1
|
Mesquita FP, Lima LB, da Silva EL, Souza PFN, de Moraes MEA, Burbano RMR, Montenegro RC. A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy. Curr Protein Pept Sci 2024; 25:539-552. [PMID: 38424421 DOI: 10.2174/0113892037291318240130103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Luina Benevides Lima
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Emerson Lucena da Silva
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | | | - Rommel Mario Rodrigues Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil
| |
Collapse
|
2
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Mondal D, Shinde S, Paul S, Thakur S, Velu GSK, Tiwari AK, Dixit V, Amit A, Vishvakarma NK, Shukla D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front Oncol 2023; 13:1230273. [PMID: 37637043 PMCID: PMC10448964 DOI: 10.3389/fonc.2023.1230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
T-cell malignancy is a broad term used for a diverse group of disease subtypes representing dysfunctional malignant T cells transformed at various stages of their clonal evolution. Despite having similar clinical manifestations, these disease groups have different disease progressions and diagnostic parameters. The effective diagnosis and prognosis of such a diverse disease group demands testing of molecular entities that capture footprints of the disease physiology in its entirety. MicroRNAs (miRNAs) are a group of noncoding RNA molecules that regulate the expression of genes and, while doing so, leave behind specific miRNA signatures corresponding to cellular expression status in an altered stage of a disease. Using miRNAs as a diagnostic tool is justified, as they can effectively distinguish expressional diversity between various tumors and within subtypes of T-cell malignancies. As global attention for cancer diagnosis shifts toward liquid biopsy, diagnosis using miRNAs is more relevant in blood cancers than in solid tumors. We also lay forward the diagnostic significance of miRNAs that are indicative of subtype, progression, severity, therapy response, and relapse. This review discusses the potential use and the role of miRNAs, miRNA signatures, or classifiers in the diagnosis of major groups of T-cell malignancies like T-cell acute lymphoblastic lymphoma (T-ALL), peripheral T-cell lymphoma (PTCL), extranodal NK/T-cell lymphoma (ENKTCL), and cutaneous T-cell lymphoma (CTCL). The review also briefly discusses major diagnostic miRNAs having prominent metabolic roles in these malignancies to highlight their importance among other dysregulated miRNAs.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suresh Thakur
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - GSK Velu
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - Atul Kumar Tiwari
- Department of Zoology, Dr. Bhawan Singh Porte Government College, Pendra, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Satguru Jagjit Singh Namdhari College, Gharwa, Jharkhand, India
| | - Ajay Amit
- Department of Forensic Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
5
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
CD147 a direct target of miR-146a supports energy metabolism and promotes tumor growth in ALK+ ALCL. Leukemia 2022; 36:2050-2063. [PMID: 35676454 PMCID: PMC9343252 DOI: 10.1038/s41375-022-01617-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
We recently reported that miR-146a is differentially expressed in ALK+ and ALK− anaplastic large cell lymphoma (ALCL). In this study, the downstream targets of miR-146a in ALK+ ALCL were investigated by transcriptome analysis, identifying CD147 as potential target gene. Because CD147 is differentially expressed in ALK+ ALCL versus ALK− ALCL and normal T cells, this gene emerged as a strong candidate for the pathogenesis of this tumor. Here we demonstrate that CD147 is a direct target of miR-146 and contributes to the survival and proliferation of ALK+ ALCL cells in vitro and to the engraftment and tumor growth in vivo in an ALK+ ALCL-xenotransplant mouse model. CD147 knockdown in ALK+ ALCL cells resulted in loss of monocarboxylate transporter 1 (MCT1) expression, reduced glucose consumption and tumor growth retardation, as demonstrated by [18F]FDG-PET/MRI analysis. Investigation of metabolism in vitro and in vivo supported these findings, revealing reduced aerobic glycolysis and increased basal respiration in CD147 knockdown. In conclusion, our findings indicate that CD147 is of vital importance for ALK+ ALCL to maintain the high energy demand of rapid cell proliferation, promoting lactate export, and tumor growth. Furthermore, CD147 has the potential to serve as a novel therapeutic target in ALK+ ALCL, and warrants further investigation.
Collapse
|
7
|
Lone W, Bouska A, Sharma S, Amador C, Saumyaranjan M, Herek TA, Heavican TB, Yu J, Lim ST, Ong CK, Slack GW, Savage KJ, Rosenwald A, Ott G, Cook JR, Feldman AL, Rimsza LM, McKeithan TW, Greiner TC, Weisenburger DD, Melle F, Motta G, Pileri S, Vose JM, Chan WC, Iqbal J. Genome-Wide miRNA Expression Profiling of Molecular Subgroups of Peripheral T-cell Lymphoma. Clin Cancer Res 2021; 27:6039-6053. [PMID: 34426436 DOI: 10.1158/1078-0432.ccr-21-0573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/15/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with aggressive clinical behavior. We performed comprehensive miRNA profiling in PTCLs and corresponding normal CD4+ Th1/2 and TFH-like polarized subsets to elucidate the role of miRNAs in T-cell lymphomagenesis. EXPERIMENTAL DESIGN We used nCounter (NanoString Inc) for miRNA profiling and validated using Taqman qRT-PCR (Applied Biosystems, Inc). Normal CD4+ T cells were polarized into effector Th subsets using signature cytokines, and miRNA significance was revealed using functional experiments. RESULTS Effector Th subsets showed distinct miRNA expression with corresponding transcription factor expression (e.g., BCL6/miR-19b, -106, -30d, -26b, in IL21-polarized; GATA3/miR-155, miR-337 in Th2-polarized; and TBX21/miR-181a, -331-3p in Th1-polarized cells). Integration of miRNA signatures suggested activation of TCR and PI3K signaling in IL21-polarized cells, ERK signaling in Th1-polarized cells, and AKT-mTOR signaling in Th2-polarized cells, validated at protein level. In neoplastic counterparts, distinctive miRNAs were identified and confirmed in an independent cohort. Integrative miRNA-mRNA analysis identified a decrease in target transcript abundance leading to deregulation of sphingolipid and Wnt signaling and epigenetic dysregulation in angioimmunoblastic T-cell lymphoma (AITL), while ERK, MAPK, and cell cycle were identified in PTCL subsets, and decreased target transcript abundance was validated in an independent cohort. Elevated expression of miRNAs (miR-126-3p, miR-145-5p) in AITL was associated with poor clinical outcome. In silico and experimental validation suggest two targets (miR-126→ SIPR2 and miR-145 → ROCK1) resulting in reduced RhoA-GTPase activity and T-B-cell interaction. CONCLUSIONS Unique miRNAs and deregulated oncogenic pathways are associated with PTCL subtypes. Upregulated miRNA-126-3p and miR-145-5p expression regulate RhoA-GTPase and inhibit T-cell migration, crucial for AITL pathobiology.
Collapse
Affiliation(s)
- Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mallick Saumyaranjan
- Institute of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiayu Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Graham W Slack
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kerry J Savage
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | - Julie M Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
8
|
Villa M, Sharma GG, Manfroni C, Cortinovis D, Mologni L. New Advances in Liquid Biopsy Technologies for Anaplastic Lymphoma Kinase (ALK)-Positive Cancer. Cancers (Basel) 2021; 13:5149. [PMID: 34680298 PMCID: PMC8534237 DOI: 10.3390/cancers13205149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are characterized by high genetic instability, that favors tumor relapse. The identification of the genetic causes of relapse can direct next-line therapeutic choices. As tumor tissue rebiopsy at disease progression is not always feasible, noninvasive alternative methods are being explored. Liquid biopsy is emerging as a non-invasive, easy and repeatable tool to identify specific molecular alterations and monitor disease response during treatment. The dynamic follow-up provided by this analysis can provide useful predictive information and allow prompt therapeutic actions, tailored to the genetic profile of the recurring disease, several months before radiographic relapse. Oncogenic fusion genes are particularly suited for this type of analysis. Anaplastic Lymphoma Kinase (ALK) is the dominant driver oncogene in several tumors, including Anaplastic Large-Cell Lymphoma (ALCL), Non-Small Cell Lung Cancer (NSCLC) and others. Here we review recent findings in liquid biopsy technologies, including ctDNA, CTCs, exosomes, and other markers that can be investigated from plasma samples, in ALK-positive cancers.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| | - Geeta G. Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Chiara Manfroni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| | - Diego Cortinovis
- Department of Oncology, San Gerardo Hospital, 20900 Monza, Italy;
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| |
Collapse
|
9
|
Wurster KD, Costanza M, Kreher S, Glaser S, Lamprecht B, Schleussner N, Anagnostopoulos I, Hummel M, Jöhrens K, Stein H, Molina A, Diepstra A, Gillissen B, Köchert K, Siebert R, Merkel O, Kenner L, Janz M, Mathas S. Aberrant Expression of and Cell Death Induction by Engagement of the MHC-II Chaperone CD74 in Anaplastic Large Cell Lymphoma (ALCL). Cancers (Basel) 2021; 13:cancers13195012. [PMID: 34638496 PMCID: PMC8507667 DOI: 10.3390/cancers13195012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma (ALCL) is a lymphoid malignancy considered to be derived from T cells. Currently, two types of systemic ALCL are distinguished: anaplastic lymphoma kinase (ALK)-positive and ALK-negative ALCL. Although ALK+ and ALK− ALCL differ at the genomic and molecular levels, various key biological and molecular features are highly similar between both entities. We have developed the concept that both ALCL entities share a common principle of pathogenesis. In support of this concept, we here describe a common deregulation of CD74, which is usually not expressed in T cells, in ALCL. Ligation of CD74 induces cell death of ALCL cells in various conditions, and an anti-CD74-directed antibody-drug conjugate efficiently kills ALCL cell lines. Furthermore, we reveal expression of the proto-oncogene and known CD74 interaction partner MET in a fraction of ALCL cases. These data give insights into ALCL pathogenesis and might help to develop new treatment strategies for ALCL. Abstract In 50–60% of cases, systemic anaplastic large cell lymphoma (ALCL) is characterized by the t(2;5)(p23;q35) or one of its variants, considered to be causative for anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL. Key pathogenic events in ALK-negative (ALK−) ALCL are less well defined. We have previously shown that deregulation of oncogenic genes surrounding the chromosomal breakpoints on 2p and 5q is a unifying feature of both ALK+ and ALK− ALCL and predisposes for occurrence of t(2;5). Here, we report that the invariant chain of the MHC-II complex CD74 or li, which is encoded on 5q32, can act as signaling molecule, and whose expression in lymphoid cells is usually restricted to B cells, is aberrantly expressed in T cell-derived ALCL. Accordingly, ALCL shows an altered DNA methylation pattern of the CD74 locus compared to benign T cells. Functionally, CD74 ligation induces cell death of ALCL cells. Furthermore, CD74 engagement enhances the cytotoxic effects of conventional chemotherapeutics in ALCL cell lines, as well as the action of the ALK-inhibitor crizotinib in ALK+ ALCL or of CD95 death-receptor signaling in ALK− ALCL. Additionally, a subset of ALCL cases expresses the proto-oncogene MET, which can form signaling complexes together with CD74. Finally, we demonstrate that the CD74-targeting antibody-drug conjugate STRO-001 efficiently and specifically kills CD74-positive ALCL cell lines in vitro. Taken together, these findings enabled us to demonstrate aberrant CD74-expression in ALCL cells, which might serve as tool for the development of new treatment strategies for this lymphoma entity.
Collapse
Affiliation(s)
- Kathrin D. Wurster
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Mariantonia Costanza
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Stephan Kreher
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University, Ulm University Medical Center, 89081 Ulm, Germany; (S.G.); (R.S.)
| | - Björn Lamprecht
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Nikolai Schleussner
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.A.); (K.J.)
| | - Michael Hummel
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.A.); (K.J.)
| | - Korinna Jöhrens
- Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.A.); (K.J.)
| | | | - Arturo Molina
- Sutro Biopharma, South San Francisco, CA 94080, USA;
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Bernd Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Karl Köchert
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University, Ulm University Medical Center, 89081 Ulm, Germany; (S.G.); (R.S.)
| | - Olaf Merkel
- Unit of Experimental and Laboratory Animal Pathology, Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.K.)
- European Research Initiative on ALK-related malignancies (ERIA), 1090 Vienna, Austria
| | - Lukas Kenner
- Unit of Experimental and Laboratory Animal Pathology, Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.K.)
- European Research Initiative on ALK-related malignancies (ERIA), 1090 Vienna, Austria
| | - Martin Janz
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Stephan Mathas
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- European Research Initiative on ALK-related malignancies (ERIA), 1090 Vienna, Austria
- Correspondence: ; Tel.: +49-30-94062863; Fax: +49-30-94063124
| |
Collapse
|
10
|
Merlio JP, Kadin ME. Cytokines, Genetic Lesions and Signaling Pathways in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2021; 13:4256. [PMID: 34503066 PMCID: PMC8428234 DOI: 10.3390/cancers13174256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
ALCL is a tumor of activated T cells and possibly innate lymphoid cells with several subtypes according to clinical presentation and genetic lesions. On one hand, the expression of transcription factors and cytokine receptors triggers signaling pathways. On the other hand, ALCL tumor cells also produce many proteins including chemokines, cytokines and growth factors that affect patient symptoms. Examples are accumulation of granulocytes stimulated by IL-8, IL-17, IL-9 and IL-13; epidermal hyperplasia and psoriasis-like skin lesions due to IL-22; and fever and weight loss in response to IL-6 and IFN-γ. In this review, we focus on the biology of the main ALCL subtypes as the identification of signaling pathways and ALCL-derived cytokines offers opportunities for targeted therapies.
Collapse
Affiliation(s)
- Jean-Philippe Merlio
- Tumor Biology and Tumor Bank Laboratory, Centre Hospitalier et Universitaire de Bordeaux, 33600 Pessac, France
- INSERM U1053, University Bordeaux, 33000 Bordeaux, France
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
- Department of Dermatology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Zhu L, Xie S, Yang C, Hua N, Wu Y, Wang L, Ni W, Tong X, Fei M, Wang S. Current Progress in Investigating Mature T- and NK-Cell Lymphoma Gene Aberrations by Next-Generation Sequencing (NGS). Cancer Manag Res 2021; 13:5275-5286. [PMID: 34239326 PMCID: PMC8259727 DOI: 10.2147/cmar.s299505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Despite efforts to abrogate the severe threat to life posed by the profound malignancy of mature natural killer/T-cell lymphoma (NKTCL), therapeutic advances still require further investigation of its inherent regulatory biochemical processes. Next-generation sequencing (NGS) is an increasingly developing gene detection technique, which has been widely used in lymphoma genetic research in recent years. Targeted therapy based on the above studies has also generated a series of advances, making genetic mutation a new research hotspot in lymphoma. Advances in NKTCL-related gene mutations are reviewed in this paper.
Collapse
Affiliation(s)
- Lifen Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanmao Ni
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Min Fei
- Center of Health Management, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Di Battista P, Lovisa F, Gaffo E, Gallingani I, Damanti CC, Garbin A, Ferrone L, Carraro E, Pillon M, Lo Nigro L, Mura R, Pizzi M, Guzzardo V, Dei Tos AP, Biffi A, Bortoluzzi S, Mussolin L. Low miR-214-5p Expression Correlates With Aggressive Subtypes of Pediatric ALCL With Non-Common Histology. Front Oncol 2021; 11:663221. [PMID: 34113568 PMCID: PMC8185221 DOI: 10.3389/fonc.2021.663221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The unsatisfactory cure rate of relapsing ALK-positive Anaplastic Large-Cell Lymphoma (ALCL) of childhood calls for the identification of new prognostic markers. Here, the small RNA landscape of pediatric ALK-positive ALCL was defined by RNA sequencing. Overall, 121 miRNAs were significantly dysregulated in ALCL compared to non-neoplastic lymph nodes. The most up-regulated miRNA was miR-21-5p, whereas miR-19a-3p and miR-214-5p were reduced in ALCL. Characterization of miRNA expression in cases that relapsed after first line therapy disclosed a significant association between miR-214-5p down-regulation and aggressive non-common histology. Our results suggest that miR-214-5p level may help to refine the prognostic stratification of pediatric ALK-positive ALCL.
Collapse
Affiliation(s)
- Piero Di Battista
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Federica Lovisa
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ilaria Gallingani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Carlotta C Damanti
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Anna Garbin
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Lavinia Ferrone
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elisa Carraro
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Marta Pillon
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Policlinico G. Rodolico - San Marco, Catania, Italy
| | - Rossella Mura
- Department of Paediatric Haematology-Oncology, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Vincenza Guzzardo
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy.,CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, Padova, Italy
| | - Lara Mussolin
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
13
|
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12:169. [PMID: 33160401 PMCID: PMC7648940 DOI: 10.1186/s13148-020-00962-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of clinically aggressive diseases associated with poor prognosis. Except for ALK + anaplastic large-cell lymphoma (ALCL), most peripheral T-cell lymphomas are highly malignant and have an aggressive disease course and poor clinical outcomes, with a poor remission rate and frequent relapse after first-line treatment. Aberrant epigenetic alterations play an important role in the pathogenesis and development of specific types of peripheral T-cell lymphoma, including the regulation of the expression of genes and signal transduction. The most common epigenetic alterations are DNA methylation and histone modification. Histone modification alters the level of gene expression by regulating the acetylation status of lysine residues on the promoter surrounding histones, often leading to the silencing of tumour suppressor genes or the overexpression of proto-oncogenes in lymphoma. DNA methylation refers to CpG islands, generally leading to tumour suppressor gene transcriptional silencing. Genetic studies have also shown that some recurrent mutations in genes involved in the epigenetic machinery, including TET2, IDH2-R172, DNMT3A, RHOA, CD28, IDH2, TET2, MLL2, KMT2A, KDM6A, CREBBP, and EP300, have been observed in cases of PTCL. The aberrant expression of miRNAs has also gradually become a diagnostic biomarker. These provide a reasonable molecular mechanism for epigenetic modifying drugs in the treatment of PTCL. As epigenetic drugs implicated in lymphoma have been continually reported in recent years, many new ideas for the diagnosis, treatment, and prognosis of PTCL originate from epigenetics in recent years. Novel epigenetic-targeted drugs have shown good tolerance and therapeutic effects in the treatment of peripheral T-cell lymphoma as monotherapy or combination therapy. NCCN Clinical Practice Guidelines also recommended epigenetic drugs for PTCL subtypes as second-line therapy. Epigenetic mechanisms provide new directions and therapeutic strategies for the research and treatment of peripheral T-cell lymphoma. Therefore, this paper mainly reviews the epigenetic changes in the pathogenesis of peripheral T-cell lymphoma and the advancement of epigenetic-targeted drugs in the treatment of peripheral T-cell lymphoma (PTCL).
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China. .,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
14
|
Joos D, Leipig-Rudolph M, Weber K. Tumour-specific microRNA expression pattern in canine intestinal T-cell-lymphomas. Vet Comp Oncol 2020; 18:502-508. [PMID: 31997569 DOI: 10.1111/vco.12570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Intestinal T-cell lymphomas are common in dogs, but histopathological diagnosis remains challenging because of accompanying enteritis with lymphocyte involvement. Invasively taken full-layer biopsies are still required for reliable differentiation. The detection of specific microRNA expression patterns in canine intestinal T-cell lymphoma could provide new possibilities to differ intestinal lymphoma from benign inflammation and could lead to further understanding of lymphomagenesis. The objective of this study was to characterize microRNA expression in distinct groups of formalin-fixed and paraffin-embedded samples from canine intestinal T-cell lymphomas, lymphoplasmacellular enteritis and healthy intestinal tissue. In a preliminary test with two samples per group, total RNA was extracted (RNEasy FFPE Kit, Qiagen), reverse transcribed (miScript II RT Kit, Qiagen) and pre-amplified (miScript PreAmp PCR Kit, Qiagen). We performed comparative quantitative PCR on microRNA PCR Array plates (Qiagen) with pre-fabricated reactions for 183 different mature canine microRNAs. Subsequently, 12 microRNAs with conspicuous expression changes in the lymphoma group were selected and microRNA expression of all samples (n = 8) per group was analysed with individual microRNA assays (miScript Primer Assays, Qiagen) on the reverse transcribed RNA without pre-amplification. Our results revealed lymphoma-specific expression patterns, with down-regulation of the tumour-suppressing microRNAs miR-194, miR-192, miR-141 and miR-203, and up-regulation of oncogenic microRNAs, including microRNAs from the miR-106a~363 cluster. In addition, we detected only slight expression alterations between healthy intestinal tissue and lymphoplasmacellular enteritis cases. We conclude that microRNA expression patterns can be used to separate T-cell lymphomas from healthy tissue and benign inflammatory disorders.
Collapse
Affiliation(s)
- Diana Joos
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Munich, Germany
| | - Miriam Leipig-Rudolph
- Specialty Practice for Veterinary Pathology von Bomhard and Pfleghaar, Munich, Germany.,Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Munich, Germany
| | - Karin Weber
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
15
|
Talaat IM, Abdelmaksoud RE, Guimei M, Agamia NF, Nugud A, El-Serafi AT. Potential role for microRNA-16 (miR-16) and microRNA-93 (miR-93) in diagnosis and prediction of disease progression in mycosis fungoides in Egyptian patients. PLoS One 2019; 14:e0224305. [PMID: 31648231 PMCID: PMC6812867 DOI: 10.1371/journal.pone.0224305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mycosis Fungoides (MF) is the most common type of cutaneous T-cell lymphomas. Early stage patients are treated with topical therapies and have normal life expectancy whereas patients with advanced disease encounter frequent relapses and have a five-year survival rate that does not exceed 15%. The aim of the present study was to characterize the expression of microRNA-16 (miR-16) and microRNA-93 (miR-93) in early and advanced cases of MF in relation to the clinicopathological parameters. Ten skin biopsies of early and advanced MF were investigated for the expression of miR-16 and miR-93 using RT-PCR. Immunohistochemical expression of apoptosis markers (BCL-2 and Survivin) were also investigated in the studied cases compared to normal skin and eczema biopsies. In the present study, BCL-2 and Survivin showed strong positive expression on neoplastic lymphocytes in all cases of MF regardless of their stage. We have also shown that miR-16 was significantly upregulated in advanced cases of MF compared to cases with early disease (p-value was less than 0.05). However, expression of miR-16 did not show any statistically significant correlation with age, gender, or expression of apoptotic markers. On the other hand, the expression of miR-93 showed significant downregulation in all lymphoma cases irrespective of their stage, compared to normal and eczema cases. Our results suggest that upregulation of miR-16 could be used to predict an aggressive course of the disease. We also suggest that miR-93 downregulation could serve as possible tool for establishing early diagnosis in early challenging cases. Our findings also provide consistent evidence that the anti-apoptotic molecules may play an important role in the pathogenesis of this type of cutaneous lymphomas and promote the idea that their inhibition could be an interesting novel therapeutic strategy in the treatment of MF.
Collapse
Affiliation(s)
- Iman Mamdouh Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania ElSaied Abdelmaksoud
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha Guimei
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Nugud
- Pediatric Resident, Aljalila Children Hospital, Dubai, UAE
| | - Ahmed Taher El-Serafi
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers (Basel) 2019; 11:cancers11081074. [PMID: 31366041 PMCID: PMC6721376 DOI: 10.3390/cancers11081074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.
Collapse
Affiliation(s)
- Stephen P Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | | | - Gavin D Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK.
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Javid H, Soltani A, Mohammadi F, Hashemy SI. Emerging roles of microRNAs in regulating the mTOR signaling pathway during tumorigenesis. J Cell Biochem 2019; 120:10874-10883. [PMID: 30719752 DOI: 10.1002/jcb.28401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Non-Coding RNA Networks in ALK-Positive Anaplastic-Large Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20092150. [PMID: 31052302 PMCID: PMC6539248 DOI: 10.3390/ijms20092150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are essential regulators of gene expression. In recent years, it has become more and more evident that the different classes of ncRNAs, such as micro RNAs, long non-coding RNAs and circular RNAs are organized in tightly controlled networks. It has been suggested that deregulation of these networks can lead to disease. Several studies show a contribution of these so-called competing-endogenous RNA networks in various cancer entities. In this review, we highlight the involvement of ncRNA networks in anaplastic-large cell lymphoma (ALCL), a T-cell neoplasia. A majority of ALCL cases harbor the molecular hallmark of this disease, a fusion of the anaplastic lymphoma kinase (ALK) gene with the nucleophosmin (NPM, NPM1) gene leading to a permanently active kinase that promotes the malignant phenotype. We have focused especially on ncRNAs that are regulated by the NPM-ALK fusion gene and illustrate how their deregulation contributes to the pathogenesis of ALCL. Lastly, we summarize the findings and point out potential therapeutic implications.
Collapse
|
19
|
Labi V, Schoeler K, Melamed D. miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 2019; 446:73-80. [PMID: 30660648 DOI: 10.1016/j.canlet.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023]
Abstract
microRNAs (miRNAs) down-modulate the levels of proteins by sequence-specific binding to their respective target mRNAs, causing translational repression or mRNA degradation. The miR-17∼92 cluster encodes for six miRNAs whose target recognition specificities are determined by their distinct sequence. In mice, the four miRNA families generated from the miR-17∼92 cluster coordinate to allow for proper lymphocyte development and effective adaptive immune responses following infection or immunization. Lymphocyte development and homeostasis rely on tight regulation of PI3K signaling to avoid autoimmunity or immunodeficiency, and the miR-17∼92 miRNAs appear as key mediators to appropriately tune PI3K activity. On the other hand, in lymphoid tumors overexpression of the miR-17∼92 miRNAs is a common oncogenic event. In this review, we touch on what we have learned so far about the miR-17∼92 miRNAs, particularly with respect to their role in lymphocyte development, homeostasis and pathology.
Collapse
Affiliation(s)
- Verena Labi
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria.
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
20
|
Larose H, Burke GAA, Lowe EJ, Turner SD. From bench to bedside: the past, present and future of therapy for systemic paediatric ALCL, ALK. Br J Haematol 2019; 185:1043-1054. [PMID: 30681723 DOI: 10.1111/bjh.15763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a T cell Non-Hodgkin Lymphoma that mainly presents in paediatric and young adult patients. The majority of cases express a chimeric fusion protein resulting in hyperactivation of anaplastic lymphoma kinase (ALK) as the consequence of a chromosomal translocation. Rarer cases lack expression of ALK fusion proteins and are categorised as ALCL, ALK-. An adapted regimen of an historic chemotherapy backbone is still used to this day, yielding overall survival (OS) of over 90% but with event-free survival (EFS) at an unacceptable 70%, improving little over the past 30 years. It is clear that continued adaption of current therapies will probably not improve these statistics and, for progress to be made, integration of biology with the design and implementation of future clinical trials is required. Indeed, advances in our understanding of the biology of ALCL are outstripping our ability to clinically translate them; laboratory-based research has highlighted a plethora of potential therapeutic targets but, with high survival rates combined with a scarcity of funding and patients to implement paediatric trials of novel agents, progress is slow. However, advances must be made to reduce the side-effects of intensive chemotherapy regimens whilst maintaining, if not improving, OS and EFS.
Collapse
Affiliation(s)
- Hugo Larose
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, UK.,European Research Initiative for ALK-related malignancies (www.erialcl.net), Cambridge, UK
| | - G A Amos Burke
- Department of paediatric oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Eric J Lowe
- Division of Pediatric Hematology-Oncology, Children's Hospital of the Kings Daughter, Norfolk, Virginia, USA
| | - Suzanne D Turner
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, UK.,European Research Initiative for ALK-related malignancies (www.erialcl.net), Cambridge, UK
| |
Collapse
|
21
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
22
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
23
|
Schleussner N, Merkel O, Costanza M, Liang HC, Hummel F, Romagnani C, Durek P, Anagnostopoulos I, Hummel M, Jöhrens K, Niedobitek A, Griffin PR, Piva R, Sczakiel HL, Woessmann W, Damm-Welk C, Hinze C, Stoiber D, Gillissen B, Turner SD, Kaergel E, von Hoff L, Grau M, Lenz G, Dörken B, Scheidereit C, Kenner L, Janz M, Mathas S. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 2018; 32:1994-2007. [PMID: 29588546 PMCID: PMC6127090 DOI: 10.1038/s41375-018-0045-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023]
Abstract
Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3 innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22, IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+ ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17-, and in particular ILC3-skewing in ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Olaf Merkel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Huan-Chang Liang
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Franziska Hummel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Chiara Romagnani
- German Rheumatism Research Centre, German Rheumatism Research Centre (DRFZ), A Leibniz Institute, 10117, Berlin, Germany
- Medical Department I, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Pawel Durek
- German Rheumatism Research Centre, German Rheumatism Research Centre (DRFZ), A Leibniz Institute, 10117, Berlin, Germany
| | | | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Antonia Niedobitek
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Henrike L Sczakiel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Wilhelm Woessmann
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Christine Damm-Welk
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Christian Hinze
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Department of Nephrology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Bernd Gillissen
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Suzanne D Turner
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK
| | - Eva Kaergel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Linda von Hoff
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Michael Grau
- Department of Medicine A, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149, Münster, Germany
| | - Bernd Dörken
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Lukas Kenner
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria.
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK.
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.
- University of Veterinary Medicine, Vienna, Austria.
- CBmed, Center for Biomarker Research in Medicine, 8010, Graz, Austria.
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 13125, Berlin, Germany
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany.
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany.
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 13125, Berlin, Germany.
| |
Collapse
|
24
|
Paliouras AR, Monteverde T, Garofalo M. Oncogene-induced regulation of microRNA expression: Implications for cancer initiation, progression and therapy. Cancer Lett 2018; 421:152-160. [PMID: 29476790 DOI: 10.1016/j.canlet.2018.02.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 01/25/2023]
Abstract
A plethora of tumours have characteristic oncogenic mutations which are the main causes of malignant transformation, exerting their effects through multiple signalling pathways. Downstream of such pathways, microRNAs are small non-coding RNAs that negatively regulate gene expression, assisting or antagonizing oncogenic signalling. The differential expression of microRNAs in cancer is well-documented and is considered a fundamental aspect of tumourigenesis. While data mapping the interaction between oncogenic lesions and microRNAs are accruing, we provide particular cases of such interaction. Except for notable, well-studied examples of microRNAs regulated by oncogenes, we examine the effect of this relationship in regard to tumour initiation, progression, metastasis and ultimately, its implications for the development of new therapeutics.
Collapse
Affiliation(s)
- Athanasios R Paliouras
- Transcriptional Networks in Lung Cancer, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, M20 4GJ, Manchester, UK
| | - Tiziana Monteverde
- Transcriptional Networks in Lung Cancer, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, M20 4GJ, Manchester, UK
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, M20 4GJ, Manchester, UK.
| |
Collapse
|
25
|
Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol 2018; 103:1205-1217. [PMID: 29656417 DOI: 10.1002/jlb.3mir1117-459r] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA and are pivotal posttranscriptional regulators of both innate and adaptive immunity. They act by regulating the expression of multiple immune genes, thus, are the important elements to the complex immune regulatory network. Deregulated expression of specific miRNAs can lead to potential autoimmunity, immune tolerance, hyper-inflammatory phenotype, and cancer initiation and progression. In this review, we discuss the contributory pathways and mechanisms by which several miRNAs influence the development of innate immunity and fine-tune immune response. Moreover, we discuss the consequence of deregulated miRNAs and their pathogenic implications.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
26
|
Congras A, Caillet N, Torossian N, Quelen C, Daugrois C, Brousset P, Lamant L, Meggetto F, Hoareau-Aveilla C. Doxorubicin-induced loss of DNA topoisomerase II and DNMT1- dependent suppression of MiR-125b induces chemoresistance in ALK-positive cells. Oncotarget 2018; 9:14539-14551. [PMID: 29581862 PMCID: PMC5865688 DOI: 10.18632/oncotarget.24465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 12/04/2022] Open
Abstract
Systemic anaplastic large-cell lymphoma (ALCL) is a childhood T cell neoplasm defined by the presence or absence of translocations that lead to the ectopic expression of anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Polychemotherapy involving doxorubicin is the standard first-line treatment but for the 25 to 35% of patients who relapse and develop resistance the prognosis remains poor. We studied the potential role of the microRNA miR-125b in the development of resistance to doxorubicin in NPM-ALK(+) ALCL. Our results show that miR-125b expression is repressed in NPM-ALK(+) cell lines and patient samples through hypermethylation of its promoter. NPM-ALK activity, in cooperation with DNA topoisomerase II (Topo II) and DNA methyltransferase 1 (DNMT1), is responsible for miR-125b repression through DNA hypermethylation. MiR-125b repression was reversed by the inhibition of DNMTs with decitabine or the inhibition of DNA topoisomerase II with either doxorubicin or etoposide. In NPM-ALK(+) cell lines, doxorubicin treatment led to an increase in miR-125b levels by inhibiting the binding of DNMT1 to the MIR125B1 promoter and downregulating the pro-apoptotic miR-125b target BAK1. Reversal of miR-125b silencing, increased miR-125b levels and reduced BAK1 expression also led to a lower efficacy of doxorubicin, suggestive of a pharmacoresistance mechanism. In line with this, miR-125b repression and increased BAK1 expression correlated with early relapse in human NPM-ALK(+) ALCL primary biopsies. Collectively our findings suggest that miR-125b could be used to predict therapeutic outcome in NPM-ALK(+) ALCL.
Collapse
Affiliation(s)
- Annabelle Congras
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| | - Nina Caillet
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| | - Nouritza Torossian
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Cathy Quelen
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| | - Camille Daugrois
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Pierre Brousset
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, 31024, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31024, Toulouse, France.,European Research Initiative on ALK-related malignancies (ERIA) (http://www.erialcl.net/).,Equipe Labelisée LIGUE 2017
| | - Laurence Lamant
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, 31024, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31024, Toulouse, France.,European Research Initiative on ALK-related malignancies (ERIA) (http://www.erialcl.net/).,Equipe Labelisée LIGUE 2017
| | - Fabienne Meggetto
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, 31024, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31024, Toulouse, France.,European Research Initiative on ALK-related malignancies (ERIA) (http://www.erialcl.net/).,Equipe Labelisée LIGUE 2017
| | - Coralie Hoareau-Aveilla
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| |
Collapse
|
27
|
An Exploration into the Origins and Pathogenesis of Anaplastic Large Cell Lymphoma, Anaplastic Lymphoma Kinase (ALK)-Positive. Cancers (Basel) 2017. [PMCID: PMC5664080 DOI: 10.3390/cancers9100141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
T-cell non-Hodgkin lymphoma is a heterogeneous disease ranging from malignancies arising from thymic T cells halted in development, through to mature, circulating peripheral T cells. The latter cases are diagnostically problematic with many entering the category of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS). Anaplastic large cell lymphoma (ALCL) is one of the exceptions to this whereby aberrant expression of anaplastic lymphoma kinase (ALK) and the distinctive presence of cell surface CD30 places this entity in its own class. Besides the expression of a well-studied oncogenic translocation, ALCL, ALK+ may also have a unique pathogenesis with a thymic origin like T lymphoblastic lymphoma but a peripheral presentation akin to PTCL. This perspective discusses evidence towards the potential origin of ALCL, ALK+, and mechanisms that may give rise to its unique phenotype.
Collapse
|
28
|
Abstract
Anaplastic Large Cell Lymphoma (ALCL) is a clinical and biological heterogeneous disease including systemic ALK positive and ALK negative entities. Whereas ALK positive ALCLs are molecularly characterized and readily diagnosed, specific immunophenotypic or genetic features to define ALK negative ALCL are missing, and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) can be controversial. In recent years, great advances have been made in dissecting the heterogeneity of ALK negative ALCLs and in providing new diagnostic and treatment options for these patients. A new revision of the World Health Organization (WHO) classification promoted ALK negative ALCL to a definite entity that includes cytogenetic subsets with prognostic implications. However, a further understanding of the genetic landscape of ALK negative ALCL is required to dictate more effective therapeutic strategies specifically tailored for each subgroup of patients.
Collapse
|
29
|
Hoareau-Aveilla C, Meggetto F. Crosstalk between microRNA and DNA Methylation Offers Potential Biomarkers and Targeted Therapies in ALK-Positive Lymphomas. Cancers (Basel) 2017; 9:cancers9080100. [PMID: 28771164 PMCID: PMC5575603 DOI: 10.3390/cancers9080100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
The discovery of microRNA (miRNA) has provided new and powerful tools for studying the mechanism, diagnosis and treatment of human cancers. The down-regulation of tumor suppressive miRNA by hypermethylation of CpG island (CpG is shorthand for 5′-C-phosphate-G-3′, that is, cytosine and guanine separated by only one phosphate) is emerging as a common hallmark of cancer and appears to be involved in drug resistance. This review discusses the role of miRNA and DNA methylation in drug resistance mechanisms and highlights their potential as anti-cancer therapies in Anaplastic Lymphoma Kinase (ALK)-positive lymphomas. These are a sub-type of non-Hodgkin’s lymphomas that predominantly affect children and young adults and are characterized by the expression of the nucleophosmin (NPM)/ALK chimeric oncoprotein. Dysregulation of miRNA expression and regulation has been shown to affect several signaling pathways in ALK carcinogenesis and control tumor growth, both in cell lines and mouse models. These data suggest that the modulation of DNA methylation and/or the expression of these miRNA could serve as new biomarkers and have potential therapeutic applications for ALK-positive malignancies.
Collapse
Affiliation(s)
- Coralie Hoareau-Aveilla
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.
- CNRS, ERL5294 CRCT, F-31000 Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.
| | - Fabienne Meggetto
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.
- CNRS, ERL5294 CRCT, F-31000 Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.
| |
Collapse
|
30
|
Kuppers DA, Schmitt TM, Hwang HC, Samraj L, Clurman BE, Fero ML. The miR-106a~363 Xpcl1 miRNA cluster induces murine T cell lymphoma despite transcriptional activation of the p27 Kip1 cell cycle inhibitor. Oncotarget 2017; 8:50680-50691. [PMID: 28881594 PMCID: PMC5584189 DOI: 10.18632/oncotarget.16932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
The miR-106a~363 cluster encodes 6 miRNAs on the X-chromosome which are abundant in blood cells and overexpressed in a variety of malignancies. The constituent miRNA of miR-106a~363 have functional activities in vitro that are predicted to be both oncogenic and tumor suppressive, yet little is known about their physiological functions in vivo. Mature miR-106a~363 (Mirc2) miRNAs are processed from an intragenic, non-protein encoding gene referred to as Xpcl1 (or Kis2), situated at an X-chromosomal locus frequently targeted by retroviruses in murine lymphomas. The oncogenic potential of miR-106a~363 Xpcl1 has not been proven, nor its potential role in T cell development. We show that miR106a~363 levels normally drop at the CD4+/CD8+ double positive (DP) stage of thymocyte development. Forced expression of Xpcl1 at this stage impairs thymocyte maturation and induces T-cell lymphomas. Surprisingly, miR-106a~363 Xpcl1 also induces p27 transcription via Foxo3/4 transcription factors. As a haploinsufficient tumor suppressor, elevated p27 is expected to inhibit lymphomagenesis. Consistent with this, concurrent p27 Kip1 deletion dramatically accelerated lymphomagenesis, indicating that p27 is rate limiting for tumor development by Xpcl1. Whereas down-regulation of miR-106a~363 is important for normal T cell differentiation and for the prevention of lymphomas, eliminating p27 reveals Xpcl1's full oncogenic potential.
Collapse
Affiliation(s)
| | | | | | | | - Bruce E. Clurman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
31
|
Guru Murthy GS, Hamadani M, Bhatt VR, Dhakal I, Mehta P. Systemic Anaplastic Lymphoma Kinase-positive Anaplastic Large Cell Lymphoma: A Population-based Analysis of Incidence and Survival. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:201-206. [DOI: 10.1016/j.clml.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
32
|
Zhang Y, Huang B, Wang HY, Chang A, Zheng XFS. Emerging Role of MicroRNAs in mTOR Signaling. Cell Mol Life Sci 2017; 74:2613-2625. [PMID: 28238105 DOI: 10.1007/s00018-017-2485-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase that plays a critical role in the control of cellular growth and metabolism. Hyperactivation of mTOR pathway is common in human cancers, driving uncontrolled proliferation. MicroRNA (miRNA) is a class of short noncoding RNAs that regulate the expression of a wide variety of genes. Deregulation of miRNAs is a hallmark of cancer. Recent studies have revealed interplays between miRNAs and the mTOR pathway during cancer development. Such interactions appear to provide a fine-tuning of various cellular functions and contribute qualitatively to the behavior of cancer. Here we provide an overview of current knowledge regarding the reciprocal relationship between miRNAs and mTOR pathway: regulation of mTOR signaling by miRNAs and control of miRNA biogenesis by mTOR. Further research in this area may prove important for the diagnosis and therapy of human cancer.
Collapse
Affiliation(s)
- Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China.
| | - Bo Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Augustus Chang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
33
|
Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood 2016; 129:823-831. [PMID: 27879258 DOI: 10.1182/blood-2016-05-717793] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/06/2016] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase physiologically expressed by fetal neural cells. However, aberrantly expressed ALK is involved in the pathogenesis of diverse malignancies, including distinct types of lymphoma, lung carcinoma, and neuroblastoma. The aberrant ALK expression in nonneural cells results from chromosomal translocations that create novel fusion proteins. These protein hybrids compose the proximal part of a partner gene, including its promoter region, and the distal part of ALK, including the coding sequence for the entire kinase domain. ALK was first identified in a subset of T-cell lymphomas with anaplastic large cell lymphoma (ALCL) morphology (ALK+ ALCL), the vast majority of which harbor the well-characterized nucleophosmin (NPM)-ALK fusion protein. NPM-ALK co-opts several intracellular signal transduction pathways, foremost being the STAT3 pathway, normally activated by cytokines from the interleukin-2 (IL-2) family to promote cell proliferation and to inhibit apoptosis. Many genes and proteins modulated by NPM-ALK are also involved in evasion of antitumor immune response, protection from hypoxia, angiogenesis, DNA repair, cell migration and invasiveness, and cell metabolism. In addition, NPM-ALK uses epigenetic silencing mechanisms to downregulate tumor suppressor genes to maintain its own expression. Importantly, NPM-ALK is capable of transforming primary human CD4+ T cells into immortalized cell lines indistinguishable from patient-derived ALK+ ALCL. Preliminary clinical studies indicate that inhibition of NPM-ALK induces long-lasting complete remissions in a large subset of heavily pretreated adult patients and the vast majority of children with high-stage ALK+ ALCL. Combining ALK inhibition with other novel therapeutic modalities should prove even more effective.
Collapse
|
34
|
Sun R, Medeiros LJ, Young KH. Diagnostic and predictive biomarkers for lymphoma diagnosis and treatment in the era of precision medicine. Mod Pathol 2016; 29:1118-1142. [PMID: 27363492 DOI: 10.1038/modpathol.2016.92] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
Lymphomas are a group of hematological malignancies derived from lymphocytes. Lymphomas are clinically and biologically heterogeneous and have overlapping diagnostic features. With the advance of new technologies and the application of efficient and feasible detection platforms, an unprecedented number of novel biomarkers have been discovered or are under investigation at the genetic, epigenetic, and protein level as well as the tumor microenvironment. These biomarkers have enabled new clinical and pathological insights into the mechanisms underlying lymphomagenesis and also have facilitated improvements in the diagnostic workup, sub-classification, outcome stratification, and personalized therapy for lymphoma patients. However, integrating these biomarkers into clinical practice effectively and precisely in daily practice is challenging. More in-depth studies are required to further validate these novel biomarkers and to assess other parameters that can affect the reproducibility of these biomarkers such as the selection of detection methods, biological reagents, interpretation of data, and cost efficiency. Despite these challenges, there are many reasons to be optimistic that novel biomarkers will facilitate better algorithms and strategies as we enter a new era of precision medicine to better refine diagnosis, prognostication, and rational treatment design for patients with lymphomas.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, Shanxi Cancer Hospital, Shanxi, China
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|
35
|
Abstract
Understanding the molecular pathogenesis of peripheral T cell lymphomas (PTCLs) has lagged behind that of B cell lymphomas due to disease rarity. However, novel approaches are gradually clarifying these mechanisms, and gene profiling has identified specific signaling pathways governing PTCL cell survival and growth. For example, genetic alterations have been discovered, including signal transducer and activator of transcription (STAT)3 and STAT5b mutations in several PTCLs, disease-specific ras homolog family member A (RHOA) mutations in angioimmunoblastic T cell lymphoma (AITL), and recurrent translocations at the dual specificity phosphatase 22 (DUSP22) locus in anaplastic lymphoma receptor tyrosine kinase (ALK)-negative anaplastic large cell lymphomas (ALCLs). Intriguingly, some PTCL-relevant mutations are seen in apparently normal blood cells as well as tumor cells, while others are confined to tumor cells. These data have dramatically changed our understanding of PTCL origins: once considered to originate from mature T lymphocytes, some PTCLs are now believed to emerge from immature hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
36
|
The role of microRNAs in resistance to targeted treatments of non-small cell lung cancer. Cancer Chemother Pharmacol 2016; 79:227-231. [PMID: 27515517 DOI: 10.1007/s00280-016-3130-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC), accounting for the most of lung cancers, is usually diagnosed in advanced stage. Targeted treatments boost advanced NSCLC patients with certain mutations, but early drug resistance blocks the advantages of target medicine. MicroRNAs (miRNAs) are regarded as a cluster of small noncoding and posttranscriptionally negative regulating RNAs. We want to explore the role of miRNAs in resistance to targeted treatments of NSCLC to improve the prognosis. METHODS We reviewed recent studies about miRNAs and targeted treatment resistance in NSCLC and classified resistance into two types: EGFR-TKIs resistance and ALK-TKIs resistance. RESULTS AND CONCLUSION Recent studies indicate that miRNAs involve in drug resistance possession in positive and negative manners. Inhibiting expression of certain miRNAs that promote drug resistance and increasing expression of miRNAs that reverse drug resistance may illuminate novel prospect of adjuvant targeted treatments in NSCLC.
Collapse
|
37
|
Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 2016; 30:2152-2159. [PMID: 27479182 DOI: 10.1038/leu.2016.213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Programmed apoptotic cell death is critical to maintain tissue homeostasis and cellular integrity in the lymphatic system. Accordingly, the evasion of apoptosis is a critical milestone for the transformation of lymphocytes on their way to becoming overt lymphomas. The anti-apoptotic BCL-2 family proteins are pivotal regulators of the mitochondrial apoptotic pathway and genetic aberrations in these genes are associated with lymphomagenesis and chemotherapeutic resistance. Pharmacological targeting of BCL-2 is highly effective in certain indolent B-cell lymphomas; however, recent evidence highlights a critical role for the BCL-2 family member MCL-1 in several lymphoma subtypes. MCL-1 is recurrently highly expressed in various kinds of cancer including non-Hodgkin's lymphoma of B- and T-cell origin. Moreover, both indolent and aggressive forms of lymphoma require MCL-1 for lymphomagenesis and for their continued survival. This review summarizes the role of MCL-1 in B- and T-cell lymphoma and discusses its potential as a therapeutic target.
Collapse
|
38
|
Berlanga P, Muñoz L, Piqueras M, Sirerol JA, Sánchez-Izquierdo MD, Hervás D, Hernández M, Llavador M, Machado I, Llombart-Bosch A, Cañete A, Castel V, Font de Mora J. miR-200c and phospho-AKT as prognostic factors and mediators of osteosarcoma progression and lung metastasis. Mol Oncol 2016; 10:1043-53. [PMID: 27155790 PMCID: PMC5423177 DOI: 10.1016/j.molonc.2016.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/04/2023] Open
Abstract
Lung metastasis is the major cause of death in osteosarcoma patients. However, molecular mechanisms underlying this metastasis remain poorly understood. To identify key molecules related with pulmonary metastasis of pediatric osteosarcomas, we analyzed high-throughput miRNA expression in a cohort of 11 primary tumors and 15 lung metastases. Results were further validated with an independent cohort of 10 primary tumors and 6 metastases. In parallel, we performed immunohistochemical analysis of activated signaling pathways in 36 primary osteosarcomas. Only phospho-AKT associated with lower overall survival in primary tumors, supporting its role in osteosarcoma progression. CTNNB1 expression also associated with lower overall survival but was not strong enough to be considered an independent variable. Interestingly, miR-200c was overexpressed in lung metastases, implicating an inhibitory feed-back loop to PI3K-AKT. Moreover, transfection of miR200c-mimic in U2-OS cells reduced phospho-AKT levels but increased cellular migration and proliferation. Notably, miR-200c expression strongly correlated with miR-141 and with the osteogenic inhibitor miR-375, all implicated in epithelial to mesenchymal transition. These findings contrast epithelial tumors where reduced miR-200c expression promotes metastasis. Indeed, we noted that osteosarcoma cells in the lung also expressed the epithelial marker CDH1, revealing a change in their mesenchymal phenotype. We propose that miR-200c upregulation occurs late in osteosarcoma progression to provide cells with an epithelial phenotype that facilitates their integration in the metastatic lung niche. Thus, our findings identify phospho-AKT in the primary tumor and miR-200c later during tumor progression as prognostic molecules and potential therapeutic targets to prevent progression and metastasis of pediatric osteosarcomas.
Collapse
Affiliation(s)
- Pablo Berlanga
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Spain; Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain
| | - Lisandra Muñoz
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain
| | - Marta Piqueras
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain
| | - J Antoni Sirerol
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain
| | | | - David Hervás
- Biostatistics Unit, Instituto de Investigación Sanitaria La Fe, Spain
| | | | | | - Isidro Machado
- Department of Pathology, Instituto Valenciano de Oncología, Spain
| | | | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Spain; Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Spain; Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain
| | - Jaime Font de Mora
- Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain; Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain.
| |
Collapse
|
39
|
Abstract
microRNAs (miRNAs) are noncoding regulatory RNAs usually consisting of 20-24 nucleotides. During the past decade, increases and decreases in miRNA expression have been shown to associate with various types of diseases, including cancer. Over 4500 miRNAs have been identified in humans, and it is known that nearly all human protein-encoding genes can be controlled by miRNAs in both healthy and malignant cells. Detailed genome-wide miRNA expression analysis has been performed in various malignant lymphoma subtypes, and these analyses have led to the discovery of subtype-specific miRNA alterations. In this chapter, I describe several key miRNAs and their targets in distinct malignant lymphoma subsets and their roles in their pathogenesis, studies of which will lead new therapeutic strategies against aggressive lymphomas.
Collapse
|
40
|
Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1228-1237. [PMID: 27080131 DOI: 10.1016/j.bbagrm.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 12/18/2022]
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
41
|
Re-activation of mitochondrial apoptosis inhibits T-cell lymphoma survival and treatment resistance. Leukemia 2016; 30:1520-30. [DOI: 10.1038/leu.2016.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/19/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
|
42
|
Turner SD, Lamant L, Kenner L, Brugières L. Anaplastic large cell lymphoma in paediatric and young adult patients. Br J Haematol 2016; 173:560-72. [PMID: 26913827 DOI: 10.1111/bjh.13958] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a heterogeneous disease of debateable origin that, in children, is largely anaplastic lymphoma kinase (ALK) positive with aberrant ALK activity induced following the formation of chromosomal translocations. Whilst the survival rates for this disease are relatively high, a significant proportion (20-40%) of patients suffer disease relapse, in some cases on multiple occasions and therefore suffer the toxic side-effects of combination chemotherapy. Traditionally, patients are treated with a combination of agents although recent data from relapse patients have suggested that low risk patients might benefit from single agent vinblastine and, going forward, the addition of ALK inhibitors to the therapeutic regimen may have beneficial consequences. There are also a plethora of other drugs that might be advantageous to patients with ALCL and many of these have been identified through laboratory research although the decision as to which drugs to implement in trials will not be trivial.
Collapse
Affiliation(s)
- Suzanne D Turner
- Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Cambridge, UK.,European Research Initiative for ALK related Malignancies, Toulouse, France
| | - Laurence Lamant
- European Research Initiative for ALK related Malignancies, Toulouse, France.,Institut Universitaire de Cancérologie Oncopole, Toulouse, France
| | - Lukas Kenner
- European Research Initiative for ALK related Malignancies, Toulouse, France.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.,Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Laurence Brugières
- European Research Initiative for ALK related Malignancies, Toulouse, France.,Département de Cancérologie de l'Enfant et l'Adolescent, Gustave Roussy, Villejuif, France
| |
Collapse
|
43
|
Nana-Sinkam SP, Croce CM. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol 2015; 15:445. [PMID: 25315999 PMCID: PMC4709998 DOI: 10.1186/s13059-014-0445-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the past two decades, microRNAs have emerged as crucial mediators of organ development and human disease. Here, we discuss their role as drivers or suppressors of the hallmarks of cancer during tumorigenesis and progression, in defining interpatient heterogeneity and the promise of therapeutic application.
Collapse
|
44
|
Hoareau-Aveilla C, Valentin T, Daugrois C, Quelen C, Mitou G, Quentin S, Jia J, Spicuglia S, Ferrier P, Ceccon M, Giuriato S, Gambacorti-Passerini C, Brousset P, Lamant L, Meggetto F. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. J Clin Invest 2015; 125:3505-18. [PMID: 26258416 DOI: 10.1172/jci78488] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 06/23/2015] [Indexed: 01/20/2023] Open
Abstract
The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(-) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation-mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Crizotinib
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Male
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
Collapse
|
45
|
Merkel O, Hamacher F, Griessl R, Grabner L, Schiefer AI, Prutsch N, Baer C, Egger G, Schlederer M, Krenn PW, Hartmann TN, Simonitsch-Klupp I, Plass C, Staber PB, Moriggl R, Turner SD, Greil R, Kenner L. Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation. J Pathol 2015; 236:445-56. [PMID: 25820993 PMCID: PMC4557053 DOI: 10.1002/path.4539] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/20/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a rare, aggressive, non-Hodgkin's lymphoma that is characterized by CD30 expression and disease onset in young patients. About half of ALCL patients bear the t(2;5)(p23;q35) translocation, which results in the formation of the nucleophosmin-anaplastic lymphoma tyrosine kinase (NPM-ALK) fusion protein (ALCL ALK(+)). However, little is known about the molecular features and tumour drivers in ALK-negative ALCL (ALCL ALK(-)), which is characterized by a worse prognosis. We found that ALCL ALK(-), in contrast to ALCL ALK(+), lymphomas display high miR-155 expression. Consistent with this, we observed an inverse correlation between miR-155 promoter methylation and miR-155 expression in ALCL. However, no direct effect of the ALK kinase on miR-155 levels was observed. Ago2 immunoprecipitation revealed miR-155 as the most abundant miRNA, and enrichment of target mRNAs C/EBPβ and SOCS1. To investigate its function, we over-expressed miR-155 in ALCL ALK(+) cell lines and demonstrated reduced levels of C/EBPβ and SOCS1. In murine engraftment models of ALCL ALK(-), we showed that anti-miR-155 mimics are able to reduce tumour growth. This goes hand-in-hand with increased levels of cleaved caspase-3 and high SOCS1 in these tumours, which leads to suppression of STAT3 signalling. Moreover, miR-155 induces IL-22 expression and suppresses the C/EBPβ target IL-8. These data suggest that miR-155 can act as a tumour driver in ALCL ALK(-) and blocking miR-155 could be therapeutically relevant. Original miRNA array data are to be found in the supplementary material (Table S1).
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Case-Control Studies
- Caspase 3/metabolism
- Cell Line, Tumor
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 5
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, Large-Cell, Anaplastic/therapy
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Promoter Regions, Genetic
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Suppressor of Cytokine Signaling 1 Protein
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Transfection
- Translocation, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Olaf Merkel
- Department of Translational Oncology, National Centre for Tumour Diseases (NCT), German Cancer Research Centre (DKFZ)Heidelberg, Germany
- Department of Clinical Pathology, Medical University ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Frank Hamacher
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Robert Griessl
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Lisa Grabner
- Department of Clinical Pathology, Medical University ViennaAustria
| | | | - Nicole Prutsch
- Department of Clinical Pathology, Medical University ViennaAustria
| | - Constance Baer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ)Heidelberg, Germany
| | - Gerda Egger
- Department of Clinical Pathology, Medical University ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Michaela Schlederer
- Department of Clinical Pathology, Medical University ViennaAustria
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
| | - Peter William Krenn
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | | | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ)Heidelberg, Germany
| | - Philipp Bernhard Staber
- Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna1090, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna and Medical University of ViennaAustria
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of CambridgeUK
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Lukas Kenner
- Department of Clinical Pathology, Medical University ViennaAustria
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| |
Collapse
|
46
|
Abstract
Anaplastic large cell lymphoma (ALCL) comprises a group of T-cell non-Hodgkin lymphomas unified by common morphologic and immunophenotypic characteristics, but with a spectrum of clinical presentations and behaviors. Early identification of anaplastic lymphoma kinase (ALK) gene rearrangements in some ALCLs led to recognition of ALK as an important diagnostic and prognostic biomarker, and a key driver of ALCL pathobiology. Rearrangements and other genetic abnormalities of ALK subsequently were identified in diverse other human malignancies. Recent clinical, pathologic, and genetic data have begun to shed light on ALK-negative ALCLs, revealing significant heterogeneity within this more ill-defined entity.
Collapse
Affiliation(s)
- Yu Zeng
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA.,b Department of Pathology , Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - Andrew L Feldman
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
47
|
O'Connor OA, Bhagat G, Ganapathi K, Pedersen MB, D'Amore F, Radeski D, Bates SE. Changing the paradigms of treatment in peripheral T-cell lymphoma: from biology to clinical practice. Clin Cancer Res 2015; 20:5240-54. [PMID: 25320373 DOI: 10.1158/1078-0432.ccr-14-2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite enormous advances in our understanding of aggressive lymphomas, it is clear that progress in the peripheral T-cell lymphomas (PTCL) has lagged well behind other B-cell malignancies. Although there are many reasons for this, the one commonly cited notes that the paradigms for diffuse large B-cell lymphoma (DLBCL) were merely applied to all patients with PTCL, the classic "one-size-fits-all" approach. Despite these challenges, progress is being made. Recently, the FDA has approved four drugs for patients with relapsed/refractory PTCL over the past 5 years, and if one counts the recent Japanese approval of the anti-CCR4 monoclonal antibody for patients with adult T-cell leukemia/lymphoma, five drugs have been approved worldwide. These efforts have led to the initiation of no fewer than four randomized clinical studies exploring the integration of these new agents into standard CHOP (cyclophosphamide-Adriamycin-vincristine-prednisone)-based chemotherapy regimens for patients with newly diagnosed PTCL. In addition, a new wave of studies are exploring the merits of novel drug combinations in the disease, an effort to build on the obvious single-agent successes. What has emerged most recently is the recognition that the PTCL may be a disease-characterized by epigenetic dysregulation, which may help explain its sensitivity to histone deacetylase (HDAC) inhibitors, and open the door for even more creative combination approaches. Nonetheless, advances made over a relatively short period of time are changing how we now view these diseases and, hopefully, have poised us to finally improve its prognosis. See all articles in this CCR Focus section, "Paradigm Shifts in Lymphoma."
Collapse
Affiliation(s)
- Owen A O'Connor
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, The New York Presbyterian Hospital, New York, New York.
| | - Govind Bhagat
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Karthik Ganapathi
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | | | - Francesco D'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Dejan Radeski
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, The New York Presbyterian Hospital, New York, New York
| | - Susan E Bates
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
48
|
Hiyoshi Y, Schetter AJ, Okayama H, Inamura K, Anami K, Nguyen GH, Horikawa I, Hawkes JE, Bowman ED, Leung SY, Harris CC. Increased microRNA-34b and -34c predominantly expressed in stromal tissues is associated with poor prognosis in human colon cancer. PLoS One 2015; 10:e0124899. [PMID: 25894979 PMCID: PMC4404052 DOI: 10.1371/journal.pone.0124899] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/08/2015] [Indexed: 12/15/2022] Open
Abstract
The microRNA-34 family (miR-34a, -34b and -34c) have been reported to be tumor suppressor microRNAs (miRNAs) that are regulated by the TP53 and DNA hypermethylation. However, the expression, regulation, and prognostic value of the miR-34 family have not been systematically studied in colon cancer. To elucidate the roles of miR-34 family in colon carcinogenesis, miR-34a/b/c were measured in tumors and adjacent noncancerous tissues from 159 American and 113 Chinese colon cancer patients using quantitative RT-PCR, and we examined associations between miR-34a/b/c expression with TNM staging, cancer-specific mortality, TP53 mutation status and Affymetrix microarray data. All miR-34 family members were significantly increased in colon tumors, counter to the proposed tumor suppressor role for these miRNAs. Increased miR-34b/c were observed in more advanced tumors in two independent cohorts and increased expression of miR-34b/c was associated with poor cancer-specific mortality. While the expression of miR-34 family was not associated with TP53 mutation status, TP53 transcriptional activity was associated with miR-34a/b/c expression that is consistent with the proposed regulation of miR-34a/b/c by TP53. To examine where the miR-34 family is expressed, the expression of miR-34 family was compared between epitheliums and stromal tissues using laser microdissection technique. The expression of miR-34b/c was increased significantly in stromal tissues, especially in cancer stroma, compared with epithelial tissue. In conclusion, increased miR-34b/c predominantly expressed in stromal tissues is associated with poor prognosis in colon cancer. MiR-34 may contribute to cancer-stromal interaction associated with colon cancer progression.
Collapse
Affiliation(s)
- Yukiharu Hiyoshi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aaron J. Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hirokazu Okayama
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kentaro Inamura
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katsuhiro Anami
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Giang H. Nguyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason E. Hawkes
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elise D. Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suet Yi Leung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- * E-mail:
| |
Collapse
|
49
|
[The progress of diagnostic and prognostic molecular markers of lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:354-7. [PMID: 25916304 PMCID: PMC7342629 DOI: 10.3760/cma.j.issn.0253-2727.2015.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Next-generation sequencing identifies deregulation of microRNAs involved in both innate and adaptive immune response in ALK+ ALCL. PLoS One 2015; 10:e0117780. [PMID: 25688981 PMCID: PMC4331429 DOI: 10.1371/journal.pone.0117780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is divided into two systemic diseases according to the expression of the anaplastic lymphoma kinase (ALK). We investigated the differential expression of miRNAs between ALK+ ALCL, ALK- ALCL cells and normal T-cells using next generation sequencing (NGS). In addition, a C/EBPβ-dependent miRNA profile was generated. The data were validated in primary ALCL cases. NGS identified 106 miRNAs significantly differentially expressed between ALK+ and ALK- ALCL and 228 between ALK+ ALCL and normal T-cells. We identified a signature of 56 miRNAs distinguishing ALK+ ALCL, ALK- ALCL and T-cells. The top candidates significant differentially expressed between ALK+ and ALK- ALCL included 5 upregulated miRNAs: miR-340, miR-203, miR-135b, miR-182, miR-183; and 7 downregulated: miR-196b, miR-155, miR-146a, miR-424, miR-503, miR-424*, miR-542-3p. The miR-17-92 cluster was also upregulated in ALK+ cells. Additionally, we identified a signature of 3 miRNAs significantly regulated by the transcription factor C/EBPβ, which is specifically overexpressed in ALK+ ALCL, including the miR-181 family. Of interest, miR-181a, which regulates T-cell differentiation and modulates TCR signalling strength, was significantly downregulated in ALK+ ALCL cases. In summary, our data reveal a miRNA signature linking ALK+ ALCL to a deregulated immune response and may reflect the abnormal TCR antigen expression known in ALK+ ALCL.
Collapse
|