1
|
Zhang X, Zhang L, Li D, Wang Q, Wang L, Zheng Z, Xie Y. Computational exploration of Eucommia ulmoides flavonoids as potential RANKL inhibitors via molecular docking and dynamics simulations. Sci Rep 2025; 15:17175. [PMID: 40382406 PMCID: PMC12085681 DOI: 10.1038/s41598-025-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Osteoporosis, characterized by excessive osteoclast activation, is mediated through the RANKL/RANK/OPG signaling axis. While flavonoids from Eucommia ulmoides (EU) have demonstrated anti-osteoclastogenic activity, their atomic-level mechanisms remain elusive. Here, we investigated six EU-derived flavonoids (cyrtominetin, quercetin, syringetin, genistein, ombuin, and kaempferol) targeting RANKL using integrated computational approaches. Molecular docking revealed strong binding affinities (Total_Score > 4.0) for all compounds, with cyrtominetin exhibiting the highest affinity (-50.205 kJ/mol via MM-PBSA), primarily through hydrogen bonds with Gly178, His180, Lys181, and Asn295. Moreover, most flavonoids interacted with RANKL by forming strong hydrogen bonds with Gly178 and Asn295, exhibiting higher binding affinity that was identified as essential for the activity. All-atom molecular dynamics simulations (100 ns) confirmed complex stability, demonstrating: low RMSD fluctuations (< 4.0 Å) and compact Rg values (16.0-17.0 Å). Notably, binding free energy decomposition identified both electrostatic and van der Waals contributions as critical for stabilization. These results identify cyrtominetin as a promising lead compound for RANKL inhibition, providing structural insights for designing flavonoid-based therapeutics against osteoporosis.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Laboratory Medicine, Northwest Womens and Childrens Hospital, 1616 Yanxiang Road, Xi'an, 710061, Shaanxi, China
| | - Lixia Zhang
- Department of Clinical Laboratory, Shaanxi Provincial Peoples Hospital, Xi'an, China
| | - Dan Li
- Department of Laboratory Medicine, Northwest Womens and Childrens Hospital, 1616 Yanxiang Road, Xi'an, 710061, Shaanxi, China
| | - Qi Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Libin Wang
- Department of Laboratory Medicine, Northwest Womens and Childrens Hospital, 1616 Yanxiang Road, Xi'an, 710061, Shaanxi, China
| | - Ziqi Zheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yun Xie
- Department of Laboratory Medicine, Northwest Womens and Childrens Hospital, 1616 Yanxiang Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Sobacchi C, Menale C, Crisafulli L, Ficara F. Role of RANKL Signaling in Bone Homeostasis. Physiology (Bethesda) 2025; 40:0. [PMID: 39255276 DOI: 10.1152/physiol.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
RANKL and its cognate receptor RANK are crucial regulators of bone metabolism in physiological as well as in pathological conditions. Here we go through the works that unveiled the paramount role of this signaling pathway. We focus on the RANKL cytokine, whose alterations are responsible for rare and common bone diseases. We describe recent insights on the regulation of RANKL expression, which provide new hints for the pharmacological regulation of this molecule. Based on the multiple functions exerted by RANKL (within and outside the bone tissue), we advise caution regarding the potential unintended consequences of its inhibition.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," Naples, Italy
| | - Laura Crisafulli
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Francesca Ficara
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
3
|
Jiang Y, Luo X, Zheng Z, Wen S, Gao H, Xu C, Jiang M, Wang S. Identification of novel RANKL inhibitors through in silico analysis. Bioorg Chem 2024; 153:107826. [PMID: 39299177 DOI: 10.1016/j.bioorg.2024.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is considered the principal regulator of osteoclast differentiation. Therefore, strategies interfering with the RANKL-RANK signaling pathway may effectively inhibit osteoclast differentiation and mitigate bone resorption. Consequently, RANKL has become a promising target for new drug design strategies. Despite extensive research on specific drugs and antibodies, only a few have shown efficacy in treating osteoporosis. To address this challenge, we aimed to explore new approaches for designing drugs for osteoporosis. In this study, a 3D quantitative structure-activity relationship (QSAR) pharmacophore model was built for RANKL with reference to known inhibitor IC50 values. The optimal pharmacophore model was then employed as a 3D query to screen databases for novel lead compounds. The obtained compounds were subjected to ADMET and TOPKAT analyses to predict drug pharmacokinetics and toxicity. Molecular docking and de novo evolution approaches were applied to verify the docking binding affinities of the compounds. Five candidate compounds were subjected to further in vitro analyses to assess their anti-osteoporotic effects, among which compound 4 demonstrated significant inhibitory activity, achieving an inhibitory rate of 92.6 % on osteoclastogenesis at a concentration of 10 μM. Subsequent molecular dynamics (MD) simulations to assess the stability and behavior of compound 4 and its evolved variant, ZINC00059014397_Evo, within the RANKL binding site revealed that the variant is a potential therapeutic agent for targeting osteoclasts. This study offers valuable insights for developing next generation RANKL inhibitors for osteoporosis treatments.
Collapse
Affiliation(s)
- Yingying Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaogang Luo
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhanpeng Zheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Shun Wen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongwei Gao
- China School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Cheng Xu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China.
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Siyuan Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
4
|
Wu Y, Li B, Ying L, Chen Y, Zhang Y, Hu C, Zhang Y, Yi L, Xue W, Huang S, Song Z. Design, Synthesis, and Biological Evaluation of β-Trifluoroethoxydimethyl Selenides as Potent Antiosteoporosis Agents. J Med Chem 2024; 67:7585-7602. [PMID: 38630440 DOI: 10.1021/acs.jmedchem.4c00438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
An efficient protocol for the synthesis of β-trifluoroethoxydimethyl selenides was achieved under mild reaction conditions, and 39 compounds were prepared. All compounds were evaluated for their abilities to inhibit RANKL-induced osteoclastogenesis, compound 4aa exhibited the most potent activity. Further investigations revealed that 4aa could inhibit F-actin ring generation, bone resorption, and osteoclast-specific gene expression in vitro. Western blot analyses demonstrated that compound 4aa abrogated the RANKL-induced mitogen-activated protein kinase and NF-kB-signaling pathways. In addition, 4aa also displayed a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. In vivo experiments revealed that compound 4aa significantly ameliorated bone loss in an ovariectomized (OVX) mice model. Furthermore, the surface plasmon resonance experiment results revealed that 4aa probably bound to RANKL. Collectively, the above-mentioned findings suggested that compound 4aa as a potential RANKL inhibitor averted OVX-triggered osteoporosis by regulating the inhibition of osteoclast differentiation and stimulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Yao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373 Xueyuan West Road, Lucheng District, Wenzhou 325027, Zhejiang, China
| | - Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chaoming Hu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373 Xueyuan West Road, Lucheng District, Wenzhou 325027, Zhejiang, China
| | - Yichi Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373 Xueyuan West Road, Lucheng District, Wenzhou 325027, Zhejiang, China
| | - Lele Yi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373 Xueyuan West Road, Lucheng District, Wenzhou 325027, Zhejiang, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
5
|
Li B, Chen Z, Zhang Z, Liu H, Han D, Yang H, Zhang Z. Zuogui pill disrupt the malignant cycle in breast cancer bone metastasis through the Piezo1-Notch-1-GPX4 pathway and active molecules fishing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155257. [PMID: 38103318 DOI: 10.1016/j.phymed.2023.155257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Breast cancer bone metastasis is closely associated with the bone microenvironment. Zuogui Pill (ZGP), a clinically approved formulation in China, effectively regulates the bone microenvironment for the prevention and treatment of osteoporosis. PURPOSE Few reports have utilized the ZGP for bone metastasis models. This study investigated the intervention and bone-protective properties of ZGP against breast cancer bone metastasis, explored the potential mechanism, and screened for its active compositions by molecules fishing. METHODS To investigate the intervention efficacy of ZGP and its protein-level mechanism of action, the mouse bone metastasis model and in vitro cell co-culture model were constructed. Affinity ultrafiltration, molecular docking, cellular thermal shift assay and physical scale detection were used to investigate the affinity components of the RANKL protein in ZGP. RESULTS The administration of ZGP combined with zoledronic acid inhibited the development of tumors and secondary lung metastasis in mice. This translated to a prolonged survival period and enhanced quality of life. ZGP could disrupt the malignant cycle by modulating the Piezo1-Notch-1-GPX4 signaling pathway in the "bone-cancer" communication in the cell co-culture model. Furthermore, 25 chemical components of ZGP were identified, with 10 active compounds exhibiting significant affinity for the RANKL protein. CONCLUSION The findings of this work highlighted ZGP's potential for intervening in the progression of breast cancer bone metastasis. Thus, this investigation served as an experimental foundation for expanding the application scope of ZGP and for advancing drug development efforts in bone metastasis treatment.
Collapse
Affiliation(s)
- Baohong Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhenyong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongli Han
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haolin Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Zhivodernikov IV, Markina YV, Kirichenko TV, Popov MA, Markin AM. Exosomes as a potential therapeutic approach in osteoimmunology. Front Immunol 2023; 14:1309015. [PMID: 38173718 PMCID: PMC10763248 DOI: 10.3389/fimmu.2023.1309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Exosomes are natural extracellular vesicles that play a key role in inter- and intracellular communication. Currently they are considered as a promising therapeutic strategy for the treatment of various diseases. In osteoimmunology, exosomes can serve as biomarkers of bone homeostasis disorders and, at the same time, promising therapeutic agents with high stability in the biological environment, low immunogenicity and good bioavailability. In this review, we attempted to examine exosomes as natural mediators of intercellular communication, playing an essential role in the interaction of the immune system and bone tissue, based on an analysis of the PubMed database up to October 2023.
Collapse
Affiliation(s)
- Ivan V. Zhivodernikov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
- Medical Institute, Poples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russia
| |
Collapse
|
7
|
Rahangdale R, Tender T, Balireddy S, Goswami K, Pasupuleti M, Hariharapura RC. A critical review on antiviral peptides derived from viral glycoproteins and host receptors to decoy herpes simplex virus. Microb Biotechnol 2023; 16:2036-2052. [PMID: 37740682 PMCID: PMC10616652 DOI: 10.1111/1751-7915.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The health of the human population has been continuously challenged by viral infections. Herpes simplex virus (HSV) is one of the common causes of illness and can lead to death in immunocompromised patients. Existing anti-HSV therapies are not completely successful in eliminating the infection due to anti-viral drug resistance, ineffectiveness against the latent virus and high toxicity over prolonged use. There is a need to update our knowledge of the current challenges faced in anti-HSV therapeutics and realize the necessity of developing alternative treatment approaches. Protein therapeutics are now being explored as a novel approach due to their high specificity and low toxicity. This review highlights the significance of HSV viral glycoproteins and host receptors in the pathogenesis of HSV infection. Proteins or peptides derived from HSV glycoproteins gC, gB, gD, gH and host cell receptors (HSPG, nectin and HVEM) that act as decoys to inhibit HSV attachment, entry, or fusion have been discussed. Few researchers have tried to improve the efficacy and stability of the identified peptides by modifying them using a peptidomimetic approach. With these efforts, we think developing an alternative treatment option for immunocompromised patients and drug-resistant organisms is not far off.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kamini Goswami
- Microbiology Division, Council of Scientific and Industrial ResearchCentral Drug Research InstituteLucknowUttar PradeshIndia
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial ResearchCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
8
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L, Su J. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. J Nanobiotechnology 2023; 21:293. [PMID: 37620914 PMCID: PMC10463900 DOI: 10.1186/s12951-023-02003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant challenge. A wide range of nano-biomaterials are available for the treatment of bone/cartilage defects. However, their poor compatibility and biodegradability pose challenges to the practical applications of these nano-based biomaterials. Natural biomaterials inspired by the cell units (e.g., nucleic acids and proteins), have gained increasing attention in recent decades due to their versatile functionality, compatibility, biodegradability, and great potential for modification, combination, and hybridization. In the field of bone/cartilage regeneration, natural nano-based biomaterials have presented an unparalleled role in providing optimal cues and microenvironments for cell growth and differentiation. In this review, we systematically summarize the versatile building blocks inspired by the cell unit used as natural nano-based biomaterials in bone/cartilage regeneration, including nucleic acids, proteins, carbohydrates, lipids, and membranes. In addition, the opportunities and challenges of natural nano-based biomaterials for the future use of bone/cartilage regeneration are discussed.
Collapse
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (TCM), Guangzhou, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
9
|
Rinotas V, Liepouri F, Ouzouni MD, Chalkidi N, Papaneophytou C, Lampropoulou M, Vidali VP, Kontopidis G, Couladouros E, Eliopoulos E, Papakyriakou A, Douni E. Structure-Based Discovery of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-Induced Osteoclastogenesis Inhibitors. Int J Mol Sci 2023; 24:11290. [PMID: 37511048 PMCID: PMC10379842 DOI: 10.3390/ijms241411290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) has been actively pursued as a therapeutic target for osteoporosis, given that RANKL is the master mediator of bone resorption as it promotes osteoclast differentiation, activity and survival. We employed a structure-based virtual screening approach comprising two stages of experimental evaluation and identified 11 commercially available compounds that displayed dose-dependent inhibition of osteoclastogenesis. Their inhibitory effects were quantified through TRAP activity at the low micromolar range (IC50 < 5 μΜ), but more importantly, 3 compounds displayed very low toxicity (LC50 > 100 μΜ). We also assessed the potential of an N-(1-aryl-1H-indol-5-yl)aryl-sulfonamide scaffold that was based on the structure of a hit compound, through synthesis of 30 derivatives. Their evaluation revealed 4 additional hits that inhibited osteoclastogenesis at low micromolar concentrations; however, cellular toxicity concerns preclude their further development. Taken together with the structure-activity relationships provided by the hit compounds, our study revealed potent inhibitors of RANKL-induced osteoclastogenesis of high therapeutic index, which bear diverse scaffolds that can be employed in hit-to-lead optimization for the development of therapeutics against osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | | | - Maria-Dimitra Ouzouni
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Niki Chalkidi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Christos Papaneophytou
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| | | | - Veroniki P Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - George Kontopidis
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
| | - Elias Couladouros
- proACTINA SA, 20 Delfon Street, 15125 Athens, Greece
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
10
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
11
|
Luo P, Fang J, Yang D, Yu L, Chen H, Jiang C, Guo R, Zhu T, Tang S. OP3-4 peptide sustained-release hydrogel inhibits osteoclast formation and promotes vascularization to promote bone regeneration in a rat femoral defect model. Bioeng Transl Med 2023; 8:e10414. [PMID: 36925715 PMCID: PMC10013759 DOI: 10.1002/btm2.10414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Bone injury caused changes to surrounding tissues, leading to a large number of osteoclasts appeared to clear the damaged bone tissue before bone regeneration. However, overactive osteoclasts will inhibit bone formation. In this study, we prepared methacrylylated gelatin (GelMA)-based hydrogel to co-crosslink with OP3-4 peptide, a receptor activator of NF-κB ligand (RANKL) binding agent, to achieve the slow release of OP3-4 peptide to inhibit the activation of osteoclasts, thus preventing the long-term existence of osteoclasts from affecting bone regeneration, and promoting osteogenic differentiation. Moreover, CXCL9 secreted by osteoblasts will bind to endogenous VEGF and inhibit vascularization, finally hinder bone formation. Thus, anti-CXCL9 antibodies (A-CXCL9) were also loaded in the hydrogel to neutralize excess CXCL9. The hydrogel slow released of OP3-4 cyclic peptide and A-CXCL9 to simultaneously inhibiting osteoclast activation and promoting vascularization, thereby accelerating the healing of femur defect. Further analysis of osteogenic protein expression and signal pathways showed that the hydrogel may be through activating the AKT-RUNX2-ALP pathway and ultimately promote osteogenic differentiation. This dual-acting hydrogel can effectively prevent nonunion caused by low vascularization and provide long-term support for the treatment of bone injury.
Collapse
Affiliation(s)
- Peng Luo
- Department of Sport MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)ShenzhenChina
| | - Jiarui Fang
- Department of Sport MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)ShenzhenChina
| | - Dazhi Yang
- Department of Spine SurgeryHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)ShenzhenChina
| | - Lan Yu
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)ShenzhenChina
| | - Houqing Chen
- Department of Sport MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)ShenzhenChina
| | - Changging Jiang
- Department of Sport MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)ShenzhenChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Tao Zhu
- Department of Respiratory and Critical Care Medicine, and Preclinical Research CenterSuining Central HospitalSichuanChina
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
12
|
Qiu H, Hosking C, Rothzerg E, Samantha A, Chen K, Kuek V, Jin H, Zhu S, Vrielink A, Lim K, Foley M, Xu J. ADR3, a next generation i-body to human RANKL, inhibits osteoclast formation and bone resorption. J Biol Chem 2023; 299:102889. [PMID: 36634847 PMCID: PMC9929471 DOI: 10.1016/j.jbc.2023.102889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Osteoporosis is a chronic skeletal condition characterized by low bone mass and deteriorated microarchitecture of bone tissue and puts tens of millions of people at high risk of fractures. New therapeutic agents like i-bodies, a class of next-generation single-domain antibodies, are needed to overcome some limitations of conventional treatments. An i-body is a human immunoglobulin scaffold with two long binding loops that mimic the shape and position of those found in shark antibodies, the variable new antigen receptors of sharks. Its small size (∼12 kDa) and long binding loops provide access to drug targets, which are considered undruggable by traditional monoclonal antibodies. Here, we have successfully identified a human receptor activator of nuclear factor-κB ligand (RANKL) i-body, ADR3, which demonstrates a high binding affinity to human RANKL (hRANKL) with no adverse effect on the survival or proliferation of bone marrow-derived macrophages. Differential scanning fluorimetry suggested that ADR3 is stable and able to tolerate a wide range of physical environments (including both temperature and pH). In addition, in vitro studies showed a dose-dependent inhibitory effect of ADR3 on osteoclast differentiation, podosome belt formation, and bone resorption activity. Further investigation on the mechanism of action of ADR3 revealed that it can inhibit hRANKL-mediated signaling pathways, supporting the in vitro functional observations. These clues collectively indicate that hRANKL antagonist ADR3 attenuates osteoclast differentiation and bone resorption, with the potential to serve as a novel therapeutic to protect against bone loss.
Collapse
Affiliation(s)
- Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Christopher Hosking
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ariela Samantha
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia,Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sipin Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin Lim
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Michael Foley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
13
|
Huang D, Zhao C, Li R, Chen B, Zhang Y, Sun Z, Wei J, Zhou H, Gu Q, Xu J. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13:5338. [PMID: 36097003 PMCID: PMC9468151 DOI: 10.1038/s41467-022-33006-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major challenges for discovering protein-protein interaction inhibitors is identifying selective and druggable binding sites at the protein surface. Here, we report an approach to identify a small molecular binding site to selectively inhibit the interaction of soluble RANKL and RANK for designing anti-osteoporosis drugs without undesirable immunosuppressive effects. Through molecular dynamic simulations, we discovered a binding site that allows a small molecule to selectively interrupt soluble RANKL-RANK interaction and without interfering with the membrane RANKL-RANK interaction. We describe a highly potent inhibitor, S3-15, and demonstrate its specificity to inhibit the soluble RANKL-RANK interaction with in vitro and in vivo studies. S3-15 exhibits anti-osteoporotic effects without causing immunosuppression. Through in silico and in vitro experiments we further confirm the binding model of S3-15 and soluble RANKL. This work might inspire structure-based drug discovery for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Dane Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Chao Zhao
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Ruyue Li
- grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Bingyi Chen
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuting Zhang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhejun Sun
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Junkang Wei
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Yang K, Li S, Wang T, Yan X, He Q, Ning R, Xu X, Yao W, Zhang X, Yang C, Jiang M, Deng L. Development of an Orally Active Small-Molecule Inhibitor of Receptor Activator of Nuclear Factor-κB Ligand. J Med Chem 2022; 65:10992-11009. [PMID: 35960655 DOI: 10.1021/acs.jmedchem.2c00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, play pivotal roles in bone remodeling. The monoclonal antibody denosumab successfully inhibited the maturation of osteoclasts (OCs) by binding to RANKL in the clinic. We continued our efforts to develop small-molecule inhibitors of RANKL. In this work, 41 β-carboline derivatives were synthesized based on previously synthesized compound Y1599 to improve its drug-like properties. Compound Y1693 was identified as a potent RANKL inhibitor that improved absorption-distribution-metabolism-excretion properties and effectively prevented RANKL-induced osteoclastogenesis and bone resorption. Furthermore, Y1693 also suppressed the expression of OC marker genes. Moreover, Y1693 demonstrated good tolerability and efficacy in an orally administered mouse model of osteoporosis as well as the ability to rescue alveolar bone loss in vivo caused by periodontal disease. Collectively, the above findings may provide a valuable direction for the development of novel antiresorptive therapies that target RANKL.
Collapse
Affiliation(s)
- Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Shunyao Li
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Tianqi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xueming Yan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xing Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, California 95817, United States
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
15
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
16
|
Suo F, Zhou X, Setroikromo R, Quax WJ. Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics 2022; 14:181. [PMID: 35057080 PMCID: PMC8781899 DOI: 10.3390/pharmaceutics14010181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.
Collapse
Affiliation(s)
- Fengzhi Suo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Zhou X, Cornel EJ, Fan Z, He S, Du J. Bone-Targeting Polymer Vesicles for Effective Therapy of Osteoporosis. NANO LETTERS 2021; 21:7998-8007. [PMID: 34529430 DOI: 10.1021/acs.nanolett.1c02150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the aging of the population, postmenopausal osteoporosis becomes increasingly widespread and severe as fractures caused by osteoporosis may lead to permanent disabilities and even death. Inspired by extracellular vesicles that participate in bone remodeling, we present a biomimicking polymer vesicle for bone-targeted β-estradiol (E2) delivery. This vesicle is self-assembled from a poly(ε-caprolactone)28-block-poly[(l-glutamic acid)7-stat-(l-glutamic acid-alendronic acid)4] (PCL28-b-P[Glu7-stat-(Glu-ADA)4]) diblock copolymer. The alendronic acid (ADA) on the coronas endows the polymer vesicles with a high bone affinity and acts synergistically with E2 to achieve an enhanced therapeutic effect. As confirmed with ovariectomized osteoporosis rat models, bone loss was significantly reversed as the recovery rates of total BMD (bone mineral density) and trabecular BMD were 70.4% and 99.3%, respectively. Overall, this work provides fresh insight into the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
18
|
The polypeptide OP3-4 induced osteogenic differentiation of bone marrow mesenchymal stem cells via protein kinase B/glycogen synthase kinase 3β/β-catenin pathway and promoted mandibular defect bone regeneration. Arch Oral Biol 2021; 130:105243. [PMID: 34416564 DOI: 10.1016/j.archoralbio.2021.105243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aims of this study were to explore: (ⅰ) the effect of the polypeptide OP 3-4 on bone regeneration in vivo; (ⅱ) the effect of OP 3-4 on osteogenic differentiation of bone marrow mesenchymal stem cells in vitro; and (ⅲ) the potential mechanism of OP 3-4 in promoting osteogenic differentiation of bone marrow mesenchymal stem cells. DESIGNS 30 Wistar rats (8-week, male) were randomly divided into Control group (n = 5), Hydrogel group (n = 5), and Hydrogel loaded OP 3-4 group (n = 5). Hematoxylin and eosin staining was used to evaluate the level of bone regeneration in mandibular defect. Immunohistochemistry staining was used to evaluate the expression of alkaline phosphatase, runt-related transcription factor 2, and type Ⅰ collagen. Flow cytometry was applied to identify the phenotype of bone marrow mesenchymal stem cells. Furthermore, LY294002, the inhibitor of protein kinase B, was applied to verify the role of OP 3-4 in promoting osteogenic differentiation via protein kinase B/glycogen synthase kinase 3β/β-catenin pathway through western blot. RESULTS OP 3-4 promoted bone regeneration of rat mandibular defect. The expression of osteogenic differentiation related markers were increased after adding OP 3-4 to bone marrow mesenchymal stem cells. OP 3-4 promoted osteogenic differentiation of bone marrow mesenchymal stem cells via protein kinase B/glycogen synthase kinase 3β/β-catenin pathway. CONCLUSION OP 3-4 could promote bone regeneration of mandibular defect and improve osteogenic differentiation through protein kinase B/glycogen synthase kinase 3β/β-catenin pathway.
Collapse
|
19
|
Xu H, Liu T, Jia Y, Li J, Jiang L, Hu C, Wang X, Sheng J. (-)-Epigallocatechin-3-gallate inhibits osteoclastogenesis by blocking RANKL-RANK interaction and suppressing NF-κB and MAPK signaling pathways. Int Immunopharmacol 2021; 95:107464. [PMID: 33677256 DOI: 10.1016/j.intimp.2021.107464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/27/2022]
Abstract
Consuming green tea has many health benefits, including regulating bone metabolism and ameliorating osteoporosis, mainly in older and postmenopausal women. This osteoprotective effect has been attributed to the biologically active polyphenol (-)-epigallocatechin-3-gallate (EGCG). Although EGCG inhibits osteoclastogenesis, its underlying molecular mechanism remains to be elucidated. Interaction between receptor activator of nuclear factor (NF)-κB ligand (RANKL) and RANK plays critical roles in the differentiation and activation of osteoclasts and is therefore considered a therapeutic target for osteoclast-related diseases such as osteoporosis. In the present study, we found that EGCG can bind directly to RANK and RANKL and interfere with their interaction, thereby suppressing RANKL-induced phosphorylation of IKKα/β, IκBα, p65, JNK, ERK1/2, and p38 and key downstream regulatory factors, including nuclear factor of activated T cell c1 (NFATc1), c-Fos, tartrate-resistant acid phosphatase (TRAP), c-Src, and cathepsin K, in osteoclast precursors. This can ultimately inhibit osteoclastogenesis. Taken together, our results show that EGCG can bind directly to RANK and RANKL and block their interaction and that, by inhibiting NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, it negatively regulates RANKL-induced osteoclastogenesis in RAW 264.7 cells. Thus, regular consumption of EGCG in green tea can inhibit the development and progression of osteoclast-related diseases.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuankan Jia
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Caijiang Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
20
|
Wang F, Chau B, West SM, Kimberlin CR, Cao F, Schwarz F, Aguilar B, Han M, Morishige W, Bee C, Dollinger G, Rajpal A, Strop P. Structures of mouse and human GITR-GITRL complexes reveal unique TNF superfamily interactions. Nat Commun 2021; 12:1378. [PMID: 33654081 PMCID: PMC7925557 DOI: 10.1038/s41467-021-21563-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) regulate immune cell activities, including anti-tumor immune responses. Structures and visualization of human and mouse GITR–GITRL complexes offer insight into the architecture of higher-order membrane assemblies, and their signaling.
Collapse
Affiliation(s)
- Feng Wang
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Bryant Chau
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Sean M West
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | | | - Fei Cao
- Discovery Chemistry, Bristol Myers Squibb, Redwood City, CA, USA
| | - Flavio Schwarz
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Barbara Aguilar
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Minhua Han
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, Redwood City, CA, USA
| | - Winse Morishige
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Christine Bee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Arvind Rajpal
- Genentech Research and Early Development, South San Francisco, CA, USA
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA.
| |
Collapse
|
21
|
Rinotas V, Papakyriakou A, Violitzi F, Papaneophytou C, Ouzouni MD, Alexiou P, Strongilos A, Couladouros E, Kontopidis G, Eliopoulos E, Douni E. Discovery of Small-Molecule Inhibitors of Receptor Activator of Nuclear Factor-κB Ligand with a Superior Therapeutic Index. J Med Chem 2020; 63:12043-12059. [PMID: 32955874 DOI: 10.1021/acs.jmedchem.0c01316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) constitutes the master mediator of osteoclastogenesis, while its pharmaceutical inhibition by a monoclonal antibody has been approved for the treatment of postmenopausal osteoporosis. To date, the pursuit of pharmacologically more favorable approaches using low-molecular-weight inhibitors has been hampered by low specificity and high toxicity issues. This study aimed to discover small-molecule inhibitors targeting RANKL trimer formation. Through a systematic screening of 39 analogues of SPD-304, a dual inhibitor of tumor necrosis factor (TNF) and RANKL trimerization, we identified four compounds (1b, 3b, 4a, and 4c) that selectively inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, without affecting TNF activity or osteoblast differentiation. Based on structure-activity observations extracted from the most potent and less toxic inhibitors of RANKL-induced osteoclastogenesis, we synthesized a focused set of compounds that revealed three potent inhibitors (19a, 19b, and 20a) with remarkably low cell-toxicity and improved therapeutic indexes as shown by the LC50 to IC50 ratio. These RANKL-selective inhibitors are an excellent starting point for the development of small-molecule therapeutics against osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Foteini Violitzi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Christos Papaneophytou
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece.,Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| | - Maria-Dimitra Ouzouni
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Polyxeni Alexiou
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | | | - Elias Couladouros
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Kontopidis
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| |
Collapse
|
22
|
Qiu H, Qin A, Cheng T, Chim SM, Smithers L, Chen K, Song D, Liu Q, Zhao J, Wang C, Teguh D, Zhang G, Tickner J, Vrielink A, Pavlos NJ, Xu J. A missense mutation sheds light on a novel structure-function relationship of RANKL. J Cell Physiol 2020; 236:2800-2816. [PMID: 32964459 DOI: 10.1002/jcp.30045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The tumor necrosis factor (TNF)-like core domain of receptor activator of nuclear factor-κB ligand (RANKL) is a functional domain critical for osteoclast differentiation. One of the missense mutations identified in patients with osteoclast-poor autosomal recessive osteopetrosis (ARO) is located in residue methionine 199 that is replaced with lysine (M199K) amid the TNF-like core domain. However, the structure-function relationship of this mutation is not clear. Sequence-based alignment revealed that the fragment containing human M199 is highly conserved and equivalent to M200 in rat. Using site-directed mutagenesis, we generated three recombinant RANKL mutants M200K/A/E (M200s) by replacing the methionine 200 with lysine (M200K), alanine (M200A), and glutamic acid (M200E), representative of distinct physical properties. TRAcP staining and bone pit assay showed that M200s failed to support osteoclast formation and bone resorption, accompanied by impaired osteoclast-related signal transduction. However, no antagonistic effect was found in M200s against wild-type rat RANKL. Analysis of the crystal structure of RANKL predicted that this methionine residue is located within the hydrophobic core of the protein, thus, likely to be crucial for protein folding and stability. Consistently, differential scanning fluorimetry analysis suggested that M200s were less stable. Western blot analysis analyses further revealed impaired RANKL trimerization by M200s. Furthermore, receptor-ligand binding assay displayed interrupted interaction of M200s to its intrinsic receptors. Collectively, our studies revealed the molecular basis of human M199-induced ARO and elucidated the indispensable role of rodent residue M200 (equivalent to human M199) for the RANKL function.
Collapse
Affiliation(s)
- Heng Qiu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - An Qin
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Shanghai Key Laboratory of Orthopaedic Implant, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taksum Cheng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shek M Chim
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Luke Smithers
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Chao Wang
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Dian Teguh
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ge Zhang
- School of Chinese Medicine, Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jennifer Tickner
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
23
|
Ko Y, Lee G, Kim B, Park M, Jang Y, Lim W. Modification of the RANKL-RANK-binding site for the immunotherapeutic treatment of osteoporosis. Osteoporos Int 2020; 31:983-993. [PMID: 31863125 DOI: 10.1007/s00198-019-05200-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
UNLABELLED Here, we proposed the use of mutated RANKL as an immunogen for active immunization and to induce anti-cytokine antibodies for osteoporosis treatment. INTRODUCTION Osteoclasts are responsible for bone resorption in bone-related disorders. Anti-cytokine therapeutic antibodies such as denosumab are effective for the treatment of osteoporosis. However, problems with antibody manufacturing and the immunogenicity caused by multiple antibody doses have led to the use of auto-cytokines as immunogens to induce anti-cytokine antibodies. METHODS RANKL was point-mutated based on the crystal structure of the complex of RANKL and its receptor RANK. RESULTS As a proof of concept, immunization with RANKL produced high levels of specific antibodies and blocked osteoclast development in vitro and inhibited osteoporosis in RANKL-treated or ovariectomized mouse models. CONCLUSIONS The results demonstrate the successful use of mutated RANKL as an immunogen for the induction of anti-RANKL immune response. This strategy is useful in general anti-cytokine immunotherapy to avoid toxic side effects of osteoporosis treatment.
Collapse
Affiliation(s)
- Y Ko
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - G Lee
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - B Kim
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - M Park
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - Y Jang
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju, 61452, South Korea
| | - W Lim
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea.
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea.
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
24
|
Wang Y, Michiels T, Setroikromo R, van Merkerk R, Cool RH, Quax WJ. Creation of RANKL mutants with low affinity for decoy receptor OPG and their potential anti-fibrosis activity. FEBS J 2019; 286:3582-3593. [PMID: 31081236 PMCID: PMC6852375 DOI: 10.1111/febs.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Fibrosis is characterized by the progressive alteration of the tissue structure due to the excessive production of extracellular matrix (ECM). The signaling system encompassing Receptor Activator of Nuclear factor NF‐κB Ligand (RANKL)/RANK/Osteoprotegerin (OPG) was discovered to play an important role in the regulation of ECM formation and degradation in bone tissue. However, whether and how this signaling pathway plays a role in liver or pulmonary ECM degradation is unclear up to now. Interestingly, increased decoy receptor OPG levels are found in fibrotic tissues. We hypothesize that RANKL can stimulate RANK on macrophages and initiate the process of ECM degradation. This process may be inhibited by highly expressed OPG in fibrotic conditions. In this case, RANKL mutants that can bind to RANK without binding to OPG might become promising therapeutic candidates. In this study, we built a structure‐based library containing 44 RANKL mutants and found that the Q236 residue of RANKL is important for OPG binding. We show that RANKL_Q236D can activate RAW cells to initiate the process of ECM degradation and is able to escape from the obstruction by exogenous OPG. We propose that the generation of RANKL mutants with reduced affinity for OPG is a promising strategy for the exploration of new therapeutics against fibrosis.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Timo Michiels
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| |
Collapse
|
25
|
Jiang M, Peng L, Yang K, Wang T, Yan X, Jiang T, Xu J, Qi J, Zhou H, Qian N, Zhou Q, Chen B, Xu X, Deng L, Yang C. Development of Small-Molecules Targeting Receptor Activator of Nuclear Factor-κB Ligand (RANKL)—Receptor Activator of Nuclear Factor-κB (RANK) Protein–Protein Interaction by Structure-Based Virtual Screening and Hit Optimization. J Med Chem 2019; 62:5370-5381. [PMID: 31082234 DOI: 10.1021/acs.jmedchem.8b02027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Lei Peng
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kai Yang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Tianqi Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Xueming Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Tao Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Bo Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
26
|
Tao SC, Guo SC. Extracellular vesicles in bone: "dogrobbers" in the "eternal battle field". Cell Commun Signal 2019; 17:6. [PMID: 30658653 PMCID: PMC6339294 DOI: 10.1186/s12964-019-0319-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout human life, bone is constantly in a delicate dynamic equilibrium of synthesis and resorption, hosting finely-tuned bone mineral metabolic processes for bone homeostasis by collaboration or symphony among several cell types including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OYs), vascular endothelial cells (ECs) and their precursors. Beyond these connections, a substantial level of communication seems to occur between bone and other tissues, and together, they form an organic unit linked to human health and disease. However, the current hypothesis, which includes growth factors, hormones and specific protein secretion, incompletely explains the close connections among bone cells or between bone and other tissues. Extracellular vesicles (EVs) are widely-distributed membrane structures consisting of lipid bilayers, membrane proteins and intravesicular cargo (including proteins and nucleic acids), ranging from 30 nm to 1000 nm in diameter, and their characters have been highly conserved throughout evolution. EVs have targeting abilities and the potential to transmit multidimensional, abundant and complicated information, as powerful and substantial "dogrobbers" mediating intercellular communications. As research has progressed, EVs have gradually become thought of as "dogrobbers" in bone tissue-the "eternal battle field" -in a delicate dynamic balance of destruction and reconstruction. In the current review, we give a brief description of the major constituent cells in bone tissues and explore the progress of current research on bone-derived EVs. In addition, this review also discusses in depth not only potential directions for future research to breakthrough in this area but also problems existing in current research that need to be solved for a better understanding of bone tissues.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
27
|
Mbundi L, Meikle ST, Busquets R, Dowell NG, Cercignani M, Santin M. Gadolinium Tagged Osteoprotegerin-Mimicking Peptide: A Novel Magnetic Resonance Imaging Biospecific Contrast Agent for the Inhibition of Osteoclastogenesis and Osteoclast Activity. NANOMATERIALS 2018; 8:nano8060399. [PMID: 29865247 PMCID: PMC6027169 DOI: 10.3390/nano8060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
The control of osteoblast/osteoclast cross-talk is crucial in the bone remodelling process and provides a target mechanism in the development of drugs for bone metabolic diseases. Osteoprotegerin is a key molecule in this biosignalling pathway as it inhibits osteoclastogenesis and osteoclast activation to prevent run-away bone resorption. This work reports the synthesis of a known osteoprotegerin peptide analogue, YCEIEFCYLIR (OP3-4), and its tagging with a gadolinium chelate, a standard contrast agent for magnetic resonance imaging. The resulting contrast agent allows the simultaneous imaging and treatment of metabolic bone diseases. The gadolinium-tagged peptide was successfully synthesised, showing unaltered magnetic resonance imaging contrast agent properties, a lack of cytotoxicity, and dose-dependent inhibition of osteoclastogenesis in vitro. These findings pave the way toward the development of biospecific and bioactive contrast agents for the early diagnosis, treatment, and follow up of metabolic bone diseases such as osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Lubinda Mbundi
- Department of Surgical Research, Northwick Park Institute for Medical Research, University College London (UCL), Northwick Park & St Marks Hospitals, Watford Road, Harrow, Middlesex HA1 3UJ, UK.
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| | - Steve T Meikle
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| | - Rosa Busquets
- Faculty of Science, Engineering and Computing, Penrhyn Road, Kingston University, Kingston Upon Thames KT1 2EE, UK.
| | - Nicholas G Dowell
- Clinical Imaging and Science Centre (CISC), Centre for Regenerative Medicine and Devices, Brighton and Sussex Medical School, Lewes Road, Brighton BN1 9RR, UK.
| | - Mara Cercignani
- Clinical Imaging and Science Centre (CISC), Centre for Regenerative Medicine and Devices, Brighton and Sussex Medical School, Lewes Road, Brighton BN1 9RR, UK.
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
28
|
Lee G, Ko Y, Park M, Kim B, Hyun H, Lim W. Recombinant DNA cloning of the active region of the receptor activator of NF-κB ligand (RANKL) gene and its role in osteoclastogenesis. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0279-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Affiliation(s)
- Allen W. Root
- Department of Pediatrics, Johns Hopkins Medicine – All Children’s Hospital, St. Petersburg, FL, USA
| |
Collapse
|
30
|
Structure-based development of an osteoprotegerin-like glycopeptide that blocks RANKL/RANK interactions and reduces ovariectomy-induced bone loss in mice. Eur J Med Chem 2018; 145:661-672. [DOI: 10.1016/j.ejmech.2018.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
|
31
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
32
|
Wang Y, van Assen AH, Reis CR, Setroikromo R, van Merkerk R, Boersma YL, Cool RH, Quax WJ. Novel RANKL DE-loop mutants antagonize RANK-mediated osteoclastogenesis. FEBS J 2017. [PMID: 28627025 DOI: 10.1111/febs.14142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Aart H.G. van Assen
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Carlos R. Reis
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Ykelien L. Boersma
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Robbert H. Cool
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| |
Collapse
|
33
|
Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 2016; 17:112-129. [PMID: 28028310 DOI: 10.1038/nri.2016.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune responses are regulated by effector cytokines and chemokines that signal through cell surface receptors. Mammalian decoy receptors - which are typically soluble or inactive versions of cell surface receptors or soluble protein modules termed binding proteins - modulate and antagonize signalling by canonical effector-receptor complexes. Viruses have developed a diverse array of molecular decoys to evade host immune responses; these include viral homologues of host cytokines, chemokines and chemokine receptors; variants of host receptors with new functions; and novel decoy receptors that do not have host counterparts. Over the past decade, the number of known mammalian and viral decoy receptors has increased considerably, yet a comprehensive curation of the corresponding structure-mechanism relationships has not been carried out. In this Review, we provide a comprehensive resource on this topic with a view to better understanding the roles and evolutionary relationships of mammalian and viral decoy receptors, and the opportunities for leveraging their therapeutic potential.
Collapse
|
34
|
Luo G, Liu H, Lu H. Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients? Br J Clin Pharmacol 2016; 81:78-88. [PMID: 27099876 DOI: 10.1111/bcp.12777] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review summarizes current knowledge about glucagon-like peptide 1 receptor agonists (GLP-1 RA) and their effects on bone metabolism and fracture risk. Recent in vivo and in vitro experiments indicated that GLP-1 RA could improve bone metabolism. GLP-1 could affect the fat-bone axis by promoting osteogenic differentiation and inhibiting adipogenic differentiation of bone mesenchymal precursor cells (BMSCs), which express the GLP-1 receptor. GLP-1 RA may also influence the balance between osteoclasts and osteoblasts, thus leading to more bone formation and less bone resorption. Wnt/β-catenin signalling is involved in this process. Mature osteocytes, which also express the GLP-1 receptor, produce sclerostin which inhibits Wnt/β-catenin signalling by binding to low density lipoprotein receptor-related protein (LRP) 5 and preventing the binding of Wnt. GLP-1 RA also decreases the expression of sclerostin (SOST) and circulating levels of SOST. In addition, GLP-1 receptors are expressed in thyroid C cells, where GLP-1 induces calcitonin release and thus indirectly inhibits bone resorption. Furthermore, GLP-1 RA influences the osteoprotegerin(OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK) system by increasing OPG gene expression, and thus reverses the decreased bone mass in rats models. However, a recent meta-analysis and a cohort study did not show a significant relationship between GLP-RA use and fracture risk. Future clinical trials will be necessary to investigate thoroughly the relationship between GLP-1 RA use and fracture risk in diabetic patients.
Collapse
|
35
|
Hur J, Ghosh A, Kim K, Ta HM, Kim H, Kim N, Hwang HY, Kim KK. Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity. Mol Cells 2016; 39:316-21. [PMID: 26923188 PMCID: PMC4844938 DOI: 10.14348/molcells.2016.2286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 01/28/2023] Open
Abstract
The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.
Collapse
Affiliation(s)
- Jeonghwan Hur
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746,
Korea
| | - Ambarnil Ghosh
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746,
Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746,
Korea
| | - Hai Minh Ta
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746,
Korea
| | - Hyunju Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746,
Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746,
Korea
| | - Hye-Yeon Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746,
Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746,
Korea
| |
Collapse
|
36
|
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22:1727-41. [PMID: 26292758 PMCID: PMC4648319 DOI: 10.1038/cdd.2015.109] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.
Collapse
Affiliation(s)
- H Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Schieferdecker A, Voigt M, Riecken K, Braig F, Schinke T, Loges S, Bokemeyer C, Fehse B, Binder M. Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL. Oncotarget 2015; 5:6647-53. [PMID: 25138051 PMCID: PMC4196153 DOI: 10.18632/oncotarget.2160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bone homeostasis critically relies on the RANKL-RANK-OPG axis which can be targeted by the fully human monoclonal antibody denosumab in conditions with increased bone resporption such as bone metastases. The binding site and therefore the molecular mechanism by which this antibody inhibits RANKL has not been characterized so far. Here, we used random peptide phage display library screenings to identify the denosumab epitope on RANKL. Alignments of phage derived peptide sequences with RANKL suggested that this antibody recognized a linear epitope between position T233 and Y241. Mutational analysis confirmed the core residues as critical for this interaction. The spatial localization of this epitope on a 3-dimensional model of RANKL showed that it overlapped with the major binding sites of OPG and RANK on RANKL. We conclude that denosumab inhibits RANKL by both functional and molecular mimicry of the natural decoy receptor OPG.
Collapse
Affiliation(s)
- Aneta Schieferdecker
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Voigt
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Braig
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Son YJ, Han J, Lee JY, Kim H, Chun T. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis. Immunopharmacol Immunotoxicol 2015; 37:221-7. [PMID: 25974308 DOI: 10.3109/08923973.2015.1035392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.
Collapse
Affiliation(s)
- Young Jun Son
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul , Republic of Korea and
| | | | | | | | | |
Collapse
|
39
|
Mou YK, Zhang PP, Li QX, Lin ZM, Liao ZT, Wei QJ, Gu JR. Changes of serum levels of MMP-3, sRANKL, and OPG in juvenile-onset ankylosing spondylitis patients carrying different HLA-B27 subtypes. Clin Rheumatol 2015; 34:1085-9. [PMID: 25912212 DOI: 10.1007/s10067-015-2940-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/15/2015] [Accepted: 04/11/2015] [Indexed: 12/19/2022]
Abstract
Ankylosing spondylitis (AS) patients whose symptom onset occurs before 16 years of age are termed juvenile-onset ankylosing spondylitis (JAS). Investigations suggested that JAS had worse functional outcome, and abnormality of bone metabolism can appear in early stage of AS. The objectives of this study are to compare changes of serum inflammatory and bone metabolic markers and to explore the relationship between these biomarkers and disease activity in JAS with different HLA-B27 subtypes. Serum matrix metallopeptidase-3 (MMP-3), soluble receptor activator of nuclear factor-κB ligand (sRANKL), and osteoprotegerin (OPG) were detected by ELISA in 56, 62, and 68 JAS patients, respectively, and 32 healthy individuals were as controls. Serum MMP-3 and sRANKL were significantly higher and OPG in JAS was slightly higher than those in controls. There was no significant difference in the level of MMP-3, sRANKL, and OPG among JAS patients with B27 negativity, B*2704, B*2705, and B*2715, respectively. Serum levels of MMP-3 showed positive correlation with BASDAI and BASFI (Bath Ankylosing Spondylitis Disease Activity Index and Functional Index). Serum level of sRANKL showed positive correlation with MMP-3 and negative correlation with disease duration. The significantly higher sRANKL expression suggested the enhanced osteoclast function and imbalance of RANKL/OPG system in the inflammatory process of JAS patients carrying different B27 subtypes. It should be paid attention to the abnormality of bone metabolism during the treatment of JAS.
Collapse
Affiliation(s)
- Yi-Kun Mou
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Warren JT, Nelson CA, Decker CE, Zou W, Fremont DH, Teitelbaum SL. Manipulation of receptor oligomerization as a strategy to inhibit signaling by TNF superfamily members. Sci Signal 2014; 7:ra80. [PMID: 25140055 DOI: 10.1126/scisignal.2004948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signaling by receptor activator of nuclear factor κB (RANK) in response to its ligand RANKL, which is a member of the tumor necrosis factor (TNF) superfamily of cytokines, stimulates osteoclast formation and bone resorption. Thus, this ligand-receptor pair is a therapeutic target for various disorders, such as osteoporosis and metastasis of cancer to bone. RANKL exists as a physiological homotrimer, with each monomer recognizing a single molecule of RANK or the decoy receptor osteoprotegerin (OPG), which inhibits osteoclastogenesis. We engineered a RANKL protein in which all three monomers of RANKL were encoded as a single polypeptide chain, which enabled us to independently control receptor binding at each binding interface. To generate an effective RANK inhibitor, we used an unbiased forward genetic approach to identify mutations in RANKL that had a 500-fold increased affinity for RANK but had decreased affinity for the decoy receptor OPG. Incorporating mutations that blocked receptor binding into this high-affinity RANKL variant generated a mutant RANKL that completely inhibited wild-type RANKL-induced osteoclastogenesis in vitro and bone resorption in mice. Our approach may be generalized to enable the inhibition of other TNF receptor signaling systems, which are implicated in a wide range of pathological conditions.
Collapse
Affiliation(s)
- Julia T Warren
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Corinne E Decker
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Téletchéa S, Stresing V, Hervouet S, Baud'huin M, Heymann MF, Bertho G, Charrier C, Ando K, Heymann D. Novel RANK antagonists for the treatment of bone-resorptive disease: theoretical predictions and experimental validation. J Bone Miner Res 2014; 29:1466-77. [PMID: 24390798 DOI: 10.1002/jbmr.2170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 12/17/2013] [Accepted: 01/01/2013] [Indexed: 12/15/2022]
Abstract
Receptor activator of nuclear factor-κB (RANK) and RANK ligand (RANKL) play a pivotal role in bone metabolism, and selective targeting of RANK signaling has become a promising therapeutic strategy in the management of resorptive bone diseases. Existing antibody-based therapies and novel inhibitors currently in development were designed to target the ligand, rather than the membrane receptor expressed on osteoclast precursors. We describe here an alternative approach to designing small peptides able to specifically bind to the hinge region of membrane RANK responsible for the conformational change upon RANKL association. A nonapeptide generated by this method was validated for its biological activity in vitro and in vivo and served as a lead compound for the generation of a series of peptide RANK antagonists derived from the original sequence. Our study presents a structure- and knowledge-based strategy for the design of novel effective and affordable small peptide inhibitors specifically targeting the receptor RANK and opens a new therapeutic opportunity for the treatment of resorptive bone disease.
Collapse
Affiliation(s)
- Stéphane Téletchéa
- INSERM, UMR 957, Equipe labellisée LIGUE 2012, Université de Nantes, Laboratory of the Physiopathology of Bone Resorption and Therapy of Primary Bone Tumors (LPRO), Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A monoclonal antibody ameliorates local inflammation and osteoporosis by targeting TNF-α and RANKL. Int Immunopharmacol 2014; 20:370-6. [DOI: 10.1016/j.intimp.2014.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
|
43
|
Dimerization of LTβR by LTα1β2 is necessary and sufficient for signal transduction. Proc Natl Acad Sci U S A 2013; 110:19896-901. [PMID: 24248355 DOI: 10.1073/pnas.1310838110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Homotrimeric TNF superfamily ligands signal by inducing trimers of their cognate receptors. As a biologically active heterotrimer, Lymphotoxin(LT)α1β2 is unique in the TNF superfamily. How the three unique potential receptor-binding interfaces in LTα1β2 trigger signaling via LTβ Receptor (LTβR) resulting in lymphoid organogenesis and propagation of inflammatory signals is poorly understood. Here we show that LTα1β2 possesses two binding sites for LTβR with distinct affinities and that dimerization of LTβR by LTα1β2 is necessary and sufficient for signal transduction. The crystal structure of a complex formed by LTα1β2, LTβR, and the fab fragment of an antibody that blocks LTβR activation reveals the lower affinity receptor-binding site. Mutations targeting each potential receptor-binding site in an engineered single-chain variant of LTα1β2 reveal the high-affinity site. NF-κB reporter assays further validate that disruption of receptor interactions at either site is sufficient to prevent signaling via LTβR.
Collapse
|
44
|
Kim SH, Moon SH. Osteoclast differentiation inhibitors: a patent review (2008 – 2012). Expert Opin Ther Pat 2013; 23:1591-610. [DOI: 10.1517/13543776.2013.842556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 9:522-36. [PMID: 23877423 DOI: 10.1038/nrendo.2013.137] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unit Of Support/Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Italy
| | | | | | | | | |
Collapse
|
46
|
Zhao Y, Jin M, Ma J, Zhang S, Li W, Chen Y, Zhou Y, Tao H, Liu Y, Wang L, Han H, Niu G, Tao H, Liu C, Gao B. Inhibition effect of enteropeptidase on RANKL-RANK signalling by cleavage of RANK. FEBS Lett 2013; 587:2958-64. [DOI: 10.1016/j.febslet.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/28/2013] [Accepted: 08/01/2013] [Indexed: 02/01/2023]
|
47
|
RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol 2013; 2013:412768. [PMID: 23762088 PMCID: PMC3671266 DOI: 10.1155/2013/412768] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Since its identification, the RANKL cytokine has been demonstrated to play a crucial role in bone homeostasis and lymphoid tissue organization. Genetic defects impairing its function lead to a peculiar form of autosomal recessive osteopetrosis (ARO), a rare genetic bone disease presenting early in life and characterized by increased bone density due to failure in bone resorption by the osteoclasts. Hematopoietic stem cell transplantation (HSCT) is the only option for the majority of patients affected by this life-threatening disease. However, the RANKL-dependent ARO does not gain any benefit from this approach, because the genetic defect is not intrinsic to the hematopoietic osteoclast lineage but rather to the mesenchymal one. Of note, we recently provided proof of concept of the efficacy of a pharmacological RANKL-based therapy to cure this form of the disease. Here we provide an overview of the diverse roles of RANKL in the bone and immune systems and review the clinical features of RANKL-deficient ARO patients and the results of our preclinical studies. We emphasize that these patients present a continuous worsening of the disease in the absence of a cure and strongly wish that the therapy we propose will be further developed.
Collapse
|
48
|
Sirinian C, Papanastasiou AD, Zarkadis IK, Kalofonos HP. Alternative splicing generates a truncated isoform of human TNFRSF11A (RANK) with an altered capacity to activate NF-κB. Gene 2013; 525:124-9. [PMID: 23664977 DOI: 10.1016/j.gene.2013.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 01/29/2023]
Abstract
Alternative splicing (AS) is a major post-transcriptional modification taking place in all cells. Many members of the TNF receptor superfamily modulate their function through protein isoforms produced by alternative splicing. TNFRSF11A (RANK) gene, through alternative splicing produces multiple isoforms truncated in their intracellular domain, with distinct functions. Here, we report the identification and characterization of a novel human TNFRSF11A (RANK) variant from human normal brain, named RANK-e5a (TNFRSF11A_e5a). The novel variant lacks 42 nucleotides from exon 5, giving rise to a novel shorter form of exon 5, named exon 5a. The incorporation of the novel exon 5a in RANK mRNA does not affect the open reading frame, producing a truncation of thirteen amino acids of the third and fourth TNFR motifs of the extracellular part of the receptor. By western blot analysis and immunofluorescence staining we were able to further characterize the RANK-e5a isoform at the protein level. In addition, we performed an ELISA assay to characterize RANK/RANKL and RANK-e5a/RANKL binding capacities, and we identified a reduced affinity of RANK-e5a to bind RANKL. Finally, when RANK-e5a is stimulated by RANK ligand, its capability to activate NF-κB is reduced compared to the wild type RANK receptor. Overall, our data provide a novel regulatory mechanism for the RANK/RANKL system, at the RANK receptor level.
Collapse
Affiliation(s)
- Chaido Sirinian
- Clinical and Molecular Oncology Laboratory, Division of Oncology, School of Medicine, University of Patras, Greece
| | | | | | | |
Collapse
|
49
|
Papaneophytou CP, Rinotas V, Douni E, Kontopidis G. A statistical approach for optimization of RANKL overexpression in Escherichia coli: purification and characterization of the protein. Protein Expr Purif 2013; 90:9-19. [PMID: 23623854 DOI: 10.1016/j.pep.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022]
Abstract
Receptor activator of nuclear factor-κB (RANK) and its cognate ligand (RANKL) is a member of the TNF superfamily of cytokines which is essential in osteobiology and its overexpression has been implicated in the pathogenesis of bone degenerative diseases such as osteoporosis. Therefore, RANKL is considered a major therapeutic target for the suppression of bone resorption in bone metabolic diseases such as rheumatoid arthritis and cancer metastasis. To evaluate the inhibitory effect of potential RANKL inhibitors a sufficient amount of protein is required. In this work RANKL was cloned for expression at high levels in Escherichia coli with the interaction of changing cultures conditions in order to produce the protein in a soluble form. In an initial step, the effect of expression host on soluble protein production was investigated and BL21(DE3) pLysS was the most efficient one found for the production of RANKL. Central composite design experiment in the following revealed that cell density before induction, IPTG concentration, post-induction temperature and time as well as their interactions had a significant influence on soluble RANKL production. An 80% increase of protein production was achieved after the determination of the optimum induction conditions: OD600nm before induction 0.55, an IPTG concentration of 0.3mM, a post-induction temperature of 25°C and a post-induction time of 6.5h. Following RANKL purification the thermal stability of the protein was studied. The interaction of RANKL with SPD304, a patented small-molecule inhibitor of TNF-α, was also studied in a fluorescence binding assay resulting in a Kd value of 14.1 ± 0.5 μM.
Collapse
Affiliation(s)
- Christos P Papaneophytou
- Institute for Research and Technology - Thessaly, The Centre for Research & Technology Hellas, Technology Park of Thessaly, 1st Industrial Area, Volos 38500, Greece
| | | | | | | |
Collapse
|
50
|
Oh JG, Kim J, Jang SP, Nguen M, Yang DK, Jeong D, Park ZY, Park SG, Hajjar RJ, Park WJ. Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J Mol Cell Cardiol 2012; 56:63-71. [PMID: 23262438 DOI: 10.1016/j.yjmcc.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 12/13/2022]
Abstract
Cardiac sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) plays a crucial role in Ca(2+) handling in cardiomyocytes. Phospholamban (PLB) is an endogenous inhibitor of SERCA2a and its inhibitory activity is enhanced via dephosphorylation by protein phosphatase 1 (PP1). Therefore, the inhibition of PP1-mediated dephosphorylation of PLB might be an efficient strategy for the restoration of reduced SERCA2a activity in failing hearts. We sought to develop decoy peptides that would mimic phosphorylated PLB and thus competitively inhibit the PP1-mediated dephosphorylation of endogenous PLB. The phosphorylation sites Ser16 and Thr17 are located within the flexible loop region (amino acids 14-22) of PLB. We therefore synthesized a 9-mer peptide derived from this region (ΨPLB-wt) and two pseudo-phosphorylated peptides where Ser16 was replaced with Glu (ΨPLB-SE) or Thr17 was replaced with Glu (ΨPLB-TE). These peptides were coupled to the cell-permeable peptide TAT to facilitate cellular uptake. Treatment of adult rat cardiomyocytes with ΨPLB-SE or ΨPLB-TE, but not with ΨPLB-wt, significantly elevated the phosphorylation levels of PLB at Ser16 and Thr17. This increased phosphorylation of PLB correlated with an increase in contractile parameters in vitro. Furthermore, the perfusion of isolated rat hearts with ΨPLB-SE or ΨPLB-TE, but not with ΨPLB-wt, significantly improved left ventricular developed pressure that had been previously impaired by ischemia. These data indicate that ΨPLB-SE and ΨPLB-TE efficiently prevented dephosphorylation of PLB by serving as decoys for PP1. Therefore, these peptides may provide an effective modality to regulate SERCA2a activity in failing hearts.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Global Research Laboratory, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|