1
|
Kalogeropoulou A, Mougkogianni M, Iliadou M, Nikolopoulou E, Flordelis S, Kanellou A, Arbi M, Nikou S, Nieminuszczy J, Niedzwiedz W, Kardamakis D, Bravou V, Lygerou Z, Taraviras S. Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress. Stem Cell Reports 2022; 17:1395-1410. [PMID: 35623353 PMCID: PMC9214316 DOI: 10.1016/j.stemcr.2022.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Impaired replication has been previously linked to growth retardation and microcephaly; however, why the brain is critically affected compared with other organs remains elusive. Here, we report the differential response between early neural progenitors (neuroepithelial cells [NECs]) and fate-committed neural progenitors (NPs) to replication licensing defects. Our results show that, while NPs can tolerate altered expression of licensing factors, NECs undergo excessive replication stress, identified by impaired replication, increased DNA damage, and defective cell-cycle progression, leading eventually to NEC attrition and microcephaly. NECs that possess a short G1 phase license and activate more origins than NPs, by acquiring higher levels of DNA-bound MCMs. In vivo G1 shortening in NPs induces DNA damage upon impaired licensing, suggesting that G1 length correlates with replication stress hypersensitivity. Our findings propose that NECs possess distinct cell-cycle characteristics to ensure fast proliferation, although these inherent features render them susceptible to genotoxic stress.
Collapse
Affiliation(s)
- Argyro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Maria Mougkogianni
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Marianna Iliadou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Eleni Nikolopoulou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Stefanos Flordelis
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Alexandra Kanellou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Marina Arbi
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | | | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece.
| |
Collapse
|
2
|
Yellajoshyula D, Rogers AE, Kim AJ, Kim S, Pappas SS, Dauer WT. A pathogenic DYT-THAP1 dystonia mutation causes hypomyelination and loss of YY1 binding. Hum Mol Genet 2022; 31:1096-1104. [PMID: 34686877 PMCID: PMC8976427 DOI: 10.1093/hmg/ddab310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Dystonia is a disabling disease that manifests as prolonged involuntary twisting movements. DYT-THAP1 is an inherited form of isolated dystonia caused by mutations in THAP1 encoding the transcription factor THAP1. The phe81leu (F81L) missense mutation is representative of a category of poorly understood mutations that do not occur on residues critical for DNA binding. Here, we demonstrate that the F81L mutation (THAP1F81L) impairs THAP1 transcriptional activity and disrupts CNS myelination. Strikingly, THAP1F81L exhibits normal DNA binding but causes a significantly reduced DNA binding of YY1, its transcriptional partner that also has an established role in oligodendrocyte lineage progression. Our results suggest a model of molecular pathogenesis whereby THAP1F81L normally binds DNA but is unable to efficiently organize an active transcription complex.
Collapse
Affiliation(s)
| | - Abigail E Rogers
- Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Audrey J Kim
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumin Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William T Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
4
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 57:1-9. [PMID: 30213688 DOI: 10.1016/j.semcancer.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor initiation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 83:596-604. [PMID: 30208341 DOI: 10.1016/j.semcancer.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor imitation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Sankar S, Patterson E, Lewis EM, Waller LE, Tong C, Dearborn J, Wozniak D, Rubin JB, Kroll KL. Geminin deficiency enhances survival in a murine medulloblastoma model by inducing apoptosis of preneoplastic granule neuron precursors. Genes Cancer 2017; 8:725-744. [PMID: 29234490 PMCID: PMC5724806 DOI: 10.18632/genesandcancer.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ethan Patterson
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emily M Lewis
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua Dearborn
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - David Wozniak
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
7
|
Yuan Y, Ma XS, Liang QX, Xu ZY, Huang L, Meng TG, Lin F, Schatten H, Wang ZB, Sun QY. Geminin deletion in pre-meiotic DNA replication stage causes spermatogenesis defect and infertility. J Reprod Dev 2017; 63:481-488. [PMID: 28690291 PMCID: PMC5649097 DOI: 10.1262/jrd.2017-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Geminin plays a critical role in cell cycle regulation by regulating DNA replication and serves as a transcriptional molecular switch that directs cell fate decisions. Spermatogonia lacking Geminin disappear
during the initial wave of mitotic proliferation, while geminin is not required for meiotic progression of spermatocytes. It is unclear whether geminin plays a role in pre-meiotic DNA replication in later-stage spermatogonia and
their subsequent differentiation. Here, we selectively disrupted Geminin in the male germline using the Stra8-Cre/loxP conditional knockout system.
Geminin-deficient mice showed atrophic testes and infertility, concomitant with impaired spermatogenesis and reduced sperm motility. The number of undifferentiated spermatogonia and spermatocytes was significantly
reduced; the pachytene stage was impaired most severely. Expression of cell proliferation-associated genes was reduced in Gmnnfl/Δ; Stra8-Cre testes compared to in controls. Increased
DNA damage, decreased Cdt1, and increased phosphorylation of Chk1/Chk2 were observed in Geminin-deficient germ cells. These results suggest that geminin plays important roles in pre-meiotic DNA replication and
subsequent spermatogenesis.
Collapse
Affiliation(s)
- Yue Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Reproductive Medical Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Yang Xu
- The Reproductive Medical Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Yellajoshyula D, Liang CC, Pappas SS, Penati S, Yang A, Mecano R, Kumaran R, Jou S, Cookson MR, Dauer WT. The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage. Dev Cell 2017; 42:52-67.e4. [PMID: 28697333 DOI: 10.1016/j.devcel.2017.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
The childhood-onset motor disorder DYT6 dystonia is caused by loss-of-function mutations in the transcription factor THAP1, but the neurodevelopmental processes in which THAP1 participates are unknown. We find that THAP1 is essential for the timing of myelination initiation during CNS maturation. Conditional deletion of THAP1 in the CNS retards maturation of the oligodendrocyte (OL) lineage, delaying myelination and causing persistent motor deficits. The CNS myelination defect results from a cell-autonomous requirement for THAP1 in the OL lineage and is recapitulated in developmental assays performed on OL progenitor cells purified from Thap1 null mice. Loss of THAP1 function disrupts a core set of OL maturation genes and reduces the DNA occupancy of YY1, a transcription factor required for OL maturation. These studies establish a role for THAP1 transcriptional regulation at the inception of myelination and implicate abnormal timing of myelination in the pathogenesis of childhood-onset dystonia.
Collapse
Affiliation(s)
- Dhananjay Yellajoshyula
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Silvia Penati
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Angela Yang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Rodan Mecano
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Stephanie Jou
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; VAAAHS, University of Michigan Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
10
|
Zhang L, Cai M, Gong Z, Zhang B, Li Y, Guan L, Hou X, Li Q, Liu G, Xue Z, Yang MH, Ye J, Chin YE, You H. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. J Clin Invest 2017; 127:2159-2175. [PMID: 28436938 DOI: 10.1172/jci90077] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/21/2017] [Indexed: 01/29/2023] Open
Abstract
Geminin expression is essential for embryonic development and the maintenance of chromosomal integrity. In spite of this protective role, geminin is also frequently overexpressed in human cancers and the molecular mechanisms underlying its role in tumor progression remain unclear. The histone deacetylase HDAC3 modulates transcription factors to activate or suppress transcription. Little is known about how HDAC3 specifies substrates for modulation among highly homologous transcription factor family members. Here, we have demonstrated that geminin selectively couples the transcription factor forkhead box O3 (FoxO3) to HDAC3, thereby specifically facilitating FoxO3 deacetylation. We determined that geminin-associated HDAC3 deacetylates FoxO3 to block its transcriptional activity, leading to downregulation of the downstream FoxO3 target Dicer, an RNase that suppresses metastasis. Breast cancer cells depleted of geminin or HDAC3 exhibited poor metastatic potential that was attributed to reduced suppression of the FoxO3-Dicer axis. Moreover, elevated levels of geminin, HDAC3, or both together with decreased FoxO3 acetylation and reduced Dicer expression were detected in aggressive human breast cancer specimens. These results underscore a prominent role for geminin in promoting breast cancer metastasis via the enzyme-substrate-coupling mechanism in HDAC3-FoxO3 complex formation.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Meizhen Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Zhicheng Gong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Bingchang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Li Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Xiaonan Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zengfu Xue
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Muh-Hua Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| |
Collapse
|
11
|
Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM. Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Genesis 2017; 55. [PMID: 28316121 DOI: 10.1002/dvg.23031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/21/2023]
Abstract
Many molecular factors required for later stages of neuronal differentiation have been identified; however, much less is known about the early events that regulate the initial establishment of the neuroectoderm. We have used an in vitro embryonic stem cell (ESC) differentiation model to investigate early events of neuronal differentiation and to define the role of mouse Foxd4, an ortholog of a forkhead-family transcription factor central to Xenopus neural plate/neuroectodermal precursor development. We found that Foxd4 is a necessary regulator of the transition from pluripotent ESC to neuroectodermal stem cell, and its expression is necessary for neuronal differentiation. Mouse Foxd4 expression is not only limited to the neural plate but it is also expressed and apparently functions to regulate neurogenesis in the olfactory placode. These in vitro results suggest that mouse Foxd4 has a similar function to its Xenopus ortholog; this was confirmed by successfully substituting murine Foxd4 for its amphibian counterpart in overexpression experiments. Thus, Foxd4 appears to regulate the initial steps in establishing neuroectodermal precursors during initial development of the nervous system.
Collapse
Affiliation(s)
- Jonathan H Sherman
- Department of Neurological Surgery, George Washington University Hospital, Washington, District of Columbia.,Institute for Neuroscience, George Washington University, Washington, District of Columbia
| | - Beverly A Karpinski
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Matthew S Fralish
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | | | | | - Arielle G Thal
- George Washington University SMHS, Washington, District of Columbia
| | - Sally A Moody
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Anatomy and Regenerative Biology, George Washington University SMHS, Washington, District of Columbia
| | - Anthony S LaMantia
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Thomas M Maynard
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| |
Collapse
|
12
|
Hosogane M, Bosu L, Fukumoto E, Yamada H, Sato S, Nakayama K. Geminin is an indispensable inhibitor of Cdt1 in mouse embryonic stem cells. Genes Cells 2017; 22:360-375. [DOI: 10.1111/gtc.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Masaki Hosogane
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Lena Bosu
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Emiko Fukumoto
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Hidetoshi Yamada
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Soichiro Sato
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
13
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
14
|
Liu X, Xia Y, Tang J, Ma L, Li C, Ma P, Mao B. Dual roles of Akirin2 protein during Xenopus neural development. J Biol Chem 2017; 292:5676-5684. [PMID: 28193841 DOI: 10.1074/jbc.m117.777110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Indexed: 11/06/2022] Open
Abstract
To ensure correct spatial and temporal patterning, embryos must maintain pluripotent cell populations and control when cells undergo commitment. The newly identified nucleoprotein Akirin has been shown to modulate the innate immune response through epigenetic regulation and to play important roles in other physiological processes, but its role in neural development remains unknown. Here we show that Akirin2 is required for neural development in Xenopus and that knockdown of Akirin2 expands the expression of the neural progenitor marker Sox2 and inhibits expression of the differentiated neuronal marker N-tubulin. Akirin2 acts antagonistically to Geminin, thus regulating Sox2 expression, and maintains the neural precursor state by participating in the Brg1/Brm-associated factor (BAF) complex mediated by BAF53a. Additionally, Akirin2 also modulates N-tubulin expression by acting upstream of neuronal differentiation 1 (NeuroD) and in parallel with neurogenin-related 1 (Ngnr1) during terminal neuronal differentiation. Thus, our results reveal a novel model in which Akirin2 precisely coordinates and temporally controls Xenopus neural development.
Collapse
Affiliation(s)
- Xiaoliang Liu
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and.,the Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650203, China
| | - Yingjie Xia
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and
| | - Jixin Tang
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and
| | - Li Ma
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and
| | - Chaocui Li
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and
| | - Pengcheng Ma
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and
| | - Bingyu Mao
- From the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China and
| |
Collapse
|
15
|
Links between DNA Replication, Stem Cells and Cancer. Genes (Basel) 2017; 8:genes8020045. [PMID: 28125050 PMCID: PMC5333035 DOI: 10.3390/genes8020045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.
Collapse
|
16
|
Kushwaha PP, Rapalli KC, Kumar S. Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review. Biochimie 2016; 131:115-127. [PMID: 27702582 DOI: 10.1016/j.biochi.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Krishna Chaitanya Rapalli
- School of Basic and Applied Sciences, Centre for Animal Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
17
|
Sankar S, Yellajoshyula D, Zhang B, Teets B, Rockweiler N, Kroll KL. Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1. Sci Rep 2016; 6:37412. [PMID: 27881878 PMCID: PMC5121602 DOI: 10.1038/srep37412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 12/30/2022] Open
Abstract
Neural cell fate acquisition is mediated by transcription factors expressed in nascent neuroectoderm, including Geminin and members of the Zic transcription factor family. However, regulatory networks through which this occurs are not well defined. Here, we identified Geminin-associated chromatin locations in embryonic stem cells and Geminin- and Zic1-associated locations during neural fate acquisition at a genome-wide level. We determined how Geminin deficiency affected histone acetylation at gene promoters during this process. We integrated these data to demonstrate that Geminin associates with and promotes histone acetylation at neurodevelopmental genes, while Geminin and Zic1 bind a shared gene subset. Geminin- and Zic1-associated genes exhibit embryonic nervous system-enriched expression and encode other regulators of neural development. Both Geminin and Zic1-associated peaks are enriched for Zic1 consensus binding motifs, while Zic1-bound peaks are also enriched for Sox3 motifs, suggesting co-regulatory potential. Accordingly, we found that Geminin and Zic1 could cooperatively activate the expression of several shared targets encoding transcription factors that control neurogenesis, neural plate patterning, and neuronal differentiation. We used these data to construct gene regulatory networks underlying neural fate acquisition. Establishment of this molecular program in nascent neuroectoderm directly links early neural cell fate acquisition with regulatory control of later neurodevelopment.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA
| | - Dhananjay Yellajoshyula
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA
| | - Bryan Teets
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA
| | - Nicole Rockweiler
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
18
|
Patmanidi AL, Champeris Tsaniras S, Karamitros D, Kyrousi C, Lygerou Z, Taraviras S. Concise Review: Geminin-A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells. Stem Cells 2016; 35:299-310. [DOI: 10.1002/stem.2529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/18/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Dimitris Karamitros
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Christina Kyrousi
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Zoi Lygerou
- Department of Biology; Medical School, University of Patras; Rio Patras Greece
| | - Stavros Taraviras
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| |
Collapse
|
19
|
Adler-Wailes DC, Kramer JA, DePamphilis ML. Geminin Is Essential for Pluripotent Cell Viability During Teratoma Formation, but Not for Differentiated Cell Viability During Teratoma Expansion. Stem Cells Dev 2016; 26:285-302. [PMID: 27821018 DOI: 10.1089/scd.2016.0260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are unusual in that geminin has been reported to be essential either to prevent differentiation by maintaining expression of pluripotency genes or to prevent DNA rereplication-dependent apoptosis. To distinguish between these two incompatible hypotheses, immune-compromised mice were inoculated subcutaneously with ESCs harboring conditional Gmnn alleles alone or together with a tamoxifen-dependent Cre recombinase gene. Mice were then injected with tamoxifen at various times during which the ESCs proliferated and differentiated into a teratoma. For comparison, the same ESCs were cultured in vitro in the presence of monohydroxytamoxifen. The results revealed that geminin is a haplosufficient gene that is essential for ESC viability before they differentiate into a teratoma, but once a teratoma is established, the differentiated cells can continue to proliferate in the absence of Gmnn alleles, geminin protein, and pluripotent stem cells. Thus, differentiated cells did not require geminin for efficient proliferation within the context of a solid tissue, although they did when teratoma cells were cultured in vitro. These results provide proof-of-principle that preventing geminin function could prevent malignancy in tumors derived from pluripotent cells by selectively eliminating the progenitor cells with little harm to normal cells.
Collapse
Affiliation(s)
- Diane C Adler-Wailes
- 1 Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda, Maryland
| | - Joshua A Kramer
- 2 Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. , Bethesda, Maryland
| | - Melvin L DePamphilis
- 1 Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda, Maryland
| |
Collapse
|
20
|
Barger SW. Gene regulation and genetics in neurochemistry, past to future. J Neurochem 2016; 139 Suppl 2:24-57. [PMID: 27747882 DOI: 10.1111/jnc.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/01/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
21
|
Ohno Y, Suzuki-Takedachi K, Yasunaga S, Kurogi T, Santo M, Masuhiro Y, Hanazawa S, Ohtsubo M, Naka K, Takihara Y. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin. PLoS One 2016; 11:e0155558. [PMID: 27195810 PMCID: PMC4873132 DOI: 10.1371/journal.pone.0155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin) was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kyoko Suzuki-Takedachi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shin’ichiro Yasunaga
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Toshiaki Kurogi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mimoko Santo
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Motoaki Ohtsubo
- Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Kita-ishigaki 82, Beppu-city, Oita, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
22
|
Arbi M, Pefani DE, Kyrousi C, Lalioti ME, Kalogeropoulou A, Papanastasiou AD, Taraviras S, Lygerou Z. GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep 2016; 17:400-13. [PMID: 26882546 DOI: 10.15252/embr.201540882] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Multiciliated cells are terminally differentiated, post-mitotic cells that form hundreds of motile cilia on their apical surface. Defects in multiciliated cells lead to disease, including mucociliary clearance disorders that result from ciliated cell disfunction in airways. The pathway controlling multiciliogenesis, however, remains poorly characterized. We showed that GemC1, previously implicated in cell cycle control, is a central regulator of ciliogenesis. GemC1 is specifically expressed in ciliated epithelia. Ectopic expression of GemC1 is sufficient to induce early steps of multiciliogenesis in airway epithelial cells ex vivo, upregulating McIdas and FoxJ1, key transcriptional regulators of multiciliogenesis. GemC1 directly transactivates the McIdas and FoxJ1 upstream regulatory sequences, and its activity is enhanced by E2F5 and inhibited by Geminin. GemC1-knockout mice are born with airway epithelia devoid of multiciliated cells. Our results identify GemC1 as an essential regulator of ciliogenesis in the airway epithelium and a candidate gene for mucociliary disorders.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, Patras, Greece
| | | | - Christina Kyrousi
- Laboratory of Physiology, School of Medicine University of Patras, Patras, Greece
| | - Maria-Eleni Lalioti
- Laboratory of Physiology, School of Medicine University of Patras, Patras, Greece
| | | | | | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine University of Patras, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
23
|
Huang YY, Kaneko KJ, Pan H, DePamphilis ML. Geminin is Essential to Prevent DNA Re-Replication-Dependent Apoptosis in Pluripotent Cells, but not in Differentiated Cells. Stem Cells 2015; 33:3239-53. [PMID: 26140583 DOI: 10.1002/stem.2092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 01/17/2023]
Abstract
Geminin is a dual-function protein unique to multicellular animals with roles in modulating gene expression and preventing DNA re-replication. Here, we show that geminin is essential at the beginning of mammalian development to prevent DNA re-replication in pluripotent cells, exemplified by embryonic stem cells, as they undergo self-renewal and differentiation. Embryonic stem cells, embryonic fibroblasts, and immortalized fibroblasts were characterized before and after geminin was depleted either by gene ablation or siRNA. Depletion of geminin under conditions that promote either self-renewal or differentiation rapidly induced DNA re-replication, followed by DNA damage, then a DNA damage response, and finally apoptosis. Once differentiation had occurred, geminin was no longer essential for viability, although it continued to contribute to preventing DNA re-replication induced DNA damage. No relationship was detected between expression of geminin and genes associated with either pluripotency or differentiation. Thus, the primary role of geminin at the beginning of mammalian development is to prevent DNA re-replication-dependent apoptosis, a role previously believed essential only in cancer cells. These results suggest that regulation of gene expression by geminin occurs only after pluripotent cells differentiate into cells in which geminin is not essential for viability.
Collapse
Affiliation(s)
- Yi-Yuan Huang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kotaro J Kaneko
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Haiyan Pan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melvin L DePamphilis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Karamitros D, Patmanidi AL, Kotantaki P, Potocnik AJ, Bähr-Ivacevic T, Benes V, Lygerou Z, Kioussis D, Taraviras S. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development 2015; 142:70-81. [PMID: 25516969 DOI: 10.1242/dev.109454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.
Collapse
Affiliation(s)
- Dimitris Karamitros
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Alexandra L Patmanidi
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Panoraia Kotantaki
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Alexandre J Potocnik
- Division of Molecular Immunology, MRC/National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Tomi Bähr-Ivacevic
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Dimitris Kioussis
- Division of Molecular Immunology, MRC/National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| |
Collapse
|
25
|
Lee HK, Lee HS, Moody SA. Neural transcription factors: from embryos to neural stem cells. Mol Cells 2014; 37:705-12. [PMID: 25234468 PMCID: PMC4213760 DOI: 10.14348/molcells.2014.0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 01/01/2023] Open
Abstract
The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | - Hyun-Shik Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | | |
Collapse
|
26
|
Patterson ES, Waller LE, Kroll KL. Geminin loss causes neural tube defects through disrupted progenitor specification and neuronal differentiation. Dev Biol 2014; 393:44-56. [PMID: 24995796 DOI: 10.1016/j.ydbio.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023]
Abstract
Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.
Collapse
Affiliation(s)
- Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Caronna EA, Patterson ES, Hummert PM, Kroll KL. Geminin restrains mesendodermal fate acquisition of embryonic stem cells and is associated with antagonism of Wnt signaling and enhanced polycomb-mediated repression. Stem Cells 2014; 31:1477-87. [PMID: 23630199 DOI: 10.1002/stem.1410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/04/2013] [Indexed: 11/07/2022]
Abstract
Embryonic cells use both growth factor signaling and cell intrinsic transcriptional and epigenetic regulation to acquire early cell fates. Underlying mechanisms that integrate these cues are poorly understood. Here, we investigated the role of Geminin, a nucleoprotein that interacts with both transcription factors and epigenetic regulatory complexes, during fate acquisition of mouse embryonic stem cells. In order to determine Geminin's role in mesendoderm formation, a process which occurs during embryonic gastrulation, we selectively over-expressed or knocked down Geminin in an in vitro model of differentiating mouse embryonic stem cells. We found that Geminin antagonizes mesendodermal fate acquisition, while these cells instead maintain elevated expression of genes associated with pluripotency of embryonic stem cells. During mesendodermal fate acquisition, Geminin knockdown promotes Wnt signaling, while Bmp, Fgf, and Nodal signaling are not affected. Moreover, we showed that Geminin facilitates the repression of mesendodermal genes that are regulated by the Polycomb repressor complex. Geminin directly binds several of these genes, while Geminin knockdown in mesendodermal cells reduces Polycomb repressor complex occupancy at these loci and increases trimethylation of histone H3 lysine 4, which correlates with active gene expression. Together, these results indicate that Geminin is required to restrain mesendodermal fate acquisition of early embryonic cells and that this is associated with both decreased Wnt signaling and enhanced Polycomb repressor complex retention at mesendodermal genes.
Collapse
Affiliation(s)
- Elizabeth A Caronna
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
28
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
29
|
Roy SH, Tobin DV, Memar N, Beltz E, Holmen J, Clayton JE, Chiu DJ, Young LD, Green TH, Lubin I, Liu Y, Conradt B, Saito RM. A complex regulatory network coordinating cell cycles during C. elegans development is revealed by a genome-wide RNAi screen. G3 (BETHESDA, MD.) 2014; 4:795-804. [PMID: 24584095 PMCID: PMC4025478 DOI: 10.1534/g3.114.010546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development.
Collapse
Affiliation(s)
- Sarah H Roy
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - David V Tobin
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Nadin Memar
- Center for Integrated Protein Science Munich (CiPSM), Biocenter, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Eleanor Beltz
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Jenna Holmen
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Joseph E Clayton
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Daniel J Chiu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Laura D Young
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Travis H Green
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Isabella Lubin
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Yuying Liu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Barbara Conradt
- Center for Integrated Protein Science Munich (CiPSM), Biocenter, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - R Mako Saito
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| |
Collapse
|
30
|
Ohno Y, Saeki K, Yasunaga S, Kurogi T, Suzuki-Takedachi K, Shirai M, Mihara K, Yoshida K, Voncken JW, Ohtsubo M, Takihara Y. Transcription of the Geminin gene is regulated by a negative-feedback loop. Mol Biol Cell 2014; 25:1374-83. [PMID: 24554762 PMCID: PMC3983001 DOI: 10.1091/mbc.e13-09-0534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Geminin transcription, regulated by E2Fs, is negatively regulated by Geminin through the inhibition of chromatin remodeling. Geminin transcription is thus regulated by a negative-feedback loop through the chromatin configuration. Homeostatically regulated Geminin may help couple regulation of DNA replication and transcription. Geminin performs a central function in regulating cellular proliferation and differentiation in development and also in stem cells. Of interest, down-regulation of Geminin induces gene transcription regulated by E2F, indicating that Geminin is involved in regulation of E2F-mediated transcriptional activity. Because transcription of the Geminin gene is reportedly regulated via an E2F-responsive region (E2F-R) located in the first intron, we first used a reporter vector to examine the effect of Geminin on E2F-mediated transcriptional regulation. We found that Geminin transfection suppressed E2F1- and E2F2-mediated transcriptional activation and also mildly suppressed such activity in synergy with E2F5, 6, and 7, suggesting that Geminin constitutes a negative-feedback loop for the Geminin promoter. Of interest, Geminin also suppressed nuclease accessibility, acetylation of histone H3, and trimethylation of histone H3 at lysine 4, which were induced by E2F1 overexpression, and enhanced trimethylation of histone H3 at lysine 27 and monoubiquitination of histone H2A at lysine 119 in E2F-R. However, Geminin5EQ, which does not interact with Brahma or Brg1, did not suppress accessibility to nuclease digestion or transcription but had an overall dominant-negative effect. These findings suggest that E2F-mediated activation of Geminin transcription is negatively regulated by Geminin through the inhibition of chromatin remodeling.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 562-0025, Japan Department of Life Sciences, Meiji University School of Agriculture, Kawasaki 214-8571, Japan Department of Molecular Genetics, Maastricht University Medical Centre, 6229ER Maastricht, Netherlands Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Beppu 874-0915, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A. The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing. J Biol Chem 2013; 288:31624-34. [PMID: 24064211 PMCID: PMC3814758 DOI: 10.1074/jbc.m113.491928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Indexed: 01/03/2023] Open
Abstract
Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.
Collapse
Affiliation(s)
- Christophe Caillat
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
32
|
Tabrizi GA, Böse K, Reimann Y, Kessel M. Geminin is required for the maintenance of pluripotency. PLoS One 2013; 8:e73826. [PMID: 24069236 PMCID: PMC3777968 DOI: 10.1371/journal.pone.0073826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 12/28/2022] Open
Abstract
Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and the early neural ectoderm, and also in pluripotent embryonic stem cells. The genetic inactivation of geminin resulted in lethality after the first few cell divisions, and thus prohibited the outgrowth of pluripotent cells. We established embryonic stem cells allowing the deletion of the geminin gene by induction of of Cre-recombinase with tamoxifen. Here, we show that geminin deficiency quickly leads to a loss of pluripotency, and to differentiation into the mesendodermal direction with high Oct4/low Sox2 levels. Simultaneous loss of geminin and induction of the neural lineage resulted in immediate apoptosis. These results suggested that in early development geminin functions via the co-expressed Sox2 gene. We found that the stem cell enhancer SRR2 of Sox2 is occupied by the activating esBAF complex in the presence of geminin, but becomes epigenetically repressed in its absence by the Polycomb repressive complex PRC2. The importance of geminin for Sox2 expression also explains the absolute requirement for geminin during the induction of pluripotency by OSKM viruses. In summary, geminin is required for Sox2 expression, and thus for the maintenance of totipotency, pluripotency and the early neural lineage.
Collapse
Affiliation(s)
| | - Kerstin Böse
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yvonne Reimann
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Kessel
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
33
|
Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153:963-75. [PMID: 23706735 DOI: 10.1016/j.cell.2013.05.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 11/15/2022]
Abstract
The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.
Collapse
Affiliation(s)
- Jian Shu
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moody SA, Klein SL, Karpinski BA, Maynard TM, LaMantia AS. On becoming neural: what the embryo can tell us about differentiating neural stem cells. AMERICAN JOURNAL OF STEM CELLS 2013; 2:74-94. [PMID: 23862097 PMCID: PMC3708510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
THE EARLIEST STEPS OF EMBRYONIC NEURAL DEVELOPMENT ARE ORCHESTRATED BY SETS OF TRANSCRIPTION FACTORS THAT CONTROL AT LEAST THREE PROCESSES: the maintenance of proliferative, pluripotent precursors that expand the neural ectoderm; their transition to neurally committed stem cells comprising the neural plate; and the onset of differentiation of neural progenitors. The transition from one step to the next requires the sequential activation of each gene set and then its down-regulation at the correct developmental times. Herein, we review how these gene sets interact in a transcriptional network to regulate these early steps in neural development. A key gene in this regulatory network is FoxD4L1, a member of the forkhead box (Fox) family of transcription factors. Knock-down experiments in Xenopus embryos show that FoxD4L1 is required for the expression of the other neural transcription factors, whereas increased FoxD4L1 levels have three different effects on these genes: up-regulation of neural ectoderm precursor genes; transient down-regulation of neural plate stem cell genes; and down-regulation of neural progenitor differentiation genes. These different effects indicate that FoxD4L1 maintains neural ectodermal precursors in an immature, proliferative state, and counteracts premature neural stem cell and neural progenitor differentiation. Because it both up-regulates and down-regulates genes, we characterized the regions of the FoxD4L1 protein that are specifically involved in these transcriptional functions. We identified a transcriptional activation domain in the N-terminus and at least two domains in the C-terminus that are required for transcriptional repression. These functional domains are highly conserved in the mouse and human homologues. Preliminary studies of the related FoxD4 gene in cultured mouse embryonic stem cells indicate that it has a similar role in promoting immature neural ectodermal precursors and delaying neural progenitor differentiation. These studies in Xenopus embryos and mouse embryonic stem cells indicate that FoxD4L1/FoxD4 has the important function of regulating the balance between the genes that expand neural ectodermal precursors and those that promote neural stem/progenitor differentiation. Thus, regulating the level of expression of FoxD4 may be important in stem cell protocols designed to create immature neural cells for therapeutic uses.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Steven L Klein
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Beverley A Karpinski
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Thomas M Maynard
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Anthony-Samuel LaMantia
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| |
Collapse
|
35
|
Slawny N, O'Shea KS. Geminin promotes an epithelial-to-mesenchymal transition in an embryonic stem cell model of gastrulation. Stem Cells Dev 2013; 22:1177-89. [PMID: 23249188 DOI: 10.1089/scd.2012.0050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geminin is a nuclear protein that performs the related functions of modulating cell cycle progression by binding Cdt1, and controlling differentiation by binding transcription factors. Since embryonic stem cells (ESC) and the epiblast share a similar gene expression profile and an attenuated cell cycle, ESC form an accessible and tractable model system to study lineage choice at gastrulation. We derived several ESC lines in which Geminin can be inducibly expressed, and employed short hairpin RNAs targeting Geminin. As in the embryo, a lack of Geminin protein resulted in DNA damage and cell death. In monolayer culture, in defined medium, Geminin supported neural differentiation; however, in three-dimensional culture, overexpression of Geminin promoted mesendodermal differentiation and epithelial-to-mesenchymal transition. In vitro, ESC overexpressing Geminin rapidly recolonized a wound, downregulated E-cadherin expression, and activated Wnt signaling. We suggest that Geminin may promote differentiation via binding Groucho/TLE proteins and upregulating canonical Wnt signaling.
Collapse
Affiliation(s)
- Nicole Slawny
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
36
|
Abstract
Developmentally programmed polyploidy occurs by at least four different mechanisms, two of which (endoreduplication and endomitosis) involve switching from mitotic cell cycles to endocycles by the selective loss of mitotic cyclin-dependent kinase (CDK) activity and bypassing many of the processes of mitosis. Here we review the mechanisms of endoreplication, focusing on recent results from Drosophila and mice.
Collapse
Affiliation(s)
- Norman Zielke
- Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
37
|
Depamphilis ML, de Renty CM, Ullah Z, Lee CY. "The Octet": Eight Protein Kinases that Control Mammalian DNA Replication. Front Physiol 2012; 3:368. [PMID: 23055977 PMCID: PMC3458233 DOI: 10.3389/fphys.2012.00368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023] Open
Abstract
Development of a fertilized human egg into an average sized adult requires about 29 trillion cell divisions, thereby producing enough DNA to stretch to the Sun and back 200 times (DePamphilis and Bell, 2011)! Even more amazing is the fact that throughout these mitotic cell cycles, the human genome is duplicated once and only once each time a cell divides. If a cell accidentally begins to re-replicate its nuclear DNA prior to cell division, checkpoint pathways trigger apoptosis. And yet, some cells are developmentally programmed to respond to environmental cues by switching from mitotic cell cycles to endocycles, a process in which multiple S phases occur in the absence of either mitosis or cytokinesis. Endocycles allow production of viable, differentiated, polyploid cells that no longer proliferate. What is surprising is that among the 516 (Manning et al., 2002) to 557 (BioMart web site) protein kinases encoded by the human genome, only eight regulate nuclear DNA replication directly. These are Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, Cdc7, Checkpoint kinase-1 (Chk1), and Checkpoint kinase-2. Even more remarkable is the fact that only four of these enzymes (Cdk1, Cdk7, Cdc7, and Chk1) are essential for mammalian development. Here we describe how these protein kinases determine when DNA replication occurs during mitotic cell cycles, how mammalian cells switch from mitotic cell cycles to endocycles, and how cancer cells can be selectively targeted for destruction by inducing them to begin a second S phase before mitosis is complete.
Collapse
Affiliation(s)
- Melvin L Depamphilis
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
38
|
Geminin regulates the transcriptional and epigenetic status of neuronal fate-promoting genes during mammalian neurogenesis. Mol Cell Biol 2012; 32:4549-60. [PMID: 22949506 DOI: 10.1128/mcb.00737-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized neural cells derived from embryonic stem and embryonal carcinoma cells in vitro and neural stem cells from mouse forebrain. In all of these contexts, geminin antagonized the ability of neural basic helix-loop-helix (bHLH) transcription factors to activate transcriptional programs promoting neurogenesis. Furthermore, geminin promoted a bivalent chromatin state, characterized by the presence of both activating and repressive histone modifications, at genes encoding transcription factors that promote neurogenesis. This epigenetic state restrains the expression of genes that regulate commitment of undifferentiated stem and neuronal precursor cells to neuronal lineages. However, maintaining geminin at high levels was not sufficient to prevent terminal neuronal differentiation. Therefore, these data support a model whereby geminin promotes the neuronal precursor cell state by modulating both the epigenetic status and expression of genes encoding neurogenesis-promoting factors. Additional developmental signals acting in these cells can then control their transition toward terminal neuronal or glial differentiation during mammalian neurogenesis.
Collapse
|
39
|
Ryan MM, Ryan B, Kyrke-Smith M, Logan B, Tate WP, Abraham WC, Williams JM. Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo. PLoS One 2012; 7:e40538. [PMID: 22802965 PMCID: PMC3393663 DOI: 10.1371/journal.pone.0040538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/08/2012] [Indexed: 01/02/2023] Open
Abstract
Long-term potentiation (LTP) is widely accepted as a cellular mechanism underlying memory processes. It is well established that LTP persistence is strongly dependent on activation of constitutive and inducible transcription factors, but there is limited information regarding the downstream gene networks and controlling elements that coalesce to stabilise LTP. To identify these gene networks, we used Affymetrix RAT230.2 microarrays to detect genes regulated 5 h and 24 h (n = 5) after LTP induction at perforant path synapses in the dentate gyrus of awake adult rats. The functional relationships of the differentially expressed genes were examined using DAVID and Ingenuity Pathway Analysis, and compared with our previous data derived 20 min post-LTP induction in vivo. This analysis showed that LTP-related genes are predominantly upregulated at 5 h but that there is pronounced downregulation of gene expression at 24 h after LTP induction. Analysis of the structure of the networks and canonical pathways predicted a regulation of calcium dynamics via G-protein coupled receptors, dendritogenesis and neurogenesis at the 5 h time-point. By 24 h neurotrophin-NFKB driven pathways of neuronal growth were identified. The temporal shift in gene expression appears to be mediated by regulation of protein synthesis, ubiquitination and time-dependent regulation of specific microRNA and histone deacetylase expression. Together this programme of genomic responses, marked by both homeostatic and growth pathways, is likely to be critical for the consolidation of LTP in vivo.
Collapse
Affiliation(s)
- Margaret M. Ryan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
- Department of Biochemistry, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Madeleine Kyrke-Smith
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Barbara Logan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Warren P. Tate
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Joanna M. Williams
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
40
|
Li Q, Ramírez-Bergeron DL, Dunwoodie SL, Yang YC. Cited2 gene controls pluripotency and cardiomyocyte differentiation of murine embryonic stem cells through Oct4 gene. J Biol Chem 2012; 287:29088-100. [PMID: 22761414 DOI: 10.1074/jbc.m112.378034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2(Δ/-), KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and β-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression.
Collapse
Affiliation(s)
- Qiang Li
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
41
|
Enhancers: emerging roles in cell fate specification. EMBO Rep 2012; 13:423-30. [PMID: 22491032 DOI: 10.1038/embor.2012.52] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/22/2012] [Indexed: 01/01/2023] Open
Abstract
Enhancers are regulatory DNA elements that dictate the spatial and temporal patterns of gene expression during development. Recent evidence suggests that the distinct chromatin features of enhancer regions provide the permissive landscape required for the differential access of diverse signalling molecules that drive cell-specific gene expression programmes. The epigenetic patterning of enhancers occurs before cell fate decisions, suggesting that the epigenetic information required for subsequent differentiation processes is embedded within the enhancer element. Lineage studies indicate that the patterning of enhancers might be regulated by the intricate interplay between DNA methylation status, the binding of specific transcription factors to enhancers and existing histone modifications. In this review, we present insights into the mechanisms of enhancer function, which might ultimately facilitate cell reprogramming strategies for use in regenerative medicine.
Collapse
|
42
|
Yang VS, Carter SA, Ng Y, Hyland SJ, Tachibana-Konwalski K, Fisher RA, Sebire NJ, Seckl MJ, Pedersen RA, Laskey RA, Gonzalez MA. Distinct activities of the anaphase-promoting complex/cyclosome (APC/C) in mouse embryonic cells. Cell Cycle 2012; 11:846-55. [PMID: 22333576 DOI: 10.4161/cc.11.5.19251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C). Extended suppression of APC/C activity during interphase of mouse pluripotent cells promotes rapid cell cycle progression by allowing stabilization of cyclins, whereas unopposed APC/C activity during S phase of mouse trophoblast cells triggers proteasomal-mediated degradation of geminin and giant cell formation. While differential APC/C activity might govern the atypical cell cycles observed in pre-implantation mouse embryos, geminin is a critical APC/C substrate that: (1) escapes degradation in pluripotent cells to maintain expression of Oct4, Sox2 and Nanog; and (2) mediates specification and endoreduplication when targeted for ectopic destruction in trophoblast. Thus, in contrast to trophoblast giant cells that lack geminin, geminin is preserved in both mouse pluripotent cells and non-endoreduplicating human cytotrophoblast cells.
Collapse
Affiliation(s)
- Valerie S Yang
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
One of the mechanisms controlling the initiation of DNA replication is the dynamic interaction between Cdt1, which promotes assembly of the pre-replication license complex, and Geminin, which inhibits it. Specifically, Cdt1 cooperates with the cell cycle protein Cdc6 to promote loading of the minichromosome maintenance helicases (MCM) onto the chromatin-bound origin recognition complex (ORC), by directly interacting with the MCM complex, and by modulating histone acetylation and inducing chromatin unfolding. Geminin, on the other hand, prevents the loading of the MCM onto the ORC both by directly binding to Cdt1, and by modulating Cdt1 stability and activity. Protein levels of Geminin and Cdt1 are tightly regulated through the cell cycle, and the Cdt1-Geminin complex likely acts as a molecular switch that can enable or disable the firing of each origin of replication. In this review we summarize structural studies of Cdt1 and Geminin and subsequent insights into how this molecular switch may function to ensure DNA is faithfully replicated only once during S phase of each cell cycle.
Collapse
Affiliation(s)
- Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Abstract
In the previous issue of Breast Cancer Research, Gardner and co-workers describe a novel interaction between Geminin, a protein that prevents reinitiation of DNA replication, and Topoisomerase IIα (TopoIIα), an enzyme essential for removing catenated intertwines between sister chromatids. Geminin facilitates the action of TopoIIα, thereby promoting termination of DNA replication at the same time it inhibits initiation. In this manner, Geminin ensures that cells duplicate their genome once, but only once, each time they divide. Remarkably, either depletion of Geminin or over-expression of Geminin inhibits the action of TopoIIα, thereby making Geminin an excellent target for cancer chemotherapy.
Collapse
|
45
|
Geminin escapes degradation in G1 of mouse pluripotent cells and mediates the expression of Oct4, Sox2, and Nanog. Curr Biol 2011; 21:692-9. [PMID: 21497086 PMCID: PMC3083515 DOI: 10.1016/j.cub.2011.03.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/25/2011] [Accepted: 03/09/2011] [Indexed: 11/21/2022]
Abstract
Geminin is an essential cell-cycle protein that is only present from S phase to early mitosis in metazoan somatic cells [1, 2]. Genetic ablation of geminin in the mouse results in preimplantation embryonic lethality because pluripotent cells fail to form and all cells differentiate to trophoblast [3, 4]. Here we show that geminin is present in G1 phase of mouse pluripotent cells in contrast to somatic cells, where anaphase-promoting complex/cyclosome (APC/C)-mediated proteasomal destruction removes geminin in G1 [1, 2, 5]. Silencing geminin directly or by depleting the APC/C inhibitor Emi1 causes loss of stem cell identity and trophoblast differentiation of mouse embryonal carcinoma and embryonic stem cells. Depletion of cyclins A2 or B1 does not induce this effect, even though both of these APC/C substrates are also present during G1 of pluripotent cells. Crucially, geminin antagonizes the chromatin-remodeling protein Brg1 to maintain expression of Oct4, Sox2, and Nanog. Our results define a pluripotency pathway by which suppressed APC/C activity protects geminin from degradation in G1, allowing sustained expression of core pluripotency factors. Collectively, these findings link the cell cycle to the pluripotent state but also raise an unexplained paradox: How is cell-cycle progression possible in pluripotent cells when oscillations of key regulatory proteins are lost?
Collapse
|