1
|
Zhang YF, Li W, Wang CY, Huang C, Bian HT, Zhao L. Formation of C 5H 6 isomers: a combination of experimental and computational investigation. Phys Chem Chem Phys 2025; 27:4934-4943. [PMID: 39962987 DOI: 10.1039/d4cp03728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A propagation mechanism originating from 1,3-cyclopentadienyl, a prearomatic resonantly stabilized radical, makes a significant contribution to the growth of polycyclic aromatic hydrocarbons and soot. 1,3-Cyclopentadiene, as the simplest 5-membered carbon closed-shell molecule that could generate 1,3-cyclopentadienyl via photolysis and H-elimination, is attracting attention from astrochemistry and combustion chemistry communities. The reaction of propargyl (˙C3H3) with ethylene (C2H4) was investigated in a micro SiC reactor under low-pressure (<100 Torr) conditions coupled with tunable synchrotron radiation photoionization and molecular beam mass spectrometry techniques. Their potential energy surfaces were explored by ab initio electronic structure calculations. Subsequently, microscopic kinetics were demonstrated by RRKM/master equation theory in consideration of temperature- and pressure-dependent effects. The analysis of the photoionization efficiency (PIE) analysis at m/z = 66 has confirmed the formation of C5H6 molecules with a cyclic structure, i.e. 1,3-cyclopentadiene, as well as its linear isomer 3-penten-1-yne. Supported by ionization energies and Franck-Condon factors from theoretical predictions, this work proposes the possible formation of C5H6 molecules with two linear isomers 1,2,4-pentatriene and 4-penten-1-yne. Kinetics reveal the discrepancy of product selectivity under diverse temperatures and pressures. Notably, the generation of 1,2,4-pentatriene prevails at high temperatures corresponding to combustion environments, followed closely by 4-penten-1-yne and 3-penten-1-yne formations. Conversely, 1,3-cyclopentadiene shows a strong yield predominance in a vacuum environment within 300-600 K. This finding provides a potential pathway to aromatic hydrocarbon formation, especially in the planetary nebulae and circumstellar envelopes of carbon-rich stars.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China.
| | - Wang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China.
| | - Chang-Yang Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China.
| | - Chen Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China.
| | - Hui-Ting Bian
- Technical Support Center for Prevention and Control of Disastrous Accidents in Metal Smelting, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Long Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Lee MR, Alexander CMO, Bischoff A, Brearley AJ, Dobrică E, Fujiya W, Le Guillou C, King AJ, van Kooten E, Krot AN, Leitner J, Marrocchi Y, Patzek M, Petaev MI, Piani L, Pravdivtseva O, Remusat L, Telus M, Tsuchiyama A, Vacher LG. Low-Temperature Aqueous Alteration of Chondrites. SPACE SCIENCE REVIEWS 2025; 221:11. [PMID: 39916740 PMCID: PMC11794400 DOI: 10.1007/s11214-024-01132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Chondritic meteorites (chondrites) contain evidence for the interaction of liquid water with the interiors of small bodies early in Solar System history. Here we review the processes, products and timings of the low-temperature aqueous alteration reactions in CR, CM, CI and ungrouped carbonaceous chondrites, the asteroids Ryugu and Bennu, and hydrated dark clasts in different types of meteorites. We first consider the nature of chondritic lithologies and the insights that they provide into alteration conditions, subdivided by the mineralogy and petrology of hydrated chondrites, the mineralogy of hydrated dark clasts, the effects of alteration on presolar grains, and the evolution of organic matter. We then describe the properties of the aqueous fluids and how they reacted with accreted material as revealed by physicochemical modelling and hydrothermal experiments, the analysis of fluid inclusions in aqueously formed minerals, and isotope tracers. Lastly, we outline the chronology of aqueous alteration reactions as determined using the 53Mn-53Cr and 129I-129Xe systems. Supplementary Information The online version contains supplementary material available at 10.1007/s11214-024-01132-8.
Collapse
Affiliation(s)
- Martin R. Lee
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ UK
| | - Conel M. O’D. Alexander
- Earth & Planets Laboratory, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 USA
| | - Addi Bischoff
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
| | - Adrian J. Brearley
- Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM USA
| | - Elena Dobrică
- Hawai‘i Institute of Geophysics & Planetology, The University of Hawai‘i at Mānoa, Honolulu, HI 96822 USA
| | - Wataru Fujiya
- Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan
| | - Corentin Le Guillou
- Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France
| | - Ashley J. King
- Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Elishevah van Kooten
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Alexander N. Krot
- Hawai‘i Institute of Geophysics & Planetology, The University of Hawai‘i at Mānoa, Honolulu, HI 96822 USA
| | - Jan Leitner
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany
- Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Yves Marrocchi
- Université de Lorraine, CNRS, CRPG, UMR 7358, Nancy, France
| | - Markus Patzek
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
| | - Michail I. Petaev
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, 02138, USA
| | - Laurette Piani
- Université de Lorraine, CNRS, CRPG, UMR 7358, Nancy, France
| | | | - Laurent Remusat
- CNRS–Museum National d’Histoire Naturelle, Laboratoire de Minéralogie et Cosmochimie du Museum–UMR 7202, Case 52, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Myriam Telus
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Akira Tsuchiyama
- Research Organization of Science & Technology, Ritsumeikan University, Shiga, 525-8577 Japan
- Chinese Academy of Sciences (CAS) Key Laboratory of Mineralogy & Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640 China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640 China
| | | |
Collapse
|
3
|
Koyama S, Yoshida T, Furukawa Y, Terada N, Ueno Y, Nakamura Y, Kamada A, Kuroda T, Vandaele AC. Stable carbon isotope evolution of formaldehyde on early Mars. Sci Rep 2024; 14:21214. [PMID: 39289470 PMCID: PMC11408639 DOI: 10.1038/s41598-024-71301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Organic matter in the Martian sediments may provide a key to understanding the prebiotic chemistry and habitability of early Mars. The Curiosity rover has measured highly variable and 13C-depleted carbon isotopic values in early Martian organic matter whose origin is uncertain. One hypothesis suggests the deposition of simple organic molecules generated from 13C-depleted CO derived from CO2 photochemical reduction in the atmosphere. Here, we present a coupled photochemistry-climate evolution model incorporating carbon isotope fractionation processes induced by CO2 photolysis, carbon escape, and volcanic outgassing in an early Martian atmosphere of 0.5-2 bar, composed mainly of CO2, CO, and H2 to track the evolution of the carbon isotopic composition of C-bearing species. The calculated carbon isotopic ratio in formaldehyde (H2CO) can be highly depleted in 13C due to CO2-photolysis-induced fractionation and is variable with changes in atmospheric CO/CO2 ratio, surface pressure, albedo, and H2 outgassing rate. Conversely, CO2 becomes enriched in 13C, as estimated from the carbonates preserved in ALH84001 meteorite. Complex organic matter formed by the polymerization of such H2CO could explain the strong depletion in 13C observed in the Martian organic matter. Mixing with other sources of organic matter would account for its unique variable carbon isotopic values.
Collapse
Affiliation(s)
- Shungo Koyama
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium.
| | - Tatsuya Yoshida
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yoshihiro Furukawa
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Naoki Terada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yuichiro Ueno
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yuki Nakamura
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Arihiro Kamada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takeshi Kuroda
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | - Ann Carine Vandaele
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
| |
Collapse
|
4
|
Arriola JT, Poordian S, Valdivia EM, Le T, Leman LJ, Schellinger JG, Müller UF. Weak effects of prebiotically plausible peptides on self-triphosphorylation ribozyme function. RSC Chem Biol 2024:d4cb00129j. [PMID: 39279875 PMCID: PMC11391260 DOI: 10.1039/d4cb00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Catalytic RNAs (ribozymes) were central to early stages of life on earth. The first ribozymes probably emerged in the presence of prebiotically generated peptides because amino acids can be generated under abiotic conditions, and amino acids can oligomerize into peptides under prebiotically plausible conditions. Here we tested whether the presence of prebiotically plausible peptides could have aided the emergence of ribozymes, by an in vitro selection of self-triphosphorylation ribozymes from random sequence in the presence of ten different octapeptides. These peptides were composed of ten different, prebiotically plausible amino acids, each as mixture of d- and l-stereoisomers. After five rounds of selection and high throughput sequencing analysis, ten ribozymes that appeared most promising for peptide benefits were tested biochemically for possible benefits from each of the ten peptides. The strongest peptide benefit enhanced ribozyme activity by 2.6-fold, similar to the effect from an increase in the pH by one-half unit. Four arbitrarily chosen ribozymes from a previous selection without peptides showed no significant change in their activity in the presence of the ten peptides. Therefore, the used prebiotically plausible peptides - peptides without evolutionarily optimized sequence, without cationic or aromatic side chains - did not provide a strong benefit for the emergence of ribozyme activity. This finding stands in contrast to previously identified polycationic peptides, conjugates between peptides and polyaromatic hydrocarbons, and modern mRNA encoded proteins, all of which can strongly increase ribozyme function. The results are discussed in the context of origins of life.
Collapse
Affiliation(s)
- Joshua T Arriola
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| | - Shayan Poordian
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| | | | - Tommy Le
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
5
|
Lévêque P, Queffelec C, Sotin C, Afonso C, Bollengier O, Clouet A, Le Menn E, Marrocchi Y, Schmitz I, Bujoli B. Effect of Nitrogen on the Structure and Composition of Primordial Organic Matter Analogs. ACS EARTH & SPACE CHEMISTRY 2024; 8:1281-1295. [PMID: 39045227 PMCID: PMC11261614 DOI: 10.1021/acsearthspacechem.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 07/25/2024]
Abstract
Organic molecules are ubiquitous in primitive solar system bodies such as comets and asteroids. These primordial organic compounds may have formed in the interstellar medium and in protoplanetary disks (PPDs) before being accreted and further transformed in the parent bodies of meteorites, icy moons, and dwarf planets. The present study describes the composition of primordial organics analogs produced in a laboratory simulator of the PPD (the Nebulotron experiment at the CRPG laboratory) with nitrogen contents varying from N/C < 0.01 to N/C = 0.63. We present the first Fourier transform ion cyclotron resonance mass spectrometry analysis of these analogs. Several thousands of molecules with masses between m/z 100 and 500 are characterized. The mass spectra show a Gaussian shape with maxima around m/z 250. Highly condensed polyaromatic hydrocarbons (PAH) are the most common compounds identified in the samples with lower nitrogen contents. As the amount of nitrogen increases, a dramatic increase of the chemical diversity is observed. Nitrogen-bearing compounds are also dominated by polyaromatic hydrocarbons (PANH) made of 5- and 6-membered rings containing up to four nitrogen atoms, including triazine and pyrazole rings. Such N-rich aromatic species are expected to decompose easily in the presence of water at higher temperatures. Pure carbon molecules are also observed for samples with relatively small fractions of nitrogen. MS peaks compatible with the presence of amino acids and nucleobases, or their isomers, are detected. When comparing these Nebulotron samples with the insoluble fraction of the Paris meteorite organic matter, we observe that the samples with intermediate N/C ratios bracketing that of the Paris insoluble organic matter (IOM) display relative proportions of the CH, CHO, CHN, and CHNO chemical families also bracketing those of the Paris IOM. Our results support that Nebulotron samples are relevant laboratory analogs of primitive chondritic organic matter.
Collapse
Affiliation(s)
- Pauline Lévêque
- Nantes
Université, Univ. Angers, Le Mans Université, CNRS,
Laboratoire de Planétologie et Géosciences, LPG UMR
6112, Nantes 44000, France
- CEISAM,
Nantes Université, UMR-CNRS 6230, Nantes F-44000, France
| | | | - Christophe Sotin
- Nantes
Université, Univ. Angers, Le Mans Université, CNRS,
Laboratoire de Planétologie et Géosciences, LPG UMR
6112, Nantes 44000, France
| | - Carlos Afonso
- Normandie
Université, COBRA, UMR 6014, FR 3038, Université de
Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan 76821 Mont-Saint-Aignan Cedex, France
| | - Olivier Bollengier
- Nantes
Université, Univ. Angers, Le Mans Université, CNRS,
Laboratoire de Planétologie et Géosciences, LPG UMR
6112, Nantes 44000, France
| | - Adriana Clouet
- Nantes
Université, Univ. Angers, Le Mans Université, CNRS,
Laboratoire de Planétologie et Géosciences, LPG UMR
6112, Nantes 44000, France
| | - Erwan Le Menn
- Nantes
Université, Univ. Angers, Le Mans Université, CNRS,
Laboratoire de Planétologie et Géosciences, LPG UMR
6112, Nantes 44000, France
| | - Yves Marrocchi
- Centre
de Recherches Pétrographiques et Géochimiques, UMR 7358
CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy F-54501, France
| | - Isabelle Schmitz
- Normandie
Université, COBRA, UMR 6014, FR 3038, Université de
Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan 76821 Mont-Saint-Aignan Cedex, France
| | - Bruno Bujoli
- CEISAM,
Nantes Université, UMR-CNRS 6230, Nantes F-44000, France
| |
Collapse
|
6
|
Takano Y, Naraoka H, Dworkin JP, Koga T, Sasaki K, Sato H, Oba Y, Ogawa NO, Yoshimura T, Hamase K, Ohkouchi N, Parker ET, Aponte JC, Glavin DP, Furukawa Y, Aoki J, Kano K, Nomura SIM, Orthous-Daunay FR, Schmitt-Kopplin P, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y, Tachibana S. Primordial aqueous alteration recorded in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu. Nat Commun 2024; 15:5708. [PMID: 38987536 PMCID: PMC11237059 DOI: 10.1038/s41467-024-49237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and β-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.
Collapse
Affiliation(s)
- Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan.
- Institute for Advanced Biosciences (IAB), Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Kazunori Sasaki
- Institute for Advanced Biosciences (IAB), Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Human Metabolome Technologies Inc., Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hajime Sato
- Human Metabolome Technologies Inc., Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yasuhiro Oba
- Institute of Low Temperature Science (ILTS), Hokkaido University, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-0054, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Yoshihiro Furukawa
- Department of Earth Material Science, Tohoku University, Sendai, 980-8578, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics Graduate school of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Francois-Regis Orthous-Daunay
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Centre National d'Etudes Spatiales, L'Institut de Planétologie et d'Astrophysique de Grenoble, 38000, Grenoble, France
| | - Philippe Schmitt-Kopplin
- Technische Universitӓt München, Analytische Lebensmittel Chemie, 85354, Freising, Germany
- Max Planck Institute for Extraterrestrial Physics, 85748, Garching bei München, Germany
- Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Hisayoshi Yurimoto
- Department of Earth and Planetary Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoki Nakamura
- Department of Earth Material Science, Tohoku University, Sendai, 980-8578, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Environment Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Shogo Tachibana
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Banfalvi G. The Origin of RNA and the Formose-Ribose-RNA Pathway. Int J Mol Sci 2024; 25:6727. [PMID: 38928433 PMCID: PMC11203418 DOI: 10.3390/ijms25126727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does not regard them as self-organizing processes. The presence of biochemical self-organization after the pre-Darwinian evolution did not justify distinguishing between different types of evolution. From the many possible solutions, evolution selected from among those stable reactions that led to catalytic networks, and under gradually changing external conditions produced a reproducible, yet constantly evolving and adaptable, living system. Major abiotic factors included sunlight, precipitation, air, minerals, soil and the Earth's atmosphere, hydrosphere and lithosphere. Abiotic sources of chemicals contributed to the formation of prebiotic RNA, the development of genetic RNA, the RNA World and the initial life forms on Earth and the transition of genRNA to the DNA Empire, and eventually to the multitude of life forms today. The transition from the RNA World to the DNA Empire generated new processes such as oxygenic photosynthesis and the hierarchical arrangement of processes involved in the transfer of genetic information. The objective of this work is to unite earlier work dealing with the formose, the origin and synthesis of ribose and RNA reactions that were published as a series of independent reactions. These reactions are now regarded as the first metabolic pathway.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Ishikawa A, Kebukawa Y, Kobayashi K, Yoda I. Gamma-Ray-Induced Amino Acid Formation during Aqueous Alteration in Small Bodies: The Effects of Compositions of Starting Solutions. Life (Basel) 2024; 14:103. [PMID: 38255718 PMCID: PMC10817335 DOI: 10.3390/life14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Organic compounds, such as amino acids, are essential for the origin of life, and they may have been delivered to the prebiotic Earth from extra-terrestrial sources, such as carbonaceous chondrites. In the parent bodies of carbonaceous chondrites, the radioactive decays of short-lived radionuclides, such as 26Al, cause the melting of ice, and aqueous alteration occurs in the early stages of solar system formation. Many experimental studies have shown that complex organic matter, including amino acids and high-molecular-weight organic compounds, is produced by such hydrothermal processes. On the other hand, radiation, particularly gamma rays from radionuclides, can contribute to the formation of amino acids from simple molecules such as formaldehyde and ammonia. In this study, we investigated the details of gamma-ray-induced amino acid formation, focusing on the effects of different starting materials on aqueous solutions of formaldehyde, ammonia, methanol, and glycolaldehyde with various compositions, as well as hexamethylenetetramine. Alanine and glycine were the most abundantly formed amino acids after acid hydrolysis of gamma-ray-irradiated products. Amino acid formation increased with increasing gamma-ray irradiation doses. Lower amounts of ammonia relative to formaldehyde produced more amino acids. Glycolaldehyde significantly increased amino acid yields. Our results indicated that glycolaldehyde formation from formaldehyde enhanced by gamma rays is key for the subsequent production of amino acids.
Collapse
Affiliation(s)
- Akari Ishikawa
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (K.K.)
| | - Yoko Kebukawa
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (K.K.)
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kensei Kobayashi
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (K.K.)
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Isao Yoda
- Co60 Irradiation Facility, Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Sweeney KJ, Le T, Jorge MZ, Schellinger JG, Leman LJ, Müller UF. Peptide conjugates with polyaromatic hydrocarbons can benefit the activity of catalytic RNAs. Chem Sci 2023; 14:10318-10328. [PMID: 37772096 PMCID: PMC10529712 DOI: 10.1039/d3sc03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Early stages of life likely employed catalytic RNAs (ribozymes) in many functions that are today filled by proteins. However, the earliest life forms must have emerged from heterogenous chemical mixtures, which included amino acids, short peptides, and many other compounds. Here we explored whether the presence of short peptides can help the emergence of catalytic RNAs. To do this, we conducted an in vitro selection for catalytic RNAs from randomized sequence in the presence of ten different peptides with a prebiotically plausible length of eight amino acids. This in vitro selection generated dozens of ribozymes, one of them with ∼900-fold higher activity in the presence of one specific peptide. Unexpectedly, the beneficial peptide had retained its N-terminal Fmoc protection group, and this group was required to benefit ribozyme activity. The same, or higher benefit resulted from peptide conjugates with prebiotically plausible polyaromatic hydrocarbons (PAHs) such as fluorene and naphthalene. This shows that PAH-peptide conjugates can act as potent cofactors to enhance ribozyme activity. The results are discussed in the context of the origin of life.
Collapse
Affiliation(s)
- Kevin J Sweeney
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Tommy Le
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Micaella Z Jorge
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
10
|
Balloi V, Diaz-Perez MA, Lara-Angulo MA, Villalgordo-Hernández D, Narciso J, Ramos-Fernandez EV, Serrano-Ruiz JC. Metal-Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity. Molecules 2023; 28:6095. [PMID: 37630347 PMCID: PMC10458508 DOI: 10.3390/molecules28166095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The formose reaction is an autocatalytic series of aldol condensations that allows one to obtain monosaccharides from formaldehyde. The formose reaction suffers from a lack of selectivity, which hinders practical applications at the industrial level. Over the years, many attempts have been made to overcome this selectivity issue, with modest results. Heterogeneous porous catalysts with acid-base properties, such as Metal-Organic Frameworks (MOFs), can offer advantages compared to homogeneous strong bases (e.g., calcium hydroxide) for increasing the selectivity of this important reaction. For the very first time, four different Zeolite Imidazolate Frameworks are presented in this work as catalysts for the formose reaction in liquid phase, and their catalytic performances were compared with those of the typical homogeneous catalyst (i.e., calcium hydroxide). The heterogeneous nature of the catalysis, the possible contribution of leached metal or linkers to the solution, and the stability of the materials were investigated. The porous structure of these solids and their mild basicity make them suitable for obtaining enhanced selectivity at 30% formaldehyde conversion. Most of the MOFs tested showed low structural stability under reaction conditions, thereby indicating the need to search for new MOF families with higher robustness. However, this important result opens the path for future research on porous heterogeneous basic catalysts for the formose reaction.
Collapse
Affiliation(s)
- Valentina Balloi
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| | - Manuel Antonio Diaz-Perez
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| | - Mayra Anabel Lara-Angulo
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| | - David Villalgordo-Hernández
- Laboratory of Advanced Materials, Inorganic Chemistry Department, University Materials Institute of Alicante, University of Alicante, Apartado 99, 03080 Alicante, Spain; (D.V.-H.); (J.N.); (E.V.R.-F.)
| | - Javier Narciso
- Laboratory of Advanced Materials, Inorganic Chemistry Department, University Materials Institute of Alicante, University of Alicante, Apartado 99, 03080 Alicante, Spain; (D.V.-H.); (J.N.); (E.V.R.-F.)
| | - Enrique V. Ramos-Fernandez
- Laboratory of Advanced Materials, Inorganic Chemistry Department, University Materials Institute of Alicante, University of Alicante, Apartado 99, 03080 Alicante, Spain; (D.V.-H.); (J.N.); (E.V.R.-F.)
| | - Juan Carlos Serrano-Ruiz
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| |
Collapse
|
11
|
Omran A. Plausibility of the Formose Reaction in Alkaline Hydrothermal Vent Environments. ORIGINS LIFE EVOL B 2023; 53:113-125. [PMID: 32749559 DOI: 10.1007/s11084-020-09599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
Prebiotic processes required a reliable source of free energy and complex chemical mixtures that may have included sugars. The formose reaction is a potential source of those sugars. At moderate to elevated temperature and pH ranges, these sugars rapidly decay. Here it is shown that CaCO3-based chemical gardens catalyze the formose reaction to produce glucose, ribose, and other monosaccharides. These thin inorganic membranes are explored as analogs of hydrothermal vent materials-a possible place for the origin of life-and similarly exposed to very steep pH gradients. Supported by simulations of a simple reaction-diffusion model, this study shows that such gradients allow for the dynamic accumulation of sugars in specific layers of the thin membrane, effectively protecting formose sugar yields. Therefore, the formose reaction may be a plausible prebiotic reaction in alkaline hydrothermal vent environments, possibly setting the stage for an RNA world.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA.
| |
Collapse
|
12
|
Furukawa Y, Saigusa D, Kano K, Uruno A, Saito R, Ito M, Matsumoto M, Aoki J, Yamamoto M, Nakamura T. Distributions of CHN compounds in meteorites record organic syntheses in the early solar system. Sci Rep 2023; 13:6683. [PMID: 37095091 PMCID: PMC10125961 DOI: 10.1038/s41598-023-33595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Carbonaceous meteorites contain diverse soluble organic compounds. These compounds formed in the early solar system from volatiles accreted on tiny dust particles. However, the difference in the organic synthesis on respective dust particles in the early solar system remains unclear. We found micrometer-scale heterogeneous distributions of diverse CHN1-2 and CHN1-2O compounds in two primitive meteorites: the Murchison and NWA 801, using a surface-assisted laser desorption/ionization system connected to a high mass resolution mass spectrometer. These compounds contained mutual relationships of ± H2, ± CH2, ± H2O, and ± CH2O and showed highly similar distributions, indicating that they are the products of series reactions. The heterogeneity was caused by the micro-scale difference in the abundance of these compounds and the extent of the series reactions, indicating that these compounds formed on respective dust particles before asteroid accretion. The results of the present study provide evidence of heterogeneous volatile compositions and the extent of organic reactions among the dust particles that formed carbonaceous asteroids. The compositions of diverse small organic compounds associated with respective dust particles in meteorites are useful to understand different histories of volatile evolution in the early solar system.
Collapse
Affiliation(s)
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Prebiotic Synthesis of ATP: A Terrestrial Volcanism-Dependent Pathway. Life (Basel) 2023; 13:life13030731. [PMID: 36983886 PMCID: PMC10053121 DOI: 10.3390/life13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is a multifunctional small molecule, necessary for all modern Earth life, which must be a component of the last universal common ancestor (LUCA). However, the relatively complex structure of ATP causes doubts about its accessibility on prebiotic Earth. In this paper, based on previous studies on the synthesis of ATP components, a plausible prebiotic pathway yielding this key molecule is constructed, which relies on terrestrial volcanism to provide the required materials and suitable conditions.
Collapse
|
14
|
Kebukawa Y, Asano S, Tani A, Yoda I, Kobayashi K. Gamma-Ray-Induced Amino Acid Formation in Aqueous Small Bodies in the Early Solar System. ACS CENTRAL SCIENCE 2022; 8:1664-1671. [PMID: 36589881 PMCID: PMC9801502 DOI: 10.1021/acscentsci.2c00588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/01/2023]
Abstract
Carbonaceous chondrites contain life's essential building blocks, including amino acids, and their delivery of organic compounds would have played a key role in life's emergence on Earth. Aqueous alteration of carbonaceous chondrites is a widespread process induced by the heat produced by radioactive decay of nuclides like 26Al. Simple ubiquitous molecules like formaldehyde and ammonia could produce various organic compounds, including amino acids and complex organic macromolecules. However, the effects of radiation on such organic chemistry are unknown. Hence, the effects of gamma rays from radioactive decays on the formation of amino acids in meteorite parent bodies are demonstrated here. We discovered that gamma-ray irradiation of aqueous formaldehyde and ammonia solutions afforded a variety of amino acids. The amino acid yields had a linear relationship with the total gamma-ray dose but were unaffected by the irradiation dose rates. Given the gamma-ray production rates in the meteorite parent bodies, we estimated that the production rates were reasonable compared to amino acid abundances in carbonaceous chondrites. Our findings indicate that gamma rays may contribute to amino acid formation in parent bodies during aqueous alteration. In this paper, we propose a new prebiotic amino acid formation pathway that contributes to life's origin.
Collapse
Affiliation(s)
- Yoko Kebukawa
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa240-8501, Japan
| | - Shinya Asano
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa240-8501, Japan
| | - Atsushi Tani
- Graduate
School of Human Development and Environment, Kobe University, 3-11
Tsurukabuto, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Isao Yoda
- Co60
irradiation facility, Laboratory for Zero-Carbon Energy, Institute
of Innovative Research, Tokyo Institute
of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kensei Kobayashi
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa240-8501, Japan
| |
Collapse
|
15
|
Li Y, Kitadai N, Sekine Y, Kurokawa H, Nakano Y, Johnson-Finn K. Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies. Nat Commun 2022; 13:4893. [PMID: 35986003 PMCID: PMC9391434 DOI: 10.1038/s41467-022-32596-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
A long-standing question regarding carbonaceous chondrites (CCs) is how the CCs' organics were sourced and converted before and after the accretion of their parent bodies. Growing evidence shows that amino acid abundances in CCs decrease with an elongated aqueous alteration. However, the underlying chemical processes are unclear. If CCs' parent bodies were water-rock differentiated, pH and redox gradients can drive electrochemical reactions by using H2 as an electron source. Here, we simulate such redox conditions and demonstrate that α-amino acids are electrochemically altered to monoamines and α-hydroxy acids on FeS and NiS catalysts at 25 °C. This conversion is consistent with their enrichment compared to amino acid analogs in heavily altered CCs. Our results thus suggest that H2 can be an important driver for organic evolution in water-rock differentiated CC parent bodies as well as the Solar System icy bodies that might possess similar pH and redox gradients.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yasuhito Sekine
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
| | - Yuko Nakano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
| | - Kristin Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
16
|
Reply to: The breakup of a long-period comet is not a likely match to the Chicxulub impactor. Sci Rep 2022; 12:10427. [PMID: 35729331 PMCID: PMC9213458 DOI: 10.1038/s41598-022-14445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
|
17
|
Abstract
It has recently been suggested that a gravitational transition of the effective Newton’s constant Geff by about 10%, 50–150 Myrs ago could lead to the resolution of both the Hubble crisis and the growth tension of the standard ΛCDM model. Hints for such an abrupt transition with weaker gravity at times before the transition, have recently been identified in Tully–Fisher galactic mass-velocity data, and also in Cepheid SnIa calibrator data. Here we use Monte-Carlo simulations to show that such a transition could significantly increase (by a factor of 3 or more) the number of long period comets (LPCs) impacting the solar system from the Oort cloud (semi-major axis of orbits ≳104AU). This increase is consistent with observational evidence from the terrestrial and lunar cratering rates, indicating that the impact flux of kilometer sized objects increased by at least a factor of 2 over that last 100 Myrs compared to the long term average. This increase may also be connected with the Chicxulub impactor event that produced the Cretaceous–Tertiary (K-T) extinction of 75% of life on Earth (including dinosaurs) about 66 Myrs ago. We use Monte-Carlo simulations to show that for isotropic Oort cloud comet distribution with initially circular orbits, random velocity perturbations (induced e.g., by passing stars and/or galactic tidal effects), lead to a deformation of the orbits that increases significantly when Geff increases. A 10% increase in Geff leads to an increase in the probability of the comets to enter the loss cone and reach the planetary region (pericenter of less than 10 AU) by a factor that ranges from 5% (for velocity perturbation much smaller than the comet initial velocity) to more than 300% (for total velocity perturbations comparable with the initial comet velocity).
Collapse
|
18
|
Kwok S. The mystery of unidentified infrared emission bands. ASTROPHYSICS AND SPACE SCIENCE 2022; 367:16. [PMID: 35210653 PMCID: PMC8830496 DOI: 10.1007/s10509-022-04045-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A family of unidentified infrared emission (UIE) bands has been observed throughout the Universe. The current observed spectral properties of the UIE bands are summarized. These properties are discussed in the frameworks of different models of the chemical carriers of these bands. The UIE carriers represent a large reservoir of carbon in the Universe, and play a significant role in the physical and chemical processes in the interstellar medium and galactic environment. A correct identification of the carrier of the UIE bands is needed to use these bands as probes of galactic evolution.
Collapse
Affiliation(s)
- Sun Kwok
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Steele A, Benning LG, Wirth R, Schreiber A, Araki T, McCubbin FM, Fries MD, Nittler LR, Wang J, Hallis LJ, Conrad PG, Conley C, Vitale S, O'Brien AC, Riggi V, Rogers K. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 2022; 375:172-177. [PMID: 35025630 DOI: 10.1126/science.abg7905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Water-rock interactions are relevant to planetary habitability, influencing mineralogical diversity and the production of organic molecules. We examine carbonates and silicates in the martian meteorite Allan Hills 84001 (ALH 84001), using colocated nanoscale analyses, to characterize the nature of water-rock reactions on early Mars. We find complex refractory organic material associated with mineral assemblages that formed by mineral carbonation and serpentinization reactions. The organic molecules are colocated with nanophase magnetite; both formed in situ during water-rock interactions on Mars. Two potentially distinct mechanisms of abiotic organic synthesis operated on early Mars during the late Noachian period (3.9 to 4.1 billion years ago).
Collapse
Affiliation(s)
- A Steele
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - L G Benning
- Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany.,Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - R Wirth
- Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
| | - A Schreiber
- Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
| | - T Araki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - F M McCubbin
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - M D Fries
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - L R Nittler
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - J Wang
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - L J Hallis
- School of Geographical and Earth Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - P G Conrad
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - C Conley
- NASA Ames Research Center, Mountain View, CA 94035, USA
| | - S Vitale
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - A C O'Brien
- School of Geographical and Earth Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - V Riggi
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - K Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
20
|
Kobayashi K, Mita H, Kebukawa Y, Nakagawa K, Kaneko T, Obayashi Y, Sato T, Yokoo T, Minematsu S, Fukuda H, Oguri Y, Yoda I, Yoshida S, Kanda K, Imai E, Yano H, Hashimoto H, Yokobori SI, Yamagishi A. Space Exposure of Amino Acids and Their Precursors during the Tanpopo Mission. ASTROBIOLOGY 2021; 21:1479-1493. [PMID: 34793260 DOI: 10.1089/ast.2021.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amino acids have been detected in extraterrestrial bodies such as carbonaceous chondrites (CCs), which suggests that extraterrestrial organics could be the source of the first life on Earth, and interplanetary dust particles (IDPs) or micrometeorites (MMs) are promising carriers of extraterrestrial organic carbon. Some amino acids found in CCs are amino acid precursors, but these have not been well characterized. The Tanpopo mission was conducted in Earth orbit from 2015 to 2019, and the stability of glycine (Gly), hydantoin (Hyd), isovaline (Ival), 5-ethyl-5-methylhydantoin (EMHyd), and complex organics formed by proton irradiation from CO, NH3, and H2O (CAW) in space were analyzed by high-performance liquid chromatography and/or gas chromatography/mass spectrometry. The target substances showed a logarithmic decomposition over 1-3 years upon space exposure. Recoveries of Gly and CAW were higher than those of Hyd, Ival, and EMHyd. Ground simulation experiments showed different results: Hyd was more stable than Gly. Solar ultraviolet light was fatal to all organics, and they required protection when carried by IDPs/MMs. Thus, complex amino acid precursors (such as CAW) were possibly more robust than simple precursors during transportation to primitive Earth. The Tanpopo 2 mission is currently being conducted to expose organics to more probable space conditions.
Collapse
Affiliation(s)
- Kensei Kobayashi
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Higashi-ku, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Yoko Kebukawa
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Kazumichi Nakagawa
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Takeo Kaneko
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Yumiko Obayashi
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Tomohito Sato
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Takuya Yokoo
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Saaya Minematsu
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Higashi-ku, Fukuoka Institute of Technology, Fukuoka, Japan
| | | | | | - Isao Yoda
- Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Satoshi Yoshida
- National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba, Japan
| | - Kazuhiro Kanda
- University of Hyogo, Kamigori-cho, Ako-gun, Hyogo, Japan
| | - Eiichi Imai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
21
|
Yamagishi A, Yokobori SI, Kobayashi K, Mita H, Yabuta H, Tabata M, Higashide M, Yano H. Scientific Targets of Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments at the Japanese Experiment Module Exposed Facility of the International Space Station. ASTROBIOLOGY 2021; 21:1451-1460. [PMID: 34449275 DOI: 10.1089/ast.2020.2426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Tanpopo experiment was the first Japanese astrobiology mission on board the Japanese Experiment Module Exposed Facility on the International Space Station (ISS). The experiments were designed to address two important astrobiological topics, panspermia and the chemical evolution process toward the generation of life. These experiments also tested low-density aerogel and monitored the microdebris environment around low Earth orbit. The following six subthemes were identified to address these goals: (1) Capture of microbes in space: Estimation of the upper limit of microbe density in low Earth orbit; (2) Exposure of microbes in space: Estimation of the survival time course of microbes in the space environment; (3) Capture of cosmic dust on the ISS and analysis of organics: Detection of the possible presence of organic compounds in cosmic dust; (4) Alteration of organic compounds in space environments: Evaluation of decomposition time courses of organic compounds in space; (5) Space verification of the Tanpopo hyper-low-density aerogel: Durability and particle-capturing capability of aerogel; (6) Monitoring of the number of space debris: Time-dependent change in space debris environment. Subthemes 1 and 2 address the panspermia hypothesis, whereas 3 and 4 address the chemical evolution. The last two subthemes contribute to space technology development. Some of the results have been published previously or are included in this issue. This article summarizes the current status of the Tanpopo experiments.
Collapse
Affiliation(s)
- Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kensei Kobayashi
- Department of Chemistry, Yokohama National University, Hodogayaku, Yokohama, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Fukuoka Institute of Technology, Higashiku, Fukuoka, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima, Japan
| | - Makoto Tabata
- Department of Physics, Chiba University, Chiba, Japan
| | - Masumi Higashide
- Research and Development Directorate, Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| |
Collapse
|
22
|
Exploring the link between molecular cloud ices and chondritic organic matter in laboratory. Nat Commun 2021; 12:3538. [PMID: 34112800 PMCID: PMC8192538 DOI: 10.1038/s41467-021-23895-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022] Open
Abstract
Carbonaceous meteorites are fragments of asteroids rich in organic material. In the forming solar nebula, parent bodies may have accreted organic materials resulting from the evolution of icy grains observed in dense molecular clouds. The major issues of this scenario are the secondary processes having occurred on asteroids, which may have modified the accreted matter. Here, we explore the evolution of organic analogs of protostellar/protoplanetary disk material once accreted and submitted to aqueous alteration at 150 °C. The evolution of molecular compounds during up to 100 days is monitored by high resolution mass spectrometry. We report significant evolution of the molecular families, with the decreases of H/C and N/C ratios. We find that the post-aqueous products share compositional similarities with the soluble organic matter of the Murchison meteorite. These results give a comprehensive scenario of the possible link between carbonaceous meteorites and ices of dense molecular clouds. Several scenarios exist to explain the origins of the organic matter found in carbonaceous chondrites. Here, the authors show laboratory experiments confirming that a significant portion of the soluble organic matter can originate from organic ices inherited from the dense molecular cloud.
Collapse
|
23
|
Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion Range 08006 carbonaceous chondrite. Sci Rep 2021; 11:11656. [PMID: 34079034 PMCID: PMC8172632 DOI: 10.1038/s41598-021-91200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Meteorites contain organic matter that may have contributed to the origin of life on Earth. Carbonyl compounds such as aldehydes and carboxylic acids, which occur in meteorites, may be precursors of biologically necessary organic materials in the solar system. Therefore, such organic matter is of astrobiological importance and their detection and characterization can contribute to the understanding of the early solar system as well as the origin of life. Most organic matter is typically sub-micrometer in size, and organic nanoglobules are even smaller (50–300 nm). Novel analytical techniques with nanoscale spatial resolution are required to detect and characterize organic matter within extraterrestrial materials. Most techniques require powdered samples, consume the material, and lose petrographic context of organics. Here, we report the detection of nanoglobular aldehyde and carboxylic acids in a highly primitive carbonaceous chondrite (DOM 08006) with ~ 20 nm spatial resolution using nano-FTIR spectroscopy. Such organic matter is found within the matrix of DOM 08006 and is typically 50–300 nm in size. We also show petrographic context and nanoscale morphologic/topographic features of the organic matter. Our results indicate that prebiotic carbonyl nanoglobules can form in a less aqueous and relatively elevated temperature-environment (220–230 °C) in a carbonaceous parent body.
Collapse
|
24
|
Furukawa Y, Iwasa Y, Chikaraishi Y. Synthesis of 13C-enriched amino acids with 13C-depleted insoluble organic matter in a formose-type reaction in the early solar system. SCIENCE ADVANCES 2021; 7:7/18/eabd3575. [PMID: 33910902 PMCID: PMC8081361 DOI: 10.1126/sciadv.abd3575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/10/2021] [Indexed: 05/10/2023]
Abstract
Solvent-soluble organic matter (SOM) in meteorites, which includes life's building molecules, is suspected to originate from the cold region of the early solar system, on the basis of 13C enrichment in the molecules. Here, we demonstrate that the isotopic characteristics are reproducible in amino acid synthesis associated with a formose-type reaction in a heated aqueous solution. Both thermochemically driven formose-type reaction and photochemically driven formose-type reaction likely occurred in asteroids and ice-dust grains in the early solar system. Thus, the present results suggest that the formation of 13C-enriched SOM was not specific to the cold outer protosolar disk or the molecular cloud but occurred more widely in the early solar system.
Collapse
Affiliation(s)
- Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yoshinari Iwasa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshito Chikaraishi
- Institute of Low-temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
25
|
d'Ischia M, Manini P, Martins Z, Remusat L, O'D Alexander CM, Puzzarini C, Barone V, Saladino R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys Life Rev 2021; 37:65-93. [PMID: 33774429 DOI: 10.1016/j.plrev.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
An interdisciplinary review of the chemical literature that points to a unifying scenario for the origin of life, referred to as the Primordial Multifunctional organic Entity (PriME) scenario, is provided herein. In the PriME scenario it is suggested that the Insoluble Organic Matter (IOM) in carbonaceous chondrites, as well as interplanetary dust particles from meteorites and comets may have played an important role in the three most critical processes involved in the origin of life, namely 1) metabolism, via a) the provision and accumulation of molecules that are the building blocks of life, b) catalysis (e.g., by templation), and c) protection of developing life molecules against radiation by excited state deactivation; 2) compartmentalization, via adsorption of compounds on the exposed organic surfaces in fractured meteorites, and 3) replication, via deaggregation, desorption and related physical phenomena. This scenario is based on the hitherto overlooked structural and physicochemical similarities between the IOM and the dark, insoluble, multifunctional melanin polymers found in bacteria and fungi and associated with the ability of these microorganisms to survive extreme conditions, including ionizing radiation. The underlying conceptual link between these two materials is strengthened by the fact that primary precursors of bacterial and fungal melanins (collectively referred to herein as allomelanins) are hydroxylated aromatic compounds like homogentisic acid and 1,8-dihydroxynaphthalene, and that similar hydroxylated aromatic compounds, including hydroxynaphthalenes, figure prominently among possible components of the organic materials on dust grains and ices in the interstellar matter, and may be involved in the formation of IOM in meteorites. Inspired by this rationale, a vis-à-vis review of the properties of IOM from various chondrites and non-nitrogenous allomelanin pigments from bacteria and fungi is provided herein. The unrecognized similarities between these materials may pave the way for a novel scenario at the origin of life, in which IOM-related complex organic polymers delivered to the early Earth are proposed to serve as PriME and were preserved and transformed in those primitive forms of life that shared the ability to synthesize melanin polymers playing an important role in the critical processes underlying the establishment of terrestrial eukaryotes.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Zita Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Laurent Remusat
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France
| | - Conel M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, Bologna, I-40126, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis 01100 Viterbo, Italy
| |
Collapse
|
26
|
Hazen RM, Morrison SM, Prabhu A. An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma). THE AMERICAN MINERALOGIST 2021; 106:325-350. [PMID: 33867542 PMCID: PMC8051150 DOI: 10.2138/am-2020-7564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Information-rich attributes of minerals reveal their physical, chemical, and biological modes of origin in the context of planetary evolution, and thus they provide the basis for an evolutionary system of mineralogy. Part III of this system considers the formation of 43 different primary crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed in environments with high dust/gas ratios during an interval of planetesimal accretion and differentiation between 4566 and 4561 Ma. Chondrule mineralogy is complex, with several generations of initial droplet formation via various proposed heating mechanisms, followed in many instances by multiple episodes of reheating and partial melting. Primary chondrule mineralogy thus reflects a dynamic stage of mineral evolution, when the diversity and distribution of natural condensed solids expanded significantly.
Collapse
Affiliation(s)
- Robert M. Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A
| | - Shaunna M. Morrison
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A
| | - Anirudh Prabhu
- Tetherless World Constellation, Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, U.S.A
| |
Collapse
|
27
|
Breakup of a long-period comet as the origin of the dinosaur extinction. Sci Rep 2021; 11:3803. [PMID: 33589634 PMCID: PMC7884440 DOI: 10.1038/s41598-021-82320-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
The origin of the Chicxulub impactor, which is attributed as the cause of the K/T mass extinction event, is an unsolved puzzle. The background impact rates of main-belt asteroids and long-period comets have been previously dismissed as being too low to explain the Chicxulub impact event. Here, we show that a fraction of long-period comets are tidally disrupted after passing close to the Sun, each producing a collection of smaller fragments that cross the orbit of Earth. This population could increase the impact rate of long-period comets capable of producing Chicxulub impact events by an order of magnitude. This new rate would be consistent with the age of the Chicxulub impact crater, thereby providing a satisfactory explanation for the origin of the impactor. Our hypothesis explains the composition of the largest confirmed impact crater in Earth's history as well as the largest one within the last million years. It predicts a larger proportion of impactors with carbonaceous chondritic compositions than would be expected from meteorite falls of main-belt asteroids.
Collapse
|
28
|
Solomatova NV, Caracas R. Buoyancy and Structure of Volatile-Rich Silicate Melts. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2021; 126:e2020JB021045. [PMID: 33680690 PMCID: PMC7900987 DOI: 10.1029/2020jb021045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The early Earth was marked by at least one global magma ocean. Melt buoyancy played a major role for its evolution. Here we model the composition of the magma ocean using a six-component pyrolite melt, to which we add volatiles in the form of carbon as molecular CO or CO2 and hydrogen as molecular H2O or through substitution for magnesium. We compute the density relations from first-principles molecular dynamics simulations. We find that the addition of volatiles renders all the melts more buoyant compared to the reference volatile-free pyrolite. The effect is pressure dependent, largest at the surface, decreasing to about 20 GPa, and remaining roughly constant to 135 GPa. The increased buoyancy would have enhanced convection and turbulence, and thus promoted the chemical exchanges of the magma ocean with the early atmosphere. We determine the partial molar volume of both H2O and CO2 throughout the magma ocean conditions. We find a pronounced dependence with temperature at low pressures, whereas at megabar pressures the partial molar volumes are independent of temperature. At all pressures, the polymerization of the silicate melt is strongly affected by the amount of oxygen added to the system while being only weakly affected by the specific type of volatile added.
Collapse
Affiliation(s)
- Natalia V. Solomatova
- CNRSEcole Normale Supérieure de LyonLaboratoire de Géologie de Lyon LGLTPE UMR5276Centre Blaise PascalLyonFrance
| | - Razvan Caracas
- CNRSEcole Normale Supérieure de LyonLaboratoire de Géologie de Lyon LGLTPE UMR5276Centre Blaise PascalLyonFrance
- The Center for Earth Evolution and Dynamics (CEED)University of OsloOsloNorway
| |
Collapse
|
29
|
Synthesis of Organic Matter in Aqueous Environments Simulating Small Bodies in the Solar System and the Effects of Minerals on Amino Acid Formation. Life (Basel) 2021; 11:life11010032. [PMID: 33419105 PMCID: PMC7825434 DOI: 10.3390/life11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022] Open
Abstract
The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.
Collapse
|
30
|
Extraterrestrial hexamethylenetetramine in meteorites-a precursor of prebiotic chemistry in the inner solar system. Nat Commun 2020; 11:6243. [PMID: 33288754 PMCID: PMC7721876 DOI: 10.1038/s41467-020-20038-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/08/2022] Open
Abstract
Despite extensive studies on the formation of organic molecules in various extraterrestrial environments, it still remains under debate when, where, and how such molecules were abiotically formed. A key molecule to solve the problem, hexamethylenetetramine (HMT) has not been confirmed in extraterrestrial materials despite extensive laboratory experimental evidence that it can be produced in interstellar or cometary environments. Here we report the first detection of HMT and functionalized HMT species in the carbonaceous chondrites Murchison, Murray, and Tagish Lake. While the part-per-billion level concentration of HMT in Murchison and Tagish Lake is comparable to other related soluble organic molecules like amino acids, these compounds may have eluded detection in previous studies due to the loss of HMT during the extraction processes. HMT, which can yield important molecules for prebiotic chemistry such as formaldehyde and ammonia upon degradation, is a likely precursor of meteoritic organic compounds of astrochemical and astrophysical interest. This manuscript tackles the origin of organic molecules in carbonaceous meteorites. Identifying hexamethylenetetramine in three carbonaceous meteorites, the authors propose formation from ammonia and formaldehyde by photochemical and thermal reactions in the interstellar medium, followed by the incorporation into planetary systems.
Collapse
|
31
|
Zellner NEB, McCaffrey VP, Butler JHE. Cometary Glycolaldehyde as a Source of pre-RNA Molecules. ASTROBIOLOGY 2020; 20:1377-1388. [PMID: 32985898 DOI: 10.1089/ast.2020.2216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 200 molecules have been detected in multiple extraterrestrial environments, including glycolaldehyde (C2(H2O)2, GLA), a two-carbon sugar precursor that has been detected in regions of the interstellar medium. Its recent in situ detection on the nucleus of comet 67P/Churyumov-Gerasimenko and through remote observations in the comae of others provides tantalizing evidence that it is common on most (if not all) comets. Impact experiments conducted at the Experimental Impact Laboratory at NASA's Johnson Space Center have shown that samples of GLA and GLA mixed with montmorillonite clays can survive impact delivery in the pressure range of 4.5 to 25 GPa. Extrapolated to amounts of GLA observed on individual comets and assuming a monotonic impact rate in the first billion years of Solar System history, these experimental results show that up to 1023 kg of cometary GLA could have survived impact delivery, with substantial amounts of threose, erythrose, glycolic acid, and ethylene glycol also produced or delivered. Importantly, independent of the profile of the impact flux in the early Solar System, comet delivery of GLA would have provided (and may continue to provide) a reservoir of starting material for the formose reaction (to form ribose) and the Strecker reaction (to form amino acids). Thus, comets may have been important delivery vehicles for starting molecules necessary for life as we know it.
Collapse
Affiliation(s)
| | | | - Jayden H E Butler
- Department of Physics, Albion College, Albion, Michigan, USA
- Department of Physics, California State University - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
32
|
The Messy Alkaline Formose Reaction and Its Link to Metabolism. Life (Basel) 2020; 10:life10080125. [PMID: 32731352 PMCID: PMC7460143 DOI: 10.3390/life10080125] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
Sugars are essential for the formation of genetic elements such as RNA and as an energy/food source. Thus, the formose reaction, which autocatalytically generates a multitude of sugars from formaldehyde, has been viewed as a potentially important prebiotic source of biomolecules at the origins of life. When analyzing our formose solutions we find that many of the chemical species are simple carboxylic acids, including α-hydroxy acids, associated with metabolism. In this work we posit that the study of the formose reaction, under alkaline conditions and moderate hydrothermal temperatures, should not be solely focused on sugars for genetic materials, but should focus on the origins of metabolism (via metabolic molecules) as well.
Collapse
|
33
|
Alteration and Stability of Complex Macromolecular Amino Acid Precursors in Hydrothermal Environments. ORIGINS LIFE EVOL B 2020; 50:15-33. [PMID: 32314306 DOI: 10.1007/s11084-020-09593-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
The early Solar System comprised a broad area of abiotically created organic compounds, including interstellar organics which were integrated into planetesimals and parent bodies of meteorites, and eventually delivered to the early Earth. In this study, we simulated interstellar complex organic compounds synthesized by proton irradiation of a gas mixture of CO, NH3, and H2O, which are known to release amino acids after acid hydrolysis on the basis of Kobayashi et al. (1999) who reported that at the first stage of chemical evolution, the main compounds formed abiotically are complex organic compounds with high molecular weights. We examined their possible hydrothermal alteration and stabilities as amino acid precursors under high temperature and pressure conditions simulating parent bodies of meteorites by using an autoclave. We reported that all samples treated at 200-300 °C predominantly released glycine and alanine, followed by α-aminobutyric acid, and serine. After heating, amino acid concentrations decreased in general; however, the recovery ratios of γ-aminobutyric acid increased with temperature. The interstellar complex organic analog could maintain as amino acid precursors after being treated at high temperature (200-300 °C) and pressure (8-14 MPa). However, the molecular structures were altered during heating to form organic compounds that are more stable and can survive in elevated hydrothermal conditions.
Collapse
|
34
|
Sandford SA, Nuevo M, Bera PP, Lee TJ. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem Rev 2020; 120:4616-4659. [DOI: 10.1021/acs.chemrev.9b00560] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Scott A. Sandford
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
| | - Michel Nuevo
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
- BAER Institute, NASA Research Park, MS 18-4, Moffett Field, California 94035, United States
| | - Partha P. Bera
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
- BAER Institute, NASA Research Park, MS 18-4, Moffett Field, California 94035, United States
| | - Timothy J. Lee
- NASA Ames Research Center, MS 245-3, Moffett Field, California 94035, United States
| |
Collapse
|
35
|
Volkov DS, Rogova OB, Proskurnin MA. Photoacoustic and photothermal methods in spectroscopy and characterization of soils and soil organic matter. PHOTOACOUSTICS 2020; 17:100151. [PMID: 31956483 PMCID: PMC6957834 DOI: 10.1016/j.pacs.2019.100151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 05/05/2023]
Abstract
Review sums up the application of photoacoustic and photothermal spectroscopies for the analysis and characterization of soils and soil organic matter and discusses the outlooks in this area.
Collapse
Affiliation(s)
- Dmitry S. Volkov
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| | - Olga B. Rogova
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia
| | - Mikhail A. Proskurnin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| |
Collapse
|
36
|
Furukawa Y, Chikaraishi Y, Ohkouchi N, Ogawa NO, Glavin DP, Dworkin JP, Abe C, Nakamura T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc Natl Acad Sci U S A 2019; 116:24440-24445. [PMID: 31740594 PMCID: PMC6900709 DOI: 10.1073/pnas.1907169116] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sugars are essential molecules for all terrestrial biota working in many biological processes. Ribose is particularly essential as a building block of RNA, which could have both stored information and catalyzed reactions in primitive life on Earth. Meteorites contain a number of organic compounds including key building blocks of life, i.e., amino acids, nucleobases, and phosphate. An amino acid has also been identified in a cometary sample. However, the presence of extraterrestrial bioimportant sugars remains unclear. We analyzed sugars in 3 carbonaceous chondrites and show evidence of extraterrestrial ribose and other bioessential sugars in primitive meteorites. The 13C-enriched stable carbon isotope compositions (δ13C vs.VPDB) of the detected sugars show that the sugars are of extraterrestrial origin. We also conducted a laboratory simulation experiment of a potential sugar formation reaction in space. The compositions of pentoses in meteorites and the composition of the products of the laboratory simulation suggest that meteoritic sugars were formed by formose-like processes. The mineral compositions of these meteorites further suggest the formation of these sugars both before and after the accretion of their parent asteroids. Meteorites were carriers of prebiotic organic molecules to the early Earth; thus, the detection of extraterrestrial sugars in meteorites establishes the existence of natural geological routes to make and preserve them as well as raising the possibility that extraterrestrial sugars contributed to forming functional biopolymers like RNA on the early Earth or other primitive worlds.
Collapse
Affiliation(s)
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, 060-0819 Sapporo, Japan
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Nanako O Ogawa
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Chiaki Abe
- Department of Earth Science, Tohoku University, 980-8578 Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, 980-8578 Sendai, Japan
| |
Collapse
|
37
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
38
|
Alleon J, Flannery DT, Ferralis N, Williford KH, Zhang Y, Schuessler JA, Summons RE. Organo-mineral associations in chert of the 3.5 Ga Mount Ada Basalt raise questions about the origin of organic matter in Paleoarchean hydrothermally influenced sediments. Sci Rep 2019; 9:16712. [PMID: 31723181 PMCID: PMC6853986 DOI: 10.1038/s41598-019-53272-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022] Open
Abstract
Hydrothermal and metamorphic processes could have abiotically produced organo-mineral associations displaying morphological and isotopic characteristics similar to those of fossilized microorganisms in ancient rocks, thereby leaving false-positive evidence for early life in the geological record. Recent studies revealed that geologically-induced alteration processes do not always completely obliterate all molecular information about the original organic precursors of ancient microfossils. Here, we report the molecular, geochemical, and mineralogical composition of organo-mineral associations in a chert sample from the ca. 3.47 billion-year-old (Ga) Mount Ada Basalt, in the Pilbara Craton, Western Australia. Our observations indicate that the molecular characteristics of carbonaceous matter are consistent with hydrothermally altered biological organics, although significantly distinct from that of organic microfossils discovered in a chert sample from the ca. 3.43 Ga Strelley Pool Formation in the same area. Alternatively, the presence of native metal alloys in the chert, previously believed to be unstable in such hydrothermally influenced environments, indicates strongly reducing conditions that were favorable for the abiotic formation of organic matter. Drawing definitive conclusions about the origin of most Paleoarchean organo-mineral associations therefore requires further characterization of a range of natural samples together with experimental simulations to constrain the molecular composition and geological fate of hydrothermally-generated condensed organics.
Collapse
Affiliation(s)
- Julien Alleon
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
- Now at Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
| | - David T Flannery
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nicola Ferralis
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Yong Zhang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Wet-Dry Cycling Delays the Gelation of Hyperbranched Polyesters: Implications to the Origin of Life. Life (Basel) 2019; 9:life9030056. [PMID: 31266241 PMCID: PMC6789768 DOI: 10.3390/life9030056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
In extant biology, biopolymers perform multiple crucial functions. The biopolymers are synthesized by enzyme-controlled biosystems that would not have been available at the earliest stages of chemical evolution and consist of correctly sequenced and/or linked monomers. Some of the abiotic "messy" polymers approximate some functions of biopolymers. Condensation polymers are an attractive search target for abiotic functional polymers since principal polymers of life are produced by condensation and since condensation allows for the accurate construction of high polymers. Herein the formation of hyperbranched polyesters that have been previously used in the construction of enzyme-like catalytic complexes is explored. The experimental setup compares between the branched polyesters prepared under mild continuous heating and the wet-dry cycling associated with environmental conditions, such as dew formation or tidal activities. The results reveal that periodic wetting during which partial hydrolysis of the polyester occurs, helps to control the chain growth and delays the gel transition, a mechanism contributing to the tar formation. Moreover, the NMR and mass spec analyses indicate that continuously dried samples contain higher quantities of crosslinked and macrocyclic products, whereas cycled systems are enriched in branched structures. Ostensibly, environmental conditions have the ability to exert a rudimentary pressure to selectively enrich the polyesterification products in polymers of different structures and properties. At the early stages of chemical evolution, in the absence of biological machinery, this example of environmental control could have been for selectivity in chemical systems. As expected in marginally controlled systems, the identification of each component of the heterogeneous system has proved challenging, but it is not crucial for drawing the conclusions.
Collapse
|
40
|
Cruikshank DP, Materese CK, Pendleton YJ, Boston PJ, Grundy WM, Schmitt B, Lisse CM, Runyon KD, Keane JT, Beyer RA, Summers ME, Scipioni F, Stern SA, Dalle Ore CM, Olkin CB, Young LA, Ennico K, Weaver HA, Bray VJ. Prebiotic Chemistry of Pluto. ASTROBIOLOGY 2019; 19:831-848. [PMID: 30907634 DOI: 10.1089/ast.2018.1927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the case for the presence of complex organic molecules, such as amino acids and nucleobases, formed by abiotic processes on the surface and in near-subsurface regions of Pluto. Pluto's surface is tinted with a range of non-ice substances with colors ranging from light yellow to red to dark brown; the colors match those of laboratory organic residues called tholins. Tholins are broadly characterized as complex, macromolecular organic solids consisting of a network of aromatic structures connected by aliphatic bridging units (e.g., Imanaka et al., 2004; Materese et al., 2014, 2015). The synthesis of tholins in planetary atmospheres and in surface ices has been explored in numerous laboratory experiments, and both gas- and solid-phase varieties are found on Pluto. A third variety of tholins, exposed at a site of tectonic surface fracturing called Virgil Fossae, appears to have come from a reservoir in the subsurface. Eruptions of tholin-laden liquid H2O from a subsurface aqueous repository appear to have covered portions of Virgil Fossae and its surroundings with a uniquely colored deposit (D.P. Cruikshank, personal communication) that is geographically correlated with an exposure of H2O ice that includes spectroscopically detected NH3 (C.M. Dalle Ore, personal communication). The subsurface organic material could have been derived from presolar or solar nebula processes, or might have formed in situ. Photolysis and radiolysis of a mixture of ices relevant to Pluto's surface composition (N2, CH4, CO) have produced strongly colored, complex organics with a significant aromatic content having a high degree of nitrogen substitution similar to the aromatic heterocycles pyrimidine and purine (Materese et al., 2014, 2015; Cruikshank et al., 2016). Experiments with pyrimidines and purines frozen in H2O-NH3 ice resulted in the formation of numerous nucleobases, including the biologically relevant guanine, cytosine, adenine, uracil, and thymine (Materese et al., 2017). The red material associated with the H2O ice may contain nucleobases resulting from energetic processing on Pluto's surface or in the interior. Some other Kuiper Belt objects also exhibit red colors similar to those found on Pluto and may therefore carry similar inventories of complex organic materials. The widespread and ubiquitous nature of similarly complex organic materials observed in a variety of astronomical settings drives the need for additional laboratory and modeling efforts to explain the origin and evolution of organic molecules. Pluto observations reveal complex organics on a small body that remains close to its place of origin in the outermost regions of the Solar System.
Collapse
Affiliation(s)
- D P Cruikshank
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - C K Materese
- 2Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Y J Pendleton
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - P J Boston
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - W M Grundy
- 3Lowell Observatory, Flagstaff, Arizona, USA
| | - B Schmitt
- 4Université Grenoble Alpes, CNRS, IPAG, Grenoble, France
| | - C M Lisse
- 5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - K D Runyon
- 5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - J T Keane
- 6California Institute of Technology, Pasadena, California, USA
| | - R A Beyer
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - M E Summers
- 7Department of Physics and Astronomy, George Mason University, Fairfax, Virginia, USA
| | - F Scipioni
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - S A Stern
- 8Southwest Research Institute, Boulder, Colorado, USA
| | - C M Dalle Ore
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - C B Olkin
- 8Southwest Research Institute, Boulder, Colorado, USA
| | - L A Young
- 8Southwest Research Institute, Boulder, Colorado, USA
| | - K Ennico
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - H A Weaver
- 5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - V J Bray
- 9Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
41
|
Kebukawa Y, Ito M, Zolensky ME, Greenwood RC, Rahman Z, Suga H, Nakato A, Chan QHS, Fries M, Takeichi Y, Takahashi Y, Mase K, Kobayashi K. A novel organic-rich meteoritic clast from the outer solar system. Sci Rep 2019; 9:3169. [PMID: 30816187 PMCID: PMC6395772 DOI: 10.1038/s41598-019-39357-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
The Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolithic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20 μm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10 μm) OM aggregate in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM aggregate has sp2 dominated hydrocarbon networks with a lower abundance of heteroatoms than in IOM from primitive (CI,CM,CR) carbonaceous chondrites, and thus it is distinguished from most of the OM in carbonaceous meteorites. The OM aggregate has high D/H and 15N/14N ratios (δD = 2,370 ± 74‰ and δ15N = 696 ± 100‰), suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus, the high D/H ratio must have been preserved during the extensive late-stage aqueous processing. It indicates that both the OM precursors and the water had high D/H ratios. Combined with 16O-poor nature of the clast, the OM aggregate and the clast are unique among known chondrite groups. We further propose that the clast possibly originated from D/P type asteroids or trans-Neptunian Objects.
Collapse
Affiliation(s)
- Yoko Kebukawa
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
| | - Motoo Ito
- Kochi Institute for Core Sample Research, JAMSTEC, B200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Michael E Zolensky
- ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Richard C Greenwood
- Planetary and Space Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
| | - Zia Rahman
- Jacobs, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Hiroki Suga
- Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, 252-5210, Japan
| | - Queenie H S Chan
- ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA.,Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Marc Fries
- ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Yasuo Takeichi
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiko Mase
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kensei Kobayashi
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| |
Collapse
|
42
|
Contributions from Accreted Organics to Titan’s Atmosphere: New Insights from Cometary and Chondritic Data. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/aaf561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Nanoscale infrared imaging analysis of carbonaceous chondrites to understand organic-mineral interactions during aqueous alteration. Proc Natl Acad Sci U S A 2019; 116:753-758. [PMID: 30602454 DOI: 10.1073/pnas.1816265116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic matter in carbonaceous chondrites is distributed in fine-grained matrix. To understand pre- and postaccretion history of organic matter and its association with surrounding minerals, microscopic techniques are mandatory. Infrared (IR) spectroscopy is a useful technique, but the spatial resolution of IR is limited to a few micrometers, due to the diffraction limit. In this study, we applied the high spatial resolution IR imaging method to CM2 carbonaceous chondrites Murchison and Bells, which is based on an atomic force microscopy (AFM) with its tip detecting thermal expansion of a sample resulting from absorption of infrared radiation. We confirmed that this technique permits ∼30 nm spatial resolution organic analysis for the meteorite samples. The IR imaging results are consistent with the previously reported association of organic matter and phyllosilicates, but our results are at much higher spatial resolution. This observation of heterogeneous distributions of the functional groups of organic matter revealed its association with minerals at ∼30 nm spatial resolution in meteorite samples by IR spectroscopy.
Collapse
|
44
|
Simkus DN, Aponte JC, Hilts RW, Elsila JE, Herd CDK. Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Murchison Meteorite. METEORITICS & PLANETARY SCIENCE 2019; 54:142-156. [PMID: 32440084 PMCID: PMC7241578 DOI: 10.1111/maps.13202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/23/2018] [Indexed: 05/25/2023]
Abstract
Compound-specific carbon isotope analysis (δ13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker-cyanohydrin synthesis in the early solar system. Previous δ13C investigations have targeted α-amino acid and α-hydroxy acid Strecker products and reactant HCN; however, δ13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification and δ13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde and acetone, were detected in the sample. δ13C values, ranging from -10.0‰ to +66.4‰, were more 13C-depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13C-depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g. oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between δ13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration-driven chemical pathways.
Collapse
Affiliation(s)
- Danielle N. Simkus
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
- Current affiliation: NASA Postdoctoral Program at NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - José C. Aponte
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Catholic University of America, Washington, D.C., USA
| | - Robert W. Hilts
- Department of Physical Sciences, MacEwan University, Edmonton, AB, Canada
| | - Jamie E. Elsila
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Christopher D. K. Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
|
46
|
Steele A, Benning LG, Wirth R, Siljeström S, Fries MD, Hauri E, Conrad PG, Rogers K, Eigenbrode J, Schreiber A, Needham A, Wang JH, McCubbin FM, Kilcoyne D, Rodriguez Blanco JD. Organic synthesis on Mars by electrochemical reduction of CO 2. SCIENCE ADVANCES 2018; 4:eaat5118. [PMID: 30402538 PMCID: PMC6209388 DOI: 10.1126/sciadv.aat5118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/25/2018] [Indexed: 05/24/2023]
Abstract
The sources and nature of organic carbon on Mars have been a subject of intense research. Steele et al. (2012) showed that 10 martian meteorites contain macromolecular carbon phases contained within pyroxene- and olivine-hosted melt inclusions. Here, we show that martian meteorites Tissint, Nakhla, and NWA 1950 have an inventory of organic carbon species associated with fluid-mineral reactions that are remarkably consistent with those detected by the Mars Science Laboratory (MSL) mission. We advance the hypothesis that interactions among spinel-group minerals, sulfides, and a brine enable the electrochemical reduction of aqueous CO2 to organic molecules. Although documented here in martian samples, a similar process likely occurs wherever igneous rocks containing spinel-group minerals and/or sulfides encounter brines.
Collapse
Affiliation(s)
- A. Steele
- Carnegie Institution for Science, Geophysical Laboratory, Washington, DC 20015, USA
| | - L. G. Benning
- German Research Centre for Geosciences, GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - R. Wirth
- German Research Centre for Geosciences, GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - S. Siljeström
- RISE Research Institutes of Sweden, Bioscience and Materials/Chemistry, Materials and Surfaces, Box 5607, 114 86 Stockholm, Sweden
| | - M. D. Fries
- NASA, Johnson Space Center, Houston, TX 77058, USA
| | - E. Hauri
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd, Washington, DC 20015, USA
| | - P. G. Conrad
- Carnegie Institution for Science, Geophysical Laboratory, Washington, DC 20015, USA
| | - K. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - J. Eigenbrode
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - A. Schreiber
- German Research Centre for Geosciences, GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - A. Needham
- USRA–Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805, USA
| | - J. H. Wang
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd, Washington, DC 20015, USA
| | | | - D. Kilcoyne
- Advanced Light Source, 1 Cyclotron Road, MS 7R0222, LBNL, Berkeley, CA 94720, USA
| | - Juan Diego Rodriguez Blanco
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- ICRAG, Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
47
|
Nakashima S, Kebukawa Y, Kitadai N, Igisu M, Matsuoka N. Geochemistry and the Origin of Life: From Extraterrestrial Processes, Chemical Evolution on Earth, Fossilized Life's Records, to Natures of the Extant Life. Life (Basel) 2018; 8:E39. [PMID: 30241342 PMCID: PMC6315873 DOI: 10.3390/life8040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
In 2001, the first author (S.N.) led the publication of a book entitled "Geochemistry and the origin of life" in collaboration with Dr. Andre Brack aiming to figure out geo- and astro-chemical processes essential for the emergence of life. Since then, a great number of research progress has been achieved in the relevant topics from our group and others, ranging from the extraterrestrial inputs of life's building blocks, the chemical evolution on Earth with the aid of mineral catalysts, to the fossilized records of ancient microorganisms. Here, in addition to summarizing these findings for the origin and early evolution of life, we propose a new hypothesis for the generation and co-evolution of photosynthesis with the redox and photochemical conditions on the Earth's surface. Besides these bottom-up approaches, we introduce an experimental study on the role of water molecules in the life's function, focusing on the transition from live, dormant, and dead states through dehydration/hydration. Further spectroscopic studies on the hydrogen bonding behaviors of water molecules in living cells will provide important clues to solve the complex nature of life.
Collapse
Affiliation(s)
- Satoru Nakashima
- Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
- Undergraduate School of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Yoko Kebukawa
- Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Motoko Igisu
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan.
| | - Natsuki Matsuoka
- Undergraduate School of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
48
|
Tartèse R, Chaussidon M, Gurenko A, Delarue F, Robert F. Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Proc Natl Acad Sci U S A 2018; 115:8535-8540. [PMID: 30082400 PMCID: PMC6112742 DOI: 10.1073/pnas.1808101115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dust grains of organic matter were the main reservoir of C and N in the forming Solar System and are thus considered to be an essential ingredient for the emergence of life. However, the physical environment and the chemical mechanisms at the origin of these organic grains are still highly debated. In this study, we report high-precision triple oxygen isotope composition for insoluble organic matter isolated from three emblematic carbonaceous chondrites, Orgueil, Murchison, and Cold Bokkeveld. These results suggest that the O isotope composition of carbonaceous chondrite insoluble organic matter falls on a slope 1 correlation line in the triple oxygen isotope diagram. The lack of detectable mass-dependent O isotopic fractionation, indicated by the slope 1 line, suggests that the bulk of carbonaceous chondrite organics did not form on asteroidal parent bodies during low-temperature hydrothermal events. On the other hand, these O isotope data, together with the H and N isotope characteristics of insoluble organic matter, may indicate that parent bodies of different carbonaceous chondrite types largely accreted organics formed locally in the protosolar nebula, possibly by photochemical dissociation of C-rich precursors.
Collapse
Affiliation(s)
- Romain Tartèse
- School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom;
| | - Marc Chaussidon
- Institut de Physique du Globe de Paris, Université Sorbonne-Paris-Cité, Université Paris Diderot, CNRS UMR 7154, F-75238 Paris, France
| | - Andrey Gurenko
- Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, F-54501 Vandoeuvre-lès-Nancy, France
| | - Frédéric Delarue
- Sorbonne Université, Université Pierre-et-Marie-Curie, CNRS, École Pratique des Hautes Etudes, Paris Sciences et Lettres, UMR 7619 Milieux Environnementaux, Transferts et Interactions dans les Hydrosystèmes et les Sols, F-75005 Paris, France
| | - François Robert
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Sorbonne Universités, CNRS, Université Pierre-et-Marie-Curie, and Institut de Recherche pour le Développement, F-75005 Paris, France
| |
Collapse
|
49
|
Postberg F, Khawaja N, Abel B, Choblet G, Glein CR, Gudipati MS, Henderson BL, Hsu HW, Kempf S, Klenner F, Moragas-Klostermeyer G, Magee B, Nölle L, Perry M, Reviol R, Schmidt J, Srama R, Stolz F, Tobie G, Trieloff M, Waite JH. Macromolecular organic compounds from the depths of Enceladus. Nature 2018; 558:564-568. [PMID: 29950623 PMCID: PMC6027964 DOI: 10.1038/s41586-018-0246-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022]
Abstract
Saturn's moon Enceladus harbours a global water ocean 1 , which lies under an ice crust and above a rocky core 2 . Through warm cracks in the crust 3 a cryo-volcanic plume ejects ice grains and vapour into space4-7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10-12, powered by tidal dissipation 13 . So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus' organic inventory in enhanced concentrations.
Collapse
Affiliation(s)
- Frank Postberg
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany.
- Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Heidelberg, Germany.
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany.
| | - Nozair Khawaja
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | - Bernd Abel
- Leibniz-Institute für Oberflächenmodifizierung (IOM), Leipzig, Germany
| | - Gael Choblet
- Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
| | - Christopher R Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
| | - Murthy S Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Bryana L Henderson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Hsiang-Wen Hsu
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Fabian Klenner
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | | | - Brian Magee
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Lenz Nölle
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | - Mark Perry
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - René Reviol
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Schmidt
- Astronomy Research Unit, University of Oulu, Oulu, Finland
| | - Ralf Srama
- Institut für Raumfahrtsysteme, Universität Stuttgart, Stuttgart, Germany
| | - Ferdinand Stolz
- Leibniz-Institute für Oberflächenmodifizierung (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany
| | - Gabriel Tobie
- Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
| | - Mario Trieloff
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
- Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Heidelberg, Germany
| | - J Hunter Waite
- Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
| |
Collapse
|
50
|
Nittler LR, Alexander CMO, Davidson J, Riebe MEI, Stroud RM, Wang J. High Abundances of Presolar Grains and 15N-rich Organic Matter in CO3.0 Chondrite Dominion Range 08006. GEOCHIMICA ET COSMOCHIMICA ACTA 2018; 226:107-131. [PMID: 29628527 PMCID: PMC5881170 DOI: 10.1016/j.gca.2018.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.
Collapse
Affiliation(s)
- Larry R Nittler
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Conel M O'D Alexander
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Jemma Davidson
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - My E I Riebe
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Rhonda M Stroud
- Materials Science and Technology Division, Code 6366, US Naval Research Laboratory, Washington, DC 20375-5320, USA
| | - Jianhua Wang
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| |
Collapse
|