1
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
2
|
Mack EA, Xiao YP, Allred DR. Knockout of Babesia bovis rad51 ortholog and its complementation by expression from the BbACc3 artificial chromosome platform. PLoS One 2019; 14:e0215882. [PMID: 31386669 PMCID: PMC6684078 DOI: 10.1371/journal.pone.0215882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/21/2019] [Indexed: 11/18/2022] Open
Abstract
Babesia bovis establishes persistent infections of long duration in cattle, despite the development of effective anti-disease immunity. One mechanism used by the parasite to achieve persistence is rapid antigenic variation of the VESA1 cytoadhesion ligand through segmental gene conversion (SGC), a phenomenon thought to be a form of homologous recombination (HR). To begin investigation of the enzymatic basis for SGC we initially identified and knocked out the Bbrad51 gene encoding the B. bovis Rad51 ortholog. BbRad51 was found to be non-essential for in vitro growth of asexual-stage parasites. However, its loss resulted in hypersensitivity to methylmethane sulfonate (MMS) and an apparent defect in HR. This defect rendered attempts to complement the knockout phenotype by reinsertion of the Bbrad51 gene into the genome unsuccessful. To circumvent this difficulty, we constructed an artificial chromosome, BbACc3, into which the complete Bbrad51 locus was inserted, for expression of BbRad51 under regulation by autologous elements. Maintenance of BbACc3 makes use of centromeric sequences from chromosome 3 and telomeric ends from chromosome 1 of the B. bovis C9.1 line. A selection cassette employing human dihydrofolate reductase enables recovery of transformants by selection with pyrimethamine. We demonstrate that the BbACc3 platform is stably maintained once established, assembles nucleosomes to form native chromatin, and expands in telomere length over time. Significantly, the MMS-sensitivity phenotype observed in the absence of Bbrad51 was successfully complemented at essentially normal levels. We provide cautionary evidence, however, that in HR-competent parasites BbACc3 can recombine with native chromosomes, potentially resulting in crossover. We propose that, under certain circumstances this platform can provide a useful alternative for the genetic manipulation of this group of parasites, particularly when regulated gene expression under the control of autologous elements may be important.
Collapse
Affiliation(s)
- Erin A. Mack
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yu-Ping Xiao
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - David R. Allred
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Abstract
Proteins of the Rad51 family play a key role in homologous recombination by carrying out DNA strand exchange. Here, we present the methodology and the protocols for the 4-strand exchange between gapped circular DNA and homologous linear duplex DNA promoted by human Rad51 and Escherichia coli RecA orthologs. This reaction includes formation of joint molecules and their extension by branch migration in a polar manner. The presented methodology may be used for reconstitution of the medial-to-late stages of homologous recombination in vitro as well as for investigation of the mechanisms of branch migration by helicase-like proteins, e.g., Rad54, BLM, or RecQ1.
Collapse
|
4
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
So similar yet so different: The two ends of a double strand break. Mutat Res 2017; 809:70-80. [PMID: 28693746 DOI: 10.1016/j.mrfmmm.2017.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022]
Abstract
Homologous recombination (HR) is essential for ensuring proper segregation of chromosomes in the first round of meiotic division. HR is also crucial for preserving genomic integrity of somatic cells due to its ability to rescue collapsed replication forks and eliminate deleterious DNA lesions, such as double-strand breaks (DSBs), interstrand crosslinks, and single-strand DNA gaps. Here, we review the early steps of HR (homology search and strand exchange), focusing on the roles of the two ends of a DSB. A detailed overview of the basic HR machinery and its mechanism for template selection and capture of duplex DNA via strand exchange is provided. Roles of proteins involved in these steps are discussed in both mitotic and meiotic HR. Central to this review is the hypothesis, which suggests that in meiosis, HR begins with a symmetrical DSB, but the symmetry is quickly lost with the two ends assuming different roles; it argues that this disparity of the two ends is essential for regulation of HR in meiosis and successful production of haploid gametes. We also propose a possible evolutionary reason for the asymmetry of the ends in HR.
Collapse
|
6
|
Tsai RYL. Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too? Cell Mol Life Sci 2016; 73:1803-23. [PMID: 26886024 PMCID: PMC5040593 DOI: 10.1007/s00018-016-2152-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of paramount importance that stem cells remain genomically stable throughout life. Given their unique biological and functional requirement, stem cells are thought to manage genotoxic stress somewhat differently from non-stem cells. The focus of this article is to review the current knowledge on how stem cells escape the barrage of oxidative and replicative DNA damage to stay in self-renewal. A clear statement on this subject should help us better understand tissue regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Chang HY, Liao CY, Su GC, Lin SW, Wang HW, Chi P. Functional Relationship of ATP Hydrolysis, Presynaptic Filament Stability, and Homologous DNA Pairing Activity of the Human Meiotic Recombinase DMC1. J Biol Chem 2015; 290:19863-73. [PMID: 26088134 DOI: 10.1074/jbc.m115.666289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
DMC1 and RAD51 are conserved recombinases that catalyze homologous recombination. DMC1 and RAD51 share similar properties in DNA binding, DNA-stimulated ATP hydrolysis, and catalysis of homologous DNA strand exchange. A large body of evidence indicates that attenuation of ATP hydrolysis leads to stabilization of the RAD51-ssDNA presynaptic filament and enhancement of DNA strand exchange. However, the functional relationship of ATPase activity, presynaptic filament stability, and DMC1-mediated homologous DNA strand exchange has remained largely unexplored. To address this important question, we have constructed several mutant variants of human DMC1 and characterized them biochemically to gain mechanistic insights. Two mutations, K132R and D223N, that change key residues in the Walker A and B nucleotide-binding motifs ablate ATP binding and render DMC1 inactive. On the other hand, the nucleotide-binding cap D317K mutant binds ATP normally but shows significantly attenuated ATPase activity and, accordingly, forms a highly stable presynaptic filament. Surprisingly, unlike RAD51, presynaptic filament stabilization achieved via ATP hydrolysis attenuation does not lead to any enhancement of DMC1-catalyzed homologous DNA pairing and strand exchange. This conclusion is further supported by examining wild-type DMC1 with non-hydrolyzable ATP analogues. Thus, our results reveal an important mechanistic difference between RAD51 and DMC1.
Collapse
Affiliation(s)
- Hao-Yen Chang
- From the Institute of Biochemical Sciences, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617 Taiwan
| | - Chia-Yu Liao
- From the Institute of Biochemical Sciences, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617 Taiwan
| | - Guan-Chin Su
- From the Institute of Biochemical Sciences, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617 Taiwan
| | - Sheng-Wei Lin
- the Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, and
| | - Hong-Wei Wang
- the Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peter Chi
- From the Institute of Biochemical Sciences, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617 Taiwan, the Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, and
| |
Collapse
|
8
|
Ohba S, Mukherjee J, See WL, Pieper RO. Mutant IDH1-driven cellular transformation increases RAD51-mediated homologous recombination and temozolomide resistance. Cancer Res 2014; 74:4836-44. [PMID: 25035396 DOI: 10.1158/0008-5472.can-14-0924] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutations occur in most lower grade glioma and not only drive gliomagenesis but are also associated with longer patient survival and improved response to temozolomide. To investigate the possible causative relationship between these events, we introduced wild-type (WT) or mutant IDH1 into immortalized, untransformed human astrocytes, then monitored transformation status and temozolomide response. Temozolomide-sensitive parental cells exhibited DNA damage (γ-H2AX foci) and a prolonged G2 cell-cycle arrest beginning three days after temozolomide (100 μmol/L, 3 hours) exposure and persisting for more than four days. The same cells transformed by expression of mutant IDH1 exhibited a comparable degree of DNA damage and cell-cycle arrest, but both events resolved significantly faster in association with increased, rather than decreased, clonogenic survival. The increases in DNA damage processing, cell-cycle progression, and clonogenicity were unique to cells transformed by mutant IDH1, and were not noted in cells transformed by WT IDH1 or an oncogenic form (V12H) of Ras. Similarly, these effects were not noted following introduction of mutant IDH1 into Ras-transformed cells or established glioma cells. They were, however, associated with increased homologous recombination (HR) and could be reversed by the genetic or pharmacologic suppression of the HR DNA repair protein RAD51. These results show that mutant IDH1 drives a unique set of transformative events that indirectly enhance HR and facilitate repair of temozolomide-induced DNA damage and temozolomide resistance. The results also suggest that inhibitors of HR may be a viable means to enhance temozolomide response in IDH1-mutant glioma.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Wendy L See
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
9
|
Bugreev DV, Huang F, Mazina OM, Pezza RJ, Voloshin ON, Camerini-Otero RD, Mazin AV. HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat Commun 2014; 5:4198. [PMID: 24943459 PMCID: PMC4279451 DOI: 10.1038/ncomms5198] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its DNA binding specificity in a manner that stimulates DNA strand exchange. It enables RAD51 DNA strand exchange in the absence of divalent metal ions required for ATP binding and offsets the effect of the K133A mutation that disrupts ATP binding. During nucleoprotein formation HOP2-MND1 helps to load RAD51 on ssDNA restricting its dsDNA-binding and during the homology search it promotes dsDNA binding removing the inhibitory effect of ssDNA. The magnitude of the changes induced in RAD51 defines HOP2-MND1 as a “molecular trigger” of RAD51 DNA strand exchange.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Fei Huang
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | - Roberto J Pezza
- Oklahoma Medical Research Foundation, Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| |
Collapse
|
10
|
Huang F, Mazina OM, Zentner IJ, Cocklin S, Mazin AV. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J Med Chem 2012; 55:3011-20. [PMID: 22380680 DOI: 10.1021/jm201173g] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The homologous recombination (HR) pathway plays a crucial role in the repair of DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs). RAD51, a key protein of HR, possesses a unique activity: DNA strand exchange between homologous DNA sequences. Recently, using a high-throughput screening (HTS), we identified compound 1 (B02), which specifically inhibits the DNA strand exchange activity of human RAD51. Here, we analyzed the mechanism of inhibition and found that 1 disrupts RAD51 binding to DNA. We then examined the effect of 1 on HR and DNA repair in the cell. The results show that 1 inhibits HR and increases cell sensitivity to DNA damage. We propose to use 1 for analysis of cellular functions of RAD51. Because DSB- and ICL-inducing agents are commonly used in anticancer therapy, specific inhibitors of RAD51 may also help to increase killing of cancer cells.
Collapse
Affiliation(s)
- Fei Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
11
|
Khan SR, Kuzminov A. Replication forks stalled at ultraviolet lesions are rescued via RecA and RuvABC protein-catalyzed disintegration in Escherichia coli. J Biol Chem 2012; 287:6250-65. [PMID: 22194615 PMCID: PMC3307332 DOI: 10.1074/jbc.m111.322990] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/09/2011] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet (UV) irradiation is not known to induce chromosomal fragmentation in sublethal doses, and yet UV irradiation causes genetic instability and cancer, suggesting that chromosomes are fragmented. Here we show that UV irradiation induces fragmentation in sublethal doses, but the broken chromosomes are repaired or degraded by RecBCD; therefore, to observe full fragmentation, RecBCD enzyme needs to be inactivated. Using quantitative pulsed field gel electrophoresis and sensitive DNA synthesis measurements, we investigated the mechanisms of UV radiation-induced chromosomal fragmentation in recBC mutants, comparing five existing models of DNA damage-induced fragmentation. We found that fragmentation depends on active DNA synthesis before, but not after, UV irradiation. At low UV irradiation doses, fragmentation does not need excision repair or daughter strand gap repair. Fragmentation absolutely depends on both RecA-catalyzed homologous strand exchange and RuvABC-catalyzed Holliday junction resolution. Thus, chromosomes fragment when replication forks stall at UV lesions and regress, generating Holliday junctions. Remarkably, cells specifically utilize fork breakage to rescue stalled replication and avoid lethality.
Collapse
Affiliation(s)
- Sharik R. Khan
- From the Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrei Kuzminov
- From the Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
12
|
Abstract
The advent of new technologies allowing the study of single biological molecules continues to have a major impact on studies of interacting systems as well as enzyme reactions. These approaches (fluorescence, optical, and magnetic tweezers), in combination with ensemble methods, have been particularly useful for mechanistic studies of protein-nucleic acid interactions and enzymes that function on nucleic acids. We review progress in the use of single-molecule methods to observe and perturb the activities of proteins and enzymes that function on flexible single-stranded DNA. These include single-stranded DNA binding proteins, recombinases (RecA/Rad51), and helicases/translocases that operate as motor proteins and play central roles in genome maintenance. We emphasize methods that have been used to detect and study the movement of these proteins (both ATP-dependent directional and random movement) along the single-stranded DNA and the mechanistic and functional information that can result from detailed analysis of such movement.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
13
|
Mazina OM, Rossi MJ, Deakyne JS, Huang F, Mazin AV. Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins. J Biol Chem 2012; 287:11820-32. [PMID: 22356911 DOI: 10.1074/jbc.m112.341347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | | | | | |
Collapse
|