1
|
Olivares J, Orio P, Sadílek V, Schmachtenberg O, Canales-Johnson A. Odorant representations indicate nonlinear processing across the olfactory system. Cereb Cortex 2025; 35:bhaf112. [PMID: 40364568 PMCID: PMC12075773 DOI: 10.1093/cercor/bhaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The olfactory system comprises intricate networks of interconnected brain regions that process information across both the local and long-range circuits to extract odorant identity. Similar to pattern recognition in other sensory domains, such as the visual system, recognizing odorant identity likely depends on highly nonlinear interactions between these recurrently connected nodes. In this study, we investigate whether odorant identity can be distinguished through nonlinear interactions in the local field potentials of the olfactory bulb and telencephalic regions (the ventral nucleus of the ventral telencephalon and the dorsal posterior zone of the telencephalon) in anesthetized rainbow trout. Our results show that odorant identity modulates complex information-theoretic measures, specifically information sharing and redundancy across these brain areas, indicating nonlinear processing. In contrast, traditional linear connectivity measures, such as coherence and phase synchrony, showed little or no significant modulation by odorants. These findings suggest that nonlinear interactions encoded by olfactory oscillations carry crucial odor information across the teleost olfactory system, offering insights into the broader role of nonlinear dynamics in sensory processing.
Collapse
Affiliation(s)
- Jesús Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Harrington 287, 2381850, Valparaiso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Harrington 287, 2381850, Valparaiso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile
| | - Viktor Sadílek
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, Switzerland
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Harrington 287, 2381850, Valparaiso, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile
| | - Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Downing Place CB23EB, Cambridge, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3, Fabianinkatu 33, FI-00014 Helsinki, Finland
- CINPSI Neurocog, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Avenida San Miguel 3460000 Talca, Chile
| |
Collapse
|
2
|
Ouyang M, Detre JA, Hyland JL, Sindabizera KL, Kuschner ES, Edgar JC, Peng Y, Huang H. Spatiotemporal cerebral blood flow dynamics underlies emergence of the limbic-sensorimotor-association cortical gradient in human infancy. Nat Commun 2024; 15:8944. [PMID: 39414859 PMCID: PMC11484854 DOI: 10.1038/s41467-024-53354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Infant cerebral blood flow (CBF) delivers nutrients and oxygen to fulfill brain energy consumption requirements for the fastest period of postnatal brain development across the lifespan. However, organizing principle of whole-brain CBF dynamics during infancy remains obscure. Leveraging a unique cohort of 100+ infants with high-resolution arterial spin labeled MRI, we find the emergence of the cortical hierarchy revealed by the highest-resolution infant CBF maps available to date. Infant CBF across cortical regions increases in a biphasic pattern featured by initial rapid and subsequently slower rate, and break-point ages increasing along the limbic-sensorimotor-association cortical gradient. Increases in CBF in sensorimotor cortices are associated with enhanced language and motor skills, and frontoparietal association cortices with cognitive skills. The study discovers emergence of the hierarchical limbic-sensorimotor-association cortical gradient in infancy and offers standardized reference of infant brain CBF and insight into the physiological basis of cortical specialization and real-world infant developmental functioning.
Collapse
Affiliation(s)
- Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica L Hyland
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kay L Sindabizera
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily S Kuschner
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Christopher Edgar
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Wang P, Li S, Li A. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. J Zhejiang Univ Sci B 2024; 25:824-840. [PMID: 39420520 PMCID: PMC11494158 DOI: 10.1631/jzus.b2400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
Collapse
Affiliation(s)
- Panke Wang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China
| | - An'an Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
4
|
Jing S, Geng C, Liu P, Wang D, Li Q, Li A. Serotonergic input from the dorsal raphe nucleus shapes learning-associated odor responses in the olfactory bulb. Acta Physiol (Oxf) 2024; 240:e14198. [PMID: 38958443 DOI: 10.1111/apha.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
AIM Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.
Collapse
Affiliation(s)
- Siqi Jing
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qun Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Ouyang M, Detre JA, Hyland JL, Sindabizera KL, Kuschner ES, Edgar JC, Peng Y, Huang H. Spatiotemporal cerebral blood flow dynamics underlies emergence of the limbic-sensorimotor-association cortical gradient in human infancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588784. [PMID: 38645183 PMCID: PMC11030426 DOI: 10.1101/2024.04.10.588784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Infant cerebral blood flow (CBF) delivers nutrients and oxygen to fulfill brain energy consumption requirements for the fastest period of postnatal brain development across lifespan. However, organizing principle of whole-brain CBF dynamics during infancy remains obscure. Leveraging a unique cohort of 100+ infants with high-resolution arterial spin labeled MRI, we found the emergence of the cortical hierarchy revealed by highest-resolution infant CBF maps available to date. Infant CBF across cortical regions increased in a biphasic pattern with initial rapid and sequentially slower rate, with break-point ages increasing along the limbic-sensorimotor-association cortical gradient. Increases in CBF in sensorimotor cortices were associated with enhanced language and motor skills, and frontoparietal association cortices for cognitive skills. The study discovered emergence of the hierarchical limbic-sensorimotor-association cortical gradient in infancy, and offers standardized reference of infant brain CBF and insight into the physiological basis of cortical specialization and real-world infant developmental functioning.
Collapse
Affiliation(s)
- Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - John A Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Jessica L Hyland
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, United States
| | - Kay L Sindabizera
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, United States
| | - Emily S Kuschner
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - J Christopher Edgar
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
6
|
Ma W, Si T, Wang Z, Wen P, Zhu Z, Liu Q, Wang J, Xu F, Li Q. Astrocytic α4-containing nAChR signaling in the hippocampus governs the formation of temporal association memory. Cell Rep 2023; 42:112674. [PMID: 37352098 DOI: 10.1016/j.celrep.2023.112674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Everyday episodic memories involve linking together related events that are temporally separated. However, the mechanisms of forming this temporal association have remained unclear. Here, using astrocyte-specific manipulations, we show that potentiating astrocyte Ca2+ signaling in the hippocampal cornu ammonis 1 (CA1) enhances the strength of such temporal association, in parallel with long-term potentiation (LTP) enhancement of temporoammonic pathway to CA1, whereas attenuation of astrocyte Ca2+ signaling has the opposite effect. Moreover, we identify that these effects are mediated by astrocytic α4 subunit-containing nicotinic acetylcholine receptors (α4-nAChRs) via mechanisms involving NMDAR co-agonist supply. Finally, astrocytic α4-nAChRs underlie the cognitive enhancer nicotine's physiological effects. Together, these findings highlight the importance of astrocyte Ca2+ signaling in cognitive behavior and reveal a mechanism in governing the temporal association of episodic memory formation that operates through α4-nAChRs on hippocampal astrocytes.
Collapse
Affiliation(s)
- Wenyu Ma
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tengxiao Si
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengjie Wen
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenxiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qin Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Yu Q, Ouyang M, Detre J, Kang H, Hu D, Hong B, Fang F, Peng Y, Huang H. Infant brain regional cerebral blood flow increases supporting emergence of the default-mode network. eLife 2023; 12:e78397. [PMID: 36693116 PMCID: PMC9873253 DOI: 10.7554/elife.78397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Human infancy is characterized by most rapid regional cerebral blood flow (rCBF) increases across lifespan and emergence of a fundamental brain system default-mode network (DMN). However, how infant rCBF changes spatiotemporally across the brain and how the rCBF increase supports emergence of functional networks such as DMN remains unknown. Here, by acquiring cutting-edge multi-modal MRI including pseudo-continuous arterial-spin-labeled perfusion MRI and resting-state functional MRI of 48 infants cross-sectionally, we elucidated unprecedented 4D spatiotemporal infant rCBF framework and region-specific physiology-function coupling across infancy. We found that faster rCBF increases in the DMN than visual and sensorimotor networks. We also found strongly coupled increases of rCBF and network strength specifically in the DMN, suggesting faster local blood flow increase to meet extraneuronal metabolic demands in the DMN maturation. These results offer insights into the physiological mechanism of brain functional network emergence and have important implications in altered network maturation in brain disorders.
Collapse
Affiliation(s)
- Qinlin Yu
- Department of Radiology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Minhui Ouyang
- Department of Radiology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - John Detre
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neurology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Huiying Kang
- Department of Radiology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Radiology, Beijing Children’s Hospital, Capital Medical UniversityBeijingChina
| | - Di Hu
- Department of Radiology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Radiology, Beijing Children’s Hospital, Capital Medical UniversityBeijingChina
| | - Bo Hong
- Department of Biomedical Engineering, Tsinghua UniversityBeijingChina
| | - Fang Fang
- School of Psychological and Cognitive Sciences, Peking UniversityBeijingChina
| | - Yun Peng
- Department of Radiology, Beijing Children’s Hospital, Capital Medical UniversityBeijingChina
| | - Hao Huang
- Department of Radiology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
8
|
Kiroy V, Kosenko P, Smolikov A, Saevskiy A, Aslanyan E, Shaposhnikov P, Rebrov Y, Arsenyev F. Changes in spontaneous and odorant-induced single-unit activity of mitral/tufted neurons of the rat olfactory bulb during xylazine-tiletamine-zolazepam anesthesia. IBRO Neurosci Rep 2022; 13:207-214. [PMID: 36117854 PMCID: PMC9474852 DOI: 10.1016/j.ibneur.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The nature and severity of mitral/tufted (M/T) cells reactions to odorants presented in anesthesia depend on various factors, and, above all, the nature and concentration of the odor, anesthesia, and the functional state of the olfactory bulb (OB). Compared to wakefulness, under anesthesia, the intensity of OB M/T cells responses to the odorants presented increases. However, the influence of anesthesia dynamics on the intensity of such responses has not been studied. To address this problem in rats, the activity of M/T cells and the local field potentials (LFP) in OB were recorded in the course of xylazine-tiletamine-zolazepam (XTZ) anesthesia. It has been shown that in the course of the anesthesia, the average frequency of background and odorant-induced single-unit activity of M/T cells increases, while the dominant frequency value of LFP in the gamma frequency range (90–170 Hz), on the contrary, decreases. The observed effects are assumed to be associated with changes in the functional state of the OB and systems for processing olfactory information in anesthesia.
Collapse
|
9
|
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a terrible disease which results in the dysfunction and structural damage of brain tissues. Growing evidence implies that miR-455-5p is implicated in the regulation of pathogenesis of several diseases. The aim of this study is to reveal the role of miR-455-5p in cerebral I/R injury and the regulatory mechanism. We established a vitro model by inducing SH-SY5Y and PC-12 cells with oxygen-glucose deprivation and reoxygenation. The experimental cerebral I/R rat model was established by middle cerebral artery occlusion operation. The findings indicated that miR-455-5p expression was downregulated in oxygen-glucose deprivation and reoxygenation induced cells and I/R rat model. In addition, miR-455-5p upregulation inhibited SH-SY5Y cell apoptosis and cerebral damage, whereas miR-455-5p silencing promoted SH-SY5Y cell apoptosis and cerebral damage. Mechanistically, luciferase reporter assay corroborated that miR-455-5p could bind with feline mcDonough sarcoma-like tyrosine kinase 3 (FLT3) mRNA. However, the role of FLT3 in cerebral I/R injury was rarely investigated. Real-time polymerase chain reaction revealed that FTL3 expression was negatively regulated by miR-455-5p. FTL3 upregulation reversed the inhibitory effects of miR-455-5p upregulation on PC-12 and SH-SY5Y cell apoptosis. Therefore, our study verified that miR-455-5p improved cerebral I/R injury by targeting FLT3, which suggests a potential new target for the prevention of cerebral I/R injury.
Collapse
|
10
|
Distinct Characteristics of Odor-evoked Calcium and Electrophysiological Signals in Mitral/Tufted Cells in the Mouse Olfactory Bulb. Neurosci Bull 2021; 37:959-972. [PMID: 33856645 PMCID: PMC8275716 DOI: 10.1007/s12264-021-00680-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Fiber photometry is a recently-developed method that indirectly measures neural activity by monitoring Ca2+ signals in genetically-identified neuronal populations. Although fiber photometry is widely used in neuroscience research, the relationship between the recorded Ca2+ signals and direct electrophysiological measurements of neural activity remains elusive. Here, we simultaneously recorded odor-evoked Ca2+ and electrophysiological signals [single-unit spikes and local field potentials (LFPs)] from mitral/tufted cells in the olfactory bulb of awake, head-fixed mice. Odors evoked responses in all types of signal but the response characteristics (e.g., type of response and time course) differed. The Ca2+ signal was correlated most closely with power in the β-band of the LFP. The Ca2+ signal performed slightly better at odor classification than high-γ oscillations, worse than single-unit spikes, and similarly to β oscillations. These results provide new information to help researchers select an appropriate method for monitoring neural activity under specific conditions.
Collapse
|
11
|
Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J, Chen S, Zhang J, Tabassum S, Wang J, Chen X, Long C, Yang L. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 2021; 16:14. [PMID: 33663578 PMCID: PMC7934466 DOI: 10.1186/s13024-021-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00434-7.
Collapse
Affiliation(s)
- Ming Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yunan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Huo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiyuan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiawei Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Kosenko PO, Smolikov AB, Voynov VB, Shaposhnikov PD, Saevskiy AI, Kiroy VN. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med 2020; 70:492-498. [PMID: 33168131 DOI: 10.30802/aalas-cm-20-990015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neural oscillations of the mammalian olfactory system have been studied for decades. This research suggests they are linked to various processes involved in odor information analysis, depending on the vigilance state and presentation of stimuli. In addition, the effects of various anesthetics, including commonly used ones like chloral hydrate, pentobarbital, ketamine, and urethane, on the local field potential (LFP) in the olfactory bulb (OB) have been studied. In particular, the combination of xylazine and tiletamine-zolazepam has been shown to produce steady anesthesia for an extended period and relatively few adverse effects; however, their effects on the LFP in the OB remain unknown. To study those effects, we recorded the LFP in the OB of rats under xylazine-tiletamine-zolazepam anesthesia. During the period of anesthesia, the spectral powers of the 1-4, 9-16, 31-64, 65-90 frequency bands increased significantly, and that of 91-170 Hz frequency band decreased significantly, whereas no significant changes were observed in the 5-8 and 17-30 Hz ranges. These results reveal dynamic changes in the time and frequency characteristics of the LFP in the OB of rats under xylazine-tiletamine- zolazepam anesthesia and suggest that this combination of anesthetics could be used for studying oscillatory processes in the OB of rats.
Collapse
|
13
|
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. Neuroimage 2020; 212:116664. [PMID: 32087375 DOI: 10.1016/j.neuroimage.2020.116664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Liu P, Cao T, Xu J, Mao X, Wang D, Li A. Plasticity of Sniffing Pattern and Neural Activity in the Olfactory Bulb of Behaving Mice During Odor Sampling, Anticipation, and Reward. Neurosci Bull 2020; 36:598-610. [PMID: 31989425 DOI: 10.1007/s12264-019-00463-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system. In the OB, mitral/tufted cells (M/Ts), which are the main output neurons, play important roles in the processing and representation of odor information. Recent studies focusing on the function of M/Ts at the single-cell level in awake behaving mice have demonstrated that odor-evoked firing of single M/Ts displays transient/long-term plasticity during learning. Here, we tested whether the neural activity of M/Ts and sniffing patterns are dependent on anticipation and reward in awake behaving mice. We used an odor discrimination task combined with in vivo electrophysiological recordings in awake, head-fixed mice, and found that, while learning induced plasticity of spikes and beta oscillations during odor sampling, we also found plasticity of spikes, beta oscillation, sniffing pattern, and coherence between sniffing and theta oscillations during the periods of anticipation and/or reward. These results indicate that the activity of M/Ts plays important roles not only in odor representation but also in salience-related events such as anticipation and reward.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jinshan Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
15
|
Li A, Rao X, Zhou Y, Restrepo D. Complex neural representation of odour information in the olfactory bulb. Acta Physiol (Oxf) 2020; 228:e13333. [PMID: 31188539 PMCID: PMC7900671 DOI: 10.1111/apha.13333] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The most important task of the olfactory system is to generate a precise representation of odour information under different brain and behavioural states. As the first processing stage in the olfactory system and a crucial hub, the olfactory bulb plays a key role in the neural representation of odours, encoding odour identity, intensity and timing. Although the neural circuits and coding strategies used by the olfactory bulb for odour representation were initially identified in anaesthetized animals, a large number of recent studies focused on neural representation of odorants in the olfactory bulb in awake behaving animals. In this review, we discuss these recent findings, covering (a) the neural circuits for odour representation both within the olfactory bulb and the functional connections between the olfactory bulb and the higher order processing centres; (b) how related factors such as sniffing affect and shape the representation; (c) how the representation changes under different states; and (d) recent progress on the processing of temporal aspects of odour presentation in awake, behaving rodents. We highlight discussion of the current views and emerging proposals on the neural representation of odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anan Li
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological systems, Wuhan institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, 430072, China
| | - Yang Zhou
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
16
|
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex. J Neurosci 2019; 39:10002-10018. [PMID: 31672791 DOI: 10.1523/jneurosci.1234-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 02/03/2023] Open
Abstract
In awake rodents, the neural representation of olfactory information in the olfactory bulb is largely dependent on brain state and behavioral context. Learning-modified neural plasticity has been observed in mitral/tufted cells, the main output neurons of the olfactory bulb. Here, we propose that the odor information encoded by mitral/tufted cell responses in awake mice is highly dependent on the behavioral task demands. We used fiber photometry to record calcium signals from the mitral/tufted cell population in awake, head-fixed male mice under different task demands. We found that the mitral/tufted cell population showed similar responses to two distinct odors when the odors were presented in the context of a go/go task, in which the mice received a water reward regardless of the identity of the odor presented. However, when the same odors were presented in a go/no-go task, in which one odor was rewarded and the other was not, then the mitral cell population responded very differently to the two odors, characterized by a robust reduction in the response to the nonrewarded odor. Thus, the representation of odors in the mitral/tufted cell population depends on whether the task requires discrimination of the odors. Strikingly, downstream of the olfactory bulb, pyramidal neurons in the posterior piriform cortex also displayed a task-demand-dependent neural representation of odors, but the anterior piriform cortex did not, indicating that these two important higher olfactory centers use different strategies for neural representation.SIGNIFICANCE STATEMENT The most important task of the olfactory system is to generate a precise representation of odor information under different brain states. Whether the representation of odors by neurons in olfactory centers such as the olfactory bulb and the piriform cortex depends on task demands remains elusive. We find that odor representation in the mitral/tufted cells of the olfactory bulb depends on whether the task requires odor discrimination. A similar neural representation is found in the posterior piriform cortex but not the anterior piriform cortex, indicating that these higher olfactory centers use different representational strategies. The task-demand-dependent representational strategy is likely important for facilitating information processing in higher brain centers responsible for decision making and encoding of salience.
Collapse
|
17
|
Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. Aging (Albany NY) 2019; 11:8792-8809. [PMID: 31619581 PMCID: PMC6834407 DOI: 10.18632/aging.102265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Hypertension is the leading preventable cause of premature deaths worldwide. Although long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has been identified to play important roles in the development of cardiovascular diseases, the regulatory function of lncRNA MALAT1 in hypertension remains poorly understood. This study aimed to explore the role of lncRNA MALAT1 in spontaneously hypertensive rats (SHRs). LncRNA MALAT1 was determined to be elevated and MyoD to be reduced in myocardial tissues and thoracic aortic vascular tissues of SHRs. Over-expression of lncRNA MALAT1 caused severe myocardial fibrosis in SHRs. In addition, lncRNA MALAT1 over-expression in vitro enhanced arterial smooth muscle cells (ASMCs) activity and fibrosis of SHRs, which, was rescued by over-expressed MyoD. Furthermore, lncRNA MALAT1 transcripts were found to be highly enriched in the nucleus, and lncRNA MALAT1 suppressed the transactivation of MyoD. Moreover, lncRNA MALAT1 was found to recruit Suv39h1 to MyoD-binding loci, leading to H3K9me3 trimethylation and down-regulation of the target gene. Taken conjointly, this study revealed an important role of lncRNA MALAT1 in promoting cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. These results highlight the value of lncRNA MALAT1 as a therapeutic target for the management of hypertension.
Collapse
|
18
|
Niu H, Shen L, Li T, Ren C, Ding S, Wang L, Zhang Z, Liu X, Zhang Q, Geng D, Wu X, Li H. Alpha-synuclein overexpression in the olfactory bulb initiates prodromal symptoms and pathology of Parkinson's disease. Transl Neurodegener 2018; 7:25. [PMID: 30356861 PMCID: PMC6192070 DOI: 10.1186/s40035-018-0128-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease characterized by intraneuronal Lewy Body (LB) aggregates composed of misfolded alpha-synuclein (α-syn). The spread of misfolded α-syn follows a typical pattern: starting in the olfactory bulb (OB) and the gut, this pathology is followed by the progressive invasion of misfolded α-syn to the posterior part of the brain. It is unknown whether the administration of human mutant alpha-synuclein (hm-α-syn, a human mutation which occurs in familial PD) into the OB of rats would trigger similar α-syn propagation and subsequently cause pathological changes in broader brain fields associated to PD and establish an animal model of prodromal PD. Methods hm-α-syn was overexpressed in the OB of rats with an AAV injection. Then motor and non-motor symptoms of the SD rats were tested in different behavioral tasks following the AAV injection. In follow-up studies, pathological mechanisms of α-syn spread were explored at the histological, biochemical and micro-structure levels. Results The experimental results indicated that hm-α-syn was overexpressed in the OB 3 weeks after the AAV injection. 1) overexpression of the Hm-α-syn in the OB by the AAV injection could transfer to wider adjacent fields beyond the monosynaptic scope. 2) The number of tyrosine hydroxylase positive cells body and fibers was decreased in the substantia nigra (SN) 12 weeks after AAV injection. This was consistent with decreased levels of the DA neurotransmitter. Importantly, behavioral dysfunctions were found that included olfactory impairment after 3 weeks, motor ability impairment and decreased muscular coordination on a rotarod 6 weeks after the AAV injection.3) The morphological level studies found that the Golgi staining revealed the number of neuronal branches and synapses in the OB, prefrontal cortex (PFC), hippocampus (Hip) and striatum caudate putamen (CPU) were decreased. 4) phosphorylated α-syn, at Ser-129 (pSer129), was found to be increased in hm-α-syn injected animals in comparison to controls that overexpressed GFP alone, which was also found in the most of LB stained by the thioflavine S (ThS) in the SN field. 5) A marker of autophagy (LC3B) was increased in serval fields, which was colacolizated with a marker of apoptosis in the SN field. Conclusions These results demonstrate that expression of exogenous mutant α-syn in the OB induces pathological changes in the sensitive brain fields by transferring pathogenic α-syn to adjacent fields. This method may be useful for establishing an animal model of prodromal PD.
Collapse
Affiliation(s)
- Haichen Niu
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lingyu Shen
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Tongzhou Li
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Chao Ren
- 3Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 China
| | - Sheng Ding
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lei Wang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Zhonghai Zhang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiaoyu Liu
- 4College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH USA
| | - Qiang Zhang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Deqin Geng
- 5Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiujuan Wu
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Haiying Li
- 6Department of Pathology, Xuzhou Medical University, Xuzhou, 221004 China
| |
Collapse
|
19
|
Shan L, Liu T, Zhang Z, Liu Q, Zhang M, Zhao X, Zhang Y, Xu F, Ma Y. Schizophrenia-like olfactory dysfunction induced by acute and postnatal phencyclidine exposure in rats. Schizophr Res 2018; 199:274-280. [PMID: 29510924 DOI: 10.1016/j.schres.2018.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 10/17/2022]
Abstract
Deficits in olfactory abilities are frequently observed in schizophrenia patients. However, whether olfactory dysfunction is found in animal models is not known. Here, we examined whether two well-established schizophrenia rat models exhibit olfactory-relevant dysfunction that is similar to schizophrenia patients. Olfactory sensitivity was tested in rats that were acutely (3.3mg/kg) or postnatally (10mg/kg, at postnatal day 7, 9 and 11) treated with phencyclidine (PCP) as schizophrenia models. Electrophysiological recordings were conducted to measure the olfactory-relevant local field potential after acute PCP treatment. Olfactory-relevant neural connections were tested via virus tracing in rats postnatally treated with PCP. We also assessed the reversal effects of olanzapine (OLZ) treatment on both models. We found that acute PCP treatment induced a decline in olfactory sensitivity (p=0.01) and significantly lower beta- and higher gamma-band oscillations (p=0.03, and p=0.00 respectively) which were partly attenuated by OLZ treatment (2mg/kg and 4mg/kg). Postnatal PCP exposure also resulted in an olfactory sensitivity deficit during adulthood (p=0.012 for males and p=0.009 for females), and an abnormal development of neural circuits (p=0.000). Together, our research indicated that olfactory dysfunction found in schizophrenia patients can also be observed on animal models.
Collapse
Affiliation(s)
- Liang Shan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tiane Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhijian Zhang
- Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qing Liu
- Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mengjiao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Fuqiang Xu
- Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | - Yuanye Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
20
|
Multisite Recording of Local Field Potentials in Awake, Free-Moving Mice. Methods Mol Biol 2018. [PMID: 29884946 DOI: 10.1007/978-1-4939-8609-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Oscillations of local field potentials (LFPs) are crucial in neuroscience studies since they are correlated with many brain activities related to sense, motor, learning, and cognition. Multisite recording of LFPs from different brain areas in awake animals simultaneously is extremely important because they could provide important information on how the brain areas cooperate with each other to perform a specific function. Here, we describe a method that could record LFP signals from six olfactory-related areas (both olfactory bulbs, both piriform cortices, and both hippocampi) in awake free-moving mice. This method could be developed to record up to 16 different brain areas if the shortest distance between any two recording sites is larger than 2 mm.
Collapse
|
21
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
22
|
Zhang Z, Liu Q, Wen P, Zhang J, Rao X, Zhou Z, Zhang H, He X, Li J, Zhou Z, Xu X, Zhang X, Luo R, Lv G, Li H, Cao P, Wang L, Xu F. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. eLife 2017; 6:25423. [PMID: 29251597 PMCID: PMC5777817 DOI: 10.7554/elife.25423] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT-projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly affected the Go-no go learning efficiency. In summary, our results revealed that the VTA (DAergic)-mOT pathway mediates a variety of naturalistic reward processes and different types of preferences including odor-preference in mice.
Collapse
Affiliation(s)
- Zhijian Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qing Liu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Pengjie Wen
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jiaozhen Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoping Rao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ziming Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongruo Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Juan Li
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoran Xu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Luo
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Guanghui Lv
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Haohong Li
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Pei Cao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|
23
|
Zhou Y, Wang X, Cao T, Xu J, Wang D, Restrepo D, Li A. Insulin Modulates Neural Activity of Pyramidal Neurons in the Anterior Piriform Cortex. Front Cell Neurosci 2017; 11:378. [PMID: 29234275 PMCID: PMC5712367 DOI: 10.3389/fncel.2017.00378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
Insulin is an important peptide hormone that regulates food intake and olfactory function. While a multitude of studies investigated the effect of insulin in the olfactory bulb and olfactory epithelium, research on how it modulates higher olfactory centers is lacking. Here we investigate how insulin modulates neural activity of pyramidal neurons in the anterior piriform cortex, a key olfactory signal processing center that plays important roles in odor perception, preference learning, and odor pattern separation. In vitro we find from brain slice recordings that insulin increases the excitation of pyramidal neurons, and excitatory synaptic transmission while it decreases inhibitory synaptic transmission. In vivo local field potential (LFP) recordings indicate that insulin decreases both ongoing gamma oscillations and odor evoked beta responses. Moreover, recordings of calcium activity from pyramidal neurons reveal that insulin modulates the odor-evoked responses by an inhibitory effect. These results indicate that insulin alters olfactory signal processing in the anterior piriform cortex.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiaojie Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jinshan Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Ford NC, Griff ER. Steady-state centrifugal input via the lateral olfactory tract modulates spontaneous activity in the rat main olfactory bulb. Neuroscience 2017; 348:165-179. [PMID: 28215749 DOI: 10.1016/j.neuroscience.2017.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022]
Abstract
Mitral and tufted cells in the main olfactory bulb (MOB) of anesthetized rats exhibit vigorous spontaneous activity, action potentials produced in the absence of odor stimuli. The central hypothesis of this paper is that tonic activity of centrifugal input to the MOB modulates the spontaneous activity of MOB neurons. The spontaneous activity of centrifugal fibers causes a baseline of steady-state neurotransmitter release, and odor stimulation produces transient changes in the resulting spontaneous activity. This study evaluated the effect of blocking centrifugal axon conduction in the lateral olfactory tract (LOT) by topically applying 2% lidocaine. Mean spontaneous activity of single bulbar neurons was recorded in each MOB layer before and after lidocaine application. While the spontaneous activity of most MOB neurons reversibly decreased after blockade of the LOT, the spontaneous activity of some neurons in the mitral, tufted and granule cell layers increased. The possible mechanisms producing such changes in spontaneous activity are discussed in terms of the tonic, steady-state release of excitatory and/or inhibitory signals from centrifugal inputs to the MOB. The data show for the first time that tonic centrifugal input to the MOB modulates the spontaneous activity of MOB interneurons and projection neurons. The present study is one of the few that focuses on steady-state spontaneous activity. The modulation of spontaneous activity demonstrated in this study implies a behaviorally relevant, state-dependent regulation of the MOB by the CNS.
Collapse
Affiliation(s)
- Neil C Ford
- Department of Biological Sciences, University of Cincinnati, P.O. Box 210006, Cincinnati, OH 45221, USA.
| | - Edwin R Griff
- Department of Biological Sciences, University of Cincinnati, P.O. Box 210006, Cincinnati, OH 45221, USA
| |
Collapse
|
25
|
Shulman RG, Hyder F, Rothman DL. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior. J Cereb Blood Flow Metab 2014; 34:1721-35. [PMID: 25160670 PMCID: PMC4269754 DOI: 10.1038/jcbfm.2014.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/12/2014] [Accepted: 07/21/2014] [Indexed: 02/05/2023]
Abstract
Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), (13)C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Gong L, Li B, Wu R, Li A, Xu F. Brain-state dependent uncoupling of BOLD and local field potentials in laminar olfactory bulb. Neurosci Lett 2014; 580:1-6. [PMID: 25079901 DOI: 10.1016/j.neulet.2014.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
The neural activities of the olfactory bulb (OB) can be modulated significantly by internal brain states. While blood oxygenation level dependent functional MRI (BOLD-fMRI) has been extensively applied to study OB in small animals, the relationship between BOLD signals and electrophysiological signals remains to be elucidated. Our recent study has revealed a complex relationship between BOLD and local field potentials (LFP) signals in different OB layers during odor stimulation. However, no study has been performed to compare these two types of signals under global brain states. Here, the changes of BOLD and LFP signals in the glomerular, mitral cell, and granular cell layers of the OB under different brain states, which were induced by different concentrations of isoflurane, were sequentially acquired using electrode array and high-resolution MRI. It was found that under deeper anesthesia, the LFP powers in all layers were decreased but the BOLD signals were unexpectedly increased. Furthermore, the decreases of LFP powers were layer-independent, but the increases of BOLD signal were layer-specific, with the order of glomerular>mitral cell>granular cell layer. The results provide new evidence that the direct neural activity levels might not be correlated well with BOLD signals in some cases, and remind us that cautions should be taken to use BOLD signals as the index of neural activities.
Collapse
Affiliation(s)
- Ling Gong
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqi Wu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anan Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China.
| |
Collapse
|
27
|
Li B, Gong L, Wu R, Li A, Xu F. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers. Neuroimage 2014; 95:29-38. [DOI: 10.1016/j.neuroimage.2014.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
|
28
|
Viviani R, Lehmann ML, Stingl JC. Use of magnetic resonance imaging in pharmacogenomics. Br J Clin Pharmacol 2014; 77:684-94. [PMID: 23802603 PMCID: PMC3971984 DOI: 10.1111/bcp.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023] Open
Abstract
Because of the large variation in the response to psychoactive medication, many studies have attempted to uncover genetic factors that determine response. While considerable knowledge exists on the large effects of genetic polymorphisms on pharmacokinetics and plasma concentrations of drugs, effects of the concentration at the target site and pharmacodynamic effects on brain functions in disease are much less known. This article reviews the role of magnetic resonance imaging (MRI) to visualize response to medication in brain behaviour circuits in vivo in humans and assess the influence of pharmacogenetic factors. Two types of studies have been used to characterize effects of medication and genetic variation. In task-related activation studies the focus is on changes in the activity of a neural circuit associated with a specific psychological process. The second type of study investigates resting state perfusion. These studies provide an assessment of vascular changes associated with bioavailability of drugs in the brain, but may also assess changes in neural activity after binding of centrally active agents. Task-related pharmacogenetic studies of cognitive function have characterized the effects in the prefrontal cortex of genetic polymorphisms of dopamine receptors (DRD2), metabolic enzymes (COMT) and in the post-synaptic signalling cascade under the administration of dopamine agonists and antagonists. In contrast, pharmacogenetic imaging with resting state perfusion is still in its infancy. However, the quantitative nature of perfusion imaging, its non-invasive character and its repeatability might be crucial assets in visualizing the effects of medication in vivo in man during therapy.
Collapse
Affiliation(s)
- Roberto Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
29
|
Chery R, Gurden H, Martin C. Anesthetic regimes modulate the temporal dynamics of local field potential in the mouse olfactory bulb. J Neurophysiol 2013; 111:908-17. [PMID: 24285865 DOI: 10.1152/jn.00261.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anesthetized preparations have been widely used to study odor-induced temporal dynamics in the olfactory bulb. Although numerous recent data of single-cell recording or imaging in the olfactory bulb have employed ketamine cocktails, their effects on networks activities are still poorly understood, and odor-induced oscillations of the local field potential have not been characterized under these anesthetics. Our study aimed at describing the impact of two ketamine cocktails on oscillations and comparing them to awake condition. Anesthesia was induced by injection of a cocktail of ketamine, an antagonist of the N-methyl-d-aspartate receptors, combined with one agonist of α2-adrenergic receptors, xylazine (low affinity) or medetomidine (high affinity). Spontaneous and odor-induced activities were examined in anesthetized and awake conditions, in the same mice chronically implanted with an electrode in the main olfactory bulb. The overall dynamic pattern of oscillations under the two ketamine cocktails resembles that of the awake state. Ongoing activity is characterized by gamma bursts (>60 Hz) locked on respiration and beta (15-40 Hz) power increases during odor stimulation. However, anesthesia decreases local field potential power and leads to a strong frequency shift of gamma oscillations from 60-90 Hz to 100-130 Hz. We conclude that similarities between oscillations in anesthetized and awake states make cocktails of ketamine with one α2-agonist suitable for the recordings of local field potential to study processing in the early stages of the olfactory system.
Collapse
Affiliation(s)
- Romain Chery
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR8165, Université Paris-Sud, Paris 7, Centre National de la Recherche Scientifique, Orsay, France
| | | | | |
Collapse
|
30
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
31
|
Messina I, Sambin M, Palmieri A, Viviani R. Neural correlates of psychotherapy in anxiety and depression: a meta-analysis. PLoS One 2013; 8:e74657. [PMID: 24040309 PMCID: PMC3770681 DOI: 10.1371/journal.pone.0074657] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Several studies have used neuroimaging methods to identify neural change in brain networks associated to emotion regulation after psychotherapy of depression and anxiety. In the present work we adopted a meta-analytic technique specific to neuroimaging data to evaluate the consistence of empirical findings and assess models of therapy that have been proposed in the literature. Meta-analyses were conducted with the Activation Likelihood Estimation technique, which evaluates the overlap between foci of activation across studies. The analysis included 16 studies found in Pubmed (200 foci of activation and 193 patients). Separate meta-analyses were conducted on studies of 1) depression, post-traumatic stress disorder and panic disorder investigated with rest state metabolism (6 studies, 70 patients); 2) depression, post-traumatic stress disorder and panic disorder investigated with task-related activation studies (5 studies, 65 patients); 3) the previous studies considered jointly; and 4) phobias investigated with studies on exposure-related activation (5 studies, 57 patients). Studies on anxiety and depression gave partially consistent results for changes in the dorsomedial prefrontal cortex and in the posterior cingulated gyrus/precuneus. Several areas of change in the temporal lobes were also observed. Studies on the therapy of phobia were consistent with a reduction of activity in medial temporal areas. The cluster of change in the prefrontal cortex may refer to increased recruitment of control processes, as hypothesized by influential models of emotion regulation changes due to psychotherapy. However, not all areas associated with controlled emotion regulation were detected in the meta-analysis, while involvement of midline structures suggested changes in self-related information processing. Changes in phobia were consistent with reduced reactivity to phobic stimuli.
Collapse
Affiliation(s)
- Irene Messina
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
- * E-mail:
| | - Marco Sambin
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Arianna Palmieri
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Roberto Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Lau C, Zhang JW, Cheng JS, Zhou IY, Cheung MM, Wu EX. Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex. PLoS One 2013; 8:e70706. [PMID: 23940631 PMCID: PMC3733930 DOI: 10.1371/journal.pone.0070706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 12/02/2022] Open
Abstract
Objective Interaural level difference (ILD) is the difference in sound pressure level (SPL) between the two ears and is one of the key physical cues used by the auditory system in sound localization. Our current understanding of ILD encoding has come primarily from invasive studies of individual structures, which have implicated subcortical structures such as the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus (LL), and inferior colliculus (IC). Noninvasive brain imaging enables studying ILD processing in multiple structures simultaneously. Methods In this study, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is used for the first time to measure changes in the hemodynamic responses in the adult Sprague-Dawley rat subcortex during binaural stimulation with different ILDs. Results and Significance Consistent responses are observed in the CN, SOC, LL, and IC in both hemispheres. Voxel-by-voxel analysis of the change of the response amplitude with ILD indicates statistically significant ILD dependence in dorsal LL, IC, and a region containing parts of the SOC and LL. For all three regions, the larger amplitude response is located in the hemisphere contralateral from the higher SPL stimulus. These findings are supported by region of interest analysis. fMRI shows that ILD dependence occurs in both hemispheres and multiple subcortical levels of the auditory system. This study is the first step towards future studies examining subcortical binaural processing and sound localization in animal models of hearing.
Collapse
Affiliation(s)
- Condon Lau
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
33
|
Lang J, Li A, Luo W, Wu R, Li P, Xu F. Odor representation in the olfactory bulb under different brain states revealed by intrinsic optical signals imaging. Neuroscience 2013; 243:54-63. [PMID: 23567814 DOI: 10.1016/j.neuroscience.2013.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The olfactory system responds to the same stimulus with great variability according to the current state of the brain. At the levels of multi-unit activity and local field potentials, the response of the olfactory bulb (OB) to a given olfactory stimulus during a state of lower background activity is stronger than the response that occurs during higher background activity, but the distribution pattern of activity remains similar. However, these results have only been established at the individual neuron and neuron cluster scales in previous studies. It remains unclear whether these results are consistent at a larger scale (e.g., OB regions); therefore, intrinsic optical signals imaging was employed in the present study to clarify this issue. The basal brain states of rats were manipulated by using different levels of anesthesia. Under a state of low basal brain activity, the intensity of the activity pattern elicited in the dorsal OB by a given odorant was significantly higher than that under high basal brain activity, but the topography was highly similar across different brain states. These results were consistent across the levels of individual neurons, neuron clusters, glomeruli, and the OB regions, which suggest that the OB contains as yet unknown neural mechanisms that ensure the high-fidelity representation of the same olfactory stimulation under different brain states.
Collapse
Affiliation(s)
- J Lang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
34
|
Hyder F, Herman P, Sanganahalli BG, Coman D, Blumenfeld H, Rothman DL. Role of ongoing, intrinsic activity of neuronal populations for quantitative neuroimaging of functional magnetic resonance imaging-based networks. Brain Connect 2013; 1:185-93. [PMID: 22433047 DOI: 10.1089/brain.2011.0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A primary objective in neuroscience is to determine how neuronal populations process information within networks. In humans and animal models, functional magnetic resonance imaging (fMRI) is gaining increasing popularity for network mapping. Although neuroimaging with fMRI-conducted with or without tasks-is actively discovering new brain networks, current fMRI data analysis schemes disregard the importance of the total neuronal activity in a region. In task fMRI experiments, the baseline is differenced away to disclose areas of small evoked changes in the blood oxygenation level-dependent (BOLD) signal. In resting-state fMRI experiments, the spotlight is on regions revealed by correlations of tiny fluctuations in the baseline (or spontaneous) BOLD signal. Interpretation of fMRI-based networks is obscured further, because the BOLD signal indirectly reflects neuronal activity, and difference/correlation maps are thresholded. Since the small changes of BOLD signal typically observed in cognitive fMRI experiments represent a minimal fraction of the total energy/activity in a given area, the relevance of fMRI-based networks is uncertain, because the majority of neuronal energy/activity is ignored. Thus, another alternative for quantitative neuroimaging of fMRI-based networks is a perspective in which the activity of a neuronal population is accounted for by the demanded oxidative energy (CMR(O2)). In this article, we argue that network mapping can be improved by including neuronal energy/activity of both the information about baseline and small differences/fluctuations of BOLD signal. Thus, total energy/activity information can be obtained through use of calibrated fMRI to quantify differences of ΔCMR(O2) and through resting-state positron emission tomography/magnetic resonance spectroscopy measurements for average CMR(O2).
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Liu L. Recent progress of sensory system research in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:1026-1028. [PMID: 23160831 DOI: 10.1007/s11427-012-4402-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
36
|
Effect of paroxetine and bupropion on human resting brain perfusion: An arterial spin labeling study. Neuroimage 2012; 61:773-9. [DOI: 10.1016/j.neuroimage.2012.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022] Open
|
37
|
Li A, Zhang L, Liu M, Gong L, Liu Q, Xu F. Effects of different anesthetics on oscillations in the rat olfactory bulb. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2012; 51:458-63. [PMID: 23043811 PMCID: PMC3400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/19/2011] [Accepted: 02/13/2012] [Indexed: 06/01/2023]
Abstract
Different types of oscillations in the olfactory bulb (OB), including θ (1 to 4 and 5 to 12 Hz), β (13 to 30 Hz), and γ oscillations (31 to 64 and 65 to 90 Hz), are important in olfactory information processing and olfactory-related functions and have been investigated extensively in recent decades. The awake and anesthetized states, 2 different brain conditions, are used widely in electrophysiologic studies of OB. Chloral hydrate, pentobarbital, and urethane are commonly used anesthetics in these studies. However, the influence of these anesthetics on the oscillations has not been reported. In the present study, we recorded the local field potential (LFP) in the OB of rats that were freely moving or anesthetized with these agents. Chloral hydrate and pentobarbital had similar effects: they slightly affected the power of θ oscillations; significantly increased the power of β oscillations; significantly decreased the power of γ oscillations, and showed similar recovery of γ oscillations. Urethane had very different effects: it significantly increased oscillations at 1 to 4 Hz but decreased those at 5 to 12 Hz, decreased β and γ oscillations, and showed no overt recovery in γ oscillations. These results provide experimental evidence of different effects of various anesthetics on OB oscillations and suggest that the choice of anesthetic should consider the experimental application.
Collapse
Affiliation(s)
- Anan Li
- Wuhan Magnetic Resonance Center, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
38
|
Quantitative fMRI and oxidative neuroenergetics. Neuroimage 2012; 62:985-94. [PMID: 22542993 DOI: 10.1016/j.neuroimage.2012.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/22/2022] Open
Abstract
The discovery of functional magnetic resonance imaging (fMRI) has greatly impacted neuroscience. The blood oxygenation level-dependent (BOLD) signal, using deoxyhemoglobin as an endogenous paramagnetic contrast agent, exposes regions of interest in task-based and resting-state paradigms. However the BOLD contrast is at best a partial measure of neuronal activity, because the functional maps obtained by differencing or correlations ignore the total neuronal activity in the baseline state. Here we describe how studies of brain energy metabolism at Yale, especially with (13)C magnetic resonance spectroscopy and related techniques, contributed to development of quantitative functional brain imaging with fMRI by providing a reliable measurement of baseline energy. This narrative takes us on a journey, from molecules to mind, with illuminating insights about neuronal-glial activities in relation to energy demand of synaptic activity. These results, along with key contributions from laboratories worldwide, comprise the energetic basis for quantitative interpretation of fMRI data.
Collapse
|
39
|
Experimental protocols for behavioral imaging: seeing animal models of drug abuse in a new light. Curr Top Behav Neurosci 2012; 11:93-115. [PMID: 22411423 DOI: 10.1007/7854_2012_206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Behavioral neuroimaging is a rapidly evolving discipline that represents a marriage between the fields of behavioral neuroscience and preclinical molecular imaging. This union highlights the changing role of imaging in translational research. Techniques developed for humans are now widely applied in the study of animal models of brain disorders such as drug addiction. Small animal or preclinical imaging allows us to interrogate core features of addiction from both behavioral and biological endpoints. Snapshots of brain activity allow us to better understand changes in brain function and behavior associated with initial drug exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal and relapse. Here we review the development and validation of new behavioral imaging paradigms and several clinically relevant radiotracers used to capture dynamic molecular events in behaving animals. We will discuss ways in which behavioral imaging protocols can be optimized to increase throughput and quantitative methods. Finally, we discuss our experience with the practical aspects of behavioral neuroimaging, so investigators can utilize effective animal models to better understand the addicted brain and behavior.
Collapse
|
40
|
|
41
|
Lawhern V, Nikonov AA, Wu W, Contreras RJ. Spike rate and spike timing contributions to coding taste quality information in rat periphery. Front Integr Neurosci 2011; 5:18. [PMID: 21617730 PMCID: PMC3095810 DOI: 10.3389/fnint.2011.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/02/2011] [Indexed: 11/13/2022] Open
Abstract
There is emerging evidence that individual sensory neurons in the rodent brain rely on temporal features of the discharge pattern to code differences in taste quality information. In contrast, investigations of individual sensory neurons in the periphery have focused on analysis of spike rate and mostly disregarded spike timing as a taste quality coding mechanism. The purpose of this work was to determine the contribution of spike timing to taste quality coding by rat geniculate ganglion neurons using computational methods that have been applied successfully in other systems. We recorded the discharge patterns of narrowly tuned and broadly tuned neurons in the rat geniculate ganglion to representatives of the five basic taste qualities. We used mutual information to determine significant responses and the van Rossum metric to characterize their temporal features. While our findings show that spike timing contributes a significant part of the message, spike rate contributes the largest portion of the message relayed by afferent neurons from rat fungiform taste buds to the brain. Thus, spike rate and spike timing together are more effective than spike rate alone in coding stimulus quality information to a single basic taste in the periphery for both narrowly tuned specialist and broadly tuned generalist neurons.
Collapse
Affiliation(s)
- Vernon Lawhern
- Department of Statistics, Florida State University Tallahassee, FL, USA
| | | | | | | |
Collapse
|
42
|
Wilson DA, Hoptman MJ, Gerum SV, Guilfoyle DN. State-dependent functional connectivity of rat olfactory system assessed by fMRI. Neurosci Lett 2011; 497:69-73. [PMID: 21530613 DOI: 10.1016/j.neulet.2011.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
Functional connectivity between the piriform cortex and limbic and neocortical areas was assessed using functional magnetic resonance imaging (fMRI) of urethane anesthetized rats that spontaneously cycled between slow-wave and fast-wave states. Slow-wave and fast-wave states were determined indirectly through monitoring of respiration rate, which was confirmed to co-vary with state as determined by electrophysiological recordings. Previous electrophysiological data have suggested that the piriform cortex shifts between responsiveness to afferent odor input during fast-wave states and enhanced functional connectivity with limbic areas during slow-wave state. The present results demonstrate that fMRI-based resting state functional connectivity between the piriform cortex and both limbic and neocortical areas is enhanced during slow-wave state compared to fast-wave state using respiration as an indirect measure of state in urethane anesthetized rats. This state-dependent shift in functional connectivity may be important for sleep-dependent odor memory consolidation.
Collapse
Affiliation(s)
- D A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, USA.
| | | | | | | |
Collapse
|
43
|
Evidence for the importance of measuring total brain activity in neuroimaging. Proc Natl Acad Sci U S A 2011; 108:5475-6. [PMID: 21441108 DOI: 10.1073/pnas.1102026108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|