1
|
Wang K, Liu J. Anti-aging protein α-Klotho is potential for reducing comorbidity risk of cardiometabolic diseases in vulnerable populations and enhancing long-term prognosis. Sci Rep 2025; 15:16722. [PMID: 40369033 PMCID: PMC12078659 DOI: 10.1038/s41598-025-01580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
This study investigated the impact of anti-aging protein α-Klotho on cardiometabolic diseases (CMDs) among middle-aged and elderly population. A total of 11,198 participants aged 40-79 years were included in the National Health and Nutrition Examination Survey (NHANES) spanning 2007-2016. Serum α-Klotho levels were quantified via enzyme-linked immunosorbent assays. CMDs comprised cardiovascular disease (CVD), and four metabolic disorders: type 2 diabetes (T2DM), obesity, chronic kidney disease (CKD), and non-alcoholic fatty liver disease (NAFLD). Weighted logistic regression analysis, subgroup analysis, mediation analysis, restricted cubic splines (RCS), and Cox proportional hazards regression analysis were used. α-Klotho exhibited negative associations with each single CMD except T2DM, and RCS showed U-shape and L-shape dose-response relationships of α-Klotho with risk of T2DM and CKD, respectively. Ordered logistic regression analysis revealed that higher levels of Klotho markedly reduced the cumulative number of metabolic comorbidities complicating CVD (OR 0.56 (0.35, 0.91)). Simple mediation analysis showed CKD may explain up to 20.42% of the association between Klotho and CVD. Notably, α-Klotho's association with cardiometabolic comorbidities was particularly evident among individuals who were widowed/divorced/separated, non-Hispanic Black, lower-income, or less educated, with hypertension, current smokers, lower leisure and commuting physical activity, but higher work-related physical activity. Regarding long-term effects, higher α-Klotho levels were associated with lower all-cause mortality among participants with CMDs, but not among those without CMDs. Higher α-Klotho levels were associated with lower CMD prevalence, particularly in high-risk cardiovascular populations with lower socioeconomic status and unfavorable lifestyles and reduced all-cause mortality risk among CMD patients.
Collapse
Affiliation(s)
- Kai Wang
- Medical School, Southeast University, Nanjing, China
| | - Jianing Liu
- Medical Faculty, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Park E, Yim HE, Son MH, Nam YJ, Lee YS, Jeong SH, Lee JH. Long-Term Alterations of Renal Microvasculature in Rats Following Maternal PM 2.5 Exposure: Vitamin D Effects. Biomedicines 2025; 13:1166. [PMID: 40426993 DOI: 10.3390/biomedicines13051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background: This study aimed to investigate the long-term effects of maternal exposure to fine particulate matter (PM2.5) with or without vitamin D supplementation on the renal microvasculature in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were exposed to normal saline, PM2.5, and PM2.5 with vitamin D for one month during nephrogenesis. Male offspring kidneys were taken for analyses on postnatal day 56. Results: Adult offspring rats exposed to maternal PM2.5 exhibited lower body weights and greater glomerular and tubular injury scores compared to control rats. Semi-quantitative analysis revealed a significant reduction in glomerular and peritubular capillary endothelial cells, along with a decrease in the number of glomeruli in the PM2.5 group. Maternal vitamin D supplementation reduced these changes. In offspring rats exposed to maternal PM2.5, intrarenal expression of renin, angiotensin-converting enzyme (ACE), cytochrome P450 27B1, and vascular endothelial growth factor-A (VEGF-A) increased, while expression of the vitamin D receptor, Klotho, VEGF receptor 2, angiopoietin-1, and Tie-2 decreased. Maternal vitamin D supplementation restored VEGF receptor 2 and angiopoietin-1 activities and reduced ACE and VEGF-A protein expression in adult offspring kidneys. Conclusions: Early-life exposure to PM2.5 may lead to long-term alterations in renal microvasculature and nephron loss. Maternal vitamin D supplementation during renal development can ameliorate PM2.5-induced capillary rarefaction and nephron loss in the kidneys of adult offspring.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Hyung-Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| | - Min-Hwa Son
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| | - Yoon-Jeong Nam
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| | - Yu-Seon Lee
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| | - Sang-Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| |
Collapse
|
3
|
Zavvari Oskuye Z, Mehri K, Khalilpour J, Nemati S, Hosseini L, Bafadam S, Abdollahzade N, Badalzadeh R. Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death. IJC HEART & VASCULATURE 2025; 57:101629. [PMID: 40129656 PMCID: PMC11930703 DOI: 10.1016/j.ijcha.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 03/26/2025]
Abstract
Aging is a major risk factor for the development of cardiovascular diseases (CVD), leading to specific alterations in the heart and vasculature. Besides, the mechanisms and intracellular pathways of aging and the factors affecting it are still not completely clear. Age-related complications such as oxidative stress, decreased autophagy, mitochondrial dysfunction, inflammatory responses, and cardiac dysfunction are associated with relative Klotho deficiency. Klotho, an anti-aging protein, with anti-oxidative and anti-inflammatory properties, has been shown to modulate calcium regulation and autophagy. It also protects against endothelial dysfunction by increasing nitric oxide production. Furthermore, emerging research has revealed that klotho significantly impacts vascular smooth muscle cells (VSMC) energetics and survival. This article has focused on recent advances in using Klotho in age-related CVD and summarizes the pre-clinical evidence supporting this approach. Based on the research, Klotho could provide more therapeutic options for ameliorating aging-related CVD.
Collapse
Affiliation(s)
- Zohreh Zavvari Oskuye
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Mehri
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soleyman Bafadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Yu Q, Ma J, Ma Z, Shi G. Association between serum Klotho levels and thrombocytosis in aging adults based on evidence from the National Health and Nutrition Examination Survey. Sci Rep 2025; 15:10763. [PMID: 40155478 PMCID: PMC11953413 DOI: 10.1038/s41598-025-95241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Klotho, a protein primarily expressed in the kidneys and brain, plays a critical role in aging, vascular health, and various metabolic processes. Lower serum Klotho levels have been associated with several chronic diseases, including cardiovascular disease, diabetes, and kidney disease. Although the role of Klotho in platelet regulation remains underexplored, thrombocytosis may be influenced by Klotho levels. Investigating this relationship could offer new insights into thrombocytosis pathogenesis. This study aimed to examine the relationship between serum Klotho levels and thrombocytosis in a U.S. cohort. We hypothesized that lower Klotho levels would be associated with an increased risk of thrombocytosis, potentially providing a novel perspective on thrombocytosis regulation. We conducted a cross-sectional analysis of data from 12,700 participants in the NHANES 2007-2016 cohort. Multivariate logistic regression models were used to assess the association between serum Klotho levels and thrombocytosis, adjusting for relevant covariates. Of the 12,700 participants, 86 had thrombocytosis. The thrombocytosis group had significantly lower mean serum Klotho levels compared to the non-thrombocytosis group (p < 0.01). After adjusting for confounders, an inverse association between serum Klotho levels and thrombocytosis was observed (odds ratio 0.89, 95% CI 0.82-0.97, p = 0.007). Compared to the lowest Klotho quartile (≤ 700.7 pg/ml), the adjusted odds ratios for thrombocytosis in the second (700.8-915.3 pg/ml) and third (≥ 915.4 pg/ml) quartiles were 0.6 (95% CI: 0.36-1.01, p = 0.055) and 0.49 (95% CI: 0.29-0.84, p = 0.01), respectively. Our findings suggest an inverse correlation between serum Klotho levels and thrombocytosis in adults aged 40 and older. These results highlight the potential role of Klotho in thrombocytosis regulation, and future longitudinal studies are needed to establish causality and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Qiong Yu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, No. 218, Zi qiang Street, Changchun, 130041, Jilin, P.R. China
| | - Jinbao Ma
- Department of Drug-resistance Tuberculosis, Xi'an Chest Hospital, Xi'an, 710000, P.R. China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, P.R. China
| | - Guang Shi
- Department of Hematology and Oncology, the Second Hospital of Jilin University, No. 218, Zi qiang Street, Changchun, 130041, Jilin, P.R. China.
| |
Collapse
|
5
|
Vogt J, Wolf L, Hoelzle LE, Feger M, Föller M. AMP-dependent kinase stimulates the expression of αKlotho. FEBS Open Bio 2024; 14:1691-1700. [PMID: 39090792 PMCID: PMC11452301 DOI: 10.1002/2211-5463.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Renal αKlotho along with fibroblast growth factor 23 regulates phosphate and vitamin D metabolism. Its cleavage yields soluble Klotho controlling intracellular processes. αKlotho has anti-inflammatory and antioxidant effects and is nephro- and cardioprotective. AMP-dependent kinase (AMPK) is a nephro- and cardioprotective energy sensor. Given that both αKlotho and AMPK have beneficial effects in similar organs, we studied whether AMPK regulates αKlotho gene expression in Madin-Darby canine kidney, normal rat kidney 52E, and human kidney 2 cells. Using quantitative real-time PCR and western blotting, we measured αKlotho expression upon pharmacological manipulation or siRNA-mediated knockdown of AMPKα. AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) enhanced αKlotho expression, an effect reduced in the presence of AMPK inhibitor compound C or siRNA targeting AMPK catalytic α-subunits (α1 and α2). Similarly, AMPK activators metformin and phenformin upregulated αKlotho transcripts. Taken together, our results suggest that AMPK is a powerful inducer of αKlotho and could thereby contribute to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Julia Vogt
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Lisa Wolf
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Ludwig E. Hoelzle
- Institute of Animal Science, University of HohenheimStuttgartGermany
| | - Martina Feger
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Michael Föller
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
6
|
Kanbay M, Mutlu A, Bakir CN, Peltek IB, Canbaz AA, Díaz Tocados JM, Haarhaus M. Klotho in pregnancy and intrauterine development-potential clinical implications: a review from the European Renal Association CKD-MBD Working Group. Nephrol Dial Transplant 2024; 39:1574-1582. [PMID: 38486352 PMCID: PMC11427066 DOI: 10.1093/ndt/gfae066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 09/28/2024] Open
Abstract
Intrauterine development is crucial for life-long health; therefore, elucidation of its key regulators is of interest for their potential prognostic and therapeutic implications. Originally described as a membrane-bound anti-aging protein, Klotho has evolved as a regulator of numerous functions in different organ systems. Circulating Klotho is generated by alternative splicing or active shedding from cell membranes. Recently, Klotho was identified as a regulator of placental function, and while Klotho does not cross the placental barrier, increased levels of circulating α-Klotho have been identified in umbilical cord blood compared with maternal blood, indicating that Klotho may also play a role in intrauterine development. In this narrative review, we discuss novel insights into the specific functions of the Klotho proteins in the placenta and in intrauterine development, while summarizing up-to-date knowledge about their structures and functions. Klotho plays a role in stem cell functioning, organogenesis and haematopoiesis. Low circulating maternal and foetal levels of Klotho are associated with preeclampsia, intrauterine growth restriction, and an increased perinatal risk for newborns, indicating a potential use of Klotho as biomarker and therapeutic target. Experimental administration of Klotho protein indicates a neuro- and nephroprotective potential, suggesting a possible future role of Klotho as a therapeutic agent. However, the use of Klotho as intervention during pregnancy is as yet unproven. Here, we summarize novel evidence, suggesting Klotho as a key regulator for healthy pregnancies and intrauterine development with promising potential for clinical use.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cicek N Bakir
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ata A Canbaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Juan Miguel Díaz Tocados
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida, Dr Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Mathias Haarhaus
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Diaverum AB, Malmö, Sweden
| |
Collapse
|
7
|
Kanbay M, Brinza C, Ozbek L, Guldan M, Sisman U, Copur S, Covic A, Scripcariu DV, Burlacu A, Covic A. The association between klotho and kidney and cardiovascular outcomes: a comprehensive systematic review and meta-analysis. Clin Kidney J 2024; 17:sfae255. [PMID: 39281418 PMCID: PMC11398896 DOI: 10.1093/ckj/sfae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 09/18/2024] Open
Abstract
Background Chronic kidney disease (CKD) and end-stage renal disease (ESKD) are significant global health challenges associated with progressive kidney dysfunction and numerous complications, including cardiovascular disease and mortality. This study aims to explore the potential association between plasma klotho levels and various prognostic outcomes in CKD and ESKD, including all-cause mortality, cardiovascular events, metabolic syndrome development and adverse renal events necessitating renal replacement therapies. Methods A literature search was conducted through 3 June 2024 using the electronic databases Cochrane Library, Ovid MEDLINE, CINAHL, Web of Science, SCOPUS and PubMed. This systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results Fourteen studies were included. For all-cause mortality, comparing CKD patients with low versus high klotho levels showed a significant association {odds ratio [OR] 1.81 [95% confidence interval (CI) 1.34-2.44], P = .0001}, with substantial heterogeneity (I 2 = 69%). Excluding one study reduced heterogeneity (I 2 = 43%) while maintaining significance [OR 1.97 (95% CI 1.45-2.66), P < .0001]. Cardiovascular mortality was higher in patients with low klotho levels [OR 2.11 (95% CI 1.61-2.76), P < .00001], with low heterogeneity (I 2 = 25%). Excluding one study eliminated heterogeneity (I 2 = 0%) while maintaining significance [OR 2.39 (95% CI 1.83-3.12), P < .00001]. Composite cardiovascular events did not differ significantly between low and high klotho groups [OR 1.51 (95% CI 0.82-2.77), P = .18], but with high heterogeneity (I 2 = 72%). Patients with low klotho levels had a higher risk of adverse renal events [OR 2.36 (95% CI 1.37-4.08), P = .002], with moderate heterogeneity (I 2 = 61%). Sensitivity analysis reduced heterogeneity (I 2 = 0%) while maintaining significance [OR 3.08 (95% CI 1.96-4.85), P < .00001]. Specifically, for ESKD or kidney replacement therapy risk, low klotho levels were associated with an increased risk [OR 2.30 (95% CI 1.26-4.21), P = .007]. Similarly, CKD progression risk was higher in patients with lower klotho levels [OR 2.48 (95% CI 1.45-4.23), P = .0009]. Conclusion Lower serum klotho levels serve as a significant predictor of adverse outcomes, including increased risks of all-cause mortality, cardiovascular mortality and progression to end-stage kidney disease among CKD patients.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey
| | - Crischentian Brinza
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T Popa", Iasi, Romania
- Institute of Cardiovascular Diseases "Prof. Dr George I.M. Georgescu", Iasi, Romania
| | - Lasin Ozbek
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Uluman Sisman
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Andreea Covic
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T Popa", Iasi, Romania
| | | | - Alexandru Burlacu
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T Popa", Iasi, Romania
- Institute of Cardiovascular Diseases "Prof. Dr George I.M. Georgescu", Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T Popa", Iasi, Romania
- Nephrology Clinic, Dialysis, and Renal Transplant Center "C.I. Parhon" University Hospital, Iasi, Romania
| |
Collapse
|
8
|
Pellicano C, Colalillo A, De Marco O, Carnazzo V, Basile U, Gigante A, Cianci R, Rosato E. Iloprost infusion reduces serological cytokines and hormones of hypoxia and inflammation in systemic sclerosis patients. Clin Exp Med 2024; 24:109. [PMID: 38777916 PMCID: PMC11111538 DOI: 10.1007/s10238-024-01374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is characterized by microvascular damage of skin and internal organs with chronic hypoxia and release of cytokines and hormones such as neutrophil gelatinase-associated lipocalin (NGAL), fibroblast growth factor-23 (FGF-23) and Klotho. Aim of the study was to evaluate FGF-23, Klotho and NGAL serum levels in SSc patients and healthy controls (HC) and to evaluate serum levels changes of FGF-23, Klotho and NGAL after Iloprost. METHODS Twenty-one SSc patients and 20 HC were enrolled. In SSc patients, peripheral venous blood samples were collected at the first day before the autumn Iloprost infusion (t0), 60 min (t1) and 14 days after Iloprost infusion (t2). RESULTS SSc patients had higher serum level of FGF-23 [18.7 ± 6.4 pg/ml versus 3.6 ± 2.2 pg/ml, p < 0.001], Klotho [5.1 ± 0.8 pg/ml versus 2.3 ± 0.6 pg/ml, p < 0.001] and NGAL [20.9 ± 2.6 pg/ml versus 14.5 ± 1.7 pg/ml, p < 0.001] than HC. Iloprost infusion reduces serum level of FGF-23 (18.7 ± 6.4 pg/ml versus 10.4 ± 5.5 pg/ml, p < 0.001), Klotho (5.1 ± 0.8 pg/ml versus 2.5 ± 0.6 pg/ml, p < 0.001) and NGAL (20.9 ± 2.6 pg/ml versus 15.1 ± 2.3 pg/ml, p < 0.001) between t0 and t1. The Iloprost infusion reduces serum level of FGF-23 (18.7 ± 6.4 pg/ml versus 6.6 ± 5.1 pg/ml), Klotho (5.1 ± 0.8 pg/ml versus 2.3 ± 0.4 pg/ml) and NGAL (20.9 ± 2.6 pg/ml versus 15.5 ± 1.9 pg/ml) between t0 and t2. CONCLUSIONS SSc patients had higher FGF-23, Klotho and NGAL than HC. Iloprost reduces serum levels of FGF-23, Klotho and NGAL.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Amalia Colalillo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Oriana De Marco
- Department of Public Health, Nephrology Unit, University Federico II, 80138, Naples, Italy
| | - Valeria Carnazzo
- UOC of Clinical Pathology DEA II Level, Hospital Santa Maria Goretti-ASL Latina, 04100, Latina, Italy
| | - Umberto Basile
- UOC of Clinical Pathology DEA II Level, Hospital Santa Maria Goretti-ASL Latina, 04100, Latina, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Rosario Cianci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy.
| |
Collapse
|
9
|
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Ruiz-Torres MP, Gómez-Alonso C, Rodríguez-García M, Fernández-Martín JL, Alonso-Montes C, Panizo S, Cannata-Andía JB, Naves-Díaz M, Carrillo-López N. Soluble Klotho, a Potential Biomarker of Chronic Kidney Disease-Mineral Bone Disorders Involved in Healthy Ageing: Lights and Shadows. Int J Mol Sci 2024; 25:1843. [PMID: 38339121 PMCID: PMC10855561 DOI: 10.3390/ijms25031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, βKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.
Collapse
Affiliation(s)
- Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - María Piedad Ruiz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Área 5—Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Carlos Gómez-Alonso
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Nephrology Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Jorge B. Cannata-Andía
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| |
Collapse
|
10
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr 2023; 17:102854. [PMID: 37722166 DOI: 10.1016/j.dsx.2023.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIM Klotho was first identified as a gene associated with aging and longevity in 1997. α-Klotho is an anti-aging protein and its role in energy metabolism, various cardiovascular diseases (CVDs), and metabolic disorders is increasingly being recognized. In this review, we aimed to outline the potential protective role and therapeutic prospects of α-Klotho in energy metabolism and cardiometabolic diseases (CMDs). METHODS We comprehensively reviewed the relevant literature in PubMed using the keywords 'Klotho', 'metabolism', 'cardiovascular', 'diabetes', 'obesity', 'metabolic syndrome', and 'nonalcoholic fatty liver disease'. RESULTS α-Klotho can be divided into membrane-bound Klotho, secreted Klotho, and the most studied circulating soluble Klotho that can act as a hormone. Klotho gene polymorphisms have been implicated in energy metabolism and CMDs. α-Klotho can inhibit insulin/insulin growth factor-1 signaling and its overexpression can lead to a 'healthy insulin resistance' and may exert beneficial effects on the regulation of glycolipid metabolism and central energy homeostasis. α-Klotho, mainly serum Klotho, has been revealed to be protective against CVDs, diabetes and its complications, obesity, and nonalcoholic fatty liver disease. Human recombinant Klotho protein/Klotho gene delivery, multiple drugs, or natural products, and exercise can increase α-Klotho expression. CONCLUSION Overall, α-Klotho has demonstrated its potential as a promising target for modulating energy metabolism and CMDs, and further research is needed to explore its utilization in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
12
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Che QC, Jia Q, Zhang XY, Sun SN, Zhang XJ, Shu Q. A prospective study of the association between serum klotho and mortality among adults with rheumatoid arthritis in the USA. Arthritis Res Ther 2023; 25:149. [PMID: 37587536 PMCID: PMC10428634 DOI: 10.1186/s13075-023-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND While it is known that klotho has negative regulatory effects in a variety of diseases such as metabolic disorders and kidney disease, the specific role of klotho in rheumatoid arthritis (RA) and its effect on mortality are unclear. This study investigated the association between serum klotho levels and mortality in patients with RA. METHODS This study included 841 adults with RA from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016 to extract the concentrations of serum klotho. The association between klotho and RA was determined using Cox regression, Kaplan-Meier (KM) curves, and restricted cubic spline (RCS) models. RESULTS A total of 841 patients with RA were included in this study, who were divided into four groups based on the quartiles of serum klotho levels (Q1, Q2, Q3, and Q4). Cox regression analysis with adjustment for covariates revealed that high levels of klotho lowered the risk of both all-cause and cardiovascular mortality compared to the Q1 group. The KM curve analysis suggested that this effect was more pronounced for all-cause mortality. The RCS-fitted Cox regression model indicated a U-shaped correlation between serum klotho levels and RA mortality. The risk of all-cause mortality increased with decreasing serum klotho levels below a threshold of 838.81 pg/mL. Subgroup analysis revealed that the protective effect of klotho was more pronounced in patients with the following characteristics: male, white ethnicity, age ≥ 60 years, body mass index < 25 kg/m2, estimated glomerular filtration rate ≥ 60 mL/ (min × 1.73 m2), and 25-hydroxyvitamin D level ≥ 50 nmol/L. CONCLUSION Serum klotho levels had a U-shaped correlation with all-cause mortality in patients with RA, indicating that maintain a certain level of serum klotho could prevent premature death.
Collapse
Affiliation(s)
- Qin-Cheng Che
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Qian Jia
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiao-Yu Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Shu-Ning Sun
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiao-Jie Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China.
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| |
Collapse
|
14
|
Donate-Correa J, Martín-Núñez E, Martin-Olivera A, Mora-Fernández C, Tagua VG, Ferri CM, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Arévalo-Gómez MA, Pérez-Delgado N, González-Luis A, Navarro-González JF. Klotho inversely relates with carotid intima- media thickness in atherosclerotic patients with normal renal function (eGFR ≥60 mL/min/1.73m 2): a proof-of-concept study. Front Endocrinol (Lausanne) 2023; 14:1146012. [PMID: 37274332 PMCID: PMC10235765 DOI: 10.3389/fendo.2023.1146012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Klotho protein is predominantly expressed in the kidneys and has also been detected in vascular tissue and peripheral blood circulating cells to a lesser extent. Carotid artery intima-media thickness (CIMT) burden, a marker of subclinical atherosclerosis, has been associated with reductions in circulating Klotho levels in chronic kidney disease patients, who show reduced levels of this protein at all stages of the disease. However, the contribution of serum Klotho and its expression levels in peripheral blood circulating cells and in the carotid artery wall on the CIMT in the absence of kidney impairment has not yet been evaluated. METHODS We conducted a single-center study in 35 atherosclerotic patients with preserved kidney function (eGFR≥60 mL/min/1.73m2) subjected to elective carotid surgery. Serum levels of Klotho and cytokines TNFa, IL6 and IL10 were determined by ELISA and transcripts encoding for Klotho (KL), TNF, IL6 and IL10 from vascular segments were measured by qRT-PCR. Klotho protein expression in the intima-media and adventitia areas was analyzed using immunohistochemistry. RESULTS APatients with higher values of CIMT showed reduced Klotho levels in serum (430.8 [357.7-592.9] vs. 667.8 [632.5-712.9] pg/mL; p<0.001), mRNA expression in blood circulating cells and carotid artery wall (2.92 [2.06-4.8] vs. 3.69 [2.42-7.13] log.a.u., p=0.015; 0.41 [0.16-0.59] vs. 0.79 [0.37-1.4] log.a.u., p=0.013, respectively) and immunoreactivity in the intimal-medial area of the carotids (4.23 [4.15-4.27] vs. 4.49 [4.28-4.63] log µm2 p=0.008). CIMT was inversely related with Klotho levels in serum (r= -0.717, p<0.001), blood mRNA expression (r=-0.426, p=0.011), and with carotid artery mRNA and immunoreactivity levels (r= -0.45, p=0.07; r= -0.455, p= 0.006, respectively). Multivariate analysis showed that serum Klotho, together with the gene expression levels of tumor necrosis factor TNFa in blood circulating cells, were independent determinants of CIMT values (adjusted R2 = 0.593, p<0.001). DISCUSSION The results of this study in subjects with eGFR≥60mL/min/1.73m2 show that patients with carotid artery atherosclerosis and higher values of CIMT present reduced soluble Klotho levels, as well as decreased KL mRNA expression in peripheral blood circulating cells and Klotho protein levels in the intima-media of the carotid artery wall.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Alberto Martin-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | | | | | | | | | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Nefrología, HUNSC, Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Serum klotho concentrations in older men with hypertension or type 2 diabetes during prolonged exercise in temperate and hot conditions. Eur J Appl Physiol 2023:10.1007/s00421-023-05171-x. [PMID: 36929016 DOI: 10.1007/s00421-023-05171-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Klotho is a cytoprotective protein that increases during acute physiological stressors (e.g., exercise heat stress), although age-related declines in klotho may underlie cellular vulnerability to heat stress. The present study aimed to compare serum klotho in healthy older men and men with type 2 diabetes (T2D) or hypertension (HTN) during prolonged exercise in temperate or hot conditions. METHODS We evaluated serum klotho in 12 healthy older men (mean [SD]; 59 years [4]), 10 men with HTN (60 years [4]), and 9 men with T2D (60 years [5]) before and after 180 min of moderate-intensity (fixed metabolic rate of 200 W/m2; ~ 3.4 METs) exercise and 60 min of recovery in temperate (wet-bulb globe temperature (WBGT) 16 °C) and hot (WBGT 32 °C) environments. Core temperature (rectal), heart rate (HR), and heart rate reserve (HRR) were measured continuously while klotho was measured at the end of baseline, exercise, and recovery. RESULTS Total exercise duration was reduced during the hot condition in older men with HTN and T2D than healthy older men (both p ≤ 0.049), despite similar core temperatures, HR, and HRR. Klotho was higher than rest following exercise in the heat in healthy older men (+ 191 pg/mL [189]; p < 0.001) and responses were greater (p = 0.036) than men with HTN (+ 118 pg/mL [49]; p = 0.030), although klotho did not increase in men with T2D (+ 4 pg/mL [71]; p ≥ 0.638). CONCLUSION Given klotho's role in cytoprotection, older men with HTN and especially T2D may be at increased cellular vulnerability to prolonged exercise or physically demanding exercise in the heat.
Collapse
|
16
|
The Molecular Heterogeneity of Store-Operated Ca 2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca 2+-Selective to Non-Selective Cation Currents. Int J Mol Sci 2023; 24:ijms24043259. [PMID: 36834672 PMCID: PMC9967124 DOI: 10.3390/ijms24043259] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.
Collapse
|
17
|
Shi M, Maique JO, Cleaver O, Moe OW, Hu MC. VEGFR2 insufficiency enhances phosphotoxicity and undermines Klotho's protection against peritubular capillary rarefaction and kidney fibrosis. Am J Physiol Renal Physiol 2023; 324:F106-F123. [PMID: 36395384 PMCID: PMC9799155 DOI: 10.1152/ajprenal.00149.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and its cognate receptor (VEGFR2) system are crucial for cell functions associated with angiogenesis and vasculogenesis. Klotho contributes to vascular health maintenance in the kidney and other organs in mammals, but it is unknown whether renoprotection by Klotho is dependent on VEGF/VEGFR2 signaling. We used heterozygous VEGFR2-haploinsufficient (VEGFR2+/-) mice resulting from heterozygous knockin of green fluorescent protein in the locus of fetal liver kinase 1 encoding VEGFR2 to test the interplay of Klotho, phosphate, and VEGFR2 in kidney function, the vasculature, and fibrosis. VEGFR2+/- mice displayed downregulated VEGF/VEGFR2 signaling in the kidney, lower density of peritubular capillaries, and accelerated kidney fibrosis, all of which were also found in the homozygous Klotho hypomorphic mice. High dietary phosphate induced higher plasma phosphate, greater peritubular capillary rarefaction, and more kidney fibrosis in VEGFR2+/- mice compared with wild-type mice. Genetic overexpression of Klotho significantly attenuated the elevated plasma phosphate, kidney dysfunction, peritubular capillary rarefaction, and kidney fibrosis induced by a high-phosphate diet in wild-type mice but only modestly ameliorated these changes in the VEGFR2+/- background. In cultured endothelial cells, VEGFR2 inhibition reduced free VEGFR2 but enhanced its costaining of an endothelial marker (CD31) and exacerbated phosphotoxicity. Klotho protein maintained VEGFR2 expression and attenuated high phosphate-induced cell injury, which was reduced by VEGFR2 inhibition. In conclusion, normal VEGFR2 function is required for vascular integrity and for Klotho to exert vascular protective and antifibrotic actions in the kidney partially through the regulation of VEGFR2 function.NEW & NOTEWORTHY This research paper studied the interplay of vascular endothelial growth factor receptor type 2 (VEGFR2), high dietary phosphate, and Klotho, an antiaging protein, in peritubular structure and kidney fibrosis. Klotho protein was shown to maintain VEGFR2 expression in the kidney and reduce high phosphate-induced cell injury. However, Klotho cytoprotection was attenuated by VEGFR2 inhibition. Thus, normal VEGFR2 function is required for vascular integrity and Klotho to exert vascular protective and antifibrotic actions in the kidney.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
| | - Jenny Omega Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. New mechanisms involved in the development of cardiovascular disease in chronic kidney disease. Nefrologia 2023; 43:63-80. [PMID: 37268501 DOI: 10.1016/j.nefroe.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a pathology with a high worldwide incidence and an upward trend affecting the elderly. When CKD is very advanced, the use of renal replacement therapies is required to prolong its life (dialysis or kidney transplantation). Although dialysis improves many complications of CKD, the disease does not reverse completely. These patients present an increase in oxidative stress, chronic inflammation and the release of extracellular vesicles (EVs), which cause endothelial damage and the development of different cardiovascular diseases (CVD). CKD patients develop premature diseases associated with advanced age, such as CVD. EVs play an essential role in developing CVD in patients with CKD since their number increases in plasma and their content is modified. The EVs of patients with CKD cause endothelial dysfunction, senescence and vascular calcification. In addition, miRNAs free or transported in EVs together with other components carried in these EVs promote endothelial dysfunction, thrombotic and vascular calcification in CKD, among other effects. This review describes the classic factors and focuses on the role of new mechanisms involved in the development of CVD associated with CKD, emphasizing the role of EVs in the development of cardiovascular pathologies in the context of CKD. Moreover, the review summarized the EVs' role as diagnostic and therapeutic tools, acting on EV release or content to avoid the development of CVD in CKD patients.
Collapse
Affiliation(s)
- Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain.
| | - Gemma Valera
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Nadia Serroukh
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Noemí Ceprían
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Patricia de Sequera
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Morales
- Sección de Nefrología, Hospital 12 de Octubre, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
19
|
Tang A, Zhang Y, Wu L, Lin Y, Lv L, Zhao L, Xu B, Huang Y, Li M. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1180169. [PMID: 37143722 PMCID: PMC10151763 DOI: 10.3389/fendo.2023.1180169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide and is a significant burden on healthcare systems. α-klotho (klotho) is a protein known for its anti-aging properties and has been shown to delay the onset of age-related diseases. Soluble klotho is produced by cleavage of the full-length transmembrane protein by a disintegrin and metalloproteases, and it exerts various physiological effects by circulating throughout the body. In type 2 diabetes and its complications DN, a significant decrease in klotho expression has been observed. This reduction in klotho levels may indicate the progression of DN and suggest that klotho may be involved in multiple pathological mechanisms that contribute to the onset and development of DN. This article examines the potential of soluble klotho as a therapeutic agent for DN, with a focus on its ability to impact multiple pathways. These pathways include anti-inflammatory and oxidative stress, anti-fibrotic, endothelial protection, prevention of vascular calcification, regulation of metabolism, maintenance of calcium and phosphate homeostasis, and regulation of cell fate through modulation of autophagy, apoptosis, and pyroptosis pathways. Diabetic retinopathy shares similar pathological mechanisms with DN, and targeting klotho may offer new insights into the prevention and treatment of both conditions. Finally, this review assesses the potential of various drugs used in clinical practice to modulate klotho levels through different mechanisms and their potential to improve DN by impacting klotho levels.
Collapse
Affiliation(s)
- Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yong Lin
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- *Correspondence: Mingquan Li,
| |
Collapse
|
20
|
Klotho Modulates Pro-Fibrotic Activities in Human Atrial Fibroblasts through Inhibition of Phospholipase C Signaling and Suppression of Store-Operated Calcium Entry. Biomedicines 2022; 10:biomedicines10071574. [PMID: 35884879 PMCID: PMC9312905 DOI: 10.3390/biomedicines10071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Atrial fibroblasts activation causes atrial fibrosis, which is one major pathophysiological contributor to atrial fibrillation (AF) genesis. Klotho is a pleiotropic protein with remarkable cardiovascular effects, including anti-inflammatory, anti-oxidative, and anti-apoptotic effects. This study investigated whether Klotho can modulate the activity of human atrial fibroblasts and provides an anti-fibrotic effect. Methods: Cell migration assay and proliferation assay were used to investigate fibrogenesis activities in single human atrial fibroblasts with or without treatment of Klotho (10 and 100 pM, 48 h). Calcium fluorescence imaging, the whole-cell patch-clamp, and Western blotting were performed in human atrial fibroblasts treated with and without Klotho (100 pM, 48 h) to evaluate the store-operated calcium entry (SOCE), transient receptor potential (TRP) currents, and downstream signaling. Results: High dose of Klotho (100 pM, 48 h) significantly reduced the migration of human atrial fibroblasts without alternating their proliferation; in addition, treatment of Klotho (100 pM, 48 h) also decreased SOCE and TRP currents. In the presence of BI-749327 (a selective canonical TRP 6 channel inhibitor, 1 μM, 48 h), Klotho (100 pM, 48 h) could not inhibit fibroblast migration nor suppress the TRP currents. Klotho-treated fibroblasts (100 pM, 48 h) had lower phosphorylated phospholipase C (PLC) (p-PLCβ3 Ser537) expression than the control. The PLC inhibitor, U73122 (1 μM, 48 h), reduced the migration, decreased SOCE and TRP currents, and lowered p-PLCβ3 in atrial fibroblasts, similar to Klotho. In the presence of the U73122 (1 μM, 48 h), Klotho (100 pM, 48 h) could not further modulate the migration and collagen synthesis nor suppress the TRP currents in human atrial fibroblasts. Conclusions: Klotho inhibited pro-fibrotic activities and SOCE by inhibiting the PLC signaling and suppressing the TRP currents, which may provide a novel insight into atrial fibrosis and arrhythmogenesis.
Collapse
|
21
|
Martín-Núñez E, Pérez-Castro A, Tagua VG, Hernández-Carballo C, Ferri C, Pérez-Delgado N, Rodríguez-Ramos S, Cerro-López P, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Arévalo-Gómez MA, González-Luis A, Martín-Olivera A, Morales-Estévez CC, Mora-Fernández C, Donate-Correa J, Navarro-González JF. Klotho expression in peripheral blood circulating cells is associated with vascular and systemic inflammation in atherosclerotic vascular disease. Sci Rep 2022; 12:8422. [PMID: 35590090 PMCID: PMC9120199 DOI: 10.1038/s41598-022-12548-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. New therapeutic strategies are aimed to modulate the athero-inflammatory process that partially orchestrates underlying vascular damage. Peripheral blood circulating cells include different immune cells with a central role in the development of the atherogenic inflammatory response. The anti-aging protein α-Klotho has been related to protective effects against CVD. KL is expressed in monocytes, macrophages, and lymphocytes where it exerts anti-inflammatory effects. In this work, we analyse the relationships of the levels of inflammatory markers with the expression of the KL gene in PBCCs and with the serum levels of soluble KL in atherosclerotic vascular disease. For this, we conducted a cross-sectional single-center case-control study including a study group of 76 CVD patients and a control group of 16 cadaveric organ donors without medical antecedent or study indicating CVD. Vascular artery fragments and whole blood and serum samples were obtained during elective or organ retrieval surgery. Serum levels of sKL, TNFα and IL10, and gene expression levels of KL, TNF, IL10, NFKB1, DNMT1, and DNMT3A in PBCCs were measured. In these cells, we also determined KL promoter methylation percentage. Histological and immunohistochemical analyses were employed to visualize atherosclerotic lesions and to measure IL10 and TNFα levels in vascular fragments. Patients with CVD presented higher values of proinflammatory markers both at systemic and in the vasculature and in the PBCCs, compared to the control group. In PBCCs, CVD patients also presented lower gene expression levels of KL gene (56.4% difference, P < 0.001), higher gene expression levels of DNMT1 and DNMT3A (P < 0.0001, for both) and a higher methylation status of in the promoter region of KL (34.1 ± 4.1% vs. 14.6 ± 3.4%, P < 0.01). In PBCCs and vasculature, KL gene expression correlated inversely with pro-inflammatory markers and directly with anti-inflammatory markers. sKL serum levels presented similar associations with the expression levels of pro- and anti-inflammatory markers in PBCCs. The differences in KL expression levels in PBCCs and in serum sKL levels with respect to control group was even greater in those CVD patients with macroscopically observable atheromatous plaques. We conclude that promoter methylation-mediated downregulation of KL gene expression in PBCCs is associated with the pro-inflammatory status in atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Víctor G Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Carolina Hernández-Carballo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Nayra Pérez-Delgado
- Servicio de Análisis Clínicos, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Sergio Rodríguez-Ramos
- Coordinación de Trasplantes, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Purificación Cerro-López
- Coordinación de Trasplantes, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Ángel López-Castillo
- Servicio de Cirugía Vascular, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Alejandro Delgado-Molinos
- Servicio de Cirugía Vascular, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Victoria Castro López-Tarruella
- Servicio de Anatomía Patológica, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Miguel A Arévalo-Gómez
- Departamento de Anatomía E Histología Humana, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Alberto Martín-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain.
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain.
| |
Collapse
|
22
|
Borges BC, Do Amaral PA, Soldi LR, Costa Silva VL, Carvalho De Souza F, Cordeiro Da Luz FA, Agenor De Araújo R, Barbosa Silva MJ. Undetected αKlotho in serum is associated with the most aggressive phenotype of breast cancer. Mol Clin Oncol 2022; 16:93. [PMID: 35350405 PMCID: PMC8943645 DOI: 10.3892/mco.2022.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022] Open
Abstract
Klotho, a cellular anti-senescence protein, is related to antitumor actions, growth regulation, proliferation and invasiveness in several types of tumor, including breast cancer. The present study aimed to analyze the serum levels of αKlotho in patients with breast cancer according to histopathological and immunohistochemical variables. A total of 74 patients and 60 healthy controls were recruited. Peripheral blood samples were collected and serum levels were assessed by sandwich ELISA. Clinical and diagnostic data were obtained from medical records and databases of the Clinical Hospital of the Federal University of Uberlândia (Uberlândia, Brazil). The results indicated no difference in the levels of αKlotho between patients and controls (P=0.068); however, the number of patients with breast cancer with undetectable αKlotho was high (n=52). Thus, the variables that were associated with the lowest survival rates were analyzed, relating them to undetectable αKlotho. Among cases of metastatic tumors or tumors with poor differentiation, positive lymph node status and triple-negative status, patients with undetectable αKlotho predominated and had unfavorable overall survival. Due to the significant results obtained in triple-negative patients, an in vitro analysis was performed to determine whether estrogen receptors (ERs) have a role in αKlotho production. Treatment of MCF-7 cells with ER agonists, estradiol (E2) and diarylpropionitrile (DPN), resulted in increases in αKlotho expression and supernatant levels of both agonists, demonstrating a direct association between the ER and Klotho production; of note, the ERβ-specific agonist DPN tripled αKlotho expression when compared to E2 (P=0.078). These data suggested that undetectable αKlotho in the serum of patients with breast cancer is related to unfavorable histopathological variables and poor prognosis and ERs possibly have an important role in maintaining adequate quantities of αKlotho.
Collapse
Affiliation(s)
- Bruna Cristina Borges
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Pedro Augusto Do Amaral
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Luiz Ricardo Soldi
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Victor Luigi Costa Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Fernanda Carvalho De Souza
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Felipe Andrés Cordeiro Da Luz
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
- Núcleo de Prevenção, Pesquisa e Projeto de Câncer, Hospital do Câncer, Uberlândia, MG 38400-902, Brazil
| | - Rogério Agenor De Araújo
- Núcleo de Prevenção, Pesquisa e Projeto de Câncer, Hospital do Câncer, Uberlândia, MG 38400-902, Brazil
| | - Marcelo José Barbosa Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| |
Collapse
|
23
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. Nuevos mecanismos implicados en el desarrollo de la enfermedad cardiovascular en la enfermedad renal crónica. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
24
|
Fakhar M, Najumuddin, Zahid S, Rashid S. Structural basis of Klotho binding to VEGFR2 and TRPC1 and repurposing calcium channel blockers as TRPC1 antagonists for the treatment of age-related cardiac hypertrophy. Arch Biochem Biophys 2022; 719:109171. [DOI: 10.1016/j.abb.2022.109171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
25
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
26
|
S-Klotho level and physiological markers of cardiometabolic risk in healthy adult men. Aging (Albany NY) 2022; 14:708-727. [PMID: 35093938 PMCID: PMC8833136 DOI: 10.18632/aging.203861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
S-Klotho is perceived as a biomarker of healthy aging that has been shown to be inversely associated with cardiometabolic risk in elderly individuals. The aim of this study was to test if s-Klotho level is associated with cardiometabolic risk markers in younger healthy men in order to verify the possible role of s-Klotho level as an early marker of cardiometabolic risk. A cross-sectional study was conducted among 186 healthy men (Mage=35.33, SDage=3.47) from a Western urban population. Serum basal levels of s-Klotho, lipid profile, homocysteine, glycemia markers, C-reactive protein, liver transaminases and creatinine were evaluated. Also, blood pressure was measured and cardiometabolic risk score and homeostatic model assessment for insulin resistance (HOMA-IR) were calculated. Testosterone and cortisol levels, self-reported psychological stress, physical activity, smoking in the past, alcohol use and body adiposity were controlled for. We found no relationship between levels of s-Klotho and physiological markers of cardiometabolic risk in the studied population. The results were similar when controlled for adiposity, testosterone level, physical activity, alcohol use and smoking in the past. We suggest that s-Klotho level is not an early marker of cardiometabolic risk in younger middle-aged healthy men.
Collapse
|
27
|
Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23010531. [PMID: 35008960 PMCID: PMC8745705 DOI: 10.3390/ijms23010531] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD.
Collapse
|
28
|
Sun X, Chen L, He Y, Zheng L. Circulating α-Klotho Levels in Relation to Cardiovascular Diseases: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2022; 13:842846. [PMID: 35197934 PMCID: PMC8859151 DOI: 10.3389/fendo.2022.842846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Several studies have reported a protective role of circulating α-Klotho on cardiovascular diseases (CVD); however, the causality remains unclear. We aim to elucidate whether genetically predicted circulating α-Klotho levels were causally associated with the risk of coronary artery disease (CAD), atrial fibrillation (AF), heart failure (HF), stroke, ischemic stroke (IS), and IS subtypes. METHODS A two-sample Mendelian randomization (MR) study was designed, with 5 single-nucleotide polymorphisms associated with circulating α-Klotho levels utilized as instrumental variables. MR estimates on each CVD outcome derived from the fixed-effects inverse-variance weighted (IVW) approach in different data sources were combined by the fixed-effects meta-analysis approach, complemented by several sensitivity analyses including the simple median, the weighed median, MR-Egger regression, and MR-pleiotropy residual sum and outlier. RESULTS In the meta-analysis combining different data sources, suggestive inverse causal association of circulating α-Klotho concentrations with CAD [Odds ratio (OR), 0.97; 95% confidence interval (CI), 0.94, 1.00; P = 0.044] and significant inverse association of circulating α-Klotho concentrations with AF (OR, 0.96; 95% CI, 0.93, 0.99; P = 0.005) was observed. However, there was no causal association of α-Klotho with HF, any stroke, IS, or IS subtypes neither in different data sources nor in the meta-analysis. Complementary sensitivity analyses showed consistent and robust results in general. CONCLUSION Evidence was found for a protective effect of circulating α-Klotho on the prevention of AF risk. However, no significant causal association between genetically predicted circulating α-Klotho levels and risk of CAD, HF, stroke, IS, or IS subtypes was found.
Collapse
|
29
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
30
|
Qian J, Zhong J, Liu S, Yan M, Cheng P, Hao C, Gu Y, Lai L. α-Klotho, Plasma Asymmetric Dimethylarginine, and Kidney Disease Progression. Kidney Med 2021; 3:984-991.e1. [PMID: 34939007 PMCID: PMC8664695 DOI: 10.1016/j.xkme.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rationale & Objective We aimed to explore the associated factors of endothelial injury in chronic kidney disease (CKD) and the relationship between endothelial dysfunction and CKD prognosis. Study Design A prospective observational cohort study. Setting & Participants 77 adults with CKD stages 1-5 were enrolled January 2010 to December 2010 and followed up until December 2015. Exposure Serum asymmetric dimethylarginine (ADMA) level at baseline, α-klotho, sodium-phosphorus synergistic transporter, and dimethylarginine-dimethylamine hydrolase expression in kidney biopsy samples. Outcome Initiation of kidney replacement therapy (KRT). Analytical Approach Kaplan-Meier analysis was used for evaluation of the incidence rate of KRT. All tests were 2 tailed, and statistical significance was defined as P < 0.05. Results Mean serum ADMA level of 77 patients was 64.3 ± 34.6 ng/mL. ADMA level increased with CKD stages (P = 0.06) and declining kidney function (r = −0.267; P = 0.02). The expression of α-klotho in kidney biopsy specimens also decreased. Median follow-up time was 56 (interquartile range, 50.5-62) months. Kaplan-Meier analyses showed that during a total follow-up of 6 years, the incidence of KRT initiation in the high-ADMA group was significantly higher than that in the low group (35.9% vs 13.2%; P = 0.03). ADMA level was negatively correlated with α-klotho (r = −0.233; P = 0.04) and positively correlated with phosphorus level (r = 0.243; P = 0.04). The expression of sodium-phosphorus synergistic transporter in kidney tubules, which promoted phosphorus reabsorption, and the expression of dimethylarginine-dimethylamine hydrolase isoform 1, which regulated ADMA, were decreased. Correlation analysis also showed that ADMA level decreased while age increased at baseline (r = −0.292; P = 0.01). Limitations Small sample size with limited longer-term follow-up. Conclusions Serum ADMA levels increased as kidney function declined, and high serum ADMA level was associated with incident kidney failure. Low tissue α-klotho and high levels of plasma phosphorus or tissue expression of type II sodium/phosphate cotransporter in the kidney are associated with higher circulating ADMA levels, suggesting that they may be involved in the pathogenesis of endothelial dysfunction in patients with CKD.
Collapse
Affiliation(s)
- Jing Qian
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianyong Zhong
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaojun Liu
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Minhua Yan
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Cheng
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Gu
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Lai
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Donate-Correa J, Ferri CM, Martín-Núñez E, Pérez-Delgado N, González-Luis A, Mora-Fernández C, Navarro-González JF. Klotho as a biomarker of subclinical atherosclerosis in patients with moderate to severe chronic kidney disease. Sci Rep 2021; 11:15877. [PMID: 34354161 PMCID: PMC8342510 DOI: 10.1038/s41598-021-95488-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has been associated with a higher risk of cardiovascular disease (CVD). CKD patients present a decrease in the levels of the protein Klotho that accompanies the decrease in kidney function. This protein has been related to protective effects against CVD. However, it is unclear whether circulating Klotho, and its expression in peripheral blood cells (PBCs) are also associated with subclinical atherosclerosis in CKD. The present study aimed to study the relationship between Klotho and subclinical atherosclerosis in a population of patients with moderate to severe CKD. We determined the serum levels and gene expression in PBCs levels of Klotho and three inflammatory cytokines in 103 patients with CKD and investigated their relationship with two surrogate markers of subclinical atherosclerotis: ankle-brachial index (ABI) and carotid intima-media thickness (CIMT). Patients with subclinical atherosclerosis presented lower serum and PBCs expression levels of Klotho. Both variables were associated with the presence of subclinical atherosclerosis, being directly related with ABI and inversely with CIMT (P < 0.0001 for both). Multiple regression analysis demonstrated that both variables were significant determinants for ABI (adjusted R2 = 0.511, P < 0.0001) and CIMT (adjusted R2 = 0.445, P < 0.0001), independently of traditional and emergent cardiovascular risk factors. Moreover, both constituted protective factors against subclinical atherosclerosis [OR: 0.993 (P = 0.002) and 0.231 (P = 0.025), respectively]. Receiver operating characteristic analysis pointed to the utility of serum Klotho (area under the curve [AUC]: 0.817, 95% CI: 0.736-0.898, P < 0.001) and its gene expression in PBCs (AUC: 0.742, 95% CI: 0.647-0.836, P < 0.001) to distinguish subclinical atherosclerosis. The reductions in serum and PBCs expression levels of Klotho in CKD patients are independently associated with the presence of for subclinical atherosclerosis. Further research exploring whether therapeutic approaches to maintain or elevate Klotho could reduce the impact of CVD in CKD patients is warranted.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Nayra Pérez-Delgado
- Clinical Analysis Service, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
32
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
33
|
Tyurenkov IN, Perfilova VN, Nesterova AA, Glinka Y. Klotho Protein and Cardio-Vascular System. BIOCHEMISTRY (MOSCOW) 2021; 86:132-145. [PMID: 33832412 DOI: 10.1134/s0006297921020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Klotho protein affects a number of metabolic pathways essential for pathogenesis of cardio-vascular diseases and their prevention. It inhibits lipid peroxidation and inflammation, as well as prevents endothelial injury and calcification of blood vessels. Klotho decreases rigidity of blood vessels and suppresses development of the heart fibrosis. Low level of its expression is associated with a number of diseases. Cardioprotective effect of klotho is based on its ability to interact with multiple receptors and ion channels. Being a pleiotropic protein, klotho could be a useful target for therapeutic intervention in the treatment of cardio-vascular diseases. In this review we present data on pharmaceuticals that stimulate klotho expression and suggest some promising research directions.
Collapse
Affiliation(s)
- Ivan N Tyurenkov
- Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, 400066, Russia
| | - Valentina N Perfilova
- Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, 400066, Russia.
| | - Alla A Nesterova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of the Volgograd State Medical University, Ministry of Health of the Russian Federation, Pyatigorsk, 357500, Russia
| | - Yelena Glinka
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
34
|
Memmos E, Papagianni A. New Insights into the Role of FGF-23 and Klotho in Cardiovascular Disease in Chronic Kidney Disease Patients. Curr Vasc Pharmacol 2021; 19:55-62. [PMID: 32310050 DOI: 10.2174/1570161118666200420102100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
Alterations of fibroblast growth factor 23 (FGF-23) and Klotho levels are considered to be the earliest biochemical abnormality of chronic kidney disease - mineral and bone disease (CKDMBD) syndrome. Moreover, emerging data suggests that the dysregulated FGF-23 and Klotho axis has many effects on the cardiovascular (CV) system and contributes significantly to the increased CV morbidity and mortality rates of CKD patients. This review examines recent evidence on the role of FGF-23 and Klotho in the development and progression of CV complications of uremia namely cardiac hypertrophy, uremic cardiomyopathy, and atherosclerotic and arteriosclerotic vascular lesions. Moreover, the available evidence on their associations with adverse clinical outcomes are summarized. Undoubtedly, more studies are needed to further elucidate the effects of FGF-23 and Klotho on the heart and vessels and to gain insights into their prognostic value as CV risk factors. Finally, large prospective studies are required to test the hypothesis that modification of their levels would have a favourable impact on the unacceptably high mortality rates of these patient populations.
Collapse
Affiliation(s)
- Evangelos Memmos
- Department of Nephrology, Aristotle University of Thessaloniki, General Hospital "Hippokratio", Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, General Hospital "Hippokratio", Thessaloniki, Greece
| |
Collapse
|
35
|
Stenhouse C, Halloran KM, Newton MG, Gaddy D, Suva LJ, Bazer FW. Novel mineral regulatory pathways in ovine pregnancy: I. phosphate, klotho signaling, and sodium-dependent phosphate transporters. Biol Reprod 2021; 104:1084-1096. [PMID: 33624764 DOI: 10.1093/biolre/ioab028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Appropriate mineralization of the fetal skeleton requires an excess of phosphate in the fetus compared to the mother. However, mechanisms for placental phosphate transport are poorly understood. This study aimed to identify phosphate regulatory pathways in ovine endometria and placentae throughout gestation. Suffolk ewes were bred with fertile rams upon visual detection of estrus (Day 0). On Days 9, 12, 17, 30, 70, 90, 110, and 125 of pregnancy (n = 3-14/Day), ewes were euthanized and hysterectomized. Phosphate abundance varied across gestational days in uterine flushings, allantoic fluid, and homogenized endometria and placentae (P < 0.05). The expression of mRNAs for sodium-dependent phosphate transporters (SLC20A1 and SLC20A2) and klotho signaling mediators (FGF7, FGF21, FGF23, FGFR1-4, KL, KLB, ADAM10, and ADAM17) were quantified by qPCR. Day 17 conceptus tissue expressed SLC20A1, SLC20A2, KLB, FGF7, FGF21, FGF23, FGFR1, and FGFR2 mRNAs. Both sodium-dependent phosphate transporters and klotho signaling mediators were expressed in endometria and placentae throughout gestation. Gestational day influenced the expression of SLC20A1, ADAM10, ADAM17, FGF21, FGFR1, and FGFR3 mRNAs in both endometria and placentae (P < 0.05). Gestational day influenced endometrial expression of FGF7 (P < 0.001), and placental expression of FGF23 (P < 0.05). Immunohistochemistry confirmed that both FGF23 and KL proteins were expressed in endometria and placentae throughout gestation. The observed spatiotemporal profile of KL-FGF signaling suggests a potential role in the establishment of pregnancy and regulation of fetal growth. This study provides a platform for further mechanistic investigation into the role for KL-FGF signaling in the regulation of phosphate transport at the ovine maternal-conceptus interface.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Makenzie G Newton
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
36
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
37
|
Vila Cuenca M, Hordijk PL, Vervloet MG. Most exposed: the endothelium in chronic kidney disease. Nephrol Dial Transplant 2021; 35:1478-1487. [PMID: 31071222 PMCID: PMC7473805 DOI: 10.1093/ndt/gfz055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that the pathological changes of the endothelium may contribute to the development of cardiovascular complications in chronic kidney disease (CKD). Non-traditional risk factors related to CKD are associated with the incidence of cardiovascular disease, but their role in uraemic endothelial dysfunction has often been disregarded. In this context, soluble α-Klotho and vitamin D are of importance to maintain endothelial integrity, but their concentrations decline in CKD, thereby contributing to the dysfunction of the endothelial lining. These hormonal disturbances are accompanied by an increment of circulating fibroblast growth factor-23 and phosphate, both exacerbating endothelial toxicities. Furthermore, impaired renal function leads to an increment of inflammatory mediators, reactive oxygen species and uraemic toxins that further aggravate the endothelial abnormalities and in turn also inhibit the regeneration of disrupted endothelial lining. Here, we highlight the distinct endothelial alterations mediated by the abovementioned non-traditional risk factors as demonstrated in experimental studies and connect these to pathological changes in CKD patients, which are driven by endothelial disturbances, other than atherosclerosis. In addition, we describe therapeutic strategies that may promote restoration of endothelial abnormalities by modulating imbalanced mineral homoeostasis and attenuate the impact of uraemic retention molecules, inflammatory mediators and reactive oxygen species. A clinical perspective on endothelial dysfunction in CKD may translate into reduced structural and functional abnormalities of the vessel wall in CKD, and ultimately improved cardiovascular disease.
Collapse
Affiliation(s)
- Marc Vila Cuenca
- Department of Nephrology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Kim JH, Park EY, Hwang KH, Park KS, Choi SJ, Cha SK. Soluble αKlotho downregulates Orai1-mediated store-operated Ca 2+ entry via PI3K-dependent signaling. Pflugers Arch 2021; 473:647-658. [PMID: 33386992 PMCID: PMC8049930 DOI: 10.1007/s00424-020-02510-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
αKlotho is a type 1 transmembrane anti-aging protein. αKlotho-deficient mice have premature aging phenotypes and an imbalance of ion homeostasis including Ca2+ and phosphate. Soluble αKlotho is known to regulate multiple ion channels and growth factor-mediated phosphoinositide-3-kinase (PI3K) signaling. Store-operated Ca2+ entry (SOCE) mediated by pore-forming subunit Orai1 and ER Ca2+ sensor STIM1 is a ubiquitous Ca2+ influx mechanism and has been implicated in multiple diseases. However, it is currently unknown whether soluble αKlotho regulates Orai1-mediated SOCE via PI3K-dependent signaling. Among the Klotho family, αKlotho downregulates SOCE while βKlotho or γKlotho does not affect SOCE. Soluble αKlotho suppresses serum-stimulated SOCE and Ca2+ release-activated Ca2+ (CRAC) channel currents. Serum increases the cell-surface abundance of Orai1 via stimulating vesicular exocytosis of the channel. The serum-stimulated SOCE and cell-surface abundance of Orai1 are inhibited by the preincubation of αKlotho protein or PI3K inhibitors. Moreover, the inhibition of SOCE and cell-surface abundance of Orai1 by pretreatment of brefeldin A or tetanus toxin or PI3K inhibitors prevents further inhibition by αKlotho. Functionally, we further show that soluble αKlotho ameliorates serum-stimulated SOCE and cell migration in breast and lung cancer cells. These results demonstrate that soluble αKlotho downregulates SOCE by inhibiting PI3K-driven vesicular exocytosis of the Orai1 channel and contributes to the suppression of SOCE-mediated tumor cell migration.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Young Park
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Obstetrics and Gynecology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
| | - Kyu-Hee Hwang
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Jin Choi
- Department of Obstetrics and Gynecology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea.
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea.
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
39
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
40
|
Maique J, Flores B, Shi M, Shepard S, Zhou Z, Yan S, Moe OW, Hu MC. High Phosphate Induces and Klotho Attenuates Kidney Epithelial Senescence and Fibrosis. Front Pharmacol 2020; 11:1273. [PMID: 32973510 PMCID: PMC7468469 DOI: 10.3389/fphar.2020.01273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is an irreversible cell growth arrest and is associated with aging and age-related diseases. High plasma phosphate (Pi) and deficiency of Klotho contribute to aging and kidney fibrosis, a pathological feature in the aging kidney and chronic kidney disease. This study examined the interactive role of Pi and Klotho in kidney senescence and fibrosis. Homozygous Klotho hypomorphic mice had high plasma Pi, undetectable Klotho in plasma and kidney, high senescence with massive collagen accumulation in kidney tubules, and fibrin deposits in peritubular capillaries. To examine the Pi effect on kidney senescence, a high (2%) Pi diet was given to wild-type mice. One week of high dietary Pi mildly increased plasma Pi, and upregulated kidney p16/p21 expression, but did not significantly decrease Klotho. Two weeks of high Pi intake led to increase in plasminogen activator inhibitor (PAI)-1, and decrease in kidney Klotho, but still without detectable increase in kidney fibrosis. More prolonged dietary Pi for 12 weeks exacerbated kidney senescence and fibrosis; more so in heterozygous Klotho hypomorphic mice compared to wild-type mice, and in mice with chronic kidney disease (CKD) on high Pi diet compared to CKD mice fed a normal Pi diet. In cultured kidney tubular cells, high Pi directly induced cellular senescence, injury and epithelial-mesenchymal transition, and enhanced H2O2-induced cellular senescence and injury, which were abrogated by Klotho. Fucoidan, a bioactive molecule with multiple biologic functions including senescence inhibition, blunted Pi-induced cellular senescence, oxidation, injury, epithelial-mesenchymal transition, and senescence-associated secretary phenotype. In conclusion, high Pi activates senescence through distinct but interconnected mechanisms: upregulating p16/p21 (early), and elevating plasminogen activator inhibitor-1 and downregulating Klotho (late). Klotho may be a promising agent to attenuate senescence and ameliorate age-associated, and Pi-induced kidney degeneration such as kidney fibrosis.
Collapse
Affiliation(s)
- Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brianna Flores
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiyong Zhou
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shirely Yan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
41
|
Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. KIDNEY DISEASES 2020; 6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney. Recent studies reveal that α-Klotho deficiency is associated with profound cardiovascular dysfunction. Of note, CKD represents extremely declined α-Klotho levels, hinting that α-Klotho deficiency may be implicated in the pathogenesis of CKD-associated CVD. Summary Based on the pathogenic mechanism of α-Klotho deficiency and decreased Klotho levels in the circulation even early in stage 1 of CKD, α-Klotho serves as a sensitive biomarker for renal insufficiency and also a novel predictor of risk of overall mortality of CVD events in CKD. Meanwhile, loss of Klotho resulted from kidney dysfunction markedly contributes to the progressive development of CKD and CVD. By contrast, prevention of Klotho decline using exogenous supplementation or genetically activated ways by several mechanisms can dramatically mitigate cardiac dysfunction, prevent vascular calcification, and retard the progression of CKD-accelerated atherosclerosis. Key Messages Klotho deficiency is proposed as a novel predictive biomarker as well as a pathogenic contributor to CVD events in CKD. In the future, Klotho may be a crucial potential therapeutic strategy to decrease the burden of CVD comorbidity with CKD in clinics.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
42
|
de Almeida LF, Coimbra TM. Neonatal hyperoxia: effects on nephrogenesis and the key role of klotho as an antioxidant factor. J Matern Fetal Neonatal Med 2020; 35:3020-3022. [PMID: 32746667 DOI: 10.1080/14767058.2020.1801624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A congenital or programmed reduction in glomerular number increases the susceptibility to hypertension and kidney injury in adulthood thus, premature birth or low birth weight, leading to a low glomerular endowment, can be associated with these two diseases. Renal morphogenesis is sensitive to hypoxia which is a physiological trigger for the expression of vascular endothelial growth factor. On the other hand, hyperoxia increases oxidative stress and adversely affects glomerular and tubular development, and is associated with a substantial reduction of renal klotho expression in adulthood. Preterm newborns are often submitted to oxygen therapy, exposing them to an acute high-oxygen level situation, in contrast to the intrauterine low-oxygen environment. Investigating the role of klotho on kidney development leads to the understanding of the possible mechanisms related to disorders in the preterm neonatal kidney exposed to hyperoxia and its long term effects in adulthood.
Collapse
Affiliation(s)
- Lucas Ferreira de Almeida
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Terezila Machado Coimbra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
44
|
Batlahally S, Franklin A, Damianos A, Huang J, Chen P, Sharma M, Duara J, Keerthy D, Zambrano R, Shehadeh LA, Martinez EC, DeFreitas MJ, Kulandavelu S, Abitbol CL, Freundlich M, Kanashiro-Takeuchi RM, Schmidt A, Benny M, Wu S, Mestan KK, Young KC. Soluble Klotho, a biomarker and therapeutic strategy to reduce bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Sci Rep 2020; 10:12368. [PMID: 32704023 PMCID: PMC7378054 DOI: 10.1038/s41598-020-69296-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/03/2020] [Indexed: 11/09/2022] Open
Abstract
Preterm infants with bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH) have accelerated lung aging and poor long-term outcomes. Klotho is an antiaging protein that modulates oxidative stress, angiogenesis and fibrosis. Here we test the hypothesis that decreased cord Klotho levels in preterm infants predict increased BPD-PH risk and early Klotho supplementation prevents BPD-like phenotype and PH in rodents exposed to neonatal hyperoxia. In experiment 1, Klotho levels were measured in cord blood of preterm infants who were enrolled in a longitudinal cohort study. In experiment 2, using an experimental BPD-PH model, rat pups exposed to room air or hyperoxia (85% O2) were randomly assigned to receive every other day injections of recombinant Klotho or placebo. The effect of Klotho on lung structure, PH and cardiac function was assessed. As compared to controls, preterm infants with BPD or BPD-PH had decreased cord Klotho levels. Early Klotho supplementation in neonatal hyperoxia-exposed rodents preserved lung alveolar and vascular structure, attenuated PH, reduced pulmonary vascular remodeling and improved cardiac function. Together, these findings have important implications as they suggest that perinatal Klotho deficiency contributes to BPD-PH risk and strategies that preserve Klotho levels, may improve long-term cardiopulmonary outcomes in preterm infants.
Collapse
Affiliation(s)
- Sunil Batlahally
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Andrew Franklin
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Divya Keerthy
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Lina A Shehadeh
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eliana C Martinez
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marissa J DeFreitas
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shathiyah Kulandavelu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolyn L Abitbol
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Freundlich
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rosemeire M Kanashiro-Takeuchi
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA
| | - Karen K Mestan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karen C Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA. .,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL, USA. .,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
45
|
Milovanova LY, Lysenko Kozlovskaya LV, Milovanova SY, Taranova MV, Kozlov VV, Reshetnikov VA, Lebedeva MV, Androsova TV, Zubacheva DO, Chebotareva NV. [Low serum Klotho level as a predictor of calcification of the heart and blood vessels in patients with CKD stages 2-5D]. TERAPEVT ARKH 2020; 92:37-45. [PMID: 33346491 DOI: 10.26442/00403660.2020.06.000670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular calcification (CVC) makes a significant contribution to the manifestation of cardiovascular complications in patients with chronic kidney disease. Early CVC markers are currently being actively studied to optimize cardio-renoprotective strategies. We performed a prospective comparative analysis of the following factors: FGF-23, a-Klotho, sclecrostin, phosphate, parathyroid hormone, the estimated glomerular filtration rate (eGFR), central systolic pressure as an independent determinant of CVC. MATERIALS AND METHODS The study included 131 patients with chronic kidney disease 25D st. Serum levels of FGF-23, Klotho, and sclerostin were evaluated using the ELISA method. Vascular augmentation (stiffness) indices, central arterial pressure (using the SphygmoCor device), calcification of heart valves and the degree of aortic calcification (aortic radiography) were also investigated. The observation period was 2 years. RESULTS According to the Spearman correlation analysis, the percent of calcification increase and the change in Klotho level are most related. According to ROC analysis, a decrease in serum levels of Klotho by 50 units or more is a significant predictor of an increase in aortic calcification of 50% or more with a sensitivity of 86% and a specificity of 77%. Using logistic regression analysis, it was found that a serum Klotho level 632 pg/L predicts an eGFR below a median level of 48 ml/min/1.73 m2 with a sensitivity of 85.5% and a specificity of 78.5%. Wherein OR 17.477 (CI 95% 8.04637.962; p0.001). CONCLUSION The factor most associated with CVC is Klotho. Decreased serum level of Klotho is a predictor of aortic calcification. In addition, the initial serum level of Klotho is a predictor of eGFR after 2 years.
Collapse
Affiliation(s)
- L Y Milovanova
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - S Y Milovanova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Taranova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V V Kozlov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V A Reshetnikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Lebedeva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - T V Androsova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - D O Zubacheva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N V Chebotareva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
46
|
Charoenngam N, Ponvilawan B, Ungprasert P. Lower circulating soluble Klotho level is associated with increased risk of all-cause mortality in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol 2020; 52:1543-1550. [PMID: 32462356 DOI: 10.1007/s11255-020-02510-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE This study aimed to investigate the association between circulating soluble Klotho level and risk of all-cause mortality in chronic kidney disease (CKD) patients using systematic review and meta-analysis technique. METHODS Potentially eligible studies were identified from Medline and EMBASE databases from inception to March 2020 using a search strategy that consisted of terms for "Klotho" and "Mortality". Eligible study must be a cohort study that consists of one cohort of CKD patients with higher circulating soluble Klotho level and another cohort of CKD patients with lower circulating soluble Klotho level. The study must also report relative risk (RR), incidence rate ratio, hazard risk ratio or standardized incidence ratio with 95% confidence intervals (95% CIs) comparing all-cause mortality between CKD patients with lower circulating soluble Klotho level versus CKD patients with higher circulating soluble Klotho level. If the study divides patients (per circulating soluble Klotho level) into more than two groups, a comparison between the highest and the lowest group would be extracted. Point estimates with standard errors were retrieved from each study and were combined together using the generic inverse variance method. RESULTS A total of 2964 articles were retrieved. After two rounds of an independent review by two investigators, six prospective cohort studies met the eligibility criteria and were included into the meta-analysis. CKD patients with lower circulating soluble Klotho level had a significantly increased risk of all-cause mortality with the pooled risk ratio of 1.88 (95% CI 1.29-2.74; I2 0%). The funnel plot was fairly symmetric and did not reveal any suggestive evidence of publication bias. CONCLUSION The current study found a significant association between lower circulating soluble Klotho level and increased risk of all-cause mortality in CKD patients. However, this meta-analysis carries some limitations, including relatively small sample size, lack of adjustment for potential confounders and between-study heterogeneity in baseline characteristics of the patients and cut-off values used to categorize patients into higher and lower circulating serum Klotho level group.
Collapse
Affiliation(s)
- Nipith Charoenngam
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Ben Ponvilawan
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
47
|
Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020; 9:cells9040807. [PMID: 32230747 PMCID: PMC7226428 DOI: 10.3390/cells9040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the important role that the growth hormone (GH)/IGF-I axis plays in vascular homeostasis, these kind of growth factors barely appear in articles addressing the neovascularization process. Currently, the vascular endothelium is considered as an authentic gland of internal secretion due to the wide variety of released factors and functions with local effects, including the paracrine/autocrine production of GH or IGF-I, for which the endothelium has specific receptors. In this comprehensive review, the evidence involving these proangiogenic hormones in arteriogenesis dealing with the arterial occlusion and making of them a potential therapy is described. All the elements that trigger the local and systemic production of GH/IGF-I, as well as their possible roles both in physiological and pathological conditions are analyzed. All of the evidence is combined with important data from the GHAS trial, in which GH or a placebo were administrated to patients suffering from critical limb ischemia with no option for revascularization. We postulate that GH, alone or in combination, should be considered as a promising therapeutic agent for helping in the approach of ischemic disease.
Collapse
|
48
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
49
|
Takenaka T, Kobori H, Inoue T, Miyazaki T, Suzuki H, Nishiyama A, Ishii N, Hayashi M. Klotho supplementation ameliorates blood pressure and renal function in DBA/2-pcy mice, a model of polycystic kidney disease. Am J Physiol Renal Physiol 2020; 318:F557-F564. [PMID: 31928223 DOI: 10.1152/ajprenal.00299.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klotho interacts with various membrane proteins such as receptors for transforming growth factor-β (TGF-β) and insulin-like growth factor (IGF). Renal expression of klotho is diminished in polycystic kidney disease (PKD). In the present study, the effects of klotho supplementation on PKD were assessed. Recombinant human klotho protein (10 μg·kg-1·day-1) or a vehicle was administered daily by subcutaneous injection to 6-wk-old mice with PKD (DBA/2-pcy). Blood pressure was measured using tail-cuff methods. After 2 mo, mice were killed, and the kidneys were harvested for analysis. Exogenous klotho protein supplementation reduced kidney weight, cystic area, systolic blood pressure, renal angiotensin II levels, and 8-epi-PGF2α excretion (P < 0.05). Klotho protein supplementation enhanced glomerular filtration rate, renal expression of superoxide dismutase, and klotho itself (P < 0.05). Klotho supplementation attenuated renal expressions of TGF-β and collagen type I and diminished renal abundance of Twist, phosphorylated Akt, and mammalian target of rapamycin (P < 0.05). Pathological examination revealed that klotho decreased the fibrosis index and nuclear staining of Smad in PKD kidneys (P < 0.05). Our data indicate that klotho protein supplementation ameliorates the renin-angiotensin system, reducing blood pressure in PKD mice. Furthermore, the present results implicate klotho supplementation in the suppression of Akt/mammalian target of rapamycin signaling, slowing cystic expansion. Finally, our findings suggest that klotho protein supplementation attenuated fibrosis at least partly by inhibiting epithelial mesenchymal transition in PKD.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Minato, Tokyo
| | - Hiroyuki Kobori
- International University of Health and Welfare, Minato, Tokyo
| | | | | | | | | | - Naohito Ishii
- Kitasato University, Sagamihara, Kanagawa, Tokyo, Japan
| | | |
Collapse
|
50
|
Mencke R, Umbach AT, Wiggenhauser LM, Voelkl J, Olauson H, Harms G, Bulthuis M, Krenning G, Quintanilla-Martinez L, van Goor H, Lang F, Hillebrands JL. Klotho Deficiency Induces Arteriolar Hyalinosis in a Trade-Off with Vascular Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2503-2515. [DOI: 10.1016/j.ajpath.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|