1
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. These enzymes rely on dynamic, highly conserved active site domains such as the so-called "trigger loop" (TL) to accomplish steps in the transcription cycle. Mutations in the RNA polymerase II (Pol II) TL confer a spectrum of biochemical and genetic phenotypes that suggest two main classes, which decrease or increase catalysis or other nucleotide addition cycle (NAC) events. The Pol II active site relies on networks of residue interactions to function and mutations likely perturb these networks in ways that may alter mechanisms. We have undertaken a structural genetics approach to reveal residue interactions within and surrounding the Pol II TL - determining its "interaction landscape" - by deep mutational scanning in Saccharomyces cerevisiae Pol II. This analysis reveals connections between TL residues and surrounding domains, demonstrating that TL function is tightly coupled to its specific enzyme context.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
3
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. Genetics 2024; 228:iyae172. [PMID: 39446980 PMCID: PMC11631520 DOI: 10.1093/genetics/iyae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576280. [PMID: 38293233 PMCID: PMC10827151 DOI: 10.1101/2024.01.20.576280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
5
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser. Proc Natl Acad Sci U S A 2024; 121:e2318527121. [PMID: 39190355 PMCID: PMC11388330 DOI: 10.1073/pnas.2318527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
6
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559052. [PMID: 37790421 PMCID: PMC10543002 DOI: 10.1101/2023.09.22.559052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston MA 02115 USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| |
Collapse
|
7
|
Zhang H, Cui H, Xia X, Zhang F, Hayat K, Zhang X, Ho CT. Controlled Selective Formation of Amadori Compounds from α/ε Mono- or Di-glycation of Lysine with Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5358-5371. [PMID: 36944085 DOI: 10.1021/acs.jafc.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three Amadori rearrangement products (Xyl-α-Lys-ARP, Xyl-ε-Lys-ARP, and diXyl-α,ε-Lys-ARP) were observed in the xylose-lysine (Xyl-Lys) Maillard reaction model. They were separated and characterized by liquid chromatography with tandem mass spectrometry and NMR. The crucial roles of reaction temperature, pH, molar ratio of Xyl to Lys, and reaction time in the formation of different Xyl-Lys-ARPs were investigated. The proportion of Xyl-α-Lys-ARP among all Xyl-Lys-ARPs was increased to 48.41% (its concentration was 25.31 μmol/mL) after the reaction at pH = 5.5 and a molar ratio of 3:1 (Xyl: Lys) for 9 min, while only Xyl-ε-Lys-ARP was generated at a higher pH (7.5) and a lower molar ratio of 1:5. Moreover, the much higher activation energy (84.08 kJ/mol) of diXyl-α,ε-Lys-ARP than Xyl-α-Lys-ARP (34.19 kJ/mol) and Xyl-ε-Lys-ARP (32.32 kJ/mol) indicated a pronounced promoting effect on diXyl-α,ε-Lys-ARP formation by high temperatures. A complete conversion from Xyl-α-Lys-ARP and Xyl-ε-Lys-ARP to diXyl-α,ε-Lys-ARP was achieved through the reaction time prolongation and Xyl concentration increase at a higher temperature; the concentration of diXyl-α,ε-Lys-ARP was 39.05 μmol/mL at a molar ratio of 5:1 for 40 min. Accordingly, the selective preparation of Xyl-α-Lys-ARP, Xyl-ε-Lys-ARP, and diXyl-α,ε-Lys-ARP could be achieved through adjusting the Xyl-Lys ratio, pH, and reaction time.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui QiangWang Flavouring Food Co. Ltd., Fuyang 236500, Anhui, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
8
|
Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. PLoS Comput Biol 2023; 19:e1010999. [PMID: 36947548 PMCID: PMC10069792 DOI: 10.1371/journal.pcbi.1010999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/03/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California Merced, Merced, California, United States of America
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
9
|
Unarta IC, Goonetilleke EC, Wang D, Huang X. Nucleotide addition and cleavage by RNA polymerase II: Coordination of two catalytic reactions using a single active site. J Biol Chem 2022; 299:102844. [PMID: 36581202 PMCID: PMC9860460 DOI: 10.1016/j.jbc.2022.102844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
RNA polymerase II (Pol II) incorporates complementary ribonucleotides into the growing RNA chain one at a time via the nucleotide addition cycle. The nucleotide addition cycle, however, is prone to misincorporation of noncomplementary nucleotides. Thus, to ensure transcriptional fidelity, Pol II backtracks and then cleaves the misincorporated nucleotides. These two reverse reactions, nucleotide addition and cleavage, are catalyzed in the same active site of Pol II, which is different from DNA polymerases or other endonucleases. Recently, substantial progress has been made to understand how Pol II effectively performs its dual role in the same active site. Our review highlights these recent studies and provides an overall model of the catalytic mechanisms of Pol II. In particular, RNA extension follows the two-metal-ion mechanism, and several Pol II residues play important roles to facilitate the catalysis. In sharp contrast, the cleavage reaction is independent of any Pol II residues. Interestingly, Pol II relies on its residues to recognize the misincorporated nucleotides during the backtracking process, prior to cleavage. In this way, Pol II efficiently compartmentalizes its two distinct catalytic functions using the same active site. Lastly, we also discuss a new perspective on the potential third Mg2+ in the nucleotide addition and intrinsic cleavage reactions.
Collapse
Affiliation(s)
- Ilona Christy Unarta
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eshani C Goonetilleke
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
10
|
Lapierre J, Hub JS. DNA opening during transcription initiation by RNA polymerase II in atomic detail. Biophys J 2022; 121:4299-4310. [PMID: 36230000 PMCID: PMC9703100 DOI: 10.1016/j.bpj.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
RNA polymerase II (RNAP II) synthesizes RNA by reading the DNA code. During transcription initiation, RNAP II opens the double-stranded DNA to expose the DNA template to the active site. The molecular interactions driving and controlling DNA opening are not well understood. We used all-atom steered molecular dynamics simulations to derive a continuous pathway of DNA opening in human RNAP II, involving a 55 Å DNA strand displacement and a nearly 360° DNA helix rotation. To drive such large-scale transitions, we used a combination of RMSD-based collective variables, a newly designed rotational coordinate, and a path collective variable. The simulations reveal extensive interactions of the DNA with three conserved protein loops near the active site, namely with the rudder, fork loop 1, and fork loop 2. According to the simulations, DNA-protein interactions support DNA opening by a twofold mechanism; they catalyze DNA opening by attacking Watson-Crick hydrogen bonds, and they stabilize the open DNA bubble by the formation of a wide set of DNA-protein salt bridges.
Collapse
Affiliation(s)
- Jeremy Lapierre
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
11
|
Shino G, Takada S. Modeling DNA Opening in the Eukaryotic Transcription Initiation Complexes via Coarse-Grained Models. Front Mol Biosci 2021; 8:772486. [PMID: 34869598 PMCID: PMC8636136 DOI: 10.3389/fmolb.2021.772486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/24/2023] Open
Abstract
Recently, the molecular mechanisms of transcription initiation have been intensively studied. Especially, the cryo-electron microscopy revealed atomic structure details in key states in the eukaryotic transcription initiation. Yet, the dynamic processes of the promoter DNA opening in the pre-initiation complex remain obscured. In this study, based on the three cryo-electron microscopic yeast structures for the closed, open, and initially transcribing complexes, we performed multiscale molecular dynamics (MD) simulations to model structures and dynamic processes of DNA opening. Combining coarse-grained and all-atom MD simulations, we first obtained the atomic model for the DNA bubble in the open complexes. Then, in the MD simulation from the open to the initially transcribing complexes, we found a previously unidentified intermediate state which is formed by the bottleneck in the fork loop 1 of Pol II: The loop opening triggered the escape from the intermediate, serving as a gatekeeper of the promoter DNA opening. In the initially transcribing complex, the non-template DNA strand passes a groove made of the protrusion, the lobe, and the fork of Rpb2 subunit of Pol II, in which several positively charged and highly conserved residues exhibit key interactions to the non-template DNA strand. The back-mapped all-atom models provided further insights on atomistic interactions such as hydrogen bonding and can be used for future simulations.
Collapse
Affiliation(s)
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Yuan C, Goonetilleke EC, Unarta IC, Huang X. Incorporation efficiency and inhibition mechanism of 2'-substituted nucleotide analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Phys Chem Chem Phys 2021; 23:20117-20128. [PMID: 34514487 DOI: 10.1039/d1cp03049c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing pandemic caused by SARS-CoV-2 emphasizes the need for effective therapeutics. Inhibition of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by nucleotide analogs provides a promising antiviral strategy. One common group of RdRp inhibitors, 2'-modified nucleotides, are reported to exhibit different behaviors in the SARS-CoV-2 RdRp transcription assay. Three of these analogs, 2'-O-methyl UTP, Sofosbuvir, and 2'-methyl CTP, act as effective inhibitors in previous biochemical experiments, while Gemcitabine and ara-UTP show no inhibitory activity. To understand the impact of the 2'-modification on their inhibitory effects, we conducted extensive molecular dynamics simulations and relative binding free energy calculations using the free energy perturbation method on SARS-CoV-2 replication-transcription complex (RTC) with these five nucleotide analogs. Our results reveal that the five nucleotide analogs display comparable binding affinities to SARS-CoV-2 RdRp and they can all be added to the nascent RNA chain. Moreover, we examine how the incorporation of these nucleotide triphosphate (NTP) analogs will impact the addition of the next nucleotide. Our results indicate that 2'-O-methyl UTP can weaken the binding of the subsequent NTP and consequently lead to partial chain termination. Additionally, Sofosbuvir and 2'-methyl CTP can cause immediate termination due to the strong steric hindrance introduced by their bulky 2'-methyl groups. In contrast, nucleotide analogs with smaller substitutions, such as the fluorine atoms and the ara-hydroxyl group in Gemcitabine and ara-UTP, have a marginal impact on the polymerization process. Our findings are consistent with experimental observations, and more importantly, shed light on the detailed molecular mechanism of SARS-CoV-2 RdRp inhibition by 2'-substituted nucleotide analogs, and may facilitate the rational design of antiviral agents to inhibit SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Congmin Yuan
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Eshani C Goonetilleke
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Ilona Christy Unarta
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| |
Collapse
|
13
|
Mosaei H, Zenkin N. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis. Nucleic Acids Res 2021; 49:8777-8784. [PMID: 34365509 PMCID: PMC8421135 DOI: 10.1093/nar/gkab675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
Transcribing RNA polymerase (RNAP) can fall into backtracking, phenomenon when the 3' end of the transcript disengages from the template DNA. Backtracking is caused by sequences of the nucleic acids or by misincorporation of erroneous nucleotides. To resume productive elongation backtracked complexes have to be resolved through hydrolysis of RNA. There is currently no consensus on the mechanism of catalysis of this reaction by Escherichia coli RNAP. Here we used Salinamide A, that we found inhibits RNAP catalytic domain Trigger Loop (TL), to show that the TL is required for RNA cleavage during proofreading of misincorporation events but plays little role during cleavage in sequence-dependent backtracked complexes. Results reveal that backtracking caused by misincorporation is distinct from sequence-dependent backtracking, resulting in different conformations of the 3' end of RNA within the active center. We show that the TL is required to transfer the 3' end of misincorporated transcript from cleavage-inefficient 'misincorporation site' into the cleavage-efficient 'backtracked site', where hydrolysis takes place via transcript-assisted catalysis and is largely independent of the TL. These findings resolve the controversy surrounding mechanism of RNA hydrolysis by E. coli RNA polymerase and indicate that the TL role in RNA cleavage has diverged among bacteria.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- To whom correspondence should be addressed. Tel: +44 0 1912083227; Fax: +44 0 1912083205;
| |
Collapse
|
14
|
Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nat Chem Biol 2021; 17:906-914. [PMID: 34140682 PMCID: PMC8319059 DOI: 10.1038/s41589-021-00817-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The development of unnatural base pairs (UBPs) has greatly increased the information storage capacity of DNA, allowing for transcription of unnatural RNA by the heterologously expressed T7 RNA polymerase (RNAP) in Escherichia coli. However, little is known about how UBPs are transcribed by cellular RNA polymerases. Here, we investigated how synthetic unnatural nucleotides, NaM and TPT3, are recognized by eukaryotic RNA polymerase II (Pol II) and found that Pol II is able to selectively recognize UBPs with high fidelity when dTPT3 is in the template strand and rNaMTP acts as the nucleotide substrate. Our structural analysis and molecular dynamics simulation provide structural insights into transcriptional processing of UBPs in a stepwise manner. Intriguingly, we identified a novel 3'-RNA binding site after rNaM addition, termed the swing state. These results may pave the way for future studies in the design of transcription and translation strategies in higher organisms with expanded genetic codes.
Collapse
|
15
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
16
|
Génin NEJ, Weinzierl ROJ. Nucleotide Loading Modes of Human RNA Polymerase II as Deciphered by Molecular Simulations. Biomolecules 2020; 10:biom10091289. [PMID: 32906795 PMCID: PMC7565877 DOI: 10.3390/biom10091289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mapping the route of nucleoside triphosphate (NTP) entry into the sequestered active site of RNA polymerase (RNAP) has major implications for elucidating the complete nucleotide addition cycle. Constituting a dichotomy that remains to be resolved, two alternatives, direct NTP delivery via the secondary channel (CH2) or selection to downstream sites in the main channel (CH1) prior to catalysis, have been proposed. In this study, accelerated molecular dynamics simulations of freely diffusing NTPs about RNAPII were applied to refine the CH2 model and uncover atomic details on the CH1 model that previously lacked a persuasive structural framework to illustrate its mechanism of action. Diffusion and binding of NTPs to downstream DNA, and the transfer of a preselected NTP to the active site, are simulated for the first time. All-atom simulations further support that CH1 loading is transcription factor IIF (TFIIF) dependent and impacts catalytic isomerization. Altogether, the alternative nucleotide loading systems may allow distinct transcriptional landscapes to be expressed.
Collapse
Affiliation(s)
- Nicolas E. J. Génin
- Institut de Chimie Organique et Analytique, Université d’Orléans, 45100 Orléans, France;
| | | |
Collapse
|
17
|
Abstract
During transcription elongation at saturating nucleotide concentrations, RNA polymerase (RNAP) performs ∼50 nucleotide-addition cycles every second. The RNAP active center contains a structural element, termed the trigger loop (TL), that has been suggested, but not previously shown, to open to allow a nucleotide to enter and then to close to hold the nucleotide in each nucleotide-addition cycle. Here, using single-molecule fluorescence spectroscopy to monitor distances between a probe incorporated into the TL and a probe incorporated elsewhere in the transcription elongation complex, we show that TL closing and opening occur in solution, define time scales and functional roles of TL closing and opening, and, most crucially, demonstrate that one cycle of TL closing and opening occurs in each nucleotide-addition cycle. The RNA polymerase (RNAP) trigger loop (TL) is a mobile structural element of the RNAP active center that, based on crystal structures, has been proposed to cycle between an “unfolded”/“open” state that allows an NTP substrate to enter the active center and a “folded”/“closed” state that holds the NTP substrate in the active center. Here, by quantifying single-molecule fluorescence resonance energy transfer between a first fluorescent probe in the TL and a second fluorescent probe elsewhere in RNAP or in DNA, we detect and characterize TL closing and opening in solution. We show that the TL closes and opens on the millisecond timescale; we show that TL closing and opening provides a checkpoint for NTP complementarity, NTP ribo/deoxyribo identity, and NTP tri/di/monophosphate identity, and serves as a target for inhibitors; and we show that one cycle of TL closing and opening typically occurs in each nucleotide addition cycle in transcription elongation.
Collapse
|
18
|
T7 RNA Polymerase Discriminates Correct and Incorrect Nucleoside Triphosphates by Free Energy. Biophys J 2019; 114:1755-1761. [PMID: 29694856 DOI: 10.1016/j.bpj.2018.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/17/2018] [Accepted: 02/28/2018] [Indexed: 01/05/2023] Open
Abstract
RNA polymerase (RNAP) is the primary machine responsible for transcription. Its ability to distinguish between correct (cognate) and incorrect (noncognate) nucleoside triphosphates (NTPs) is important for fidelity control in transcription. In this work, we investigated the substrate selection mechanism of T7 RNAP from the perspective of energetics. The dissociation free energies were determined for matched and unmatched base pairs in the preinsertion complex using the umbrella sampling method. A clear hydrogen-bond-rupture peak is observed in the potential of mean force curve for a matched base pair, whereas no such peaks are present in the position of mean force profiles for unmatched ones. The free-energy barrier could prevent correct substrates from being separated from the active site. Therefore, when NTPs diffuse into the active site, correct ones will stay for chemistry once they establish effective base pairing contacts with the template nucleotide, whereas incorrect ones will be withdrawn from the active site and rejected back to solution. This result provides an important energy evidence for the substrate selection mechanism of RNAP. Then we elucidated energetics and molecular details for correct NTP binding to the active site of the insertion complex. Our observations reveal that strong interactions act on the triphosphate of NTP to constrain its movement, whereas relatively weak interactions serve to position the base in the correct conformation. Triple interactions, hydrophobic contacts from residues M635 and Y639, base stacking from the 3' RNA terminal nucleotide, and base pairing from the template nucleotide act together to position the NTP base in a catalytically competent conformation. At last, we observed that incorrect NTPs cannot be as well-stabilized as the correct one in the active site when they are misincorporated in the insertion site. It is expected that our work can be helpful for comprehensively understanding details of this basic step in genetic transcription.
Collapse
|
19
|
Qiu C, Kaplan CD. Functional assays for transcription mechanisms in high-throughput. Methods 2019; 159-160:115-123. [PMID: 30797033 PMCID: PMC6589137 DOI: 10.1016/j.ymeth.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
Ka Man Tse C, Xu J, Xu L, Sheong FK, Wang S, Chow HY, Gao X, Li X, Cheung PPH, Wang D, Zhang Y, Huang X. Intrinsic Cleavage of RNA Polymerase II Adopts a Nucleobase-independent Mechanism Assisted by Transcript Phosphate. Nat Catal 2019; 2:228-235. [PMID: 31179024 PMCID: PMC6548511 DOI: 10.1038/s41929-019-0227-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
RNA polymerase II (Pol II) utilises the same active site for polymerization and intrinsic cleavage. Pol II proofreads the nascent transcript by its intrinsic nuclease activity to maintain high transcriptional fidelity critical for cell growth and viability. The detailed catalytic mechanism of intrinsic cleavage remains unknown. Here, we combined ab initio quantum mechanics/molecular mechanics studies and biochemical cleavage assays to show that Pol II utilises downstream phosphate oxygen to activate the attacking nucleophile in hydrolysis, while the newly formed 3'-end is protonated through active-site water without a defined general acid. Experimentally, alteration of downstream phosphate oxygen either by 2'-5' sugar linkage or stereo-specific thio-substitution of phosphate oxygen drastically reduced cleavage rate. We showed by N7-modification that guanine nucleobase does not directly involve as acid-base catalyst. Our proposed mechanism provides important insights into the understanding of intrinsic transcriptional cleavage reaction, an essential step of transcriptional fidelity control.
Collapse
Affiliation(s)
- Carmen Ka Man Tse
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jun Xu
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Liang Xu
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Fu Kit Sheong
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Shenglong Wang
- Department of Chemistry, New York University, New York, New York 10003 United States
| | - Hoi Yee Chow
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Xin Gao
- Computational Bioscience Research Centre (CBRC), CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Peter Pak-Hang Cheung
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Dong Wang
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York 10003 United States
- NYU-ECNU Centre for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xuhui Huang
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
21
|
Konovalov KA, Pardo-Avila F, Tse CKM, Oh J, Wang D, Huang X. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. J Biol Chem 2019; 294:4924-4933. [PMID: 30718278 DOI: 10.1074/jbc.ra118.007333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
RNA polymerase II (Pol II) has an intrinsic fidelity control mechanism to maintain faithful genetic information transfer during transcription. 8-Oxo-guanine (8OG), a commonly occurring damaged guanine base, promotes misincorporation of adenine into the RNA strand. Recent structural work has shown that adenine can pair with the syn conformation of 8OG directly upstream of the Pol II active site. However, it remains unknown how 8OG is accommodated in the active site as a template base for the incoming ATP. Here, we used molecular dynamics (MD) simulations to investigate two consecutive steps that may contribute to the adenine misincorporation by Pol II. First, the mismatch is located in the active site, contributing to initial incorporation of adenine. Second, the mismatch is in the adjacent upstream position, contributing to extension from the mismatched bp. These results are supported by an in vitro transcription assay, confirming that 8OG can induce adenine misincorporation. Our simulations further suggest that 8OG forms a stable bp with the mismatched adenine in both the active site and the adjacent upstream position. This stability predominantly originates from hydrogen bonding between the mismatched adenine and 8OG in a noncanonical syn conformation. Interestingly, we also found that an unstable bp present directly upstream of the active site, such as adenine paired with 8OG in the canonical anti conformation, largely disrupts the stability of the active site. Our findings have uncovered two main factors contributing to how 8OG induces transcriptional errors and escapes Pol II transcriptional fidelity control checkpoints.
Collapse
Affiliation(s)
- Kirill A Konovalov
- From the HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| | - Fátima Pardo-Avila
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| | - Carmen Ka Man Tse
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| | - Juntaek Oh
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Dong Wang
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Xuhui Huang
- From the HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China, .,Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| |
Collapse
|
22
|
Trigger loop of RNA polymerase is a positional, not acid-base, catalyst for both transcription and proofreading. Proc Natl Acad Sci U S A 2017; 114:E5103-E5112. [PMID: 28607053 DOI: 10.1073/pnas.1702383114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The active site of multisubunit RNA polymerases (RNAPs) is highly conserved from humans to bacteria. This single site catalyzes both nucleotide addition required for RNA transcript synthesis and excision of incorrect nucleotides after misincorporation as a proofreading mechanism. Phosphoryl transfer and proofreading hydrolysis are controlled in part by a dynamic RNAP component called the trigger loop (TL), which cycles between an unfolded loop and an α-helical hairpin [trigger helices (TH)] required for rapid nucleotide addition. The precise roles of the TL/TH in RNA synthesis and hydrolysis remain unclear. An invariant histidine residue has been proposed to function in the TH form as a general acid in RNA synthesis and as a general base in RNA hydrolysis. The effects of conservative, nonionizable substitutions of the TL histidine (or a neighboring TL arginine conserved in bacteria) have not yet been rigorously tested. Here, we report that glutamine substitutions of these residues, which preserve polar interactions but are incapable of acid-base chemistry, had little effect on either phosphoryl transfer or proofreading hydrolysis by Escherichia coli RNAP. The TL substitutions did, however, affect the backtracking of RNAP necessary for proofreading and potentially the reactivity of the backtracked nucleotide. We describe a unifying model for the function of the RNAP TL, which reconciles available data and our results for representative RNAPs. This model explains diverse effects of the TL basic residues on catalysis through their effects on positioning reactants for phosphoryl transfer and easing barriers to transcript backtracking, rather than as acid-base catalysts.
Collapse
|
23
|
Wu S, Li L, Li Q. Mechanism of NTP Binding to the Active Site of T7 RNA Polymerase Revealed by Free-Energy Simulation. Biophys J 2017; 112:2253-2260. [PMID: 28591598 PMCID: PMC5474740 DOI: 10.1016/j.bpj.2017.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 11/26/2022] Open
Abstract
In genetic transcription, molecular dynamic details and energetics of NTP binding to the active site of RNA polymerase (RNAP) are poorly understood. In this article, we investigated the NTP binding process in T7 RNAP using all-atom MD simulation combined with the umbrella sampling technique. Based on our simulations, a two-step mechanism was proposed to explain NTP binding: first, substrate NTP in aqueous solution, which carries a magnesium ion, diffuses through a secondary channel of RNAP to attain a pore region, where it undergoes conformational changes to give a correct orientation; next, the NTP establishes initial basepairing contacts with the template nucleoside (TN). Our free-energy calculations suggest that both steps are spontaneous. This mechanism can easily explain the problem of NTP binding with different orientations. Moreover, it is found that the nascent NTP:TN basepair is fragile and easily broken by thermal disturbance. Therefore, we speculate that the fingers domain will be triggered to close, so as to create a steady environment for the next chemical step. The observations from the work provide valuable information for comprehensively understanding the mechanism of the basic step in genetic transcription.
Collapse
Affiliation(s)
- Shaogui Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Laicai Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
24
|
Roßbach S, Ochsenfeld C. Quantum-Chemical Study of the Discrimination against dNTP in the Nucleotide Addition Reaction in the Active Site of RNA Polymerase II. J Chem Theory Comput 2017; 13:1699-1705. [PMID: 28271886 DOI: 10.1021/acs.jctc.7b00157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic RNA polymerase II catalyzes the transcription of DNA into mRNA very efficiently and with an extremely low error rate with regard to matching base and sugar moiety. Despite its importance, little is known about how it discriminates against 2'-deoxy NTPs during the chemical reaction. To investigate the differences in the addition reactions of ATP and dATP, we used FF-MD and QM/MM calculations within a nudged elastic band approach, which allowed us to find the energetically accessible reaction coordinates. By converging the QM size, we found that 800 QM atoms are necessary to properly describe the active site. We show how the absence of a single hydrogen bond between the enzyme and the NTP 2'-OH group leads to an increase of the reaction barrier by 16 kcal/mol and therefore conclude that Arg446 is the key residue in the discrimination process.
Collapse
Affiliation(s)
- Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry and ‡Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstrasse 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry and ‡Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstrasse 7, D-81377 Munich, Germany
| |
Collapse
|
25
|
Wu S. Molecular dynamics simulation study of the “stay or leave” problem for two magnesium ions in gene transcription. Proteins 2017; 85:1002-1007. [DOI: 10.1002/prot.25268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Shaogui Wu
- College of Chemistry and Materials Science; Sichuan Normal University; Chengdu 610066 China
- State Key Laboratory of Theoretical Physics; Institute of Theoretical Physics, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
26
|
Wang ZF, Fu YB, Wang PY, Xie P. Dynamics of bridge helix bending in RNA polymerase II. Proteins 2017; 85:614-629. [DOI: 10.1002/prot.25239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Zhan-Feng Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| | - Yi-Ben Fu
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
27
|
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. PLoS Genet 2016; 12:e1006321. [PMID: 27898685 PMCID: PMC5127505 DOI: 10.1371/journal.pgen.1006321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins. Proper regulation of Pol II transcription, the first step of gene expression, is essential for life. Extensive evidence has revealed a widely conserved and dynamic polymerase active site component, termed the Trigger Loop (TL), in balancing transcription rate and fidelity while possibly allowing control of transcription elongation. Coupling high-throughput sequencing with our previously established genetic system, we are able to assess the in vivo phenotypes for almost all possible single substitution Pol II TL mutants in the budding yeast Saccharomyces cerevisiae. We show that mutants in the TL nucleotide interacting and linker regions widely confer dominant and severe growth defects. Clustering of TL mutants’ transcription-related and general stress phenotypes reveals three main classes of TL mutants, including previously identified fast and slow elongating mutants. Comprehensive analyses of the distribution of fast and slow elongation mutants in light of existing Pol II crystal structures reveal critical regions contributing to proper TL dynamics and function. Evidence is presented linking a previously observed hydrophobic pocket to NTP substrate-induced TL closing, the mechanism critical for correct substrates selection and transcription fidelity. Finally, we assess the functional interplay between TL and its proximal domains, and their presumptive roles in the function and evolution of the TL. Utilizing the Pol II TL as a case study, we present a structural genetics approach that reveals insights into a complex, multi-functional, and essential domain in yeast.
Collapse
|
28
|
Zhu L, Jiang H, Sheong FK, Cui X, Wang Y, Gao X, Huang X. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:39-46. [PMID: 27697475 DOI: 10.1016/j.pbiomolbio.2016.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022]
Abstract
At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.
Collapse
Affiliation(s)
- Lizhe Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hanlun Jiang
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 23955, Saudi Arabia
| | - Yanli Wang
- Laboratory of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 23955, Saudi Arabia
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
29
|
Shin JH, Xu L, Wang D. RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications. Transcription 2016; 7:57-62. [PMID: 27105138 PMCID: PMC4984683 DOI: 10.1080/21541264.2016.1168506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
During transcription elongation, RNA polymerase II (pol II) travels along the DNA template across thousands to millions of nucleotides and accurately synthesizes the complementary RNA transcripts. Apart from its canonical function as a key enzyme for DNA-dependent RNA synthesis, pol II also functions as a selective sensor to recognize DNA lesions or epigenetic modifications.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA, USA
| | - Liang Xu
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA, USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Hwang CS, Xu L, Wang W, Ulrich S, Zhang L, Chong J, Shin JH, Huang X, Kool ET, McKenna CE, Wang D. Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution. Nucleic Acids Res 2016; 44:3820-8. [PMID: 27060150 PMCID: PMC4857003 DOI: 10.1093/nar/gkw220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
RNA polymerase II (pol II) utilizes a complex interaction network to select and incorporate correct nucleoside triphosphate (NTP) substrates with high efficiency and fidelity. Our previous 'synthetic nucleic acid substitution' strategy has been successfully applied in dissecting the function of nucleic acid moieties in pol II transcription. However, how the triphosphate moiety of substrate influences the rate of P-O bond cleavage and formation during nucleotide incorporation is still unclear. Here, by employing β,γ-bridging atom-'substituted' NTPs, we elucidate how the methylene substitution in the pyrophosphate leaving group affects cognate and non-cognate nucleotide incorporation. Intriguingly, the effect of the β,γ-methylene substitution on the non-cognate UTP/dT scaffold (∼3-fold decrease in kpol) is significantly different from that of the cognate ATP/dT scaffold (∼130-fold decrease in kpol). Removal of the wobble hydrogen bonds in U:dT recovers a strong response to methylene substitution of UTP. Our kinetic and modeling studies are consistent with a unique altered transition state for bond formation and cleavage for UTP/dT incorporation compared with ATP/dT incorporation. Collectively, our data reveals the functional interplay between NTP triphosphate moiety and base pair hydrogen bonding recognition during nucleotide incorporation.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA
| | - Liang Xu
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Wei Wang
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Sébastien Ulrich
- Department of Chemistry, Stanford University, Stanford, CA 94305-5017, USA Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France
| | - Lu Zhang
- Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jenny Chong
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Ji Hyun Shin
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5017, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| |
Collapse
|
31
|
Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue. Nat Commun 2016; 7:11244. [PMID: 27091704 PMCID: PMC4838855 DOI: 10.1038/ncomms11244] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation. RNA Polymerase II can detect and cleave mis-incorporated nucleotides by a proofreading mechanism that requires backtracking of the enzyme. Here the authors show that Pol II backtracking occurs in a stepwise mode that involves two intermediate states where the fraying of the terminal RNA nucleotide is a prerequisite.
Collapse
|
32
|
Zhang L, Pardo-Avila F, Unarta IC, Cheung PPH, Wang G, Wang D, Huang X. Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models. Acc Chem Res 2016; 49:687-94. [PMID: 26991064 DOI: 10.1021/acs.accounts.5b00536] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II (Pol II) is an essential enzyme that catalyzes transcription with high efficiency and fidelity in eukaryotic cells. During transcription elongation, Pol II catalyzes the nucleotide addition cycle (NAC) to synthesize mRNA using DNA as the template. The transitions between the states of the NAC require conformational changes of both the protein and nucleotides. Although X-ray structures are available for most of these states, the dynamics of the transitions between states are largely unknown. Molecular dynamics (MD) simulations can predict structure-based molecular details and shed light on the mechanisms of these dynamic transitions. However, the employment of MD simulations on a macromolecule (tens to hundreds of nanoseconds) such as Pol II is challenging due to the difficulty of reaching biologically relevant timescales (tens of microseconds or even longer). For this challenge to be overcome, kinetic network models (KNMs), such as Markov State Models (MSMs), have become a popular approach to access long-timescale conformational changes using many short MD simulations. We describe here our application of KNMs to characterize the molecular mechanisms of the NAC of Pol II. First, we introduce the general background of MSMs and further explain procedures for the construction and validation of MSMs by providing some technical details. Next, we review our previous studies in which we applied MSMs to investigate the individual steps of the NAC, including translocation and pyrophosphate ion release. In particular, we describe in detail how we prepared the initial conformations of Pol II elongation complex, performed MD simulations, extracted MD conformations to construct MSMs, and further validated them. We also summarize our major findings on molecular mechanisms of Pol II elongation based on these MSMs. In addition, we have included discussions regarding various key points and challenges for applications of MSMs to systems as large as the Pol II elongation complex. Finally, to study the overall NAC, we combine the individual steps of the NAC into a five-state KNM based on a nonbranched Brownian ratchet scheme to explain the single-molecule optical tweezers experimental data. The studies complement experimental observations and provide molecular mechanisms for the transcription elongation cycle. In the long term, incorporation of sequence-dependent kinetic parameters into KNMs has great potential for identifying error-prone sequences and predicting transcription dynamics in genome-wide transcriptomes.
Collapse
Affiliation(s)
- Lu Zhang
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Fátima Pardo-Avila
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ilona Christy Unarta
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Peter Pak-Hang Cheung
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Guo Wang
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Dong Wang
- Department
of Cellular and Molecular Medicine, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Xuhui Huang
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
33
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
34
|
Duan B, Wu S, Da LT, Yu J. A critical residue selectively recruits nucleotides for t7 RNA polymerase transcription fidelity control. Biophys J 2015; 107:2130-40. [PMID: 25418098 PMCID: PMC4223216 DOI: 10.1016/j.bpj.2014.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023] Open
Abstract
Nucleotide selection is essential for fidelity control in gene replication and transcription. Recent work on T7 RNA polymerase suggested that a small posttranslocation free energy bias stabilizes Tyr(639) in the active site to aid nucleotide selection. However, it was not clear exactly how Tyr(639) assists the selection. Here we report a molecular-dynamics simulation study revealing atomistic detail of this critical selectivity. The study shows first that Tyr(639) blocks the active site at posttranslocation by marginally stacking to the end basepair of the DNA-RNA hybrid. The study then demonstrates that at the nucleotide preinsertion state, a cognate RNA nucleotide does not affect the local Tyr(639) stabilization, whereas a noncognate nucleotide substantially stabilizes Tyr(639) so that Tyr(639) keeps blocking the active site. As a result, further nucleotide insertion into the active site, which requires moving Tyr(639) out of the site, would be hindered for the noncognate nucleotide, but not for the cognate nucleotide. In particular, we note that water molecules assist the ribose recognition in the RNA nucleotide preinsertion, and help Tyr(639) stacking to the end basepair in the case of a DNA nucleotide. It was also seen that a base-mismatched nucleotide at preinsertion directly grabs Tyr(639) for the active site stabilization. We also find that in a mutant polymerase Y639F the strong stabilization of residue 639 in the active site cannot establish upon the DNA nucleotide preinsertion. The finding explains the reduced differentiation between ribo- and deoxyribonucleotides that has been recorded experimentally for the mutant polymerase.
Collapse
Affiliation(s)
- Baogen Duan
- Beijing Computational Science Research Center, Beijing, P. R. China
| | - Shaogui Wu
- Beijing Computational Science Research Center, Beijing, P. R. China
| | - Lin-Tai Da
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, P. R. China.
| |
Collapse
|
35
|
Zhang L, Silva DA, Pardo-Avila F, Wang D, Huang X. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes. PLoS Comput Biol 2015; 11:e1004354. [PMID: 26134169 PMCID: PMC4489626 DOI: 10.1371/journal.pcbi.1004354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022] Open
Abstract
The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the “secondary channel” is the only route for NTP to reach the active site of the enzyme or if the “main channel” could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription. In eukaryotic cells, the RNA polymerase II (Pol II) is a central enzyme that reads the genetic information encoded in the DNA template to synthetize a messenger RNA. To perform its function, Pol II needs to have the substrate nucleoside triphosphate (NTP) diffuse into its deeply buried active site. Despite numerous efforts, the NTP entry routes remain elusive: NTP could diffuse only through the secondary channel, or also via the main channel. The structural information of the transcription bubble is essential to study this process, however, the unpaired non-template DNA of the transcription bubble is absent in the available X-ray crystal structures. In this regard, we have built a structural model of the Pol II elongation complex with reconstructed transcription bubble using existing experimental data. We then performed Molecular Dynamics (MD) simulations and applied structural analysis to study the routes of NTP diffusion. We found that sterically the probability of NTP loading through the secondary channel is more than twice that of the main channel. Further analysis of the non-bonded energetic contributions to NTP diffusion suggests that NTP diffusion through the main channel is greatly disfavored by the electrostatic repulsion between the substrate and negatively charged backbones of nucleotides in the non-template strand of the transcription bubble. Altogether, our findings suggest that the secondary channel is the more favorable NTP diffusion route for Pol II transcription elongation.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Daniel-Adriano Silva
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Fátima Pardo-Avila
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Xuhui Huang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
36
|
Xu L, Wang W, Zhang L, Chong J, Huang X, Wang D. Impact of template backbone heterogeneity on RNA polymerase II transcription. Nucleic Acids Res 2015; 43:2232-41. [PMID: 25662224 PMCID: PMC4344504 DOI: 10.1093/nar/gkv059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 02/03/2023] Open
Abstract
Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3'-5' or 2'-5' orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary 'imperfect' DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Wei Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Lu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| |
Collapse
|
37
|
Wang B, Opron K, Burton ZF, Cukier RI, Feig M. Five checkpoints maintaining the fidelity of transcription by RNA polymerases in structural and energetic details. Nucleic Acids Res 2014; 43:1133-46. [PMID: 25550432 PMCID: PMC4333413 DOI: 10.1093/nar/gku1370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional fidelity, which prevents the misincorporation of incorrect nucleoside monophosphates in RNA, is essential for life. Results from molecular dynamics (MD) simulations of eukaryotic RNA polymerase (RNAP) II and bacterial RNAP with experimental data suggest that fidelity may involve as many as five checkpoints. Using MD simulations, the effects of different active site NTPs in both open and closed trigger loop (TL) structures of RNAPs are compared. Unfavorable initial binding of mismatched substrates in the active site with an open TL is proposed to be the first fidelity checkpoint. The leaving of an incorrect substrate is much easier than a correct one energetically from the umbrella sampling simulations. Then, the closing motion of the TL, required for catalysis, is hindered by the presence of mismatched NTPs. Mismatched NTPs also lead to conformational changes in the active site, which perturb the coordination of magnesium ions and likely affect the ability to proceed with catalysis. This step appears to be the most important checkpoint for deoxy-NTP discrimination. Finally, structural perturbations in the template DNA and the nascent RNA in the presence of mismatches likely hinder nucleotide addition and provide the structural foundation for backtracking followed by removing erroneously incorporated nucleotides during proofreading.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristopher Opron
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zachary F Burton
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert I Cukier
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Yu J, Da LT, Huang X. Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle. Phys Biol 2014; 12:016004. [DOI: 10.1088/1478-3975/12/1/016004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity. Proc Natl Acad Sci U S A 2014; 111:E3269-76. [PMID: 25074911 DOI: 10.1073/pnas.1406234111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonenzymatic RNA polymerization in early life is likely to introduce backbone heterogeneity with a mixture of 2'-5' and 3'-5' linkages. On the other hand, modern nucleic acids are dominantly composed of 3'-5' linkages. RNA polymerase II (pol II) is a key modern enzyme responsible for synthesizing 3'-5'-linked RNA with high fidelity. It is not clear how modern enzymes, such as pol II, selectively recognize 3'-5' linkages over 2'-5' linkages of nucleic acids. In this work, we systematically investigated how phosphodiester linkages of nucleic acids govern pol II transcriptional efficiency and fidelity. Through dissecting the impacts of 2'-5' linkage mutants in the pol II catalytic site, we revealed that the presence of 2'-5' linkage in RNA primer only modestly reduces pol II transcriptional efficiency without affecting pol II transcriptional fidelity. In sharp contrast, the presence of 2'-5' linkage in DNA template leads to dramatic decreases in both transcriptional efficiency and fidelity. These distinct effects reveal that pol II has an asymmetric (strand-specific) recognition of phosphodiester linkage. Our results provided important insights into pol II transcriptional fidelity, suggesting essential contributions of phosphodiester linkage to pol II transcription. Finally, our results also provided important understanding on the molecular basis of nucleic acid recognition and genetic information transfer during molecular evolution. We suggest that the asymmetric recognition of phosphodiester linkage by modern nucleic acid enzymes likely stems from the distinct evolutionary pressures of template and primer strand in genetic information transfer during molecular evolution.
Collapse
|
40
|
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19:71-83. [PMID: 24767259 DOI: 10.1016/j.dnarep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining high transcriptional fidelity is essential for life. Some DNA lesions lead to significant changes in transcriptional fidelity. In this review, we will summarize recent progress towards understanding the molecular basis of RNA polymerase II (Pol II) transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. In particular, we will focus on the three key checkpoint steps of controlling Pol II transcriptional fidelity: insertion (specific nucleotide selection and incorporation), extension (differentiation of RNA transcript extension of a matched over mismatched 3'-RNA terminus), and proofreading (preferential removal of misincorporated nucleotides from the 3'-RNA end). We will also discuss some novel insights into the molecular basis and chemical perspectives of controlling Pol II transcriptional fidelity through structural, computational, and chemical biology approaches.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Linati Da
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Steven W Plouffe
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Eric Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States.
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States.
| |
Collapse
|
41
|
Millisecond dynamics of RNA polymerase II translocation at atomic resolution. Proc Natl Acad Sci U S A 2014; 111:7665-70. [PMID: 24753580 DOI: 10.1073/pnas.1315751111] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transcription is a central step in gene expression, in which the DNA template is processively read by RNA polymerase II (Pol II), synthesizing a complementary messenger RNA transcript. At each cycle, Pol II moves exactly one register along the DNA, a process known as translocation. Although X-ray crystal structures have greatly enhanced our understanding of the transcription process, the underlying molecular mechanisms of translocation remain unclear. Here we use sophisticated simulation techniques to observe Pol II translocation on a millisecond timescale and at atomistic resolution. We observe multiple cycles of forward and backward translocation and identify two previously unidentified intermediate states. We show that the bridge helix (BH) plays a key role accelerating the translocation of both the RNA:DNA hybrid and transition nucleotide by directly interacting with them. The conserved BH residues, Thr831 and Tyr836, mediate these interactions. To date, this study delivers the most detailed picture of the mechanism of Pol II translocation at atomic level.
Collapse
|
42
|
Wang D. Structural and chemical perspectives of RNA polymerase II transcriptional fidelity (939.5). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.939.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Wang
- Skaggs School of Pharmacy & Pharmaceutical SciencesUniversity of California, San DiegoLA JollaCAUnited States
| |
Collapse
|
43
|
Xu L, Butler KV, Chong J, Wengel J, Kool ET, Wang D. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues. Nucleic Acids Res 2014; 42:5863-70. [PMID: 24692664 PMCID: PMC4027217 DOI: 10.1093/nar/gku238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open state to a closed active state to facilitate nucleotide addition upon the binding of the cognate substrate to the Pol II active site. However, a comprehensive understanding of the specific chemical interactions and substrate structural signatures that are essential to this TL conformational change remains elusive. Here we employed synthetic nucleotide analogues as ‘chemical mutation’ tools coupling with α-amanitin transcription inhibition assay to systematically dissect the key chemical interactions and structural signatures governing the substrate-coupled TL closure in Saccharomyces cerevisiae Pol II. This study reveals novel insights into understanding the molecular basis of TL conformational transition upon substrate binding during Pol II transcription. This synthetic chemical biology approach may be extended to understand the mechanisms of other RNA polymerases as well as other nucleic acid enzymes in future studies.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | | | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Jesper Wengel
- Nucleic Acid Center and Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| |
Collapse
|
44
|
Wang B, Predeus AV, Burton ZF, Feig M. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Biophys J 2014; 105:767-75. [PMID: 23931324 DOI: 10.1016/j.bpj.2013.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022] Open
Abstract
An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | | | | | | |
Collapse
|
45
|
PARDO-AVILA FÁTIMA, DA LINTAI, WANG YING, HUANG XUHUI. THEORETICAL INVESTIGATIONS ON ELUCIDATING FUNDAMENTAL MECHANISMS OF CATALYSIS AND DYNAMICS INVOLVED IN TRANSCRIPTION BY RNA POLYMERASE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613410058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA polymerase is the enzyme that synthesizes RNA during the transcription process. To understand its mechanism, structural studies have provided us pictures of the series of steps necessary to add a new nucleotide to the nascent RNA chain, the steps altogether known as the nucleotide addition cycle (NAC). However, these static snapshots do not provide dynamic information of these processes involved in NAC, such as the conformational changes of the protein and the atomistic details of the catalysis. Computational studies have made efforts to fill these knowledge gaps. In this review, we provide examples of different computational approaches that have improved our understanding of the transcription elongation process for RNA polymerase, such as normal mode analysis, molecular dynamic (MD) simulations, Markov state models (MSMs). We also point out some unsolved questions that could be addressed using computational tools in the future.
Collapse
Affiliation(s)
- FÁTIMA PARDO-AVILA
- Department of Chemistry, Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
| | - LIN-TAI DA
- Department of Chemistry, Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
| | - YING WANG
- Department of Chemistry, Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
| | - XUHUI HUANG
- Department of Chemistry, Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
- Division of Biomedical Engineering, Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
| |
Collapse
|
46
|
Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit RNA polymerases. Chem Rev 2013; 113:8546-66. [PMID: 23987500 PMCID: PMC3829680 DOI: 10.1021/cr400046x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Beibei Wang
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zachary F. Burton
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
47
|
Yuzenkova Y, Roghanian M, Bochkareva A, Zenkin N. Tagetitoxin inhibits transcription by stabilizing pre-translocated state of the elongation complex. Nucleic Acids Res 2013; 41:9257-65. [PMID: 23935117 PMCID: PMC3814378 DOI: 10.1093/nar/gkt708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/30/2023] Open
Abstract
Transcription elongation consists of repetition of the nucleotide addition cycle: phosphodiester bond formation, translocation and binding of the next nucleotide. Inhibitor of multi-subunit RNA polymerase tagetitoxin (TGT) enigmatically slows down addition of nucleotides in a sequence-dependent manner, only at certain positions of the template. Here, we show that TGT neither affects chemistry of RNA synthesis nor induces backward translocation, nor competes with the nucleoside triphosphate (NTP) in the active center. Instead, TGT increases the stability of the pre-translocated state of elongation complex, thus slowing down addition of the following nucleotide. We show that the extent of inhibition directly depends on the intrinsic stability of the pre-translocated state. The dependence of translocation equilibrium on the transcribed sequence results in a wide distribution (~1-10(3)-fold) of inhibitory effects of TGT at different positions of the template, thus explaining sequence-specificity of TGT action. We provide biochemical evidence that, in pre-translocated state, TGT stabilizes folded conformation of the Trigger Loop, which inhibits forward and backward translocation of the complex. The results suggest that Trigger Loop folding in the pre-translocated state may serve to reduce back-tracking of the elongation complex. Overall, we propose that translocation may be a limiting and highly regulated step of RNA synthesis.
Collapse
Affiliation(s)
- Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | | | | | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
48
|
Kellinger MW, Park GY, Chong J, Lippard SJ, Wang D. Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis. J Am Chem Soc 2013; 135:13054-61. [PMID: 23927577 DOI: 10.1021/ja405475y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription inhibition by platinum anticancer drugs is an important component of their mechanism of action. Phenanthriplatin, a cisplatin derivative containing phenanthridine in place of one of the chloride ligands, forms highly potent monofunctional adducts on DNA having a structure and spectrum of anticancer activity distinct from those of the parent drug. Understanding the functional consequences of DNA damage by phenanthriplatin for the normal functions of RNA polymerase II (Pol II), the major cellular transcription machinery component, is an important step toward elucidating its mechanism of action. In this study, we present the first systematic mechanistic investigation that addresses how a site-specific phenanthriplatin-DNA d(G) monofunctional adduct affects the Pol II elongation and transcriptional fidelity checkpoint steps. Pol II processing of the phenanthriplatin lesion differs significantly from that of the canonical cisplatin-DNA 1,2-d(GpG) intrastrand cross-link. A majority of Pol II elongation complexes stall after successful addition of CTP opposite the phenanthriplatin-dG adduct in an error-free manner, with specificity for CTP incorporation being essentially the same as for undamaged dG on the template. A small portion of Pol II undergoes slow, error-prone bypass of the phenanthriplatin-dG lesion, which resembles DNA polymerases that similarly switch from high-fidelity replicative DNA processing (error-free) to low-fidelity translesion DNA synthesis (error-prone) at DNA damage sites. These results provide the first insights into how the Pol II transcription machinery processes the most abundant DNA lesion of the monofunctional phenanthriplatin anticancer drug candidate and enrich our general understanding of Pol II transcription fidelity maintenance, lesion bypass, and transcription-derived mutagenesis. Because of the current interest in monofunctional, DNA-damaging metallodrugs, these results are of likely relevance to a broad spectrum of next-generation anticancer agents being developed by the medicinal inorganic chemistry community.
Collapse
Affiliation(s)
- Matthew W Kellinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, California 92093, United States
| | | | | | | | | |
Collapse
|
49
|
Fouqueau T, Zeller ME, Cheung AC, Cramer P, Thomm M. The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Nucleic Acids Res 2013; 41:7048-59. [PMID: 23737452 PMCID: PMC3737540 DOI: 10.1093/nar/gkt433] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The trigger loop (TL) forms a conserved element in the RNA polymerase active centre that functions in the elongation phase of transcription. Here, we show that the TL also functions in transcription initiation and termination. Using recombinant variants of RNA polymerase from Pyrococcus furiosus and a reconstituted transcription system, we demonstrate that the TL is essential for initial RNA synthesis until a complete DNA–RNA hybrid is formed. The archaeal TL is further important for transcription fidelity during nucleotide incorporation, but not for RNA cleavage during proofreading. A conserved glutamine residue in the TL binds the 2’-OH group of the nucleoside triphosphate (NTP) to discriminate NTPs from dNTPs. The TL also prevents aberrant transcription termination at non-terminator sites.
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Da LT, Pardo Avila F, Wang D, Huang X. A two-state model for the dynamics of the pyrophosphate ion release in bacterial RNA polymerase. PLoS Comput Biol 2013; 9:e1003020. [PMID: 23592966 PMCID: PMC3617016 DOI: 10.1371/journal.pcbi.1003020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/19/2013] [Indexed: 01/10/2023] Open
Abstract
The dynamics of the PPi release during the transcription elongation of bacterial RNA polymerase and its effects on the Trigger Loop (TL) opening motion are still elusive. Here, we built a Markov State Model (MSM) from extensive all-atom molecular dynamics (MD) simulations to investigate the mechanism of the PPi release. Our MSM has identified a simple two-state mechanism for the PPi release instead of a more complex four-state mechanism observed in RNA polymerase II (Pol II). We observed that the PPi release in bacterial RNA polymerase occurs at sub-microsecond timescale, which is ∼3-fold faster than that in Pol II. After escaping from the active site, the (Mg-PPi)(2-) group passes through a single elongated metastable region where several positively charged residues on the secondary channel provide favorable interactions. Surprisingly, we found that the PPi release is not coupled with the TL unfolding but correlates tightly with the side-chain rotation of the TL residue R1239. Our work sheds light on the dynamics underlying the transcription elongation of the bacterial RNA polymerase.
Collapse
Affiliation(s)
- Lin-Tai Da
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fátima Pardo Avila
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|