1
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. Sequential membrane- and protein-bound organelles compartmentalize genomes during phage infection. Cell Host Microbe 2025; 33:484-497.e6. [PMID: 40168997 DOI: 10.1016/j.chom.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA. We show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. Early phage genes are expressed from the EPI vesicle, demonstrating its functionality as a prokaryotic, transcriptionally active, membrane-bound organelle. We also show that the phage nucleus is essential, with genome replication beginning after the injected DNA is transferred from the EPI vesicle to the phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Phoolwanti Rani
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Lizbeth Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Arica R VanderWal
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Madelynn Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER), Bhubaneshwar 752050, Orissa, India
| | - Ann Aindow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Zaida K Rodriguez
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Chase J Morgan
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Emeric Charles
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Pavlin A, Fornelos N, Popović M, Praček N, Bajc G, Salas M, Butala M. Autoregulation ensures vertical transmission of the linear prophage GIL01. Commun Biol 2024; 7:1388. [PMID: 39455843 PMCID: PMC11511902 DOI: 10.1038/s42003-024-07082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Betatectiviruses are prophages consisting of linear extrachromosomal genomes without obvious plasmid modules. It remains unclear how betatectiviruses are maintained in low-copy numbers in host cells and how they are vertically transmitted. Phage GIL01 is a model betatectivirus that infects the mosquito pathogen Bacillus thuringiensis serovar israelensis. Previous studies identified two closely spaced promoters, P1 and P2, responsible for the expression of GIL01 genes required for prophage replication and the switch from the lysogenic to lytic cycle. Here, we report that the GIL01-encoded 58-amino acid long gp1 protein forms a large nucleoprotein complex that represses its transcription from the strong promoter P2. Notably, ectopic expression of gp1 resulted in the loss of GIL01 in exponential cultures and immunized cells against infection with GIL01, indicating that gp1 plays a repressive role in the phage cycle. This finding is consistent with mutations in gp1 committing GIL01 to the lytic cycle and we show that maintenance of this phage variant in the bacterial population is contingent on the accumulation of deletions in the P1-P2 region. The fact that gp1 is conserved across most sequenced betatectiviruses suggests that the regulatory mechanism of gp1 that controls prophage maintenance is widespread among these bacteriophages.
Collapse
Affiliation(s)
- Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadine Fornelos
- Harvard Medical School, Office for Research Initiatives and Global Programs, Boston, MA, 02115, USA
| | - Maja Popović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Praček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Margarita Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049, Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Tian R, Zhao R, Guo H, Yan K, Wang C, Lu C, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 2023; 19:1504-1512. [PMID: 37443393 DOI: 10.1038/s41589-023-01387-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.
Collapse
Affiliation(s)
- Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Runzhi Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
5
|
Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proc Natl Acad Sci U S A 2022; 119:2116278119. [PMID: 35193978 PMCID: PMC8892312 DOI: 10.1073/pnas.2116278119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Histone-like protein from Escherichia coli strain U93 (HU) protein is the most abundant nucleoid-associated protein in bacteria, which plays a fundamental role in chromosomal compaction and organization. It is essential for most bacteria as well as Apicomplexans, thus an important target for the development of antimicrobial and antimalaria drugs. We report Gp46 as a phage protein HU inhibitor. It inhibits HU of Bacillus subtilis by occupying its DNA binding site, thus preventing chromosome segregation during cell division. As key residues for the interaction are highly conserved, Gp46 interacts with HUs of a broad range of pathogens, including many pathogenic bacteria and Apicomplexan parasites like Plasmodium falciparum. Thus, this cross-species property could benefit antibiotic and antimalaria drug development that targets HU. The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46–HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.
Collapse
|
6
|
Chaikeeratisak V, Birkholz EA, Pogliano J. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Front Microbiol 2021; 12:641317. [PMID: 34326818 PMCID: PMC8314001 DOI: 10.3389/fmicb.2021.641317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their bacterial hosts are ancient organisms that have been co-evolving for billions of years. Some jumbo phages, those with a genome size larger than 200 kilobases, have recently been discovered to establish complex subcellular organization during replication. Here, we review our current understanding of jumbo phages that form a nucleus-like structure, or “Phage Nucleus,” during replication. The phage nucleus is made of a proteinaceous shell that surrounds replicating phage DNA and imparts a unique subcellular organization that is temporally and spatially controlled within bacterial host cells by a phage-encoded tubulin (PhuZ)-based spindle. This subcellular architecture serves as a replication factory for jumbo Pseudomonas phages and provides a selective advantage when these replicate in some host strains. Throughout the lytic cycle, the phage nucleus compartmentalizes proteins according to function and protects the phage genome from host defense mechanisms. Early during infection, the PhuZ spindle positions the newly formed phage nucleus at midcell and, later in the infection cycle, the spindle rotates the nucleus while delivering capsids and distributing them uniformly on the nuclear surface, where they dock for DNA packaging. During the co-infection of two different nucleus-forming jumbo phages in a bacterial cell, the phage nucleus establishes Subcellular Genetic Isolation that limits the potential for viral genetic exchange by physically separating co-infection genomes, and the PhuZ spindle causes Virogenesis Incompatibility, whereby interacting components from two diverging phages negatively affect phage reproduction. Thus, the phage nucleus and PhuZ spindle are defining cell biological structures that serve roles in both the life cycle of nucleus-forming jumbo phages and phage speciation.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Erica A Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Labarde A, Jakutyte L, Billaudeau C, Fauler B, López-Sanz M, Ponien P, Jacquet E, Mielke T, Ayora S, Carballido-López R, Tavares P. Temporal compartmentalization of viral infection in bacterial cells. Proc Natl Acad Sci U S A 2021; 118:e2018297118. [PMID: 34244425 PMCID: PMC8285916 DOI: 10.1073/pnas.2018297118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral-bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication.
Collapse
Affiliation(s)
- Audrey Labarde
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lina Jakutyte
- Laboratoire de Virologie Moléculaire et Structurale, CNRS Unité Propre de Recherche 3296 and Institut Fédératif de Recherche 115, 91198 Gif-sur-Yvette, France
| | - Cyrille Billaudeau
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Beatrix Fauler
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Maria López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Prishila Ponien
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Thorsten Mielke
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Rut Carballido-López
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
8
|
Trinh JT, Shao Q, Guan J, Zeng L. Emerging heterogeneous compartments by viruses in single bacterial cells. Nat Commun 2020; 11:3813. [PMID: 32732913 PMCID: PMC7393140 DOI: 10.1038/s41467-020-17515-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Spatial organization of biological processes allows for variability in molecular outcomes and coordinated development. Here, we investigate how organization underpins phage lambda development and decision-making by characterizing viral components and processes in subcellular space. We use live-cell and in situ fluorescence imaging at the single-molecule level to examine lambda DNA replication, transcription, virion assembly, and resource recruitment in single-cell infections, uniting key processes of the infection cycle into a coherent model of phage development encompassing space and time. We find that different viral DNAs establish separate subcellular compartments within cells, which sustains heterogeneous viral development in single cells. These individual phage compartments are physically separated by the E. coli nucleoid. Our results provide mechanistic details describing how separate viruses develop heterogeneously to resemble single-cell phenotypes. Here, the authors apply live-cell and in situ fluorescence imaging at the single-molecule level to examine lambda DNA replication in single cells, finding that individual phage DNAs sequester host factors to their own vicinity and confine their replicated DNAs into separate compartments, suggesting that phage decision-making transcripts are spatially organized in separate compartments to allow distinct subcellular decisions to develop.
Collapse
Affiliation(s)
- Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Qiuyan Shao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Jingwen Guan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.,Molecular and Environmental Plant Science, Texas A&M University, College Station, TX, 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA. .,Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA. .,Molecular and Environmental Plant Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
Salas M. My scientific life. BACTERIOPHAGE 2017; 6:e1271250. [PMID: 28090390 DOI: 10.1080/21597081.2016.1271250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma , Canto Blanco , Madrid, Spain
| |
Collapse
|
10
|
Gella P, Salas M, Mencía M. Engineering Permissive Insertion Sites in the Bacteriophage Phi29 DNA-Linked Terminal Protein. PLoS One 2016; 11:e0164901. [PMID: 27780219 PMCID: PMC5079584 DOI: 10.1371/journal.pone.0164901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
Many different DNA delivery vehicles have been developed and tested, all with their advantages and disadvantages. The bacteriophage phi29 terminal protein (TP) is covalently linked to the 5’ ends of the phage genome during the DNA replication process. Our approach is to utilize this TP as a platform to incorporate different protein or peptide modules that can target the DNA to the interior of the cell, to the nucleus, or even to subcellular compartments. In order to be able to insert different peptide modules on the TP sequence to endow it with desired functions and/or eliminate unwanted regions of the protein, we have carried out a transposition screening to detect insertion-permissive points on the sequence of the TP. We report the functional characterization of 12 insertion mutants of the TP, and the identification of one site at position 38 that allows the insertion of peptides up to 17 amino acids in length while maintaining the ability of the TP to support DNA amplification in vitro. A protein with one insertion at that position containing a cysteine residue, a linker, and a thrombin recognition site was purified and its amplification activity was optimized.
Collapse
Affiliation(s)
- Pablo Gella
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- * E-mail: (MS); (MM)
| | - Mario Mencía
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- * E-mail: (MS); (MM)
| |
Collapse
|
11
|
Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. Front Mol Biosci 2016; 3:37. [PMID: 27547754 PMCID: PMC4974454 DOI: 10.3389/fmolb.2016.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the TP at the bacterial nucleoid, where viral DNA replication takes place. The biochemical properties of the Φ29 DBP and SSB and their function in the initiation and elongation of Φ29 DNA replication, respectively, will be described.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Isabel Holguera
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
12
|
Abstract
The requirement of DNA polymerases for a 3'-hydroxyl (3'-OH) group to prime DNA synthesis raised the question about how the ends of linear chromosomes could be replicated. Among the strategies that have evolved to handle the end replication problem, a group of linear phages and eukaryotic and archaeal viruses, among others, make use of a protein (terminal protein, TP) that primes DNA synthesis from the end of their genomes. The replicative DNA polymerase recognizes the OH group of a specific residue in the TP to initiate replication that is guided by an internal 3' nucleotide of the template strand. By a sliding-back mechanism or variants of it the terminal nucleotide(s) is(are) recovered and the TP becomes covalently attached to the genome ends. Bacillus subtilis phage ϕ29 is the organism in which such a mechanism has been studied more extensively, having allowed to lay the foundations of the so-called protein-primed replication mechanism. Here we focus on the main biochemical and structural features of the two main proteins responsible for the protein-primed initiation step: the DNA polymerase and the TP. Thus, we will discuss the structural determinants of the DNA polymerase responsible for its ability to use sequentially a TP and a DNA as primers, as well as for its inherent capacity to couple high processive synthesis to strand displacement. On the other hand, we will review how TP primes initiation followed by a transition step for further DNA-primed replication by the same polymerase molecule. Finally, we will review how replication is compartmentalized in vivo.
Collapse
Affiliation(s)
- M Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - M de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
13
|
Del Prado A, Lázaro JM, Longás E, Villar L, de Vega M, Salas M. Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication. J Biol Chem 2015; 290:27138-27145. [PMID: 26400085 PMCID: PMC4646400 DOI: 10.1074/jbc.m115.682278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/21/2015] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage φ29 from Bacillus subtilis starts replication of its terminal protein (TP)-DNA by a protein-priming mechanism. To start replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the replication origins, placed at both 5' ends of the linear chromosome, and initiates replication using as primer the OH-group of Ser-232 of the TP. The initiation of φ29 TP-DNA replication mainly occurs opposite the second nucleotide at the 3' end of the template. Earlier analyses of the template position that directs the initiation reaction were performed using single-stranded and double-stranded oligonucleotides containing the replication origin sequence without the parental TP. Here, we show that the parental TP has no influence in the determination of the nucleotide used as template in the initiation reaction. Previous studies showed that the priming domain of the primer TP determines the template position used for initiation. The results obtained here using mutant TPs at the priming loop where Ser-232 is located indicate that the aromatic residue Phe-230 is one of the determinants that allows the positioning of the penultimate nucleotide at the polymerization active site to direct insertion of the initiator dAMP during the initiation reaction. The role of Phe-230 in limiting the internalization of the template strand in the polymerization active site is discussed.
Collapse
Affiliation(s)
- Alicia Del Prado
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - José M Lázaro
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Elisa Longás
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Miguel de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | - Margarita Salas
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Krämer R, Frunzke J, Bramkamp M. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res 2015; 43:5002-16. [PMID: 25916847 PMCID: PMC4446434 DOI: 10.1093/nar/gkv374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022] Open
Abstract
In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.
Collapse
Affiliation(s)
- Catriona Donovan
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Antonia Heyer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Eugen Pfeifer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anja Wittmann
- Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Reinhard Krämer
- Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| |
Collapse
|
15
|
Holguera I, Muñoz-Espín D, Salas M. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication. Nucleic Acids Res 2015; 43:2790-801. [PMID: 25722367 PMCID: PMC4357725 DOI: 10.1093/nar/gkv127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.
Collapse
Affiliation(s)
- Isabel Holguera
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Muñoz-Espín
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Redrejo-Rodríguez M, Salas M. Multiple roles of genome-attached bacteriophage terminal proteins. Virology 2014; 468-470:322-329. [PMID: 25232661 DOI: 10.1016/j.virol.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Gella P, Salas M, Mencía M. Improved artificial origins for phage Φ29 terminal protein-primed replication. Insights into early replication events. Nucleic Acids Res 2014; 42:9792-806. [PMID: 25081208 PMCID: PMC4150772 DOI: 10.1093/nar/gku660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The replication machinery of bacteriophage Φ29 is a paradigm for protein-primed replication and it holds great potential for applied purposes. To better understand the early replication events and to find improved origins for DNA amplification based on the Φ29 system, we have studied the end-structure of a double-stranded DNA replication origin. We have observed that the strength of the origin is determined by a combination of factors. The strongest origin (30-fold respect to wt) has the sequence CCC at the 3' end of the template strand, AAA at the 5' end of the non-template strand and 6 nucleotides as optimal unpairing at the end of the origin. We also show that the presence of a correctly positioned displaced strand is important because origins with 5' or 3' ssDNA regions have very low activity. Most of the effect of the improved origins takes place at the passage between the terminal protein-primed and the DNA-primed modes of replication by the DNA polymerase suggesting the existence of a thermodynamic barrier at that point. We suggest that the template and non-template strands of the origin and the TP/DNA polymerase complex form series of interactions that control the critical start of terminal protein-primed replication.
Collapse
Affiliation(s)
- Pablo Gella
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Mario Mencía
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Jin M, Chen Y, Xu C, Zhang X. The effect of inhibition of host MreB on the infection of thermophilic phage GVE2 in high temperature environment. Sci Rep 2014; 4:4823. [PMID: 24769758 PMCID: PMC4001104 DOI: 10.1038/srep04823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/03/2014] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, the manipulation of the host actin cytoskeleton is a necessary strategy for viral pathogens to invade host cells. Increasing evidence indicates that the actin homolog MreB of bacteria plays key roles in cell shape formation, cell polarity, cell wall biosynthesis, and chromosome segregation. However, the role of bacterial MreB in the bacteriophage infection is not extensively investigated. To address this issue, in this study, the MreB of thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal field was characterized by inhibiting the MreB polymerization and subsequently evaluating the bacteriophage GVE2 infection. The results showed that the host MreB played important roles in the bacteriophage infection at high temperature. After the host cells were treated with small molecule drug A22 or MP265, the specific inhibitors of MreB polymerization, the adsorption of GVE2 and the replication of GVE2 genome were significantly repressed. The confocal microscopy data revealed that MreB facilitated the GVE2 infection by inducing the polar distribution of virions during the phage infection. Our study contributed novel information to understand the molecular events of the host in response to bacteriophage challenge and extended our knowledge about the host-virus interaction in deep-sea vent ecosystems.
Collapse
Affiliation(s)
- Min Jin
- 1] Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China [2]
| | - Yanjiang Chen
- 1] Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China [2]
| | - Chenxi Xu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| |
Collapse
|
19
|
Karttunen J, Mäntynen S, Ihalainen TO, Lehtivuori H, Tkachenko NV, Vihinen-Ranta M, Ihalainen JA, Bamford JKH, Oksanen HM. Subcellular localization of bacteriophage PRD1 proteins in Escherichia coli. Virus Res 2014; 179:44-52. [PMID: 24291253 DOI: 10.1016/j.virusres.2013.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022]
Abstract
Bacteria possess an intricate internal organization resembling that of the eukaryotes. The complexity is especially prominent at the bacterial cell poles, which are also known to be the preferable sites for some bacteriophages to infect. Bacteriophage PRD1 is a well-known model serving as an ideal system to study structures and functions of icosahedral internal membrane-containing viruses. Our aim was to analyze the localization and interactions of individual PRD1 proteins in its native host Escherichia coli. This was accomplished by constructing a vector library for production of fluorescent fusion proteins. Analysis of solubility and multimericity of the fusion proteins, as well as their localization in living cells by confocal microscopy, indicated that multimeric PRD1 proteins were prone to localize in the cell poles. Furthermore, PRD1 spike complex proteins P5 and P31, as fusion proteins, were shown to be functional in the virion assembly. In addition, they were shown to co-localize in the specific polar area of the cells, which might have a role in the multimerization and formation of viral protein complexes.
Collapse
Affiliation(s)
- Jenni Karttunen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Sari Mäntynen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Teemu O Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Heli Lehtivuori
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Nikolai V Tkachenko
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Maija Vihinen-Ranta
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Jaana K H Bamford
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Hanna M Oksanen
- Institute of Biotechnology and Department of Biosciences, P.O. Box 56, 00014 University of Helsinki, Finland.
| |
Collapse
|
20
|
Holguera I, Redrejo-Rodríguez M, Salas M, Muñoz-Espín D. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions. Mol Microbiol 2013; 91:232-41. [PMID: 24205926 DOI: 10.1111/mmi.12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
Abstract
Protein-primed DNA replication constitutes a strategy to initiate viral DNA synthesis in a variety of prokaryotic and eukaryotic organisms. Although the main function of viral terminal proteins (TPs) is to provide a free hydroxyl group to start initiation of DNA replication, there are compelling evidences that TPs can also play other biological roles. In the case of Bacillus subtilis bacteriophage ϕ29, the N-terminal domain of the TP organizes viral DNA replication at the bacterial nucleoid being essential for an efficient phage DNA replication, and it contains a nuclear localization signal (NLS) that is functional in eukaryotes. Here we provide information about the structural properties of the ϕ29 TP N-terminal domain, which possesses sequence-independent DNA-binding capacity, and dissect the amino acid residues important for its biological function. By mutating all the basic residues of the TP N-terminal domain we identify the amino acids responsible for its interaction with the B. subtilis genome, establishing a correlation between the capacity of DNA-binding and nucleoid localization of the protein. Significantly, these residues are important to recruit the DNA polymerase at the bacterial nucleoid and, subsequently, for an efficient phage DNA replication.
Collapse
Affiliation(s)
- Isabel Holguera
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear and nucleoid localization are independently conserved functions in bacteriophage terminal proteins. Mol Microbiol 2013; 90:858-68. [PMID: 24102828 DOI: 10.1111/mmi.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage terminal proteins (TPs) prime DNA replication and become covalently linked to the DNA 5'-ends. In addition, they are DNA-binding proteins that direct early organization of phage DNA replication at the bacterial nucleoid and, unexpectedly, contain nuclear localization signals (NLSs), which localize them to the nucleus when expressed in mammalian cells. In spite of the lack of sequence homology among the phage TPs, these three properties share some common features, suggesting a possible evolutionary common origin of TPs. We show here that NLSs of three different phage TPs, Φ29, PRD1 and Cp-1, are mapped within the protein region required for nucleoid targeting in bacteria, in agreement with a previously proposed common origin of DNA-binding domains and NLSs. Furthermore, previously reported point mutants of Φ29 TP with no nuclear localization still can target the bacterial nucleoid, and Cp-1 TP contains two independent NLSs, only one of them required for nucleoid localization. Altogether, our results show that nucleoid and nucleus localization sequence requirements partially overlap, but they can be uncoupled, suggesting that conservation of both features could have a common origin but, at the same time, they have been independently conserved during evolution.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Erb ML, Pogliano J. Cytoskeletal proteins participate in conserved viral strategies across kingdoms of life. Curr Opin Microbiol 2013; 16:786-9. [PMID: 24055040 DOI: 10.1016/j.mib.2013.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/18/2013] [Indexed: 12/18/2022]
Abstract
The discovery of tubulin-like cytoskeletal proteins carried on the genomes of bacteriophages that are actively used for phage propagation during both the lytic and lysogenic cycle have revealed that there at least two ways that viruses can utilize a cytoskeleton; co-opt the host cytoskeleton or bring their own homologues. Either strategy underscores the deep evolutionary relationship between viruses and cytoskeletal proteins and points to a conservation of viral strategies that crosses the kingdoms of life. Here we review some of the most recent discoveries about tubulin cytoskeletal elements encoded by phages and compare them to some of the strategies utilized by the gammaherpesvirues of mammalian cells.
Collapse
Affiliation(s)
- Marcella L Erb
- University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | | |
Collapse
|
23
|
Tone T, Takeuchi A, Makino O. Functional linkages between replication proteins of genes 1, 3 and 5 of Bacillus subtilis phage φ29. Genes Genet Syst 2013; 87:347-56. [PMID: 23558641 DOI: 10.1266/ggs.87.347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene 1 product (gp1) of Bacillus subtilis phage φ29 has been shown to be involved in viral DNA replication in vivo, but the essential role is still unknown. As part of an ongoing effort to understand the role of gp1 in viral DNA replication, we investigated genetic interaction between gene 1 and other viral genes. Because φ29 mutants which do not produce functional gp1 show temperature-sensitive growth, we isolated temperature-resistant phages from the φ29 gene 1 mutants, and eventually, obtained nine extragenic suppressors. These suppressor mutations were located in two essential genes for φ29 DNA replication in vivo: gene 3 encoding terminal/primer protein (gp3) or gene 5 encoding viral single-stranded DNA binding protein (gp5). Most of these mutations resulted in single amino acid substitutions in the products. By trans-complementation assay, we confirmed that the absence of gp1 at non-permissive temperature can be compensated by the suppressors which have the single amino acid substitution in either gp5 or gp3. These results indicate that gp1 has functional relationship to gp5 and gp3. From the positions of amino acid substitutions in gp3, we propose its new regulatory subdomain at which other molecules including gp1 would interact with and regulate functions of gp3.
Collapse
Affiliation(s)
- Takahiro Tone
- Laboratory of genetics, Department of Material and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | | | | |
Collapse
|
24
|
del Prado A, Lázaro JM, Villar L, Salas M, de Vega M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 2013; 8:e72765. [PMID: 24023769 PMCID: PMC3762793 DOI: 10.1371/journal.pone.0072765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José M. Lázaro
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
25
|
Phage 29 phi protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proc Natl Acad Sci U S A 2013; 110:12313-8. [PMID: 23836667 DOI: 10.1073/pnas.1311524110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During evolution, viruses have optimized the interaction with host factors to increase the efficiency of fundamental processes such as DNA replication. Bacteriophage 29 protein p1 is a membrane-associated protein that forms large protofilament sheets that resemble eukaryotic tubulin and bacterial filamenting temperature-sensitive mutant Z protein (FtsZ) polymers. In the absence of protein p1, phage 29 DNA replication is impaired. Here we show that a functional fusion of protein p1 to YFP localizes at the medial region of Bacillus subtilis cells independently of other phage-encoded proteins. We also show that 29 protein p1 colocalizes with the B. subtilis cell division protein FtsZ and provide evidence that FtsZ and protein p1 are associated. Importantly, the midcell localization of YFP-p1 was disrupted in a strain that does not express FtsZ, and the fluorescent signal was distributed all over the cell. Depletion of penicillin-binding protein 2B (PBP2B) in B. subtilis cells did not affect the subcellular localization of YFP-p1, indicating that its distribution does not depend on septal wall synthesis. Interestingly, when 29 protein p1 was expressed, B. subtilis cells were about 1.5-fold longer than control cells, and the accumulation of 29 DNA was higher in mutant B. subtilis cells with increased length. We discuss the biological role of p1 and FtsZ in the 29 growth cycle.
Collapse
|
26
|
Abstract
During the course of evolution, viruses have learned to take advantage of the natural resources of their hosts for their own benefit. Due to their small dimension and limited size of genomes, bacteriophages have optimized the exploitation of bacterial host factors to increase the efficiency of DNA replication and hence to produce vast progeny. The Bacillus subtilis phage φ29 genome consists of a linear double-stranded DNA molecule that is duplicated by means of a protein-primed mode of DNA replication. Its genome has been shown to be topologically constrained at the size of the bacterial nucleoid and, as to avoid generation of positive supercoiling ahead of the replication forks, the bacterial DNA gyrase is used by the phage. In addition, the B. subtilis actin-like MreB cytoskeleton plays a crucial role in the organization of φ29 DNA replication machinery in peripheral helix-like structures. Thus, in the absence of an intact MreB cytoskeleton, φ29 DNA replication is severely impaired. Importantly, MreB interacts directly with the phage membrane protein p16.7, responsible for attaching φ29 DNA at the cell membrane. Moreover, the φ29-encoded protein p56 inhibits host uracil-DNA glycosylase activity and has been proposed to be a defense mechanism developed by the phage to prevent the action of the base excision repair pathway if uracil residues arise in replicative intermediates. All of them constitute incoming examples on how viruses have profited from the cellular machinery of their hosts.
Collapse
|
27
|
Abstract
Cytoskeletal elements are well known to be widespread in eukaryotes and prokaryotes, providing important, diverse functions for cells large and small. Two new studies report that some bacteriophages encode their own tubulin homologs to facilitate phage reproduction within the host cell.
Collapse
|
28
|
Abstract
This article is a survey of my scientific work over 52 years. During my postdoctoral stay in Severo Ochoa's laboratory, I determined the direction of reading of the genetic message, and I discovered two proteins that I showed to be involved in the initiation of protein synthesis. The work I have done in Spain with bacteriophage ϕ29 for 45 years has been very rewarding. I can say that I was lucky because I did not expect that ϕ29 would give so many interesting results, but I worked hard, with a lot of dedication and enthusiasm, and I was there when the luck arrived. I would like to emphasize our work on the control of ϕ29 DNA transcription and, in particular, the finding for the first time of a protein covalently linked to the 5'-ends of ϕ29 DNA that we later showed to be the primer for the initiation of phage DNA replication. Very relevant was the discovery of the ϕ29 DNA polymerase, with its properties of extremely high processivity and strand displacement capacity, together with its high fidelity. The ϕ29 DNA polymerase has become an ideal enzyme for DNA amplification, both rolling-circle and whole-genome linear amplification. I am also very proud of the many brilliant students and collaborators with whom I have worked over the years and who have become excellent scientists. This Reflections article is not intended to be the end of my scientific career. I expect to work for many years to come.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
29
|
Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci U S A 2012; 109:18482-7. [PMID: 23091024 DOI: 10.1073/pnas.1216635109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.
Collapse
|
30
|
Disclosing the in vivo organization of a viral histone-like protein in Bacillus subtilis mediated by its capacity to recognize the viral genome. Proc Natl Acad Sci U S A 2012; 109:5723-8. [PMID: 22451942 DOI: 10.1073/pnas.1203824109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organization of replicating prokaryotic genomes requires architectural elements that, similarly to eukaryotic systems, induce topological changes such as DNA supercoiling. Bacteriophage 29 protein p6 has been described as a histone-like protein that compacts the viral genome by forming a nucleoprotein complex and plays a key role in the initiation of protein-primed DNA replication. In this work, we analyze the subcellular localization of protein p6 by immunofluorescence microscopy and show that, at early infection stages, it localizes in a peripheral helix-like configuration. Later, at middle infection stages, protein p6 is recruited to the bacterial nucleoid. This migrating process is shown to depend on the synthesis of components of the 29 DNA replication machinery (i.e., terminal protein and DNA polymerase) needed for the replication of viral DNA, which is required to recruit the bulk of protein p6. Importantly, the double-stranded DNA-binding capacity of protein p6 is essential for its relocalization at the nucleoid. Altogether, the results disclose the in vivo organization of a viral histone-like protein in bacteria.
Collapse
|
31
|
Butcher SJ, Manole V, Karhu NJ. Lipid-containing viruses: bacteriophage PRD1 assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:365-77. [PMID: 22297522 DOI: 10.1007/978-1-4614-0980-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PRD1 is a tailless icosahedrally symmetric virus containing an internal lipid membrane beneath the protein capsid. Its linear dsDNA genome and covalently attached terminal proteins are delivered into the cell where replication occurs via a protein-primed mechanism. Extensive studies have been carried out to decipher the roles of the 37 viral proteins in PRD1 assembly, their association in virus particles and lately, especially the functioning of the unique packaging machinery that translocates the genome into the procapsid. These issues will be addressed in this chapter especially in the context of the structure of PRD1. We will also discuss the major challenges still to be addressed in PRD1 assembly.
Collapse
Affiliation(s)
- Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
32
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
33
|
Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Phi29. Proc Natl Acad Sci U S A 2011; 108:18655-60. [PMID: 22065756 DOI: 10.1073/pnas.1114397108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA amplification performed by terminal protein-primed replication systems has not yet been developed for its general use to produce high amounts of DNA linked to terminal protein (TP). Here we present a method to amplify in vitro heterologous DNAs using the Φ29 DNA replication machinery and producing DNA with TP covalently attached to the 5' end. The amplification requires four Φ29 proteins, DNA polymerase, TP, single-stranded DNA binding protein and double-stranded DNA binding protein (p6). The DNA to be amplified is inserted between two sequences that are the Φ29 DNA replication origins, consisting of 191 and 194 bp from the left and right ends of the phage genome, respectively. The replication origins do not need to have TP covalently attached beforehand to be functional in amplification and they can be joined to the DNA to be amplified by cloning or ligation. The facts that two functional origins were required at the ends of a linear template DNA and that the kinetics of DNA synthesis was very similar to that obtained using the TP-containing Φ29 genome as template support the proposal that genuine amplification is taking place. Amplification factors of 30-fold have been obtained. Possible applications of DNAs produced by this method are discussed.
Collapse
|
34
|
Bertin A, de Frutos M, Letellier L. Bacteriophage-host interactions leading to genome internalization. Curr Opin Microbiol 2011; 14:492-6. [PMID: 21783404 DOI: 10.1016/j.mib.2011.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/02/2011] [Accepted: 07/05/2011] [Indexed: 01/18/2023]
Abstract
Bacteriophage infection is initiated by binding of the virion to a specific receptor located on the host surface. The genome is then released from the capsid and delivered to the host cytoplasm. Our knowledge of these early steps of infection has recently improved. The three-dimensional structure of numerous receptor binding proteins of tailed phages has been solved. Cryo-electron tomography has allowed characterization of the phage-host interactions in a cellular context and at nanometric resolution. The localization and motions of fluorescently labelled phages, receptors and viral DNA were monitored on individual bacteria. Altogether these approaches have revealed the intricacy of these early events and emphasize the link between infection and microbial architecture.
Collapse
Affiliation(s)
- Aurélie Bertin
- Institut de Biochimie Biophysique Moléculaire et Cellulaire, Univ Paris-Sud 11, UMR CNRS 8619, F- 91405, Orsay, France
| | | | | |
Collapse
|
35
|
Bacteriophage infection in rod-shaped gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in Bacillus subtilis. J Bacteriol 2011; 193:4893-903. [PMID: 21705600 DOI: 10.1128/jb.05104-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into the host bacterial cell is one of the least understood steps in the life cycle of bacteriophages. The different envelopes of Gram-negative and Gram-positive bacteria, with a fluid outer membrane and exposing a thick peptidoglycan wall to the environment respectively, impose distinct challenges for bacteriophage binding and (re)distribution on the bacterial surface. Here, infection of the Gram-positive rod-shaped bacterium Bacillus subtilis by bacteriophage SPP1 was monitored in space and time. We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB, which is encoded by a putative type VII secretion system gene cluster. YueB was found to concentrate at the cell poles and to display a punctate peripheral distribution along the sidewalls of B. subtilis cells. The kinetics of SPP1 DNA entry and replication were visualized during infection. Most of the infecting phages DNA entered and initiated replication near the cell poles. Altogether, our results reveal that the preferentially polar topology of SPP1 receptors on the surface of the host cell determines the site of phage DNA entry and subsequent replication, which occurs in discrete foci.
Collapse
|