1
|
Corner TP, Salah E, Tumber A, Brewitz L, Schofield CJ. Biochemical investigations using mass spectrometry to monitor JMJD6-catalysed hydroxylation of multi-lysine containing bromodomain-derived substrates. RSC Chem Biol 2025; 6:642-656. [PMID: 40046450 PMCID: PMC11878239 DOI: 10.1039/d4cb00311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/19/2025] [Indexed: 04/04/2025] Open
Abstract
Jumonji-C domain-containing protein 6 (JMJD6) is a human 2-oxoglutarate (2OG)/Fe(ii)-dependent oxygenase catalysing post-translational C5 hydroxylation of multiple lysine residues, including in the bromodomain-containing proteins BRD2, BRD3 and BRD4. The role(s) of JMJD6-catalysed substrate hydroxylation are unclear. JMJD6 is important in development and JMJD6 catalysis may promote cancer. We report solid-phase extraction coupled to mass spectrometry assays monitoring JMJD6-catalysed hydroxylation of BRD2-4 derived oligopeptides containing multiple lysyl residues. The assays enabled determination of apparent steady-state kinetic parameters for 2OG, Fe(ii), l-ascorbate, O2 and BRD substrates. The JMJD6 K app m for O2 was comparable to that reported for the structurally related 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), suggesting potential for limitation of JMJD6 activity by O2 availability in cells, as proposed for FIH and some other 2OG oxygenases. The new assays will help development of small-molecule JMJD6 inhibitors for functional assignment studies and as potential cancer therapeutics.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
2
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Di Nisio E, Manzini V, Licursi V, Negri R. To Erase or Not to Erase: Non-Canonical Catalytic Functions and Non-Catalytic Functions of Members of Histone Lysine Demethylase Families. Int J Mol Sci 2024; 25:6900. [PMID: 39000010 PMCID: PMC11241480 DOI: 10.3390/ijms25136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Histone lysine demethylases (KDMs) play an essential role in biological processes such as transcription regulation, RNA maturation, transposable element control, and genome damage sensing and repair. In most cases, their action requires catalytic activities, but non-catalytic functions have also been shown in some KDMs. Indeed, some strictly KDM-related proteins and some KDM isoforms do not act as histone demethylase but show other enzymatic activities or relevant non-enzymatic functions in different cell types. Moreover, many studies have reported on functions potentially supported by catalytically dead mutant KDMs. This is probably due to the versatility of the catalytical core, which can adapt to assume different molecular functions, and to the complex multi-domain structure of these proteins which encompasses functional modules for targeting histone modifications, promoting protein-protein interactions, or recognizing nucleic acid structural motifs. This rich modularity and the availability of multiple isoforms in the various classes produced variants with enzymatic functions aside from histone demethylation or variants with non-catalytical functions during the evolution. In this review we will catalog the proteins with null or questionable demethylase activity and predicted or validated inactive isoforms, summarizing what is known about their alternative functions. We will then go through some experimental evidence for the non-catalytical functions of active KDMs.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
| | - Valeria Manzini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| |
Collapse
|
4
|
Kornacki J, Olejniczak O, Sibiak R, Gutaj P, Wender-Ożegowska E. Pathophysiology of Pre-Eclampsia-Two Theories of the Development of the Disease. Int J Mol Sci 2023; 25:307. [PMID: 38203478 PMCID: PMC10779413 DOI: 10.3390/ijms25010307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Pre-eclampsia (PE) continues to be a leading cause of maternal and fetal mortality and morbidity. While substantial progress has been made in understanding the pathomechanisms of PE, the pathophysiology of the disease is still not fully understood. While the "two-stage model" of the development of PE is the most widely accepted theory, stating that the placenta is the main source of the disease, there are some other pathophysiological models of PE. Among these other theories, the one considering heart dysfunction as serving as the primary cause of PE seems to be gaining increasing prominence. In this review, we aim to elucidate these two divergent concepts concerning the development of PE. Despite some differences in their proposed pathomechanisms, both theories share vital pathophysiological elements in common. A central and critical component in both models is impaired placental perfusion, which appears to be a crucial phenomenon in PE. A comprehensive understanding of the different pathomechanisms involved in PE may be helpful in clinical practice, prompting a more individual approach to care of patients with PE.
Collapse
Affiliation(s)
- Jakub Kornacki
- Department of Reproduction, Chair of Reproduction and Perinatal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.O.); (R.S.); (P.G.); (E.W.-O.)
| | - Olga Olejniczak
- Department of Reproduction, Chair of Reproduction and Perinatal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.O.); (R.S.); (P.G.); (E.W.-O.)
| | - Rafał Sibiak
- Department of Reproduction, Chair of Reproduction and Perinatal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.O.); (R.S.); (P.G.); (E.W.-O.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-701 Poznan, Poland
| | - Paweł Gutaj
- Department of Reproduction, Chair of Reproduction and Perinatal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.O.); (R.S.); (P.G.); (E.W.-O.)
| | - Ewa Wender-Ożegowska
- Department of Reproduction, Chair of Reproduction and Perinatal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.O.); (R.S.); (P.G.); (E.W.-O.)
| |
Collapse
|
5
|
Li W, Liu D, Chen B, Chen X, Yu H. Ferulic acid improves cognitive impairment by regulating jumonji C domain-containing protein 6 and synaptophysin in the hippocampus in neonatal and juvenile rats with intrauterine hypoxia during pregnancy. Anat Rec (Hoboken) 2023; 306:2636-2645. [PMID: 36922637 DOI: 10.1002/ar.25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
To investigate the impacts of ferulic acid (FA) on jumonji C domain-containing protein 6 (JMJD6) and synaptophysin in the tissues of the hippocampus in neonatal and juvenile rats with intrauterine hypoxia-induced cognitive impairment. The Sprague-Dawley pregnant rats were randomly divided into three groups: control, hypoxia, and hypoxia + FA. On day 14 of pregnancy, the intrauterine hypoxia model was created by placing pregnant rats in the hypoxic and low-pressure experimental chamber for 2 hr a day for 3 days. In the hypoxia + FA group, pregnant rats were injected intraperitoneally with 4% FA, once a day for 7 days. The hypoxia group was treated with equal amounts of saline. After delivery, JMJD6 and synaptophysin mRNA and proteins in the hippocampus regions were detected by in situ hybridization and western blotting. The Morris water maze was used to evaluate cognitive function. The neonatal and juvenile rats in the hypoxia group had significantly increased expression of JMJD6 and decreased expression of synaptophysin protein and synaptophysin I mRNA in the hippocampus than those in the control group. Meanwhile, hypoxia also clearly prolonged the escape latency and shortened the stay time in the target quadrant. FA decreased the expression of JMJD6 and increased the expression of synaptophysin and improved cognitive function compared with those in the hypoxia group. FA probably ameliorated the cognitive impairment by regulating JMJD6 and synaptophysin in the hippocampus of neonatal and juvenile rats who had intrauterine hypoxia during pregnancy.
Collapse
Affiliation(s)
- Wenying Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dunyu Liu
- Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Bo Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xingshu Chen
- Department of Histology and Embryology, Chongqing Institute of Neuroscience, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Hong Yu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
6
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
7
|
Chandra PK, Braun SE, Maity S, Castorena-Gonzalez JA, Kim H, Shaffer JG, Cikic S, Rutkai I, Fan J, Guidry JJ, Worthylake DK, Li C, Abdel-Mageed AB, Busija DW. Circulating Plasma Exosomal Proteins of Either SHIV-Infected Rhesus Macaque or HIV-Infected Patient Indicates a Link to Neuropathogenesis. Viruses 2023; 15:794. [PMID: 36992502 PMCID: PMC10058833 DOI: 10.3390/v15030794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood-brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers-possibly associated with viral reactivation and neuropathogenesis-that may elucidate the etiology of HAND.
Collapse
Affiliation(s)
- Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Stephen E. Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sudipa Maity
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University, New Orleans, LA 70112, USA
| | - Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jessie J. Guidry
- Proteomics Core Facility, Louisiana State University, New Orleans, LA 70112, USA
| | - David K. Worthylake
- Proteomics Core Facility, Louisiana State University, New Orleans, LA 70112, USA
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Asim B. Abdel-Mageed
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David W. Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Sahu A, Wang X, Munson P, Klomp JP, Wang X, Gu SS, Han Y, Qian G, Nicol P, Zeng Z, Wang C, Tokheim C, Zhang W, Fu J, Wang J, Nair NU, Rens JA, Bourajjaj M, Jansen B, Leenders I, Lemmers J, Musters M, van Zanten S, van Zelst L, Worthington J, Liu JS, Juric D, Meyer CA, Oubrie A, Liu XS, Fisher DE, Flaherty KT. Discovery of Targets for Immune-Metabolic Antitumor Drugs Identifies Estrogen-Related Receptor Alpha. Cancer Discov 2023; 13:672-701. [PMID: 36745048 PMCID: PMC9975674 DOI: 10.1158/2159-8290.cd-22-0244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 02/07/2023]
Abstract
Drugs that kill tumors through multiple mechanisms have the potential for broad clinical benefits. Here, we first developed an in silico multiomics approach (BipotentR) to find cancer cell-specific regulators that simultaneously modulate tumor immunity and another oncogenic pathway and then used it to identify 38 candidate immune-metabolic regulators. We show the tumor activities of these regulators stratify patients with melanoma by their response to anti-PD-1 using machine learning and deep neural approaches, which improve the predictive power of current biomarkers. The topmost identified regulator, ESRRA, is activated in immunotherapy-resistant tumors. Its inhibition killed tumors by suppressing energy metabolism and activating two immune mechanisms: (i) cytokine induction, causing proinflammatory macrophage polarization, and (ii) antigen-presentation stimulation, recruiting CD8+ T cells into tumors. We also demonstrate a wide utility of BipotentR by applying it to angiogenesis and growth suppressor evasion pathways. BipotentR (http://bipotentr.dfci.harvard.edu/) provides a resource for evaluating patient response and discovering drug targets that act simultaneously through multiple mechanisms. SIGNIFICANCE BipotentR presents resources for evaluating patient response and identifying targets for drugs that can kill tumors through multiple mechanisms concurrently. Inhibition of the topmost candidate target killed tumors by suppressing energy metabolism and effects on two immune mechanisms. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Avinash Sahu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Xiaoman Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Phillip Munson
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Xiaoqing Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shengqing Stan Gu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ya Han
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gege Qian
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phillip Nicol
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chenfei Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wubing Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jin Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Bas Jansen
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | | | - Jaap Lemmers
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | - Mark Musters
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | | | | | | | - Jun S. Liu
- Department of Statistics, Harvard University, Cambridge, Massachusetts
| | - Dejan Juric
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Clifford A. Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - X. Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David E. Fisher
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Keith T. Flaherty
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
9
|
Kremer V, Oppelaar JJ, Gimbel T, Koziarek S, Ganzevoort W, van Pampus MG, van den Born BJ, Vogt L, de Groot C, Boon RA. Neuro-oncological Ventral Antigen 2 Regulates Splicing of Vascular Endothelial Growth Factor Receptor 1 and Is Required for Endothelial Function. Reprod Sci 2023; 30:678-689. [PMID: 35927413 PMCID: PMC9988812 DOI: 10.1007/s43032-022-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Pre-eclampsia (PE) affects 2-8% of pregnancies and is responsible for significant morbidity and mortality. The maternal clinical syndrome (defined by hypertension, proteinuria, and organ dysfunction) is the result of endothelial dysfunction. The endothelial response to increased levels of soluble FMS-like Tyrosine Kinase 1 (sFLT1) is thought to play a central role. sFLT1 is released from multiple tissues and binds VEGF with high affinity and antagonizes VEGF. Expression of soluble variants of sFLT1 is a result of alternative splicing; however, the mechanism is incompletely understood. We hypothesize that neuro-oncological ventral antigen 2 (NOVA2) contributes to this. NOVA2 was inhibited in human umbilical vein endothelial cells (HUVECs) and multiple cellular functions were assessed. NOVA2 and FLT1 expression in the placenta of PE, pregnancy-induced hypertension, and normotensive controls was measured by RT-qPCR. Loss of NOVA2 in HUVECs resulted in significantly increased levels of sFLT1, but did not affect expression of membrane-bound FLT1. NOVA2 protein was shown to directly interact with FLT1 mRNA. Loss of NOVA2 was also accompanied by impaired endothelial functions such as sprouting. We were able to restore sprouting capacity by exogenous VEGF. We did not observe statistically significant regulation of NOVA2 or sFLT1 in the placenta. However, we observed a negative correlation between sFLT1 and NOVA2 expression levels. In conclusion, NOVA2 was found to regulate FLT1 splicing in the endothelium. Loss of NOVA2 resulted in impaired endothelial function, at least partially dependent on VEGF. In PE patients, we observed a negative correlation between NOVA2 and sFLT1.
Collapse
Affiliation(s)
- Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Medical Chemistry, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Theresa Gimbel
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Susanne Koziarek
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Wessel Ganzevoort
- Department of Obstetrics and Gynecology, Amsterdam Reproduction & Development, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bert-Jan van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Liffert Vogt
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Christianne de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany. .,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany. .,Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
11
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Cockman ME, Sugimoto Y, Pegg HB, Masson N, Salah E, Tumber A, Flynn HR, Kirkpatrick JM, Schofield CJ, Ratcliffe PJ. Widespread hydroxylation of unstructured lysine-rich protein domains by JMJD6. Proc Natl Acad Sci U S A 2022; 119:e2201483119. [PMID: 35930668 PMCID: PMC9371714 DOI: 10.1073/pnas.2201483119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.
Collapse
Affiliation(s)
- Matthew E. Cockman
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Yoichiro Sugimoto
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Hamish B. Pegg
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Norma Masson
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Helen R. Flynn
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Joanna M. Kirkpatrick
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Peter J. Ratcliffe
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
13
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Ji G, Xiao X, Huang M, Wu Q. Jmjd6 regulates ES cell homeostasis and enhances reprogramming efficiency. Heliyon 2022; 8:e09105. [PMID: 35846449 PMCID: PMC9280369 DOI: 10.1016/j.heliyon.2022.e09105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Jmjd6 is a conserved nuclear protein which possesses histone arginine demethylation and lysyl hydroxylase activity. Previous studies have revealed that Jmjd6 is essential for cell differentiation and embryo development. However, the role of Jmjd6 in mammalian ES cell identity and reprogramming has been unclear. Here we report that depletion of Jmjd6 not only results in downregulation of pluripotency genes but also is implicated in apoptosis, glycolysis, cell cycle and protein hydroxylation. We also revealed the reduction of BrdU incorporation in Jmjd6 depleted cells. Reprogramming efficiency of MEFs can be enhanced with Jmjd6 overexpression while the efficiency was reduced upon Jmjd6 depletion. Together, these results suggest that Jmjd6 can regulate ES cell homeostasis and enhance somatic cell reprogramming.
Collapse
|
15
|
Teixeira CSS, Sousa SF. Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics 2021; 14:pharmaceutics14010010. [PMID: 35056904 PMCID: PMC8780674 DOI: 10.3390/pharmaceutics14010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
16
|
Rosager AM, Dahlrot RH, Sørensen MD, Bangsø JA, Hansen S, Kristensen BW. The Epigenetic Regulator Jumonji Domain-Containing Protein 6 (JMJD6) Is Highly Expressed but Not Prognostic in IDH-Wildtype Glioblastoma Patients. J Neuropathol Exp Neurol 2021; 81:54-60. [PMID: 34875075 DOI: 10.1093/jnen/nlab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Patients with IDH-wildtype glioblastoma (GBM) generally have a poor prognosis. However, there is an increasing need of novel robust biomarkers in the daily clinico-pathological setting to identify and support treatment in patients who become long-time survivors. Jumonji domain-containing protein 6 (JMJD6) is involved in epigenetic regulation of demethylation of histones and has been associated with GBM aggressiveness. We investigated the expression and prognostic potential of JMJD6 tumor fraction score in 184 IDH-wildtype GBMs. Whole-slides were double-stained with an antibody against JMJD6 and an exclusion-cocktail consisting of 4 antibodies (CD31, SMA, CD45, and Iba-1), enabling evaluation of tumor cells only. Stainings were quantified with a combined software- and scoring-based approach. For comparison, IDH-mutated WHO grade II, III and IV astrocytic gliomas were also stained, and the JMJD6 tumor fraction score increased with increasing WHO grade, although not significantly. In multivariate analysis including age, gender, performance status and post-surgical treatment high JMJD6 tumor fraction score was associated with longer overall survival in IDH-wildtype GBMs (p = 0.03), but the effect disappeared when MGMT promoter status was included (p = 0.34). We conclude that JMJD6 is highly expressed in IDH-wildtype GBM but it has no independent prognostic value.
Collapse
Affiliation(s)
- Ann Mari Rosager
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Rikke H Dahlrot
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Mia D Sørensen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Julie A Bangsø
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Steinbjørn Hansen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Bjarne W Kristensen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| |
Collapse
|
17
|
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nat Med 2021; 27:2165-2175. [PMID: 34887573 PMCID: PMC8768030 DOI: 10.1038/s41591-021-01572-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.
Collapse
Affiliation(s)
- Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Emma Ristori
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Danielle F Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - William Armero
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Mikhael Guy
- Yale Center for Research Computing, Yale University, New Haven, CT, USA
| | - Batur Gültekin
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Deniz Kilic
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Devendra K Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Nükte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Burcu Gülez
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Süleyman Coskun
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Emily Sempou
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Cox
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Elena Fomchenko
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Ali Kemal Ozturk
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Kaya Bilgüvar
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Boeckel JN, Möbius-Winkler M, Müller M, Rebs S, Eger N, Schoppe L, Tappu R, Kokot KE, Kneuer JM, Gaul S, Bordalo DM, Lai A, Haas J, Ghanbari M, Drewe-Boss P, Liss M, Katus HA, Ohler U, Gotthardt M, Laufs U, Streckfuss-Bömeke K, Meder B. SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:129-146. [PMID: 34273561 PMCID: PMC9510876 DOI: 10.1016/j.gpb.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Alternative mRNA splicing is a fundamental process to increase the versatility of the genome. In humans, cardiac mRNA splicing is involved in the pathophysiology of heart failure. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) cause severe forms of cardiomyopathy. To identify novel cardiomyopathy-associated splicing factors, RNA-seq and tissue-enrichment analyses were performed, which identified up-regulated expression of Sam68-Like mammalian protein 2 (SLM2) in the left ventricle of dilated cardiomyopathy (DCM) patients. In the human heart, SLM2 binds to important transcripts of sarcomere constituents, such as those encoding myosin light chain 2 (MYL2), troponin I3 (TNNI3), troponin T2 (TNNT2), tropomyosin 1/2 (TPM1/2), and titin (TTN). Mechanistically, SLM2 mediates intron retention, prevents exon exclusion, and thereby mediates alternative splicing of the mRNA regions encoding the variable proline-, glutamate-, valine-, and lysine-rich (PEVK) domain and another part of the I-band region of titin. In summary, SLM2 is a novel cardiac splicing regulator with essential functions for maintaining cardiomyocyte integrity by binding to and processing the mRNAs of essential cardiac constituents such as titin.
Collapse
Affiliation(s)
- Jes-Niels Boeckel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | | | - Marion Müller
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen 32545, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Nicole Eger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Laura Schoppe
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Rewati Tappu
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Diana M Bordalo
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Alan Lai
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Jan Haas
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Mahsa Ghanbari
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Philipp Drewe-Boss
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Benjamin Meder
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Stanford Genome Technology Center, Department of Genetics, Stanford Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
19
|
Parbin S, Damodharan S, Rajyaguru PI. Arginine methylation and cytoplasmic mRNA fate: An exciting new partnership. Yeast 2021; 38:441-452. [PMID: 34048611 DOI: 10.1002/yea.3653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Posttranslational modifications play a crucial role in regulating gene expression. Among these modifications, arginine methylation has recently attracted tremendous attention due to its role in multiple cellular functions. This review discusses the recent advances that have established arginine methylation as a major player in determining cytoplasmic messenger RNA (mRNA) fate. We specifically focus on research that implicates arginine methylation in regulating mRNA translation, decay, and RNA granule dynamics. Based on this research, we highlight a few emerging future avenues that will lead to exciting discoveries in this field.
Collapse
Affiliation(s)
- Sabnam Parbin
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Integrative Genomics Core Unit, University Medical Centre, Göttingen, Göttingen, Germany
| | - Subha Damodharan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
20
|
Davis K, Azarcon P, Hickenlooper S, Bia R, Horiuchi E, Szulik MW, Franklin S. The role of demethylases in cardiac development and disease. J Mol Cell Cardiol 2021; 158:89-100. [PMID: 34081951 DOI: 10.1016/j.yjmcc.2021.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Heart failure is a worldwide health condition that currently has limited noninvasive treatments. Heart disease includes both structural and molecular remodeling of the heart which is driven by alterations in gene expression in the cardiomyocyte. Therefore, understanding the regulatory mechanisms which instigate these changes in gene expression and constitute the foundation for pathological remodeling may be beneficial for developing new treatments for heart disease. These gene expression changes are largely preceded by epigenetic alterations to chromatin, including the post-translational modification of histones such as methylation, which alters chromatin to be more or less accessible for transcription factors or regulatory proteins to bind and modify gene expression. Methylation was once thought to be a permanent mark placed on histone or non-histone targets by methyltransferases, but is now understood to be a reversible process after the discovery of the first demethylase, KDM1A/LSD1. Since this time, it has been shown that demethylases play key roles in embryonic development, in maintaining cellular homeostasis and disease progression. However, the role of demethylases in the fetal and adult heart remains largely unknown. In this review, we have compiled data on the 33 mammalian demethylases that have been identified to date and evaluate their expression in the embryonic and adult heart as well as changes in expression in the failing myocardium using publicly available RNA-sequencing and proteomic datasets. Our analysis detected expression of 14 demethylases in the normal fetal heart, and 5 demethylases in the normal adult heart. Moreover, 8 demethylases displayed differential expression in the diseased human heart compared to healthy hearts. We then examined the literature regarding these demethylases and provide phenotypic information of 13 demethylases that have been functionally interrogated in some way in the heart. Lastly, we describe the 6 arginine and lysine residues on histones which have been shown to be methylated but have no corresponding demethylase identified which removes these methyl marks. Overall, this review highlights our current knowledge on the role of demethylases, their importance in cardiac development and pathophysiology and provides evidence for the use of pharmacological inhibitors to combat disease.
Collapse
Affiliation(s)
- Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America.
| | - Presley Azarcon
- School of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Samuel Hickenlooper
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| |
Collapse
|
21
|
Ihezie SA, Mathew IE, McBride DW, Dienel A, Blackburn SL, Thankamani Pandit PK. Epigenetics in blood-brain barrier disruption. Fluids Barriers CNS 2021; 18:17. [PMID: 33823899 PMCID: PMC8025355 DOI: 10.1186/s12987-021-00250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which comprise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis which combine to protect the brain from toxins and maintains brain homeostasis. Blood-brain barrier (BBB) leakage is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, along with the promising approaches to regain the integrity of BBB.
Collapse
Affiliation(s)
- Stephanie A Ihezie
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Iny Elizebeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Peeyush Kumar Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Differential regulation of sFlt-1 splicing by U2AF65 and JMJD6 in placental-derived and endothelial cells. Biosci Rep 2021; 40:222069. [PMID: 32039444 PMCID: PMC7042122 DOI: 10.1042/bsr20193252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite years of study, the gestational disorder preeclampsia (PE) remains poorly understood. One proposed mechanism of PE development is increased soluble VEGF receptor-1 (sFlt-1), ultimately causing angiogenic imbalance and endothelial dysfunction. The soluble protein is an alternative splice variant of FLT1, which also encodes for the full-length receptor Flt-1. The mechanism of the alternative splicing, and the reason for its inappropriate increase in preeclampsia, is not well understood. U2 auxiliary factor 65 (U2AF65) and jumonji C domain-containing protein 6 (JMJD6) have been implicated in the splicing of sFlt-1. Using siRNA knockdown and plasmid overexpression in immortalized placental trophoblasts (BeWo) and primary endothelial cells (HUVECs), we examined the role these proteins play in production of sFlt-1. Our results showed that U2AF65 has little, if any, effect on sFlt-1 splicing, and JMJD6 may enhance sFlt-1 splicing, but is not necessary for splicing to occur. Utilizing a hypoxic environment to mimic conditions of the preeclamptic placenta, as well as examining placentae in the reduced uterine perfusion pressure (RUPP) model of PE, which exhibits increased circulating sFlt-1, we found increased expression of JMJD6 in both hypoxic cells and placental tissue. Additionally, we observed a potential role for U2AF65 and JMJD6 to regulate the extracellular matrix enzyme heparanase, which may be involved in the release of sFlt-1 protein from the extracellular matrix. It will be important to study the role of these proteins in different tissues in the future, as changes in expression had differential effects on sFlt-1 splicing in the different cell types studied here.
Collapse
|
23
|
Buratti E, Peruzzo P, Braga L, Zanin I, Stuani C, Goina E, Romano M, Giacca M, Dardis A. Deferoxamine mesylate improves splicing and GAA activity of the common c.-32-13T>G allele in late-onset PD patient fibroblasts. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:227-236. [PMID: 33426149 PMCID: PMC7782201 DOI: 10.1016/j.omtm.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Pompe disease (PD) is an autosomal recessive lysosomal storage disorder due to deficient activity of the acid alpha glucosidase enzyme (GAA). As a consequence of the enzymatic defect, undigested glycogen accumulates within lysosomes. Most patients affected by the late-onset (LO) phenotype carry in at least one allele the c.-32-13T>G variant, which leads to exon 2 exclusion from the pre-mRNA. These patients display a variable and suboptimal response to enzyme replacement therapy. To identify novel therapeutic approaches, we developed a fluorescent GAA exon 2 splicing assay and screened a library of US Food and Drug Administration (FDA)-approved compounds. This led to the identification of several drugs able to restore normal splicing. Among these, we further validated the effects of the iron chelator deferoxamine (Defe) in c.-32-13T>G fibroblasts. Defe treatment resulted in a 2-fold increase of GAA exon 2 inclusion and a 40% increase in enzymatic activity. Preliminary results suggest that this effect is mediated by the regulation of iron availability, at least partially. RNA-seq experiments also showed that Defe might shift the balance of splicing factor levels toward a profile promoting GAA exon 2 inclusion. This work provides the basis for drug repurposing and development of new chemically modified molecules aimed at improving the clinical outcome in LO-PD patients.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Paolo Peruzzo
- Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy.,Department of Life Sciences, Via Valerio 28, University of Trieste, 34127 Trieste, Italy
| | - Irene Zanin
- Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Elisa Goina
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127 Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Andrea Dardis
- Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| |
Collapse
|
24
|
Lawson H, Sepulveda C, van de Lagemaat LN, Durko J, Barile M, Tavosanis A, Georges E, Shmakova A, Timms P, Carter RN, Allen L, Campos J, Vukovic M, Guitart AV, Giles P, O'Shea M, Vernimmen D, Morton NM, Rodrigues NP, Göttgens B, Schofield CJ, Lengeling A, O'Carroll D, Kranc KR. JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Adv 2021; 5:889-899. [PMID: 33560400 PMCID: PMC7876897 DOI: 10.1182/bloodadvances.2020002702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.
Collapse
Affiliation(s)
- Hannah Lawson
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Catarina Sepulveda
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Louie N van de Lagemaat
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jozef Durko
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Melania Barile
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elise Georges
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alena Shmakova
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Penny Timms
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Roderick N Carter
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lewis Allen
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joana Campos
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Milica Vukovic
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Amelie V Guitart
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marie O'Shea
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas Vernimmen
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Andreas Lengeling
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Administrative Headquarters, Max Planck Society, Munich, Germany; and
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Institute for Stem Cell Research and
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun 2021; 12:681. [PMID: 33514719 PMCID: PMC7846794 DOI: 10.1038/s41467-021-20905-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network. Endothelial cells play a critical role in the adaptation of tissues to injury and show a remarkable plasticity. Here the authors show, using single cell sequencing, that endothelial cells acquire a transient mesenchymal state associated with metabolic adaptation after myocardial infarction.
Collapse
|
26
|
Tong D. The role of JMJD6/U2AF65/AR-V7 axis in castration-resistant prostate cancer progression. Cancer Cell Int 2021; 21:45. [PMID: 33430885 PMCID: PMC7802141 DOI: 10.1186/s12935-020-01739-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains prostate cancer research and treatment bottleneck. Abnormal androgen receptor (AR) activation still has a pivotal role in CRPC. Multiple mechanisms involve the process, of which overabundant AR-V7 mRNA splicing production is currently focused and increasingly studied. However, factually, there is no definite conclusion about regulation of AR-V7 mRNA splicing. Recently developed knowledge has demonstrated that JMJD6 and U2AF65 as a hopeful approach in mRNA splicing regulation. The authors propose a novel possible mechanism elucidating AR mRNA splicing for CRPC progression using dual-function enzyme JMJD6 and its induced JMJD6/U2AF65/AR-V7 axis. In this hypothesis JMJD6 introduces to AR promoter to demethylate H3R or H4R and promotes AR mRNA transcription via its demethylase activity and interaction with U2AF65. It is expected that JMJD6 could further effectively perform U2AF65 hydroxylation to achieve AR-V7 mRNA splicing via its hydroxylase activity.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
27
|
Arva A, Kasu YAT, Duncan J, Alkhatatbeh MA, Brower CS. The Ligand of Ate1 is intrinsically disordered and participates in nucleolar phase separation regulated by Jumonji Domain Containing 6. Proc Natl Acad Sci U S A 2021; 118:e2015887118. [PMID: 33443146 PMCID: PMC7817205 DOI: 10.1073/pnas.2015887118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Ligand of Ate1 (Liat1) is a protein of unknown function that was originally discovered through its interaction with arginyl-tRNA protein transferase 1 (Ate1), a component of the Arg/N-degron pathway of protein degradation. Here, we characterized the functional domains of mouse Liat1 and found that its N-terminal half comprises an intrinsically disordered region (IDR) that facilitates its liquid-liquid phase separation (LLPS) in the nucleolus. Using bimolecular fluorescence complementation and immunocytochemistry, we found that Liat1 is targeted to the nucleolus by a low-complexity poly-K region within its IDR. We also found that the lysyl-hydroxylase activity of Jumonji Domain Containing 6 (Jmjd6) modifies Liat1, in a manner that requires the Liat1 poly-K region, and inhibits its nucleolar targeting and potential functions. In sum, this study reveals that Liat1 participates in nucleolar LLPS regulated by Jmjd6.
Collapse
Affiliation(s)
- Akshaya Arva
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | - Jennifer Duncan
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | | |
Collapse
|
28
|
Di Matteo A, Belloni E, Pradella D, Cappelletto A, Volf N, Zacchigna S, Ghigna C. Alternative splicing in endothelial cells: novel therapeutic opportunities in cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:275. [PMID: 33287867 PMCID: PMC7720527 DOI: 10.1186/s13046-020-01753-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
29
|
Biswas A, Mukherjee G, Kondaiah P, Desai KV. Both EZH2 and JMJD6 regulate cell cycle genes in breast cancer. BMC Cancer 2020; 20:1159. [PMID: 33246425 PMCID: PMC7694428 DOI: 10.1186/s12885-020-07531-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Strong evidences support the critical role of Jumonji domain containing 6 (JMJD6) in progression of breast cancer. Here we explore potential partners that coregulate gene expression, to understand additional pathways that are activated by higher amounts of JMJD6. Methods We used Gene Set Enrichment Analysis (GSEA) data to identify factors that display gene expression similar to cells treated with JMJD6 siRNA. Using chromatin immunoprecipitations (ChIP) against genomic regions that bind JMJD6 identified by in house and public database Encyclopaedia of DNA Elements (ENCODE), we confirmed JMJD6 occupancy by ChIP PCR. We tested the association of co-regulated genes with patient prognosis using The Cancer Genome Atlas (TCGA) datasets. Results JMJD6 profiles overlapped with those of Enhancer of Zeste homolog 2 (EZH2) and together they appear to co-regulate a unique cassette of genes in both ER+ and ER- cells. 496 genes including aurora kinases, which are currently being tested as novel therapeutic targets in breast cancer were co-regulated in MDA MB 231 cells. JMJD6 and EZH2 neither inter-regulated nor physically interacted with one another. Since both proteins are chromatin modulators, we performed ChIP linked PCR analysis and show that JMJD6 bound in the neighbourhood of co-regulated genes, though EZH2 data did not show any peaks within 100 kb of these sites. Alignment of binding site sequences suggested that atleast two types of binding partners could offer their DNA binding properties to enrich JMJD6 at regulatory sites. In clinical samples, JMJD6 and EZH2 expression significantly correlated in both normal and tumor samples, however the strongest correlation was observed in triple-negative breast cancer (TNBC) subtype. Co-expression of JMJD6 and EZH2 imposed poorer prognosis in breast cancer. Conclusions JMJD6 and EZH2 regulate the same crucial cell cycle regulatory and therapeutic targets but their mechanisms appear to be independent of each other. Blocking of a single molecule may not axe cell proliferation completely and blocking both JMJD6 and EZH2 simultaneously may be more effective in breast cancer patients. Supplementary information Supplementary information accompanies this paper at 10.1186/s12885-020-07531-8.
Collapse
Affiliation(s)
- Antara Biswas
- National Institute of Biomedical Genomics, Kalyani, 741251, India.,Current address: Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Geetashree Mukherjee
- Kidwai Memorial Institute of Oncology, Bengaluru, 560029, India.,Current address: Tata Medical Center, 14 Main Arterial Road (EW), New Town, Rajarhat, Kolkata, 700156, India
| | - Paturu Kondaiah
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
| | - Kartiki V Desai
- National Institute of Biomedical Genomics, Kalyani, 741251, India.
| |
Collapse
|
30
|
JMJD6 Regulates Splicing of Its Own Gene Resulting in Alternatively Spliced Isoforms with Different Nuclear Targets. Int J Mol Sci 2020; 21:ijms21186618. [PMID: 32927736 PMCID: PMC7555845 DOI: 10.3390/ijms21186618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Jumonji-domain-containing protein 6 (JMJD6) is a Fe(II) and 2-oxogluterate (2OG) dependent oxygenase involved in gene regulation through post-translationally modifying nuclear proteins. It is highly expressed in many cancer types and linked to tumor progression and metastasis. Four alternatively-spliced jmjd6 transcripts were annotated. Here, we focus on the two most abundantly expressed ones, which we call jmjd6-2 and jmjd6-Ex5. TCGA SpliceSeq data revealed a significant decrease of jmjd6-Ex5 transcripts in patients and postmortem tissue of several tumors. The two protein isoforms are distinguished by their C-terminal sequences, which include a serine-rich region (polyS-domain) in JMJD6-2 that is not present in JMJD6-Ex5. Immunoprecipitation followed by LC-MS/MS for JMJD6-Ex5 shows that different sets of proteins interact with JMJD6-2 and JMJD6-Ex5 with only a few overlaps. In particular, we found TFIIF-associating CTD phosphatase (FCP1), proteins of the survival of motor neurons (SMN) complex, heterogeneous nuclear ribonucleoproteins (hnRNPs) and upstream binding factor (UBF) to interact with JMJD6-Ex5. Like JMJD6-2, both UBF and FCP1 comprise a polyS-domain. The polyS domain of JMJD6-2 might block the interaction with polyS-domains of other proteins. In contrast, JMJD6-2 interacts with many SR-like proteins with arginine/serine-rich (RS)-domains, including several splicing factors. In an HIV-based splicing reporter assay, co-expression of JMJD6-2 inhibited exon inclusion, whereas JMJD6-Ex5 did not have any effect. Furthermore, the silencing of jmjd6 by siRNAs favored jmjd6-Ex5 transcripts, suggesting that JMJD6 controls splicing of its own pre-mRNA. The distinct molecular properties of JMJD6-2 and JMJD6-Ex5 open a lead into the functional implications of the variations of their relative abundance in tumors.
Collapse
|
31
|
Role of Arginine Methylation in Alternative Polyadenylation of VEGFR-1 (Flt-1) pre-mRNA. Int J Mol Sci 2020; 21:ijms21186460. [PMID: 32899690 PMCID: PMC7554721 DOI: 10.3390/ijms21186460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Mature mRNA is generated by the 3ʹ end cleavage and polyadenylation of its precursor pre-mRNA. Eukaryotic genes frequently have multiple polyadenylation sites, resulting in mRNA isoforms with different 3ʹ-UTR lengths that often encode different C-terminal amino acid sequences. It is well-known that this form of post-transcriptional modification, termed alternative polyadenylation, can affect mRNA stability, localization, translation, and nuclear export. We focus on the alternative polyadenylation of pre-mRNA for vascular endothelial growth factor receptor-1 (VEGFR-1), the receptor for VEGF. VEGFR-1 is a transmembrane protein with a tyrosine kinase in the intracellular region. Secreted forms of VEGFR-1 (sVEGFR-1) are also produced from the same gene by alternative polyadenylation, and sVEGFR-1 has a function opposite to that of VEGFR-1 because it acts as a decoy receptor for VEGF. However, the mechanism that regulates the production of sVEGFR-1 by alternative polyadenylation remains poorly understood. In this review, we introduce and discuss the mechanism of alternative polyadenylation of VEGFR-1 mediated by protein arginine methylation.
Collapse
|
32
|
Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020; 10:biom10060953. [PMID: 32599856 PMCID: PMC7357118 DOI: 10.3390/biom10060953] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
- Correspondence:
| | - Neeta Raj Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
| | - Matthew Petitt
- Redwood Biomedical Editing, Redwood City, CA 94061, USA;
| | - Devika Maulik
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| |
Collapse
|
33
|
Cancer stem cells and oral cancer: insights into molecular mechanisms and therapeutic approaches. Cancer Cell Int 2020; 20:113. [PMID: 32280305 PMCID: PMC7137421 DOI: 10.1186/s12935-020-01192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a little population of cancer cells, which have features as the same as the cells normal stem cells. There is enough knowledge of the CSCs responsibility for metastasis, medicine resistance, and cancer outbreak. Therefore, CSCs control possibly provides an efficient treatment intervention inhibiting tumor growth and invasion. In spite of the significance of targeting CSCs in treating cancer, few study comprehensively explored the nature of oral CSCs. It has been showed that oral CSCs are able to contribute to oral cancer progression though activation/inhibition a sequences of cellular and molecular pathways (microRNA network, histone modifications and calcium regulation). Hence, more understanding about the properties of oral cancers and their behaviors will help us to develop new therapeutic platforms. Head and neck CSCs remain a viable and intriguing option for targeted therapy. Multiple investigations suggested the major contribution of the CSCs to the metastasis, tumorigenesis, and resistance to the new therapeutic regimes. Therefore, experts in the field are examining the encouraging targeted therapeutic choices. In spite of the advancements, there are not enough information in this area and thus a magic bullet for targeting and eliminating the CSCs deviated us. Hence, additional investigations on the combined therapies against the head and neck CSCs could offer considerable achievements. The present research is a review of the recent information on oral CSCs, and focused on current advancements in new signaling pathways contributed to their stemness regulation. Moreover, we highlighted various therapeutic approaches against oral CSCs.
Collapse
|
34
|
Wei X, Yi X, Zhu XH, Jiang DS. Histone methylation and vascular biology. Clin Epigenetics 2020; 12:30. [PMID: 32070413 PMCID: PMC7027016 DOI: 10.1186/s13148-020-00826-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.
Collapse
Affiliation(s)
- Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China.
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Yang J, Chen S, Yang Y, Ma X, Shao B, Yang S, Wei Y, Wei X. Jumonji domain-containing protein 6 protein and its role in cancer. Cell Prolif 2020; 53:e12747. [PMID: 31961032 PMCID: PMC7046477 DOI: 10.1111/cpr.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
The jumonji domain‐containing protein 6 (JMJD6) is a Fe(II)‐ and 2‐oxoglutarate (2OG)‐dependent oxygenase that catalyses lysine hydroxylation and arginine demethylation of histone and non‐histone peptides. Recently, the intrinsic tyrosine kinase activity of JMJD6 has also been reported. The JMJD6 has been implicated in embryonic development, cellular proliferation and migration, self‐tolerance induction in the thymus, and adipocyte differentiation. Not surprisingly, abnormal expression of JMJD6 may contribute to the development of many diseases, such as neuropathic pain, foot‐and‐mouth disease, gestational diabetes mellitus, hepatitis C and various types of cancer. In the present review, we summarized the structure and functions of JMJD6, with particular emphasis on the role of JMJD6 in cancer progression.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfei Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Elia LP, Reisine T, Alijagic A, Finkbeiner S. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology 2020; 166:107948. [PMID: 31962288 DOI: 10.1016/j.neuropharm.2020.107948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Amela Alijagic
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
37
|
Riddell EA, Roback EY, Wells CE, Zamudio KR, Sears MW. Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nat Commun 2019; 10:4091. [PMID: 31501425 PMCID: PMC6733842 DOI: 10.1038/s41467-019-11990-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
Organisms rely upon external cues to avoid detrimental conditions during environmental change. Rapid water loss, or desiccation, is a universal threat for terrestrial plants and animals, especially under climate change, but the cues that facilitate plastic responses to avoid desiccation are unclear. We integrate acclimation experiments with gene expression analyses to identify the cues that regulate resistance to water loss at the physiological and regulatory level in a montane salamander (Plethodon metcalfi). Here we show that temperature is an important cue for developing a desiccation-resistant phenotype and might act as a reliable cue for organisms across the globe. Gene expression analyses consistently identify regulation of stem cell differentiation and embryonic development of vasculature. The temperature-sensitive blood vessel development suggests that salamanders regulate water loss through the regression and regeneration of capillary beds in the skin, indicating that tissue regeneration may be used for physiological purposes beyond replacing lost limbs.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, USA.
| | - Emma Y Roback
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, USA.,Biology Department, Grinnell College, 1116 Eighth Ave, Grinnell, IA, 50112, USA
| | - Christina E Wells
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY, 14853, USA
| | - Michael W Sears
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, USA
| |
Collapse
|
38
|
Reyes-Gutierrez P, Carrasquillo-Rodríguez JW, Imbalzano AN. Promotion of adipogenesis by JMJD6 requires the AT hook-like domain and is independent of its catalytic function. PLoS One 2019; 14:e0216015. [PMID: 31430278 PMCID: PMC6701753 DOI: 10.1371/journal.pone.0216015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/03/2019] [Indexed: 12/25/2022] Open
Abstract
JMJD6 is a member of the Jumonji C domain containing enzymes that demethylate and/or hydroxylate substrate proteins. It is a multi-functional protein that has been implicated in disparate aspects of transcriptional and post-transcriptional control of gene expression, including but not limited to enhancer and promoter binding, release of paused RNA polymerase II, control of splicing, and interaction with the translation machinery. JMJD6 contributes to multiple aspects of animal development, including adipogenesis modeled in culture. We mutated proposed or characterized domains in the JMJD6 protein to better understand the requirement for JMJD6 in adipogenic differentiation. Mutation of JMJD6 amino acids that mediate binding of iron and 2-oxogluterate, which are required cofactors for enzymatic activity, had no impact on JMJD6 function, showing that catalytic activity is not required for JMJD6 contributions to adipogenic differentiation. In addition, we documented the formation of JMJD6 oligomers and showed that catalytic activity is not required for oligomerization, as has been reported previously. We also observed no effect of mutations in the sumoylation site and in the poly-serine stretch. In contrast, mutation of the AT hook-like structure, which mediates interaction with DNA and/or RNA, compromised JMJD6 function by blocking its ability to interact with chromatin at genes that express regulators of adipogenesis. The ability of JMJD6 to interact with nucleic acids may be a critical requirement for its function in adipogenic differentiation. The requirement for the AT hook-like domain and the lack of requirement for catalytic activity giving rise to the idea that co-activation of transcription by JMJD6 may be functioning as a scaffold protein that supports the interactions of other critical regulators.
Collapse
Affiliation(s)
- Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jake W. Carrasquillo-Rodríguez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Shin JY, Son J, Kim WS, Gwak J, Ju BG. Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development. PLoS One 2019; 14:e0219800. [PMID: 31361752 PMCID: PMC6667200 DOI: 10.1371/journal.pone.0219800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
It has been suggested that Jmjd6 plays an important role in gene regulation through its demethylation or hydroxylation activity on histone and transcription factors. In addition, Jmjd6 has been shown to regulate RNA splicing by interaction with splicing factors. In this study, we demonstrated that Jmjd6a is expressed in developing Xenopus laevis eye during optic vesicle formation and retinal layer differentiation stages. Knockdown of Jmjd6a by an antisense morpholino resulted in eye malformation including a deformed retinal layer and no lens formation. We further found down-regulation of gene expression related to eye development such as Rx1, Otx2, and Pax6 in Jmjd6a morpholino injected embryos. Jmjd6 interacts with splicing factor U2AF25 and GSK3β RNA in the anterior region of Xenopus embryos. Knockdown of Jmjd6a led to deletion of GSK3β RNA exon 1 and 2, which resulted in generation of N’-terminal truncated GSK3β protein. This event further caused decreased phosphorylation of β-catenin and subsequently increased β-catenin stability. Therefore, our result may suggest that Jmjd6a plays an important role in Xenopus eye development through regulation of GSK3β RNA splicing and canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jee Yoon Shin
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jeongin Son
- Department of Life Science, Sogang University, Seoul, Korea
| | - Won Sun Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jungsug Gwak
- Department of Life Science, Sogang University, Seoul, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
40
|
Zheng H, Tie Y, Fang Z, Wu X, Yi T, Huang S, Liang X, Qian Y, Wang X, Pi R, Chen S, Peng Y, Yang S, Zhao X, Wei X. Jumonji domain-containing 6 (JMJD6) identified as a potential therapeutic target in ovarian cancer. Signal Transduct Target Ther 2019; 4:24. [PMID: 31637004 PMCID: PMC6799828 DOI: 10.1038/s41392-019-0055-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023] Open
Abstract
Jumonji domain-containing 6 (JMJD6) is a candidate gene associated with tumorigenesis, and JMJD6 overexpression predicts poor differentiation and unfavorable survival in some cancers. However, there are no studies reporting the expression of JMJD6 in ovarian cancer, and no JMJD6 inhibitors have been developed and applied to targeted cancer therapy research. In the present study, we found that the high expression of JMJD6 in ovarian cancer was correlated with poor prognosis in ovarian cancer. A potential inhibitor (SKLB325) was designed based on the crystal structure of the jmjC domain of JMJD6. This molecule significantly suppressed proliferation and induced apoptosis in a dose-dependent manner in SKOV3 cell lines as detected by CCK-8 cell proliferation assays and flow cytometry. A Matrigel endothelial tube formation assay showed that SKLB325 inhibited capillary tube organization and migration in HUVECs in vitro. We also observed that JMJD6 colocalized with p53 protein in the nucleus, with mRNA and protein expression of p53 as well as its downstream effectors significantly increasing both in vitro and in intraperitoneal tumor tissues treated with SKLB325. In addition, SKLB325 significantly reduced the intraperitoneal tumor weight and markedly prolonged the survival of tumor-bearing mice. Taken together, our findings suggest that JMJD6 may be a marker of poor prognosis in ovarian cancer and that SKLB325 may be a potential candidate drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Heng Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Yan Tie
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Zhen Fang
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Xiaoai Wu
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Shuang Huang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Yanping Qian
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Xi Wang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Siyuan Chen
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Yong Peng
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Shengyong Yang
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Xiawei Wei
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| |
Collapse
|
41
|
Shin KH, Kim RH. An Updated Review of Oral Cancer Stem Cells and Their Stemness Regulation. Crit Rev Oncog 2019; 23:189-200. [PMID: 30311574 DOI: 10.1615/critrevoncog.2018027501] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs; also known as tumor-initiating cells) are a small population of cancer cells that retain characteristics similar to those of normal stem cells. CSCs are known to be responsible for metastasis, drug resistance, and cancer recurrence. Thus, controlling CSCs may provide an effective therapeutic intervention that inhibits tumor growth and aggressiveness. Despite the importance of targeting CSCs in cancer therapy, the detailed nature of oral CSCs remains underexplored. This article reviews the current understanding of oral CSCs, with emphasis on recent advances in novel signaling pathways involved in their stemness regulation.
Collapse
Affiliation(s)
- Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| |
Collapse
|
42
|
Oh S, Shin S, Janknecht R. The small members of the JMJD protein family: Enzymatic jewels or jinxes? Biochim Biophys Acta Rev Cancer 2019; 1871:406-418. [PMID: 31034925 DOI: 10.1016/j.bbcan.2019.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility. Here, we discuss the ten human small JMJD proteins (HIF1AN, HSPBAP1, JMJD4, JMJD5, JMJD6, JMJD7, JMJD8, RIOX1, RIOX2, TYW5) and their diverse physiological functions. In particular, we focus on the roles of these small JMJD proteins in cancer and other maladies and how they are modulated in diseased cells by an altered metabolic milieu, including hypoxia, reactive oxygen species and oncometabolites. Because small JMJD proteins are enzymes, they are amenable to inhibition by small molecules and may represent novel targets in the therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
43
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
44
|
Elia LP, Mason AR, Alijagic A, Finkbeiner S. Genetic Regulation of Neuronal Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. J Neurosci 2019; 39:3332-3344. [PMID: 30696728 PMCID: PMC6788815 DOI: 10.1523/jneurosci.3498-17.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Deficient progranulin levels cause dose-dependent neurological syndromes: haploinsufficiency leads to frontotemporal lobar degeneration (FTLD) and nullizygosity produces adult-onset neuronal ceroid lipofuscinosis. Mechanisms controlling progranulin levels are largely unknown. To better understand progranulin regulation, we performed a genome-wide RNAi screen using an ELISA-based platform to discover genes that regulate progranulin levels in neurons. We identified 830 genes that raise or lower progranulin levels by at least 1.5-fold in Neuro2a cells. When inhibited by siRNA or some by submicromolar concentrations of small-molecule inhibitors, 33 genes of the druggable genome increased progranulin levels in mouse primary cortical neurons; several of these also raised progranulin levels in FTLD model mouse neurons. "Hit" genes regulated progranulin by transcriptional or posttranscriptional mechanisms. Pathway analysis revealed enrichment of hit genes from the autophagy-lysosome pathway (ALP), suggesting a key role for this pathway in regulating progranulin levels. Progranulin itself regulates lysosome function. We found progranulin deficiency in neurons increased autophagy and caused abnormally enlarged lysosomes and boosting progranulin levels restored autophagy and lysosome size to control levels. Our data link the ALP to neuronal progranulin: progranulin levels are regulated by autophagy and, in turn, progranulin regulates the ALP. Restoring progranulin levels by targeting genetic modifiers reversed FTLD functional deficits, opening up potential opportunities for future therapeutics development.SIGNIFICANCE STATEMENT Progranulin regulates neuron and immune functions and is implicated in aging. Loss of one functional allele causes haploinsufficiency and leads to frontotemporal lobar degeneration (FTLD), the second leading cause of dementia. Progranulin gene polymorphisms are linked to Alzheimer's disease (AD) and complete loss of function causes neuronal ceroid lipofuscinosis. Despite the critical role of progranulin levels in neurodegenerative disease risk, almost nothing is known about their regulation. We performed an unbiased screen and identified specific pathways controlling progranulin levels in neurons. Modulation of these pathways restored levels in progranulin-deficient neurons and reversed FTLD phenotypes. We provide a new comprehensive understanding of the genetic regulation of progranulin levels and identify potential targets to treat FTLD and other neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Amanda R Mason
- Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, and
| | - Amela Alijagic
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
- Departments of Neurology and Physiology, University of California, San Francisco, California 94143
| |
Collapse
|
45
|
Yang W, Liu Y, Gao R, Xiu Z, Sun T. Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radioresistance. Cell Signal 2019; 60:122-135. [PMID: 31028816 DOI: 10.1016/j.cellsig.2019.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a classic feature of the tumor microenvironment, and has been established as a key epigenetic factor modulating the outcome of radiotherapy. Circular RNAs (circRNAs) are novel RNA molecules with covalently closed circular structures and are highly expressed in eukaryotic transcriptomes. Although previous analysis have shown that circRNA ZNF292 (cZNF292) was hypoxia-responsive and exhibited a proangiogenic function in vitro, the molecular mechanism of cZNF292's biological function is still unclear and deserves further exploration. In this study, we investigated the effect of cZNF292 on the vasculogenic mimicry (VM) and radiosensitivity of hypoxic hepatoma SMMC7721 cells and its mechanism. Our data indicated that cZNF292 could be induced by hypoxia in a time-dependent manner in hepatoma cells independent of hypoxia inducible factor (HIF)-1α. Knockdown of cZNF292 increased SRY (sex determining region Y)-box 9 (SOX9) nuclear translocation, subsequently reduced Wnt/β-catenin pathway activity, leading to suppression of hypoxic hepatoma cell proliferation, VM, and radioresistance in vitro and in vivo. Our results delineated a novel mechanism of cZNF292 in enhancing hypoxic tumor cell radiosensitivity, which might provide valuable targets for radiation therapy for hepatoma.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| | - Yingying Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China; Isotopic Laboratory of Nuclear Medicine, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Ruoling Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Zenghe Xiu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Modulation of Receptor Tyrosine Kinase Activity through Alternative Splicing of Ligands and Receptors in the VEGF-A/VEGFR Axis. Cells 2019; 8:cells8040288. [PMID: 30925751 PMCID: PMC6523102 DOI: 10.3390/cells8040288] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors (VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms in a therapeutic manner.
Collapse
|
47
|
Leisegang MS, Gu L, Preussner J, Günther S, Hitzel J, Ratiu C, Weigert A, Chen W, Schwarz EC, Looso M, Fork C, Brandes RP. The histone demethylase
PHF
8 facilitates alternative splicing of the histocompatibility antigen
HLA
‐G. FEBS Lett 2019; 593:487-498. [DOI: 10.1002/1873-3468.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias S. Leisegang
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Lunda Gu
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
| | - Jens Preussner
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Stefan Günther
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Juliane Hitzel
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Corina Ratiu
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- Department of Functional Sciences – Pathophysiology “Victor Babes” University of Medicine and Pharmacy Timisoara Romania
| | - Andreas Weigert
- Faculty of Medicine Institute of Biochemistry I Goethe University Frankfurt Germany
| | - Wei Chen
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- Laboratory for Novel Sequencing Technology, Functional and Medical Genomics Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Department of Biology Southern University of Science and Technology Shenzhen China
| | - Eva C. Schwarz
- Biophysics Center for Integrative Physiology and Molecular Medicine School of Medicine Saarland University Homburg Germany
| | - Mario Looso
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| |
Collapse
|
48
|
Abou Faycal C, Gazzeri S, Eymin B. A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells. Sci Rep 2019; 9:336. [PMID: 30674935 PMCID: PMC6344584 DOI: 10.1038/s41598-018-36728-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
The splice variant sVEGFR1-i13 is a truncated version of the cell membrane-spanning VEGFR1 receptor that is devoid of its transmembrane and tyrosine kinase domains. We recently showed the contribution of sVEGFR1-i13 to the progression and the response of squamous lung carcinoma to anti-angiogenic therapies. In this study, we identify VEGF165, a splice variant of VEGF-A, as a regulator of sVEGFR1-i13 expression in these tumors, and further show that VEGF165 cooperates with the transcription factor SOX2 and the splicing factor SRSF2 to control sVEGFR1-i13 expression. We also demonstrate that anti-angiogenic therapies up-regulate sVEGFR1-i13 protein level in squamous lung carcinoma cells by a mechanism involving the VEGF165/SOX2/SRSF2 network. Collectively, our results identify for the first time a signaling network that controls VEGFR1 pre-mRNA alternative splicing in cancer cells.
Collapse
Affiliation(s)
- Cherine Abou Faycal
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France
| | - Sylvie Gazzeri
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France. .,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France.
| |
Collapse
|
49
|
Anelli V, Ordas A, Kneitz S, Sagredo LM, Gourain V, Schartl M, Meijer AH, Mione M. Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression. Front Genet 2018; 9:675. [PMID: 30619488 PMCID: PMC6305343 DOI: 10.3389/fgene.2018.00675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc&acc=GSE37015.
Collapse
Affiliation(s)
| | - Anita Ordas
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leonel Munoz Sagredo
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Faculty of Medicine, University of Valparaiso, Valparaíso, Chile
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, United States
| | | | | |
Collapse
|
50
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|