1
|
Upadhyay V, Ray S, Panja S, Saviola AJ, Maluf NK, Mallela KMG. Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms. J Biol Chem 2024; 300:108002. [PMID: 39551137 PMCID: PMC11719305 DOI: 10.1016/j.jbc.2024.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) gene encodes dystrophin, a large multidomain protein. Its nonfunctionality leads to dystrophinopathies like DMD and Becker muscular dystrophy, for which no cure is yet available. A few therapies targeted towards specific mutations can extend the lifespan of patients, although with limited efficacy and high costs, emphasizing the need for more general treatments. Dystrophin's complex structure with poorly understood domains and the presence of multiple isoforms with varied expression patterns in different tissues pose challenges in therapeutic development. The C-terminal (CT) domain of dystrophin is less understood in terms of its structure-function, although it has been shown to perform important functional roles by interacting with another cytosolic protein, dystrobrevin. Dystrophin and dystrobrevin stabilize the sarcolemma membrane by forming a multiprotein complex called dystrophin-associated glycoprotein complex that is destabilized in DMD. Dystrobrevin has two major isoforms, alpha and beta, with tissue-specific expression patterns. Here, we characterize the CT domain of dystrophin and its interactions with the two dystrobrevin isoforms. We show that the CT domain is nonglobular and shows reversible urea denaturation as well as thermal denaturation. It interacts with dystrobrevin isoforms differentially, with differences in binding affinity and the mode of interaction. We further show that the amino acid differences in the CT region of dystrobrevin isoforms contribute to these differences. These results have implications for the stability of dystrophin-associated glycoprotein complex in different tissues and explain the differing symptoms associated with DMD patients affecting organs beyond the skeletal muscles.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shashikant Ray
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Al-nakhle HH, Yagoub HS, Alrehaili RY, Shaqroon OA, Khan MK, Alsharif GS. Elucidating the role of MLL1 nsSNPs: Structural and functional alterations and their contribution to leukemia development. PLoS One 2024; 19:e0304986. [PMID: 39405275 PMCID: PMC11478856 DOI: 10.1371/journal.pone.0304986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/21/2024] [Indexed: 10/19/2024] Open
Abstract
(1) BACKGROUND The Mixed lineage leukemia 1 (MLL1) gene, located on chromosome 11q23, plays a pivotal role in histone lysine-specific methylation and is consistently associated with various types of leukemia. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) have been tied to numerous diseases, including cancers, and have become valuable cancer biomarkers. There's a notable gap in studies probing the influence of SNPs on MLL1 protein structure, function, and subsequent modifications. (2) METHODS We utilized an array of bioinformatics tools, including PredictSNP, InterPro, ConSurf, I-Mutant2.0, MUpro, Musitedeep, Project HOPE, RegulomeDB, Mutpred2, and both CScape and CScape Somatic, to meticulously analyze the consequences of nsSNPs in the MLL1 gene. (3) RESULTS Out of 2,097 nsSNPs analyzed, 62 were determined to be significantly pathogenic by the PredictSNP tool, with ten crucial MLL1 functional domains identified using InterPro. Additionally, 50 of these nsSNPs had high conservation scores, hinting at potential effects on protein structure and function, while 32 were found to undermine MLL1 protein stability. Notably, four nsSNPs were deemed oncogenic, with two identified as cancer drivers. The nsSNP, D2724G, between the MLL1 protein's FY-rich domains, could disrupt proteolytic cleavage, altering gene expression patterns and potentially promoting cancer. (4) CONCLUSIONS Our research provides a comprehensive assessment of nsSNPs' impact in the MLL1 protein structure and function and consequently on leukemia development, suggesting potential avenues for personalized treatment, early detection, improved prognosis, and a deeper understanding of hematological malignancy genesis.
Collapse
Affiliation(s)
- Hakeemah H. Al-nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah, Saudi Arabia
| | - Hind S. Yagoub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah, Saudi Arabia
- Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Rahaf Y. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah, Saudi Arabia
| | - Ola A. Shaqroon
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah, Saudi Arabia
| | - Minna K. Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah, Saudi Arabia
| | - Ghaidaa S. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah, Saudi Arabia
| |
Collapse
|
3
|
Maciel-Guerra A, Babaarslan K, Baker M, Rahman A, Hossain M, Sadique A, Alam J, Uzzaman S, Ferdous Rahman Sarker M, Sultana N, Islam Khan A, Ara Begum Y, Hassan Afrad M, Senin N, Hossain Habib Z, Shirin T, Qadri F, Dottorini T. Core and accessory genomic traits of Vibrio cholerae O1 drive lineage transmission and disease severity. Nat Commun 2024; 15:8231. [PMID: 39313510 PMCID: PMC11420230 DOI: 10.1038/s41467-024-52238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence and spreading ability. However, our understanding of the genomic determinants influencing lineage transmission and disease severity remains incomplete. Here, we developed a computational framework using machine-learning, genome scale metabolic modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with virulence, motility and bacteriophage resistance functions. We also found a strong correlation between V. cholerae genomic traits and disease severity, with some traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a complex interplay between transcription regulation, protein interaction and stability, and metabolic networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera spread.
Collapse
Affiliation(s)
- Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Kubra Babaarslan
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Salim Uzzaman
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Ferdous Rahman Sarker
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nasrin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mokibul Hassan Afrad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nicola Senin
- Department of Engineering, University of Perugia, 06125, Perugia, Italy
| | - Zakir Hossain Habib
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| |
Collapse
|
4
|
Uddin MM, Hossain MT, Hossain MA, Ahsan A, Shamim KH, Hossen MA, Rahman MS, Rahman MH, Ahmed K, Bui FM, Al-Zahrani FA. Unraveling the potential effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on the Protein structure and function of the human SLC30A8 gene on type 2 diabetes and colorectal cancer: An In silico approach. Heliyon 2024; 10:e37280. [PMID: 39296124 PMCID: PMC11408818 DOI: 10.1016/j.heliyon.2024.e37280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aims The single nucleotide polymorphisms (SNPs) in SLC30A8 gene have been recognized as contributing to type 2 diabetes (T2D) susceptibility and colorectal cancer. This study aims to predict the structural stability, and functional impacts on variations in non-synonymous SNPs (nsSNPs) in the human SLC30A8 gene using various computational techniques. Materials and methods Several in silico tools, including SIFT, Predict-SNP, SNPs&GO, MAPP, SNAP2, PhD-SNP, PANTHER, PolyPhen-1,PolyPhen-2, I-Mutant 2.0, and MUpro, have been used in our study. Results After data analysis, out of 336 missenses, the eight nsSNPs, namely R138Q, I141N, W136G, I349N, L303R, E140A, W306C, and L308Q, were discovered by ConSurf to be in highly conserved regions, which could affect the stability of their proteins. Project HOPE determines any significant molecular effects on the structure and function of eight mutated proteins and the three-dimensional (3D) structures of these proteins. The two pharmacologically significant compounds, Luzonoid B and Roseoside demonstrate strong binding affinity to the mutant proteins, and they are more efficient in inhibiting them than the typical SLC30A8 protein using Autodock Vina and Chimera. Increased binding affinity to mutant SLC30A8 proteins has been determined not to influence drug resistance. Ultimately, the Kaplan-Meier plotter study revealed that alterations in SLC30A8 gene expression notably affect the survival rates of patients with various cancer types. Conclusion Finally, the study found eight highly deleterious missense nsSNPs in the SLC30A8 gene that can be helpful for further proteomic and genomic studies for T2D and colorectal cancer diagnosis. These findings also pave the way for personalized treatments using biomarkers and more effective healthcare strategies.
Collapse
Affiliation(s)
- Md Moin Uddin
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Hossain
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kamrul Hasan Shamim
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Arif Hossen
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Shahinur Rahman
- Department of Diabetes and Endocrinology, Pabna Diabetic Association Hospital, Pabna 6600, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Group of Biophotomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka-1216, Bangladesh
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | | |
Collapse
|
5
|
Bahia W, Soltani I, Abidi A, Mahdhi A, Mastouri M, Ferchichi S, Almawi WY. Structural impact, ligand-protein interactions, and molecular phenotypic effects of TGF-β1 gene variants: In silico analysis with implications for idiopathic pulmonary fibrosis. Gene 2024; 922:148565. [PMID: 38762014 DOI: 10.1016/j.gene.2024.148565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is a chronic interstitial lung disease resulting in progressively deteriorating lung function. Transforming growth factor-β1 (TGF-β1) belongs to the TGF superfamily and exerts a profibrotic role in promoting lung fibrosis by facilitating fibroblast infiltration and activity, extracellular matrix deposition, and inhibition of collagen breakdown, thus promoting tissue remodelling and IPF. MATERIALS AND METHODS We evaluated the link between pathogenic TGF-β1 SNPs and IPF pathogenesis and the structure-activity functional consequences of those SNPs on the TGF-β1 protein. Several computational algorithms were merged to address the functional consequences of TGF-β1 gene mutations to protein stability, putative post-translational modification sites, ligand-protein interactions, and molecular phenotypic effects. These included FATHMM, POLYPHEN2, PROVEAN, and SIFT tools (identifying deleterious nsSNPs in the TGF-β1 gene), along with Pmut, PhD-SNP, SNAP, MutPred and the related TMHMM, MARCOIL, and DisProt algorithms (predicting structural disorders). INPS-MD was also used to evaluate the mutation-induced TGF-β1 protein's stability and MODPRED for recognition of post-translational TGF-β1 modification. RESULTS In total, 14 major pathogenic variants markedly impact the destabilization of the TGF-β1 protein, with most of these high-risk mutations associated with decreased stability of the TGF-β1 protein as per the I-Mutant, MUpro, and INPS-MD tools. R205W, R185W, R180Q, D86Y, and I300T variants were proposed to participate in the post-translational modifications, thus affecting affect protein-ligand interactions. Furthermore, at-risk genetic variants appear to target conserved regions in the alpha helices, random coils, and extracellular loops, resulting in a varied composition of amino acids, charge, hydrophobicity, and spatial architecture. CONCLUSIONS This study manuscript comprehensively analyzes gene variants within the TGF-β1 gene, offering novel insights into their structural and functional implications in interacting with target sites. This study is significant for the development of targeted therapeutic strategies and personalized treatment approaches for patients with inflammatory lung diseases such as IPF.
Collapse
Affiliation(s)
- Wael Bahia
- Research Unit of Clinical and Molecular Biology (UR17ES29), Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Ismael Soltani
- Research Unit of Clinical and Molecular Biology (UR17ES29), Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Anouar Abidi
- Laboratory of Physiology, Faculty of Medicine of Tunis, la Rabta, 1007, Tunis, Tunisia; Laboratory of Functional Physiology and Valorization of Bioresources, High Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Maha Mastouri
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Salima Ferchichi
- Research Unit of Clinical and Molecular Biology (UR17ES29), Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Wassim Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia; Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
6
|
Abuzaid O, Idris AB, Yılmaz S, Idris EB, Idris LB, Hassan MA. Prediction of the most deleterious non-synonymous SNPs in the human IL1B gene: evidence from bioinformatics analyses. BMC Genom Data 2024; 25:56. [PMID: 38858637 PMCID: PMC11163699 DOI: 10.1186/s12863-024-01233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.
Collapse
Affiliation(s)
- Ola Abuzaid
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
- Erciyes Teknopark, Promoseed Biotechnology A.Ş, Kayseri, Turkey
| | - Einass Babikir Idris
- Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | | | - Mohamed A Hassan
- Department of Bioinformatics, Africa City of Technology, Khartoum, Sudan
- Sanimed International Lab and Management L.L.C, Abu Dhabi, UAE
| |
Collapse
|
7
|
Alix JJP, Plesia M, Dudgeon AP, Kendall CA, Hewamadduma C, Hadjivassiliou M, Gorman GS, Taylor RW, McDermott CJ, Shaw PJ, Mead RJ, Day JC. Conformational fingerprinting with Raman spectroscopy reveals protein structure as a translational biomarker of muscle pathology. Analyst 2024; 149:2738-2746. [PMID: 38533726 PMCID: PMC11056770 DOI: 10.1039/d4an00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Neuromuscular disorders are a group of conditions that can result in weakness of skeletal muscles. Examples include fatal diseases such as amyotrophic lateral sclerosis and conditions associated with high morbidity such as myopathies (muscle diseases). Many of these disorders are known to have abnormal protein folding and protein aggregates. Thus, easy to apply methods for the detection of such changes may prove useful diagnostic biomarkers. Raman spectroscopy has shown early promise in the detection of muscle pathology in neuromuscular disorders and is well suited to characterising the conformational profiles relating to protein secondary structure. In this work, we assess if Raman spectroscopy can detect differences in protein structure in muscle in the setting of neuromuscular disease. We utilise in vivo Raman spectroscopy measurements from preclinical models of amyotrophic lateral sclerosis and the myopathy Duchenne muscular dystrophy, together with ex vivo measurements of human muscle samples from individuals with and without myopathy. Using quantitative conformation profiling and matrix factorisation we demonstrate that quantitative 'conformational fingerprinting' can be used to identify changes in protein folding in muscle. Notably, myopathic conditions in both preclinical models and human samples manifested a significant reduction in α-helix structures, with concomitant increases in β-sheet and, to a lesser extent, nonregular configurations. Spectral patterns derived through non-negative matrix factorisation were able to identify myopathy with a high accuracy (79% in mouse, 78% in human tissue). This work demonstrates the potential of conformational fingerprinting as an interpretable biomarker for neuromuscular disorders.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Maria Plesia
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
| | - Alexander P Dudgeon
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, UK
- Department of Physics and Astronomy, University of Exeter, UK
| | - Catherine A Kendall
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, UK
| | - Channa Hewamadduma
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Neurology, Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, UK
| | - Marios Hadjivassiliou
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Neurology, Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - John C Day
- Interface Analysis Centre, School of Physics, University of Bristol, UK
| |
Collapse
|
8
|
Sahoo S, Son S, Lee HK, Lee JY, Gosu V, Shin D. Impact of nsSNPs in human AIM2 and IFI16 gene: a comprehensive in silico analysis. J Biomol Struct Dyn 2024; 42:2603-2615. [PMID: 37139544 DOI: 10.1080/07391102.2023.2206907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
AIM2 and IFI16 are the most studied members of AIM2-like receptors (ALRs) in humans and share a common N-Terminal PYD domain and C-terminal HIN domain. The HIN domain binds to dsDNA in response to the invasion of bacterial and viral DNA, and the PYD domain directs apoptosis-associated speck-like protein via protein-protein interactions. Hence, activation of AIM2 and IFI16 is crucial for protection against pathogenic assaults, and any genetic variation in these inflammasomes can dysregulate the human immune system. In this study, different computational tools were used to identify the most deleterious and disease-causing non-synonymous single nucleotide polymorphisms (nsSNPs) in AIM2 and IFI16 proteins. Molecular dynamic simulation was performed for the top damaging nsSNPs to study single amino acid substitution-induced structural alterations in AIM2 and IFI16. The observed results suggest that the variants G13V, C304R, G266R, and G266D for AIM2, and G13E and C356F are deleterious and affect structural integrity. We hope that the suggested deleterious nsSNPs and structural dynamics of AIM2 and IFI16 variants will guide future research to better understand the function of these variants with large-scale studies and may assist in fresher therapeutics focusing on these polymorphisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sthitaprajna Sahoo
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seungwoo Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hak-Kyo Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jun-Yeong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
9
|
Das P, Majumder R, Sen N, Nandi SK, Ghosh A, Mandal M, Basak P. A computational analysis to evaluate deleterious SNPs of GSK3β, a multifunctional and regulatory protein, for metabolism, wound healing, and migratory processes. Int J Biol Macromol 2024; 256:128262. [PMID: 37989431 DOI: 10.1016/j.ijbiomac.2023.128262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
This study focused on GSK-3β, a critical serine/threonine kinase with diverse cellular functions. However, there is limited understanding of the impact of non-synonymous single nucleotide polymorphisms (nsSNPs) on its structure and function. Through an exhaustive in-silico investigation 12 harmful nsSNPs were predicted from a pool of 172 acquired from the NCBI dbSNP database using 12 established tools that detects deleterious SNPs. Consistently, these nsSNPs were discovered in locations with high levels of conservation. Notably, the three harmful nsSNPs F67C, A83T, and T138I were situated in the active/binding site of GSK-3β, which may affect the protein's capacity to bind to substrates and other proteins. Molecular dynamics simulations revealed that the F67C and T138I mutants had stable structures, indicating rigidness, whereas the A83T mutant was unstable. Analysis of secondary structures revealed different modifications in all mutant forms, which may affect the stability, functioning, and interactions of the protein. These mutations appear to alter the structural dynamics of GSK-3β, which may have functional ramifications, such as the formation of novel secondary structures and variations in coil-to-helix transitions. In conclusion, this study illuminates the possible structural and functional ramifications of these GSK-3 nsSNPs, revealing how protein compactness, stiffness, and interactions may affect biological activities.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Ranabir Majumder
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, India
| | - Nandita Sen
- Molecular biology wing, Dept of Biotechnology, PES University, Bangalore, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati Unit, Guwahati, Assam, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India.
| |
Collapse
|
10
|
Arshad M, Noor N, Iqbal Z, Jaleel H. In silico analysis of missense SNPs in TNFR1a and their possible therapeutic or pathogenic role in immune diseases. Hum Immunol 2023; 84:609-617. [PMID: 37748952 DOI: 10.1016/j.humimm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Tumor necrosis factor alpha (TNFa) is an inflammatory cytokine that is involved in the pathogenesis of various inflammatory disorders including rheumatoid arthritis. TNF-alpha receptor I (TNFR1a) is one of the receptors TNFa binds with for its activation. Any variation in this receptor might affect the role of TNFa in successive events. Amino acid residue substitutions might happen in TNFR1a through non-synonymous single nucleotide polymorphisms (nsSNPs) which may alter the functioning of TNFa, hence, identifying any such substitutions is of paramount significance. In this study, six nsSNPs at five different evolutionary conserved regions are predicted to be detrimental to the structure and/or function of TNFR1a by using numerous computational tools. Their 3D models are also proposed in this study. Besides, they were found to reduce the stability and affect the molecular mechanisms of this protein. Two contrasting possibilities might happen because of these substitutions. One, they might reduce the production of TNFa which is overexpressed in inflammatory diseases, hence can play therapeutic role in such diseases. Second, they might possibly hinder the apoptosis to occur which can effectuate the uncontrolled division of cells, hence can be pathogenic in diseases like cancer. Further investigations on these nsSNPs using animal models and at cellular level will open doors to understand the underlying mechanisms behind various diseases.
Collapse
Affiliation(s)
- Maria Arshad
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.
| | - Nabeel Noor
- Shalamar Medical & Dental College, Lahore, Pakistan
| | - Zunair Iqbal
- Shalamar Medical & Dental College, Lahore, Pakistan
| | - Hadiqa Jaleel
- Department of Research & Innovation, Shalamar Institute of Health Sciences, Lahore, Pakistan
| |
Collapse
|
11
|
Egorova TV, Polikarpova AV, Vassilieva SG, Dzhenkova MA, Savchenko IM, Velyaev OA, Shmidt AA, Soldatov VO, Pokrovskii MV, Deykin AV, Bardina MV. CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein. Mol Ther Methods Clin Dev 2023; 30:161-180. [PMID: 37457303 PMCID: PMC10339130 DOI: 10.1016/j.omtm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.
Collapse
Affiliation(s)
- Tatiana V. Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Anna V. Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A. Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M. Savchenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Oleg A. Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna A. Shmidt
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladislav O. Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Mikhail V. Pokrovskii
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Alexey V. Deykin
- Marlin Biotech LLC, Sochi 354340, Russia
- Joint Center for Genetic Technologies, Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod 308015, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
12
|
Rezvannejad E, Mousavizadeh S. Identification genetic variations in some heat shock protein genes of Tali goat breed and study their structural and functional effects on relevant proteins. Vet Med Sci 2023; 9:2247-2259. [PMID: 37530404 PMCID: PMC10508551 DOI: 10.1002/vms3.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Animals of different regions have adapted to adverse environmental conditions by modifying their phenotypic and genotypic characteristics in the long run. OBJECTIVES In this study, the effect of genetic variations of 10 heat shock protein (HSP) genes (HSP70A4, HSP70A9, HSP40C17, HSP40C27, HSP90AA1, HSP90AB1, HSPB7, HSPB11, HSPD1 and HSPE1) on the three-dimensional protein structure and function of proteins in Tali goat (a tropical breed) were studied and were compared with Saanen goat (as a sensitive breed). METHODS A pooled DNA of 15 samples from blood was sequenced and mapped to the goat reference sequence. The bioinformatics analysis was used to identify nsSNPs in the Tali breed and was compared with the Saanen goat. Four online bioinformatics tools (Sorting Intolerant from Tolerant, Protein Variation Effect Analyzer, Polymorphism Phenotyping version2 and Single Nucleotide Polymorphism Database and Gene Ontology) showed three deleterious missense nsSNPs and seven natural missense SNPs in these HSPs genes of Tali goat. RESULTS Out of 10 reported nsSNPs, 5 nsSNPs in HSP70A4, 1 nsSNP inHSP70A9, 2 nsSNPs in HSP40C17, 1 nsSNP in HSP40C27 and 1 nsSNP in HSPD1 were detected. ConSurf tools showed that the majority of the predicted nsSNPs occur in conserved sites. Moreover, several post-translational modification (PTM) predictors computed the probability of post-translation change of nsSNPs. The putative phosphorylation and glycosylation sites in HSPs proteins were substitutions rs669769139 and rs666336692 of the Tali goat breed. CONCLUSION These results on the effect of type of genetic variants on the function of HSP proteins will assist to predict the resistance to hard conditions in goat breeds. Considering that the identified SNPid rs669769139 (S248) which is located on the N-terminal ATPase domain of HSP70A4 is a PTM site with a highly conserved score and a natural substitution on changing the stability and benign protein that can affect the functional and structural characterization of HSPs protein for adaptation to the local climate.
Collapse
Affiliation(s)
- Elham Rezvannejad
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | | |
Collapse
|
13
|
Egorova TV, Galkin II, Velyaev OA, Vassilieva SG, Savchenko IM, Loginov VA, Dzhenkova MA, Korshunova DS, Kozlova OS, Ivankov DN, Polikarpova AV. In-Frame Deletion of Dystrophin Exons 8-50 Results in DMD Phenotype. Int J Mol Sci 2023; 24:ijms24119117. [PMID: 37298068 DOI: 10.3390/ijms24119117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The "reading-frame rule" states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several exons, new genome editing tools enable reading-frame restoration in DMD with the production of BMD-like dystrophins. However, not every truncated dystrophin with a significant internal loss functions properly. To determine the effectiveness of potential genome editing, each variant should be carefully studied in vitro or in vivo. In this study, we focused on the deletion of exons 8-50 as a potential reading-frame restoration option. Using the CRISPR-Cas9 tool, we created the novel mouse model DMDdel8-50, which has an in-frame deletion in the DMD gene. We compared DMDdel8-50 mice to C57Bl6/CBA background control mice and previously generated DMDdel8-34 KO mice. We discovered that the shortened protein was expressed and correctly localized on the sarcolemma. The truncated protein, on the other hand, was unable to function like a full-length dystrophin and prevent disease progression. On the basis of protein expression, histological examination, and physical assessment of the mice, we concluded that the deletion of exons 8-50 is an exception to the reading-frame rule.
Collapse
Affiliation(s)
- Tatiana V Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Ivan I Galkin
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Oleg A Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M Savchenko
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vyacheslav A Loginov
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Diana S Korshunova
- Core Facilities, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S Kozlova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna V Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| |
Collapse
|
14
|
Singh S, Sharma S, Baranwal M. Identification of SNPs in hMSH3/MSH6 interaction domain affecting the structure and function of MSH2 protein. Biotechnol Appl Biochem 2022; 69:2454-2465. [PMID: 34837403 DOI: 10.1002/bab.2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
MutS homolog 2 (MSH2) is a mismatch repair gene that plays a critical role in DNA repair pathways, and its mutations are associated with different cancers. The present study aimed to find out the single nucleotide polymorphisms (SNPs) of MSH2 protein associated with causing structural and functional changes leading to the development of cancer with the help of computational tools. Four different tools for predicting deleterious SNPs (SIFT, PROVEAN, PANTHER, and PolyPhen), two tools each for identifying disease association (PhD-SNP and SNP&GO) and estimating stability (I-mutant and MUPro) were employed. Homology modeling, energy minimization, and root mean square deviation calculation were used to estimate structural variations. Twenty-seven SNPs and five SNPs (double amino acid change) were identified based on a consensus approach that might be associated with the structural and functional change in MSH2 protein. Molecular docking reveals that six SNPs affect the interaction of MSH2 and MSH6. Twelve identified SNPs were reported to be linked with hereditary nonpolyposis, colorectal cancer, and Lynch syndrome. Further, selected SNPs need to be validated in an in vitro system for their precise association with cancer predisposition.
Collapse
Affiliation(s)
- Sidhartha Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
15
|
Alix JJP, Plesia M, Hool SA, Coldicott I, Kendall CA, Shaw PJ, Mead RJ, Day JC. Fibre optic Raman spectroscopy for the evaluation of disease state in Duchenne muscular dystrophy: an assessment using the mdx model and human muscle. Muscle Nerve 2022; 66:362-369. [PMID: 35762576 PMCID: PMC9541045 DOI: 10.1002/mus.27671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022]
Abstract
Introduction/Aims Raman spectroscopy is an emerging technique for the evaluation of muscle disease. In this study we evaluate the ability of in vivo intramuscular Raman spectroscopy to detect the effects of voluntary running in the mdx model of Duchenne muscular dystrophy (DMD). We also compare mdx data with muscle spectra from human DMD patients. Methods Thirty 90‐day‐old mdx mice were randomly allocated to an exercised group (48‐hour access to a running wheel) and an unexercised group (n = 15 per group). In vivo Raman spectra were collected from both gastrocnemius muscles and histopathological assessment subsequently performed. Raman data were analyzed using principal component analysis–fed linear discriminant analysis (PCA‐LDA). Exercised and unexercised mdx muscle spectra were compared with human DMD samples using cosine similarity. Results Exercised mice ran an average of 6.5 km over 48 hours, which induced a significant increase in muscle necrosis (P = .03). PCA‐LDA scores were significantly different between the exercised and unexercised groups (P < .0001) and correlated significantly with distance run (P = .01). Raman spectra from exercised mice more closely resembled human spectra than those from unexercised mice. Discussion Raman spectroscopy provides a readout of the biochemical alterations in muscle in both the mdx mouse and human DMD muscle.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - Maria Plesia
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | - Sarah A Hool
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - John C Day
- Interface Analysis Centre, School of Physics, University of Bristol
| |
Collapse
|
16
|
Ali H, Unar A, Zubair M, Dil S, Ullah F, Khan I, Hussain A, Shi Q. In silico analysis of a novel pathogenic variant c.7G > A in C14orf39 gene identified by WES in a Pakistani family with azoospermia. Mol Genet Genomics 2022; 297:719-730. [PMID: 35305148 DOI: 10.1007/s00438-022-01876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
Infertility is a multifactorial disorder that affects approximately 12% of couples of childbearing ages worldwide. Few studies have been conducted to understand the genetic causes of infertility in depth. The synaptonemal complex (SC), which is essential for the progression of meiosis, is a conserved tripartite structure that binds homologous chromosomes together and is thus required for fertility. This study investigated genetic causes of infertility in a Pakistani consanguineous family containing two patients suffering from non-obstructive azoospermia (NOA). We performed whole-exome sequencing, followed by Sanger sequencing, and identified a novel pathogenic variant (c.7G > A [p.D3N]) in the SC coding gene C14orf39, which was recessively co-segregated with NOA. In silico analysis revealed that charges on wild-type residues were lost, which may result in loss of interactions with other molecules and residues, and a reduction in protein stability occurred, which was caused by the p.D3N mutation. The novel variant generated the mutant protein C14ORF39D3N, and homozygous mutations in C14orf39 resulted in NOA. The transcriptome profile of C14ORF39 shows that it is specifically expressed in early brain development, which suggests that research in this area is required to study other functions of C14ORF39 in addition to its role in the germline. This research highlights the conserved role of C14orf39/SIX6OS1 in assembly of the SC and its indispensable role in facilitating genetic diagnosis in patients with infertility, which may enable the development of future treatments.
Collapse
Affiliation(s)
- Haider Ali
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Ahsanullah Unar
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Muhammad Zubair
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Sobia Dil
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Farman Ullah
- Center of Biotechnology and Microbiology, University of Swat, Swat, 19120, Pakistan
| | - Ihsan Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Ansar Hussain
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
17
|
Avsar O. Investigation of Putative Functional SNPs of Human HAT1 Protein: A Comprehensive “in silico” Study. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Das SC, Rahman MA, Das Gupta S. In-silico analysis unravels the structural and functional consequences of non-synonymous SNPs in the human IL-10 gene. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that affects different immune cells. It is also associated with the stimulation of the T and B cells for the production of antibodies. Several genetic polymorphisms in the IL-10 gene have been reported to cause or aggravate certain diseases like inflammatory bowel disease, rheumatoid arthritis, systemic sclerosis, asthma, etc. However, the disease susceptibility and abnormal function of the mutated IL-10 variants remain obscure.
Results
In this study, we used seven bioinformatics tools (SIFT, PROVEAN, PMut, PANTHER, PolyPhen-2, PHD-SNP, and SNPs&GO) to predict the disease susceptible non-synonymous SNPs (nsSNPs) of IL-10. Nine nsSNPs of IL-10 were predicted to be potentially deleterious: R42G, R45Q, F48L, E72G, M95T, A98D, R125S, Y155C, and I168T. Except two, all of the putative deleterious mutations are found in the highly conserved region of IL-10 protein structure, thus affecting the protein's stability. The 3-D structure of mutant proteins was modeled by project HOPE, and the protein–protein interactions were assessed with STRING. The predicted nsSNPs: R42Q, R45Q, F48L, E72G, and I168T are situated in the binding site region of the IL-10R1 receptor. Disruption of binding affinity with its receptor leads to deregulation of the JAK-STAT pathway and results in enhanced inflammation that imbalance in cellular signaling. Finally, Kaplan–Meier Plotter analysis displayed that deregulation of IL-10 expression affects gastric and ovarian cancer patients' survival rate. Thus, IL-10 could be useful as a potential prognostic marker gene for some cancers.
Conclusion
This study has determined the deleterious nsSNPs of IL-10 that might contribute to the malfunction of IL-10 protein and ultimately lead to the IL-10 associated diseases.
Collapse
|
19
|
Udosen B, Soremekun O, Ekenna C, Idowu Omotuyi O, Chikowore T, Nashiru O, Fatumo S. In-silico analysis reveals druggable single nucleotide polymorphisms in angiotensin 1 converting enzyme involved in the onset of blood pressure. BMC Res Notes 2021; 14:457. [PMID: 34930451 PMCID: PMC8686250 DOI: 10.1186/s13104-021-05879-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The Angiotensin 1 converting enzyme (ACE1) gene plays a critical role in regulating blood pressure and thus, it has become a major therapeutic target of antihypertensives. Single nucleotide polymorphisms (SNPs) occurring within a gene most especially at the functional segment of the genes alter the structure-function relationship of that gene. RESULTS Our study revealed that five nsSNPs of the ACE1 gene were found to be potentially deleterious and damaging and they include rs2229839, rs14507892, rs12709442, and rs4977 at point mutations P351R, R953Q, I1018T, F1051V, and T1187M. The protein stability predictive tools revealed that all the nsSNPs decreased stability of the protein and the Consurf server which estimates the evolutionary conservation profile of a protein showed that three mutants were in the highly conserved region. In conclusion, this study predicted potential druggable deleterious mutants that can be further explored to understand the pathological basis of cardiovascular disease.
Collapse
Affiliation(s)
- Brenda Udosen
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- The African Center of Excellence in Bioinformatics of Bamako (ACE-B), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | | | - Olaposi Idowu Omotuyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oyekanmi Nashiru
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda.
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria.
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
20
|
Pathogenic genetic variants from highly connected cancer susceptibility genes confer the loss of structural stability. Sci Rep 2021; 11:19264. [PMID: 34584144 PMCID: PMC8479081 DOI: 10.1038/s41598-021-98547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic polymorphisms in DNA damage repair and tumor suppressor genes have been associated with increasing the risk of several types of cancer. Analyses of putative functional single nucleotide polymorphisms (SNP) in such genes can greatly improve human health by guiding choice of therapeutics. In this study, we selected nine genes responsible for various cancer types for gene enrichment analysis and found that BRCA1, ATM, and TP53 were more enriched in connectivity. Therefore, we used different computational algorithms to classify the nonsynonymous SNPs which are deleterious to the structure and/or function of these three proteins. The present study showed that the major pathogenic variants (V1687G and V1736G of BRCA1, I2865T and V2906A of ATM, V216G and L194H of TP53) might have a greater impact on the destabilization of the proteins. To stabilize the high-risk SNPs, we performed mutation site-specific molecular docking analysis and validated using molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) studies. Additionally, SNPs of untranslated regions of these genes affecting miRNA binding were characterized. Hence, this study will assist in developing precision medicines for cancer types related to these polymorphisms.
Collapse
|
21
|
Youssef YH, Makkeyah SM, Soliman AF, Meky NH. Influence of genetic variants in asparaginase pathway on the susceptibility to asparaginase-related toxicity and patients' outcome in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2021; 88:313-321. [PMID: 33959786 DOI: 10.1007/s00280-021-04290-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asparaginase (ASNase) is a key component in the treatment protocols of childhood acute lymphoblastic leukemia (ALL). Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) mediate the anti-leukemic effect of ASNase. Only a few reports studied the association between polymorphisms in these genes and treatment-related toxicity and response. Therefore, the current study aimed to investigate the association of ASNS and ATF5 polymorphisms with the susceptibility to ASNase-related toxicity and disease outcome in a population of childhood ALL Egyptian patients. METHODS In this study, 88 children with ALL were enrolled and genotyped for ASNS T629A and ATF5 C362T polymorphisms using allelic discrimination assay. RESULTS The studied polymorphisms did not associate with hypersensitivity or thrombosis, while the ATF5 C362T polymorphism was associated significantly with decreased ASNase-associated pancreatitis (AAP) risk under the dominant model. Patients carrying TT/CT genotypes of ATF5 C362T polymorphism had a significantly better overall survival (OS) and longer event-free survival (EFS) compared to patients with CC genotype. Multivariate analysis confirmed the independent prognostic value of the ATF5 C362T dominant model. CONCLUSION ATF5 362TT and CT genotypes were associated with decreased risk to develop AAP and better disease outcome demonstrating a low risk for events and superior survival.
Collapse
Affiliation(s)
- Yomna H Youssef
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sara M Makkeyah
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Nefissa H Meky
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
Hasan MA, Hakim FT, Islam Shovon MT, Islam MM, Islam MS, Islam MA. The investigation of nonsynonymous SNPs of human SLC6A4 gene associated with depression: An in silico approach. Heliyon 2021; 7:e07815. [PMID: 34466701 PMCID: PMC8384904 DOI: 10.1016/j.heliyon.2021.e07815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022] Open
Abstract
Genetic polymorphism of the SLC6A4 gene is associated with several behavioral disorders, including depression. Since studying the total nonsynonymous single nucleotide polymorphisms (nsSNPs) of the SLC6A4 gene at the population level is a difficult task, we aim to utilize in silico approach to detect the most deleterious nsSNPs of the SLC6A4 gene. In our study, 7 computational tools were used in the initial stage, including SIFT, Polyphen-2, PROVEAN, SNAP2, PhD-SNP, PANTHER, and SNPs&GO to find out the most damaging nsSNPs. In the second phase, we performed structural, functional, and stability analysis of SLC6A4 protein by popular computation tools, including I-Mutant 2.0 and MutPred2. Also, the ConSurf server was utilized to find the conserved region of the SLC6A4 protein to determine the relationship between these conserved regions with high-risk nsSNPs. Based on these analyses, 5 high-risk mutations of the SLC6A4 protein were selected. Then, we carried out comparative modeling by using the Robetta server and aligned the mutant protein model with the native protein structure. Later, we performed the post-translational modification and functional domain analysis of the SLC6A4 protein. This study concludes that Arginine → Tryptophan at position 79 and Arginine → Cysteine at position 104 are the two significant mutations in SLC6A4 protein which might play an essential role in causing diseases. Future studies should take these high-risk nsSNPs (rs1221448303, rs200953188) into consideration while exploring diseases related to the SLC6A4 gene. Besides, our research is the first-ever comprehensive in silico investigation of the SLC6A4 gene. Thus, the findings of this study could be beneficial for developing precision medicines against diseases caused by SLC6A4 malfunction. Furthermore, extensive wet-lab research and experiments on various model organisms might be helpful to investigate the precise role of these damaging nsSNPs of the SLC6A4 gene.
Collapse
Affiliation(s)
- Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Fuad Taufiqul Hakim
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Md. Tanjil Islam Shovon
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Md. Mirajul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Md. Samiul Islam
- RT-PCR Laboratory, Department of Microbiology, Rangpur Medical College, Rangpur-5403, Bangladesh
| | - Md. Asadul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| |
Collapse
|
23
|
In silico screening and exploration into phenotypic alterations of deleterious oncogenic single nucleotide polymorphisms in HSPB1 gene. Genomics 2021; 113:2812-2825. [PMID: 34129932 DOI: 10.1016/j.ygeno.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
A small heat shock protein, HSP27, encoded by HSPB1 gene strongly favors survival, proliferation and metastasis of cancer cells and its expression is dependent on post-translational modifications like phosphorylation. This study performed an extensive in silico screening of 20 deleterious non-synonymous SNPs in the coding region of HSPB1 gene, among which four were identified to be cancer associated. The SNP variant I181S introduced a new phosphorylation site in position 181, which might elevate the protein's activation potential. Emergence of other post-translational modifications was also observed in SNP variants: L144P and E130K.Significant conformational changes were observed in I181S, L144P and E130K SNP variants with respect to wild-type HSP27. These SNPs appear in one among 105 individuals, making them more susceptible towards cancer. This study would therefore, instigate development of novel biomarkers for cancer risk detection and would provide a detailed understanding towards varied cancer susceptibility of human population.
Collapse
|
24
|
Micheletto MLJ, Hermes TDA, Bertassoli BM, Petri G, Perez MM, Fonseca FLA, Carvalho AADS, Feder D. Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophin-deficient mdx mice. Int J Exp Pathol 2021; 102:11-21. [PMID: 33296126 PMCID: PMC7839951 DOI: 10.1111/iep.12383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dystrophin deficiency makes the sarcolemma fragile and susceptible to degeneration in Duchenne muscular dystrophy. The proteasome is a multimeric protease complex and is central to the regulation of cellular proteins. Previous studies have shown that proteasome inhibition improved pathological changes in mdx mice. Ixazomib is the first oral proteasome inhibitor used as a therapy in multiple myeloma. This study investigated the effects of ixazomib on the dystrophic muscle of mdx mice. MDX mice were treated with ixazomib (7.5 mg/kg/wk by gavage) or 0.2 mL of saline for 12 weeks. The Kondziela test was performed to measure muscle strength. The tibialis anterior (TA) and diaphragm (DIA) muscles were used for morphological analysis, and blood samples were collected for biochemical measurement. We observed maintenance of the muscle strength in the animals treated with ixazomib. Treatment with ixazomib had no toxic effect on the mdx mouse. The morphological analysis showed a reduction in the inflammatory area and fibres with central nuclei in the TA and DIA muscles and an increase in the number of fibres with a diameter of 20 µm2 in the DIA muscle after treatment with ixazomib. There was an increase in the expression of dystrophin and utrophin in the TA and DIA muscles and a reduction in the expression of osteopontin and TGF-β in the DIA muscle of mdx mice treated with ixazomib. Ixazomib was thus shown to increase the expression of dystrophin and utrophin associated with improved pathological and functional changes in the dystrophic muscles of mdx mice.
Collapse
Affiliation(s)
| | - Tulio de Almeida Hermes
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
- Departament of AnatomyFederal University of AlfenasAlfenasBrazil
| | | | - Giuliana Petri
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| | | | | | | | - David Feder
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| |
Collapse
|
25
|
Miao L, Wang B, Ji J, Wan L, Yin L, Zhu B, Zhang J, Pu Y. CARD8 polymorphism rs2043211 protects against noise-induced hearing loss by causing the dysfunction of CARD8 protein. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8626-8636. [PMID: 33067783 DOI: 10.1007/s11356-020-11193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Inflammation is a complicated process and is considered to be responsible for the development of noise-induced hearing loss (NIHL). CARD8 is an important component of inflammasome that has been implicated in inflammation. To decide the relationship between the polymorphisms of CARD8 gene and NIHL risk and deduce the potential mechanism, three SNPs (rs2043211, rs1062808, and rs12459322) were genotyped in a Chinese population consisting of 610 NIHL cases and 612 normal hearing controls. The possible impacts of SNPs on CARD8 structure and function were assessed using a variety of bioinformatics tools. Plasmids expressing wild-type and/or mutated CARD8 were transfected into HEK293 cells to verify the effect of SNPs on CARD8 protein expression level by western blot. The results revealed that rs2043211 AA genotype and A allele were associated with decreased risk of NIHL. Stratified analysis found that the male, drinking and exposed to noise ≥ 92 dB, subjects harboring rs2043211 A allele had a low risk of NIHL. The haplotype AGG (rs2043211-rs1062808-rs12459322) was significantly associated with a decreased risk of NIHL. SNP rs2043211 was predicted to be deleterious and affects CARD8 protein structure and stability. Furthermore, the functional experiment showed the mutant CARD8 could significantly decrease the CARD8 protein expression level. This study confirms that rs2043211 A allele may reduce NIHL risk by causing the loss of PPI combined with the decreased CARD8 expression level leading to CARD8 functional changes, and it may be one valuable genetic biomarker of NIHL susceptibility for Chinese noise-exposed workers.
Collapse
Affiliation(s)
- Long Miao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Liu Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Baoli Zhu
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
26
|
Soltani I, Bahia W, Radhouani A, Mahdhi A, Ferchichi S, Almawi WY. Comprehensive in-silico analysis of damage associated SNPs in hOCT1 affecting Imatinib response in chronic myeloid leukemia. Genomics 2020; 113:755-766. [PMID: 33075481 DOI: 10.1016/j.ygeno.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Non-synonymous single nucleotide polymorphisms (nsSNPs) in hOCT1 (encoded by SLC22A1 gene) are expected to affect Imatinib uptake in chronic myeloid leukemia (CML). In this study, sequence homology-based genetic analysis of a set of 270 coding SNPs identified 18 nsSNPs to be putatively damaging/deleterious using eight different algorithms. Subsequently, based on conservation of amino acid residues, stability analysis, posttranscriptional modifications, and solvent accessibility analysis, the possible structural-functional relationship was established for high-confidence nsSNPs. Furthermore, based on the modeling results, some dissimilarities of mutant type amino acids from wild-type amino acids such as size, charge, interaction and hydrophobicity were revealed. Three highly deleterious mutations consisting of P283L, G401S and R402G in SLC22A1 gene that may alter the protein structure, function and stability were identified. These results provide a filtered data to explore the effect of uncharacterized nsSNP and find their association with Imatinib resistance in CML.
Collapse
Affiliation(s)
- Ismael Soltani
- Molecular and Cellular Hematology Laboratory, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| | - Wael Bahia
- Research Unit of Clinical and Molecular Biology, Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Assala Radhouani
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Salima Ferchichi
- Research Unit of Clinical and Molecular Biology, Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Wassim Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
27
|
Meng J, Counsell J, Morgan JE. Effects of Mini-Dystrophin on Dystrophin-Deficient, Human Skeletal Muscle-Derived Cells. Int J Mol Sci 2020; 21:E7168. [PMID: 32998454 PMCID: PMC7582244 DOI: 10.3390/ijms21197168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We are developing a novel therapy for Duchenne muscular dystrophy (DMD), involving the transplantation of autologous, skeletal muscle-derived stem cells that have been genetically corrected to express dystrophin. Dystrophin is normally expressed in activated satellite cells and in differentiated muscle fibres. However, in past preclinical validation studies, dystrophin transgenes have generally been driven by constitutive promoters that would be active at every stage of the myogenic differentiation process, including in proliferating muscle stem cells. It is not known whether artificial dystrophin expression would affect the properties of these cells. AIMS Our aims are to determine if mini-dystrophin expression affects the proliferation or myogenic differentiation of DMD skeletal muscle-derived cells. METHODS Skeletal muscle-derived cells from a DMD patient were transduced with lentivirus coding for mini-dystrophins (R3-R13 spectrin-like repeats (ΔR3R13) or hinge2 to spectrin-like repeats R23 (ΔH2R23)) with EGFP (enhanced green fluorescence protein) fused to the C-terminus, driven by a constitutive promoter, spleen focus-forming virus (SFFV). Transduced cells were purified on the basis of GFP expression. Their proliferation and myogenic differentiation were quantified by ethynyl deoxyuridine (EdU) incorporation and fusion index. Furthermore, dystrophin small interfering ribonucleic acids (siRNAs) were transfected to the cells to reverse the effects of the mini-dystrophin. Finally, a phospho-mitogen-activated protein kinase (MAPK) array assay was performed to investigate signalling pathway changes caused by dystrophin expression. RESULTS Cell proliferation was not affected in cells transduced with ΔR3R13, but was significantly increased in cells transduced with ΔH2R23. The fusion index of myotubes derived from both ΔR3R13- and ΔH2R23 -expressing cells was significantly compromised in comparison to myotubes derived from non-transduced cells. Dystrophin siRNA transfection restored the differentiation of ΔH2R23-expressing cells. The Erk1/2- signalling pathway is altered in cells transduced with mini-dystrophin constructs. CONCLUSIONS Ectopic expression of dystrophin in cultured human skeletal muscle-derived cells may affect their proliferation and differentiation capacity. Caution should be taken when considering genetic correction of autologous stem cells to express dystrophin driven by a constitutive promoter.
Collapse
MESH Headings
- Cell Differentiation
- Cell Engineering/methods
- Cell Proliferation
- Dystrophin/antagonists & inhibitors
- Dystrophin/genetics
- Dystrophin/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Lentivirus/genetics
- Lentivirus/metabolism
- MAP Kinase Signaling System
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Plasmids/chemistry
- Plasmids/metabolism
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Spectrin/genetics
- Spectrin/metabolism
- Transduction, Genetic
- Transgenes
Collapse
Affiliation(s)
- Jinhong Meng
- Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (J.M.); (J.C.)
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK
| | - John Counsell
- Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (J.M.); (J.C.)
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (J.M.); (J.C.)
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK
| |
Collapse
|
28
|
Teramoto N, Sugihara H, Yamanouchi K, Nakamura K, Kimura K, Okano T, Shiga T, Shirakawa T, Matsuo M, Nagata T, Daimon M, Matsuwaki T, Nishihara M. Pathological evaluation of rats carrying in-frame mutations in the dystrophin gene: a new model of Becker muscular dystrophy. Dis Model Mech 2020; 13:dmm044701. [PMID: 32859695 PMCID: PMC7541341 DOI: 10.1242/dmm.044701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Dystrophin, encoded by the DMD gene on the X chromosome, stabilizes the sarcolemma by linking the actin cytoskeleton with the dystrophin-glycoprotein complex (DGC). In-frame mutations in DMD cause a milder form of X-linked muscular dystrophy, called Becker muscular dystrophy (BMD), characterized by the reduced expression of truncated dystrophin. So far, no animal model with in-frame mutations in Dmd has been established. As a result, the effect of in-frame mutations on the dystrophin expression profile and disease progression of BMD remains unclear. In this study, we established a novel rat model carrying in-frame Dmd gene mutations (IF rats) and evaluated the pathology. We found that IF rats exhibited reduced expression of truncated dystrophin in a proteasome-independent manner. This abnormal dystrophin expression caused dystrophic changes in muscle tissues but did not lead to functional deficiency. We also found that the expression of additional dystrophin named dpX, which forms the DGC in the sarcolemma, was associated with the appearance of truncated dystrophin. In conclusion, the outcomes of this study contribute to the further understanding of BMD pathology and help elucidate the efficiency of dystrophin recovery treatments in Duchenne muscular dystrophy, a more severe form of X-linked muscular dystrophy.
Collapse
Affiliation(s)
- Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichi Kimura
- Department of General Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoko Okano
- Department of Laboratory Medicine, The University of Tokyo Hospital, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takanori Shiga
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taku Shirakawa
- Research Center for Locomotion Biology, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masao Daimon
- Department of Laboratory Medicine, The University of Tokyo Hospital, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
29
|
Morpholino Oligomer-Induced Dystrophin Isoforms to Map the Functional Domains in the Dystrophin Protein. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:263-272. [PMID: 33230432 PMCID: PMC7516190 DOI: 10.1016/j.omtn.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Dystrophin plays a crucial role in maintaining sarcolemma stability during muscle contractions, and mutations that prevent the expression of a functional protein cause Duchenne muscular dystrophy (DMD). Antisense oligonucleotide-mediated manipulation of pre-messenger RNA splicing to bypass Duchenne-causing mutations and restore functional dystrophin expression has entered the clinic for the most common DMD mutations. The rationale of "exon skipping" is based upon genotype-phenotype correlations observed in Becker muscular dystrophy, a milder allelic disorder generally characterized by in-frame deletions and internally truncated but semi-functional dystrophin isoforms. However, there is a lack of genotype-phenotype correlations downstream of DMD exon 55, as deletions in this region are rare and most single exon deletions would disrupt the reading frame. Consequently, the amenability of mutations in this region of the DMD gene to exon skipping strategies remains unknown. Here, we induced "Becker muscular dystrophy-like" in-frame dystrophin isoforms in vivo by intraperitoneal injection of peptide-conjugated phosphorodiamidate morpholino oligomers targeting selected exons. The dystrophin isoform encoded by the transcript lacking exons 56+57 appears to be more functional than that encoded by the 58+59-deleted transcript, as determined by higher dystrophin expression, stabilized β-dystroglycan, and less severe dystrophic pathology, indicating some potential for the strategy to address Duchenne-causing mutations affecting these exons.
Collapse
|
30
|
Kudryavtseva SS, Stroylova YY, Kurochkina LP, Muronetz VI. The chaperonin TRiC is blocked by native and glycated prion protein. Arch Biochem Biophys 2020; 683:108319. [PMID: 32101762 DOI: 10.1016/j.abb.2020.108319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
Eukaryotic double-ring chaperonin TRiC is an ATP-dependent protein-folding machine. Most of its substrates are known to form large ordered structures from multiple polypeptide chains. Since these structures are similar to fibrillar and oligomeric forms of amyloidogenic proteins, we hypothesized that TRiC may play a role in the development of neurodegenerative diseases of amyloid nature including prion diseases. Enzyme-linked immunosorbent assay showed that monomeric, oligomeric and fibrillar forms of prion protein (PrP) bind strongly to chaperonin TRiC, whereas glycation reduces the prion protein affinity for chaperonin. Nevertheless, dynamic light scattering, electron microscopy and thioflavin T fluorescence confirmed that all studied forms of PrP undergo an amyloid transformation after interaction with chaperonin, but different forms of prion protein are capable of having different effects on the functional state of TRiC. For example, prion protein monomers completely block its ability to reactivate the chaperonin's natural substrate - sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). At the same time, PrP oligomers and fibrils only partially prevent the reactivation of GAPDS upon the action of TRiC. The monomeric forms of prion protein glycated by methylglyoxal do not inhibit, but only slow down the chaperone-dependent reactivation of GAPDS. Thus, the interaction of amyloidogenic proteins with chaperonins could cause cell malfunction.
Collapse
Affiliation(s)
- S S Kudryavtseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Y Y Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - L P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V I Muronetz
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
31
|
Upadhyay V, Bandi S, Panja S, Saba L, Mallela KMG. Tissue-Specificity of Dystrophin-Actin Interactions: Isoform-Specific Thermodynamic Stability and Actin-Binding Function of Tandem Calponin-Homology Domains. ACS OMEGA 2020; 5:2159-2168. [PMID: 32064376 PMCID: PMC7016916 DOI: 10.1021/acsomega.9b02911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Genetic mutations in Duchenne muscular dystrophy (DMD) gene affecting the expression of dystrophin protein lead to a number of muscle disorders collectively called dystrophinopathies. In addition to muscle dystrophin, mutations in brain-specific dystrophin isoforms, in particular those that are expressed in the brain cortex and Purkinje neurons, result in cognitive impairment associated with DMD. These isoforms carry minor variations in the flanking region of the N-terminal actin-binding domain (ABD1) of dystrophin, which is composed of two calponin-homology (CH) domains in tandem. Determining the effect of these sequence variations is critical for understanding the mechanisms that govern varied symptoms of the disease. We studied the impact of differences in the N-terminal flanking region on the structure and function of dystrophin tandem CH domain isoforms. The amino acid changes did not affect the global structure of the protein but drastically affected the thermodynamic stability, with the muscle isoform more stable than the brain and Purkinje isoforms. Actin binding investigated with actin from different sources (skeletal muscle, smooth muscle, cardiac muscle, and platelets) revealed that the muscle isoform binds to filamentous actin (F-actin) with a lower affinity compared to the brain and Purkinje isoforms, and a similar trend was observed with actin from different sources. In addition, all isoforms showed a higher affinity to smooth muscle actin in comparison to actin from other sources. In conclusion, tandem CH domain isoforms might be using minor sequence variations in the N-terminal flanking regions to modulate their thermodynamic stability and actin-binding function, thus leading to specificity in dystrophin-actin interactions in various tissues.
Collapse
|
32
|
Hassan MO, Gassim DA, Albakrye AM, Elnasri HA, Khaier MA. In silico analysis of likely pathogenic variants in human GGCX gene. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Al Mehdi K, Fouad B, Zouhair E, Boutaina B, Yassine N, Chaimaa AEC, Najat S, Hassan R, Rachida R, Abdelhamid B, Halima N. Molecular Modelling and Dynamics Study of nsSNP in STXBP1 Gene in Early Infantile Epileptic Encephalopathy Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4872101. [PMID: 31976320 PMCID: PMC6955126 DOI: 10.1155/2019/4872101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Early Infantile Epileptic Encephalopathy (known as Ohtahara Syndrome) is one of the most severe and earliest forms of epilepsy, characterized by early seizures onset. It affects newborns and children between two and six years old. Among the genes that have been associated with early infantile epileptic encephalopathy, the STXBP1 gene, which encodes the Syntaxin binding protein1a that is involved in SNARE complex formation, contributes to synaptic vesicles exocytosis. The aim of this study was to identify the most pathogenic polymorphisms of STXBP1 gene and determine their impact on the structure and stability of Stxbp1 protein. The high-risk nonsynonymous single nucleotide polymorphisms (nsSNPs) in the STXBP1 gene were predicted using 13 bioinformatics tools. The conservation analysis was realized by CONSURF web server. The analysis of the impact of the pathogenic SNPs on the structure of Stxbp1 protein was realized using YASARA software, and the molecular dynamics simulation was performed using GROMACS software. Out of 245 nsSNPs, we identified 11 (S42P, H103D R190W, R235G, D238E, L256P, P335S, C354Y, L365V, R406C, and G544D) as deleterious using in silico prediction tools. Conservation analysis results revealed that all these nsSNPs were located in conserved regions. The comparison of the hydrogen and hydrophobic interactions in the wild type Stxbp1 structure and its mutant forms showed that all these nsSNPs affect the protein structure on different levels. The molecular dynamics simulations revealed that the total of nsSNPs affect the protein stability, residual fluctuation, and the compaction at different levels. This study provides helpful information on high risk nsSNPs that may affect the Stxbp1 protein structure and function. Thus, these variants should be taken into consideration during the genetic screening of patients suffering from early infantile epileptic encephalopathy.
Collapse
Affiliation(s)
- Krami Al Mehdi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Benhnini Fouad
- Laboratory of Cellular Signaling, Faculty of Sciences Meknes, Moulay Ismail University, Morocco
| | - Elkarhat Zouhair
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Belkady Boutaina
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Naasse Yassine
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Ait El Cadi Chaimaa
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Sifeddine Najat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Rouba Hassan
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Roky Rachida
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Barakat Abdelhamid
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Nahili Halima
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| |
Collapse
|
34
|
Gibbs EM, Barthélémy F, Douine ED, Hardiman NC, Shieh PB, Khanlou N, Crosbie RH, Nelson SF, Miceli MC. Large in-frame 5' deletions in DMD associated with mild Duchenne muscular dystrophy: Two case reports and a review of the literature. Neuromuscul Disord 2019; 29:863-873. [PMID: 31672265 PMCID: PMC7092699 DOI: 10.1016/j.nmd.2019.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin-encoding DMD gene. While Duchenne is most commonly caused by large intragenic deletions that cause frameshift and complete loss of dystrophin expression, in-frame deletions in DMD can result in the expression of internally truncated dystrophin proteins and may be associated with a milder phenotype. In this study, we describe two individuals with large in-frame 5' deletions (exon 3-23 and exon 3-28) that remove the majority of the N-terminal region, including part of the actin binding and central rod domains. Both patients had progressive muscle weakness during childhood but are observed to have a relatively mild disease course compared to typical Duchenne. We show that in muscle biopsies from both patients, truncated dystrophin is expressed at the sarcolemma. We have additionally developed a patient-specific fibroblast-derived cell model, which can be inducibly reprogrammed to form myotubes that largely recapitulate biopsy findings for the patient with the exon 3-23 deletion, providing a culture model for future investigation of this unusual case. We discuss these mutations in the context of previously reported 5' in-frame DMD deletions and relevant animal models, and review the spectrum of phenotypes associated with these deletions.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Emilie D Douine
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie C Hardiman
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Perry B Shieh
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Negar Khanlou
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - M Carrie Miceli
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Jones HF, Bryen SJ, Waddell LB, Bournazos A, Davis M, Farrar MA, McLean CA, Mowat DR, Sampaio H, Woodcock IR, Ryan MM, Jones KJ, Cooper ST. Importance of muscle biopsy to establish pathogenicity of DMD missense and splice variants. Neuromuscul Disord 2019; 29:913-919. [PMID: 31706698 DOI: 10.1016/j.nmd.2019.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/29/2019] [Accepted: 09/22/2019] [Indexed: 01/07/2023]
Abstract
A precise genetic diagnosis of a dystrophinopathy has far-reaching implications for affected boys and their families. We present three boys with DMD single nucleotide variants associated with Becker muscular dystrophy presenting with myalgia, reduced exercise capacity, neurodevelopmental symptoms and elevated creatine kinase. The DMD variants were difficult to classify: AIII:1 a synonymous variant in exon 13 c.1602G>A, p.Lys534Lys; BIII:1 an essential splice-site variant in intron 33 c.4674+1G>A, and CII:1 a missense mutation within the cysteine-rich domain, exon 66 c.9619T>C, p.Cys3207Arg. Complementary DNA (cDNA) analysis using muscle-derived mRNA established splice-altering effects of variants for AIII:1 and BIII:1, and normal splicing in CII:1. Western blot analysis demonstrated mildly to moderately reduced dystrophin levels (17.6 - 36.1% the levels of controls), supporting dystrophinopathy as a probable diagnosis. These three cases highlight the diagnostic utility of muscle biopsy for mRNA studies and western blot to investigate DMD variants of uncertain pathogenicity, by exploring effects on splicing and dystrophin protein levels.
Collapse
Affiliation(s)
- Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia; Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Samantha J Bryen
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Leigh B Waddell
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adam Bournazos
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, New South Wales, Australia; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, New South Wales, Australia
| | - Catriona A McLean
- Anatomical Pathology and Victorian Neuromuscular Laboratory Service, Alfred Health and Monash University, Australia
| | - David R Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Hugo Sampaio
- Department of Neurology, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Ian R Woodcock
- Department of Neurology Royal Children's Hospital, Murdoch Childrens Research Institute and University of Melbourne, Parkville, Victoria, Australia; Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Monique M Ryan
- Department of Neurology Royal Children's Hospital, Murdoch Childrens Research Institute and University of Melbourne, Parkville, Victoria, Australia; Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Kristi J Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia; Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Bandi S, Singh SM, Shah DD, Upadhyay V, Mallela KM. 2D NMR Analysis of the Effect of Asparagine Deamidation Versus Methionine Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Protein. Mol Pharm 2019; 16:4621-4635. [DOI: 10.1021/acs.molpharmaceut.9b00719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swati Bandi
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Surinder M. Singh
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dinen D. Shah
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Vaibhav Upadhyay
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
37
|
Das SS, Chakravorty N. Identification of deleterious SNPs and their effects on BCL11A, the master regulator of fetal hemoglobin expression. Genomics 2019; 112:397-403. [PMID: 30853596 DOI: 10.1016/j.ygeno.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
The B-cell lymphoma/leukemia 11A protein (encoded by BCL11A gene) is a key regulator of fetal-to-adult hemoglobin switching as seen in post-natal life. Although genetic polymorphisms like SNPs in BCL11A gene are expected to affect fetal hemoglobin (HbF) expression levels, yet their implications are poorly studied. This study utilizes a computational approach to identify the deleterious SNPs which may affect the structure and function of BCL11A protein. The study also generated a 3D structure of native and mutants. The analysis identified two SNPs in BCL11A as highly deleterious: N391K and C414S which are expected to affect structure and stability of the protein. According to conservation analysis, both residues N391 and C414 were identified as highly conserved. Additionally, post-translational modification sites were predicted at both sites. Ligand binding sites were also predicted in N391 and C414. Therefore, N391K and C414S in BCL11A can considered as important candidates to mediate HbF variation.
Collapse
Affiliation(s)
- Sankha Subhra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
38
|
Identification and structural characterization of deleterious non-synonymous single nucleotide polymorphisms in the human SKP2 gene. Comput Biol Chem 2019; 79:127-136. [PMID: 30802828 DOI: 10.1016/j.compbiolchem.2019.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Abstract
In SCF (Skp, Cullin, F-box) ubiquitin-protein ligase complexes, S-phase kinase 2 (SKP2) is one of the major players of F-box family, that is responsible for the degradation of several important cell regulators and tumor suppressor proteins. Despite of having significant evidence for the role of SKP2 on tumorgenesis, there is a lack of available data regarding the effect of non-synonymous polymorphisms. In this communication, the structural and functional consequences of non-synonymous single nucleotide polymorphisms (nsSNPs) of SKP2 have been reported by employing various computational approaches and molecular dynamics simulation. Initially, several computational tools like SIFT, PolyPhen-2, PredictSNP, I-Mutant 2.0 and ConSurf have been implicated in this study to explore the damaging SNPs. In total of 172 nsSNPs, 5 nsSNPs were identified as deleterious and 3 of them were predicted to be decreased the stability of protein. Guided from ConSurf analysis, P101L (rs761253702) and Y346C (rs755010517) were categorized as the highly conserved and functional disrupting mutations. Therefore, these mutations were subjected to three dimensional model building and molecular dynamics simulation study for the detailed structural consequences upon the mutations. The study revealed that P101L and Y346C mutations increased the flexibility and changed the structural dynamics. As both these mutations are located in the most functional regions of SKP2 protein, these computational insights might be helpful to consider these nsSNPs for wet-lab confirmatory analysis as well as in rationalizing future population based studies and structure based drug design against SKP2.
Collapse
|
39
|
McCourt JL, Talsness DM, Lindsay A, Arpke RW, Chatterton PD, Nelson DM, Chamberlain CM, Olthoff JT, Belanto JJ, McCourt PM, Kyba M, Lowe DA, Ervasti JM. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy. Hum Mol Genet 2019; 27:451-462. [PMID: 29194514 DOI: 10.1093/hmg/ddx414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023] Open
Abstract
Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo.
Collapse
Affiliation(s)
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - Robert W Arpke
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | | | - Michael Kyba
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Department of Physical Medicine and Rehabilitation
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics
| |
Collapse
|
40
|
Dhamodharan U, Ponjayanthi B, Sireesh D, Bhakkiyalakshmi E, Ramkumar KM. Association of single-nucleotide polymorphisms of the KEAP1 gene with the risk of various human diseases and its functional impact using in silico analysis. Pharmacol Res 2018; 137:205-218. [DOI: 10.1016/j.phrs.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
|
41
|
Fealey ME, Horn B, Coffman C, Miller R, Lin AY, Thompson AR, Schramel J, Groth E, Hinderliter A, Cembran A, Thomas DD. Dynamics of Dystrophin's Actin-Binding Domain. Biophys J 2018; 115:445-454. [PMID: 30007583 DOI: 10.1016/j.bpj.2018.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
We have used pulsed electron paramagnetic resonance, calorimetry, and molecular dynamics simulations to examine the structural mechanism of binding for dystrophin's N-terminal actin-binding domain (ABD1) and compare it to utrophin's ABD1. Like other members of the spectrin superfamily, dystrophin's ABD1 consists of two calponin-homology (CH) domains, CH1 and CH2. Several mutations within dystrophin's ABD1 are associated with the development of severe degenerative muscle disorders Duchenne and Becker muscular dystrophies, highlighting the importance of understanding its structural biology. To investigate structural changes within dystrophin ABD1 upon binding to actin, we labeled the protein with spin probes and measured changes in inter-CH domain distance using double-electron electron resonance. Previous studies on the homologous protein utrophin showed that actin binding induces a complete structural opening of the CH domains, resulting in a highly ordered ABD1-actin complex. In this study, double-electron electron resonance shows that dystrophin ABD1 also undergoes a conformational opening upon binding F-actin, but this change is less complete and significantly more structurally disordered than observed for utrophin. Using molecular dynamics simulations, we identified a hinge in the linker region between the two CH domains that grants conformational flexibility to ABD1. The conformational dynamics of both dystrophin's and utrophin's ABD1 showed that compact conformations driven by hydrophobic interactions are preferred and that extended conformations are energetically accessible through a flat free-energy surface. Considering that the binding free energy of ABD1 to actin is on the order of 6-7 kcal/mole, our data are compatible with a mechanism in which binding to actin is largely dictated by specific interactions with CH1, but fine tuning of the binding affinity is achieved by the overlap between conformational ensembles of ABD1 free and bound to actin.
Collapse
Affiliation(s)
- Michael E Fealey
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin Horn
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Christian Coffman
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Robert Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Ava Y Lin
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Justine Schramel
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Erin Groth
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Anne Hinderliter
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
42
|
Koczok K, Merő G, Szabó GP, Madar L, Gombos É, Ajzner É, Mótyán JA, Hortobágyi T, Balogh I. A novel point mutation affecting Asn76 of dystrophin protein leads to dystrophinopathy. Neuromuscul Disord 2018; 28:129-136. [DOI: 10.1016/j.nmd.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
|
43
|
CUGC for Duchenne muscular dystrophy (DMD). Eur J Hum Genet 2018; 26:749-757. [PMID: 29330543 DOI: 10.1038/s41431-017-0013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/08/2017] [Accepted: 09/09/2017] [Indexed: 11/08/2022] Open
|
44
|
Arshad M, Bhatti A, John P. Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS One 2018; 13:e0188143. [PMID: 29329296 PMCID: PMC5766082 DOI: 10.1371/journal.pone.0188143] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/01/2017] [Indexed: 12/02/2022] Open
Abstract
Genetic polymorphisms in TAGAP gene have been associated with many diseases including rheumatoid arthritis, multiple sclerosis and other autoimmune disorders. Identifying functional SNPs in such disease associated genes is an uphill task hence before planning larger population study, it is better to scrutinize putative functional SNPs. In this study we used various computational approaches to identify nsSNPs which are deleterious to the structure and/or function of TAGAP protein that might be causing these diseases. Computational analysis was performed by five different in silico tools including SIFT, PROVEAN, PolyPhen-2, PhD-SNP and SNPs&GO. The study concludes that mutations of Glycine → Glutamic Acid at position 120, Glycine → Tryptophan at position 141 and Valine → Methionine at position 151 are major mutations in native TAGAP protein which might contribute to its malfunction and ultimately causing disease. The study also proposed 3D structures of native TAGAP protein and its three mutants. Future studies should consider these nsSNPs as main target mutations in various diseases involving TAGAP malfunction. This is the first comprehensive study, where TAGAP gene variants were analyzed using in silico tools hence will be of great help while considering large scale studies and also in developing precision medicines for cure of diseases related to these polymorphisms. Furthermore, animal models of various autoimmune diseases and having these mutations might be of help in exploring their precise roles.
Collapse
Affiliation(s)
- Maria Arshad
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Attya Bhatti
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Peter John
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| |
Collapse
|
45
|
Signorino G, Covaceuszach S, Bozzi M, Hübner W, Mönkemöller V, Konarev PV, Cassetta A, Brancaccio A, Sciandra F. A dystroglycan mutation (p.Cys667Phe) associated to muscle-eye-brain disease with multicystic leucodystrophy results in ER-retention of the mutant protein. Hum Mutat 2017; 39:266-280. [PMID: 29134705 DOI: 10.1002/humu.23370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/13/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane β-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the β-DG ectodomain has been identified in a patient affected by muscle-eye-brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the β-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy.
Collapse
Affiliation(s)
- Giulia Signorino
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy.,Istituto di Chimica del Riconoscimento Molecolare - CNR c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, University of Bielefeld, Bielefeld, Germany
| | | | - Petr V Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky prospect 59, Moscow, Russia
| | - Alberto Cassetta
- Istituto di Cristallografia - CNR, Trieste Outstation, Trieste, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare - CNR c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare - CNR c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
46
|
Kyrychenko V, Kyrychenko S, Tiburcy M, Shelton JM, Long C, Schneider JW, Zimmermann WH, Bassel-Duby R, Olson EN. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2017; 2:95918. [PMID: 28931764 DOI: 10.1172/jci.insight.95918] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2-8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3-9, 6-9, or 7-11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3-9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1.
Collapse
Affiliation(s)
- Viktoriia Kyrychenko
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sergii Kyrychenko
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengzu Long
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jay W Schneider
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N Olson
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
47
|
Singh SM, Bandi S, Mallela KMG. The N-Terminal Flanking Region Modulates the Actin Binding Affinity of the Utrophin Tandem Calponin-Homology Domain. Biochemistry 2017; 56:2627-2636. [PMID: 28443334 DOI: 10.1021/acs.biochem.6b01117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite sharing a high degree of sequence similarity, the tandem calponin-homology (CH) domain of utrophin binds to actin 30 times stronger than that of dystrophin. We have previously shown that this difference in actin binding affinity could not be ascribed to the differences in inter-CH-domain linkers [Bandi, S., et al. (2015) Biochemistry 54, 5480-5488]. Here, we examined the role of the N-terminal flanking region. The utrophin tandem CH domain contains a 27-residue flanking region before its CH1 domain. We examined its effect by comparing the structure and function of full-length utrophin tandem CH domain Utr(1-261) and its truncated Utr(28-261) construct. Both full-length and truncated constructs are monomers in solution, with no significant differences in their secondary or tertiary structures. Truncated construct Utr(28-261) binds to actin 30 times weaker than that of the full-length Utr(1-261), similar to that of the dystrophin tandem CH domain with a much shorter flanking region. Deletion of the N-terminal flanking region stabilizes the CH1 domain. The magnitude of the change in binding free energy upon truncation is similar to that of the change in thermodynamic stability. The isolated N-terminal peptide by itself is significantly random coil and does not bind to F-actin in the affinity range of Utr(1-261) and Utr(28-261). These results indicate that the N-terminal flanking region significantly affects the actin binding affinity of tandem CH domains. This observation further stresses that protein regions other than the three actin-binding surfaces identified earlier, irrespective of whether they directly bind to actin, also contribute to the actin binding affinity of tandem CH domains.
Collapse
Affiliation(s)
- Surinder M Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , 12850 East Montview Boulevard, MS C238, Aurora, Colorado 80045, United States
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , 12850 East Montview Boulevard, MS C238, Aurora, Colorado 80045, United States
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , 12850 East Montview Boulevard, MS C238, Aurora, Colorado 80045, United States
| |
Collapse
|
48
|
Zhang R, Chang M, Zhang M, Wu Y, Qu X, Huang S. The Structurally Plastic CH2 Domain Is Linked to Distinct Functions of Fimbrins/Plastins. J Biol Chem 2016; 291:17881-96. [PMID: 27261463 DOI: 10.1074/jbc.m116.730069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Fimbrins/plastins have been implicated in the generation of distinct actin structures, which are linked to different cellular processes. Historically, fimbrins/plastins were mainly considered as generating tight actin bundles. Here, we demonstrate that different members of the fimbrin/plastin family have diverged biochemically during evolution to generate either tight actin bundles or loose networks with distinct biochemical and biophysical properties. Using the phylogenetically and functionally distinct Arabidopsis fimbrins FIM4 and FIM5 we found that FIM4 generates both actin bundles and cross-linked actin filaments, whereas FIM5 only generates actin bundles. The distinct functions of FIM4 and FIM5 are clearly observed at single-filament resolution. Domain swapping experiments showed that cooperation between the conformationally plastic calponin-homology domain 2 (CH2) and the N-terminal headpiece determines the function of the full-length protein. Our study suggests that the structural plasticity of fimbrins/plastins has biologically meaningful consequences, and provides novel insights into the structure-function relationship of fimbrins/plastins as well as shedding light on how cells generate distinct actin structures.
Collapse
Affiliation(s)
- Ruihui Zhang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chang
- the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Meng Zhang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjun Wu
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
| | - Xiaolu Qu
- the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, the Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, and
| | - Shanjin Huang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| |
Collapse
|
49
|
Abstract
The dystrophin complex stabilizes the plasma membrane of striated muscle cells. Loss of function mutations in the genes encoding dystrophin, or the associated proteins, trigger instability of the plasma membrane, and myofiber loss. Mutations in dystrophin have been extensively cataloged, providing remarkable structure-function correlation between predicted protein structure and clinical outcomes. These data have highlighted dystrophin regions necessary for in vivo function and fueled the design of viral vectors and now, exon skipping approaches for use in dystrophin restoration therapies. However, dystrophin restoration is likely more complex, owing to the role of the dystrophin complex as a broad cytoskeletal integrator. This review will focus on dystrophin restoration, with emphasis on the regions of dystrophin essential for interacting with its associated proteins and discuss the structural implications of these approaches.
Collapse
Affiliation(s)
- Quan Q Gao
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Espinoza-Fonseca LM. Pathogenic mutation R959W alters recognition dynamics of dysferlin inner DysF domain. MOLECULAR BIOSYSTEMS 2016; 12:973-81. [PMID: 26806107 DOI: 10.1039/c5mb00772k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dysferlin, a 220 kD protein, plays a major role in regulating plasma membrane repair in muscle cells. Mutations in the dysferlin inner DysF domain are known to cause different types of muscular dystrophy, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Replacement of arginine in position 959 by tryptophan has been frequently associated with both LGMD2B and MM, but the molecular mechanisms by which this mutation alters dysferlin function remain unknown. In this study, we have used protein binding site predictions and microsecond molecular dynamics (MD) simulations to determine the effects pathogenic mutation R959W on the structural dynamics of dysferlin inner DysF domain. Analysis of 2 μs long MD trajectories revealed that mutation R959W does not induce local destabilization, unfolding or misfolding of the domain. We used a binding site predictor to discover a protein-binding site (residues T958-I966 and E1031-H1037) that resembles pincers in shape. Cartesian principal component analysis and interresidue distance distributions of the wild-type domain showed that the predicted protein-binding site undergoes a pincer motion, and populates two structural states, open and closed. We found that mutation R959W inhibits the pincer motion of the protein-binding site and completely shifts the equilibrium toward the open state. These differences in the structural dynamics of the predicted binding site suggest that mutation R959W alters recognition dynamics of the inner DysF domain. Based on these findings and on previous experimental studies, we propose a novel role for the inner DysF domain in muscle membrane repair through recruitment of dysferlin to plasma membrane. In conclusion, these findings have important implications for our understanding of the structural aspects of muscular dystrophies in atomic-level resolution.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|