via multiple mechanisms and that Phlpp1 inhibition could be a strategy to promote cartilage regeneration and repair.
Collapse
Affiliation(s)
| | | | - Alexandra C Newton
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Jennifer J Westendorf
- From the Department of Orthopedic Surgery, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905 and
| |
Collapse
|
8
|
Imamura K, Maeda S, Kawamura I, Matsuyama K, Shinohara N, Yahiro Y, Nagano S, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation. J Biol Chem 2014; 289:9865-79. [PMID: 24563464 DOI: 10.1074/jbc.m113.520585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.
Collapse
|
9
|
Shim JH, Greenblatt MB, Zou W, Huang Z, Wein MN, Brady N, Hu D, Charron J, Brodkin HR, Petsko GA, Zaller D, Zhai B, Gygi S, Glimcher LH, Jones DC. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J Clin Invest 2013; 123:4010-22. [PMID: 23945236 DOI: 10.1172/jci69443] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/21/2013] [Indexed: 11/17/2022] Open
Abstract
Mice deficient in Schnurri-3 (SHN3; also known as HIVEP3) display increased bone formation, but harnessing this observation for therapeutic benefit requires an improved understanding of how SHN3 functions in osteoblasts. Here we identified SHN3 as a dampener of ERK activity that functions in part downstream of WNT signaling in osteoblasts. A D-domain motif within SHN3 mediated the interaction with and inhibition of ERK activity and osteoblast differentiation, and knockin of a mutation in Shn3 that abolishes this interaction resulted in aberrant ERK activation and consequent osteoblast hyperactivity in vivo. Additionally, in vivo genetic interaction studies demonstrated that crossing to Lrp5(-/-) mice partially rescued the osteosclerotic phenotype of Shn3(-/-) mice; mechanistically, this corresponded to the ability of SHN3 to inhibit ERK-mediated suppression of GSK3β. Inducible knockdown of Shn3 in adult mice resulted in a high-bone mass phenotype, providing evidence that transient blockade of these pathways in adults holds promise as a therapy for osteoporosis.
Collapse
Affiliation(s)
- Jae-Hyuck Shim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leung A, Trac C, Jin W, Lanting L, Akbany A, Sætrom P, Schones DE, Natarajan R. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013; 113:266-78. [PMID: 23697773 DOI: 10.1161/circresaha.112.300849] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Misregulation of angiotensin II (Ang II) actions can lead to atherosclerosis and hypertension. Evaluating transcriptomic responses to Ang II in vascular smooth muscle cells (VSMCs) is important to understand the gene networks regulated by Ang II, which might uncover previously unidentified mechanisms and new therapeutic targets. OBJECTIVE To identify all transcripts, including novel protein-coding and long noncoding RNAs, differentially expressed in response to Ang II in rat VSMCs using transcriptome and epigenome profiling. METHODS AND RESULTS De novo assembly of transcripts from RNA-sequencing revealed novel protein-coding and long noncoding RNAs (lncRNAs). The majority of the genomic loci of these novel transcripts are enriched for histone H3 lysine-4-trimethylation and histone H3 lysine-36-trimethylation, 2 chromatin modifications found at actively transcribed regions, providing further evidence that these are bonafide transcripts. Analysis of transcript abundance identified all protein-coding and lncRNAs regulated by Ang II. We further discovered that an Ang II-regulated lncRNA functions as the host transcript for miR-221 and miR-222, 2 microRNAs implicated in cell proliferation. Additionally, small interfering RNA-mediated knockdown of Lnc-Ang362 reduced proliferation of VSMCs. CONCLUSIONS These data provide novel insights into the epigenomic and transcriptomic effects of Ang II in VSMCs. They provide the first identification of Ang II-regulated lncRNAs, which suggests functional roles for these lncRNAs in mediating cellular responses to Ang II. Furthermore, we identify an Ang II-regulated lncRNA that is responsible for the production of 2 microRNAs implicated in VSMC proliferation. These newly identified noncoding transcripts could be exploited as novel therapeutic targets for Ang II-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Amy Leung
- Department of Diabetes and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Castro-Chavez F, Vickers KC, Lee JS, Tung CH, Morrisett JD. Effect of lyso-phosphatidylcholine and Schnurri-3 on osteogenic transdifferentiation of vascular smooth muscle cells to calcifying vascular cells in 3D culture. Biochim Biophys Acta Gen Subj 2013; 1830:3828-34. [PMID: 23500015 DOI: 10.1016/j.bbagen.2013.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND In vitro cell culture is a widely used technique for investigating a range of processes such as stem cell behavior, regenerative medicine, tissue engineering, and drug discovery. Conventional cell culture is performed in Petri dishes or flasks where cells typically attach to a flat glass or plastic surface as a cell monolayer. However, 2D cell monolayers do not provide a satisfactory representation of in vivo conditions. A 3D culture could be a much better system for representing the conditions that prevail in vivo. METHODS AND RESULTS To simulate 3D conditions, vascular smooth muscle cells (VSMCs) were loaded with gold-polyvmer-iron oxide hydrogel, enabling levitation of the cells by using spatially varying magnetic fields. These magnetically levitated 3D cultures appeared as freely suspended, clustered cells which proliferated 3-4 times faster than cells in conventional 2D cultures. When the levitated cells were treated with 10nM lysophosphatidylcholine (LPC), for 3days, cell clusters exhibited translucent extensions/rods 60-80μm wide and 200-250μm long. When 0.5μg/μl Schnurri-3 was added to the culture containing LPC, these extensions were smaller or absent. When excited with 590-650nm light, these extensions emitted intrinsic fluorescence at >667nm. When the 3D cultures were treated with a fluorescent probe specific for calcium hydroxyapatite (FITC-HABP-19), the cell extensions/rods emitted intensely at 518nm, the λmax for FITC emission. Pellets of cells treated with LPC were more enriched in calcium, phosphate, and glycosaminoglycans than cells treated with LPC and Schnurri-3. CONCLUSIONS In 3D cultures, VSMCs grow more rapidly and form larger calcification clusters than cells in 2D cultures. Transdifferentiation of VSMC into calcifying vascular cells is enhanced by LPC and attenuated by Schnurri-3. GENERAL SIGNIFICANCE The formation of calcified structures in 3D VSMC cultures suggests that similar structures may be formed in vivo.
Collapse
|
12
|
Affiliation(s)
- Colin Farquharson
- Bone Biology Group, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK.
| | | |
Collapse
|
13
|
Mackie EJ, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 2011; 211:109-21. [PMID: 21642379 DOI: 10.1530/joe-11-0048] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endochondral ossification is the process that results in both the replacement of the embryonic cartilaginous skeleton during organogenesis and the growth of long bones until adult height is achieved. Chondrocytes play a central role in this process, contributing to longitudinal growth through a combination of proliferation, extracellular matrix (ECM) secretion and hypertrophy. Terminally differentiated hypertrophic chondrocytes then die, allowing the invasion of a mixture of cells that collectively replace the cartilage tissue with bone tissue. The behaviour of growth plate chondrocytes is tightly regulated at all stages of endochondral ossification by a complex network of interactions between circulating hormones (including GH and thyroid hormone), locally produced growth factors (including Indian hedgehog, WNTs, bone morphogenetic proteins and fibroblast growth factors) and the components of the ECM secreted by the chondrocytes (including collagens, proteoglycans, thrombospondins and matrilins). In turn, chondrocytes secrete factors that regulate the behaviour of the invading bone cells, including vascular endothelial growth factor and receptor activator of NFκB ligand. This review discusses how the growth plate chondrocyte contributes to endochondral ossification, with some emphasis on recent advances.
Collapse
Affiliation(s)
- E J Mackie
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
14
|
Patra D, DeLassus E, Hayashi S, Sandell LJ. Site-1 protease is essential to growth plate maintenance and is a critical regulator of chondrocyte hypertrophic differentiation in postnatal mice. J Biol Chem 2011; 286:29227-29240. [PMID: 21652717 DOI: 10.1074/jbc.m110.208686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-1 protease (S1P) is a proprotein convertase with essential functions in lipid homeostasis and unfolded protein response pathways. We previously studied a mouse model of cartilage-specific knock-out of S1P in chondroprogenitor cells. These mice exhibited a defective cartilage matrix devoid of type II collagen protein (Col II) and displayed chondrodysplasia with no endochondral bone formation even though the molecular program for endochondral bone development appeared intact. To gain insights into S1P function, we generated and studied a mouse model in which S1P is ablated in postnatal chondrocytes. Postnatal ablation of S1P results in chondrodysplasia. However, unlike early embryonic ablations, the growth plates of these mice exhibit a lack of Ihh, PTHrP-R, and Col10 expression indicating a loss of chondrocyte hypertrophic differentiation and thus disruption of the molecular program required for endochondral bone development. S1P ablation results in rapid growth plate disruption due to intracellular Col II entrapment concomitant with loss of chondrocyte hypertrophy suggesting that these two processes are related. Entrapment of Col II in the chondrocytes of the prospective secondary ossification center precludes its development. Trabecular bone formation is dramatically diminished in the primary spongiosa and is eventually lost. The primary growth plate is eradicated by apoptosis but is gradually replaced by a fully functional new growth plate from progenitor stem cells capable of supporting new bone growth. Our study thus demonstrates that S1P has fundamental roles in the preservation of postnatal growth plate through chondrocyte differentiation and Col II deposition and functions to couple growth plate maturation to trabecular bone development in growing mice.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110.
| | - Elizabeth DeLassus
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110; Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110.
| |
Collapse
|
15
|
Staton TL, Lazarevic V, Jones DC, Lanser AJ, Takagi T, Ishii S, Glimcher LH. Dampening of death pathways by schnurri-2 is essential for T-cell development. Nature 2011; 472:105-9. [PMID: 21475200 PMCID: PMC3077958 DOI: 10.1038/nature09848] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022]
Abstract
Generation of a diverse and self-tolerant T cell repertoire requires appropriate interpretation of T cell receptor (TCR) signals by CD4+CD8+ double positive (DP) thymocytes. Thymocyte cell fate is dictated by the nature of TCR:MHC-peptide interactions, with signals of higher strength leading to death (negative selection) and signals of intermediate strength leading to differentiation (positive selection)1. Molecules that regulate T cell development by modulating TCR signal strength have been described but components that specifically define the boundaries between positive and negative selection remain unknown. Here we show that repression of TCR-induced death pathways is critical for proper interpretation of positive selecting signals in vivo, and identify Schnurri2 (Shn2) as a crucial death dampener. Our results indicate that Shn2−/− DP thymocytes inappropriately undergo negative selection in response to positive selecting signals, thus leading to disrupted T cell development. Shn2−/− DP thymocytes are more sensitive to TCR-induced death in vitro and die in response to positive selection interactions in vivo. However, Shn2-deficient thymocytes can be positively selected when TCR-induced death is genetically-ablated. Shn2 levels increase after TCR stimulation suggesting that integration of multiple TCR:MHC-peptide interactions may fine tune the death threshold. Mechanistically, Shn2 functions downstream of TCR proximal signaling compenents to dampen Bax activation and the mitochondrial death pathway. Our findings uncover a critical regulator of T cell development that controls the balance between death and differentiation.
Collapse
Affiliation(s)
- Tracy L Staton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu S, Madiai F, Hackshaw KV, Allen CE, Carl J, Huschart E, Karanfilov C, Litsky A, Hickey CJ, Marcucci G, Huja S, Agarwal S, Yu J, Caligiuri MA, Wu LC. The large zinc finger protein ZAS3 is a critical modulator of osteoclastogenesis. PLoS One 2011; 6:e17161. [PMID: 21390242 PMCID: PMC3048431 DOI: 10.1371/journal.pone.0017161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/24/2011] [Indexed: 01/18/2023] Open
Abstract
Background Mice deficient in the large zinc finger protein, ZAS3, show postnatal increase in bone mass suggesting that ZAS3 is critical in the regulation of bone homeostasis. Although ZAS3 has been shown to inhibit osteoblast differentiation, its role on osteoclastogenesis has not been determined. In this report we demonstrated the role of ZAS3 in bone resorption by examining the signaling mechanisms involved in osteoclastogenesis. Methodology/Principal Findings Comparison of adult wild-type and ZAS3 knockout (ZAS3−/−) mice showed that ZAS3 deficiency led to thicker bones that are more resistant to mechanical fracture. Additionally, ZAS3−/− bones showed fewer osteoclasts and inefficient M-CSF/sRANKL-mediated osteoclastogenesis ex vivo. Utilizing RAW 264.7 pre-osteoclasts, we demonstrated that overexpression of ZAS3 promoted osteoclastogenesis and the expression of crucial osteoclastic molecules, including phospho-p38, c-Jun, NFATc1, TRAP and CTSK. Contrarily, ZAS3 silencing by siRNA inhibited osteoclastogenesis. Co-immunoprecipitation experiments demonstrated that ZAS3 associated with TRAF6, the major receptor associated molecule in RANK signaling. Furthermore, EMSA suggested that nuclear ZAS3 could regulate transcription by binding to gene regulatory elements. Conclusion/Significance Collectively, the data suggested a novel role of ZAS3 as a positive regulator of osteoclast differentiation. ZAS3 deficiency caused increased bone mass, at least in part due to decreased osteoclast formation and bone resorption. These functions of ZAS3 were mediated via activation of multiple intracellular targets. In the cytoplasmic compartment, ZAS3 associated with TRAF6 to control NF-kB and MAP kinase signaling cascades. Nuclear ZAS3 acted as a transcriptional regulator for osteoclast-associated genes. Additionally, ZAS3 activated NFATc1 required for the integration of RANK signaling in the terminal differentiation of osteoclasts. Thus, ZAS3 was a crucial molecule in osteoclast differentiation, which might potentially serve as a target in the design of therapeutic interventions for the treatment of bone diseases related to increased osteoclast activity such as postmenopausal osteoporosis, Paget's disease, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Shujun Liu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Francesca Madiai
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kevin V. Hackshaw
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Carl E. Allen
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Joseph Carl
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Emily Huschart
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Chris Karanfilov
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Alan Litsky
- Department of Orthopaedics and Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Hickey
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Guido Marcucci
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarandeep Huja
- Division of Orthodontics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sudha Agarwal
- Biomechanics and Tissue Engineering Laboratory, Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael A. Caligiuri
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Lai-Chu Wu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nagao M, Saita Y, Hanyu R, Hemmi H, Notomi T, Hayata T, Nakamoto T, Nakashima K, Kaneko K, Kurosawa H, Ishii S, Ezura Y, Noda M. Schnurri-2 deficiency counteracts against bone loss induced by ovariectomy. J Cell Physiol 2011; 226:573-8. [PMID: 21069746 DOI: 10.1002/jcp.22521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schnurri (Shn)-2 is a transcriptional modulator of bone formation and bone resorption and its deficiency causes low turnover state with higher cancellous bone mass due to the defects in osteoclasts that exceeds the defects in osteoblasts in mice. We addressed whether such low turnover of bone remodeling in Shn2 deficiency may be modulated in the absence of estrogen that induces high turnover state in vivo. Ovariectomy reduced bone mass in wild type compared to sham operated control mice and such reduction in bone mass was also observed in Shn2 deficient mice. However, due to the high levels of basal bone mass in Shn2 deficient mice, the bone mass levels after ovariectomy were still comparable to sham operated wild-type mice. Analysis indicated that estrogen depletion increased bone resorption at similar levels in wild type and Shn2 deficient mice though the basal levels of osteoclast number was slightly lower in Shn2-deficient mice. In contrast, basal levels of bone marrow cell mineralization in cultures were low in Shn2-deficeint mice while estrogen depletion increased the mineralization levels to those that were comparable to sham wild type. This indicates that Shn2-deficient mice maintain bone mass at the levels comparable to wild-type sham mice even after ovariectomy-induced bone loss and this correlates with the high levels of mineralization activity in bone marrow cells after ovariectomy.
Collapse
Affiliation(s)
- Masashi Nagao
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|