1
|
Kaupp UB, Kendall O. David Garbers' Contributions to Chemotaxis Signaling in Sperm. Mol Reprod Dev 2024; 91:e23774. [PMID: 39445585 DOI: 10.1002/mrd.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
This review focuses on the contribution of the late David Garbers to chemotaxis of sperm, in particular from sea urchin. We will describe his discovery of chemotactic peptides and their cognate receptors, his discovery of a sperm-specific, unique Na+/H+ exchanger that represents a chimera between a solute carrier (SLC) and an ion channel. Finally, we will discuss his contributions to the understanding of cAMP signaling in sperm via soluble adenylyl cyclase (sAC) and its control by Ca2+ ions.
Collapse
Affiliation(s)
- U B Kaupp
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Olivia Kendall
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Caruso G, Klaus C, Hamm HE, Gurevich VV, Bisegna P, Andreucci D, DiBenedetto E, Makino CL. Pepperberg plot: Modeling flash response saturation in retinal rods of mouse. Front Mol Neurosci 2023; 15:1054449. [PMID: 36710929 PMCID: PMC9880052 DOI: 10.3389/fnmol.2022.1054449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Rome, Italy
| | - Colin Klaus
- The College of Public Health Division of Biostatistics and The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Andreucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Geva P, Caruso G, Klaus C, Hamm HE, Gurevich VV, DiBenedetto E, Makino CL. Effects of cell size and bicarbonate on single photon response variability in retinal rods. Front Mol Neurosci 2022; 15:1050545. [PMID: 36590910 PMCID: PMC9796569 DOI: 10.3389/fnmol.2022.1050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate photon counting requires that rods generate highly amplified, reproducible single photon responses (SPRs). The SPR is generated within the rod outer segment (ROS), a multilayered structure built from membranous disks that house rhodopsin. Photoisomerization of rhodopsin at the disk rim causes a local depletion of cGMP that closes ion channels in the plasmalemma located nearby with relative rapidity. In contrast, a photoisomerization at the disk center, distant from the plasmalemma, has a delayed impact on the ion channels due to the time required for cGMP redistribution. Radial differences should be greatest in large diameter rods. By affecting membrane guanylate cyclase activity, bicarbonate could impact spatial inhomogeneity in cGMP content. It was previously known that in the absence of bicarbonate, SPRs are larger and faster at the base of a toad ROS (where the ROS attaches to the rest of the cell) than at the distal tip. Given that bicarbonate enters the ROS at the base and diffuses to the tip and that it expedites flash response recovery, there should be an axial concentration gradient for bicarbonate that would accentuate the base-to-tip SPR differences. Seeking to understand how ROS geometry and bicarbonate affect SPR variability, we used mathematical modeling and made electrophysiological recordings of single rods. Modeling predicted and our experiments confirmed minor radial SPR variability in large diameter, salamander rods that was essentially unchanged by bicarbonate. SPRs elicited at the base and tip of salamander rods were similar in the absence of bicarbonate, but when treated with 30 mM bicarbonate, SPRs at the base became slightly faster than those at the tip, verifying the existence of an axial gradient for bicarbonate. The differences were small and unlikely to undermine visual signaling. However, in toad rods with longer ROSs, bicarbonate somehow suppressed the substantial, axial SPR variability that is naturally present in the absence of bicarbonate. Modeling suggested that the axial gradient of bicarbonate might dampen the primary phototransduction cascade at the base of the ROS. This novel effect of bicarbonate solves a mystery as to how toad vision is able to function effectively in extremely dim light.
Collapse
Affiliation(s)
- Polina Geva
- Department of Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Roma, Italy
| | - Colin Klaus
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, United States
- College of Public Health, Division of Biostatistics, Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | | | | | - Clint L. Makino
- Department of Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Klaus C, Caruso G, Gurevich VV, Hamm HE, Makino CL, DiBenedetto E. Phototransduction in retinal cones: Analysis of parameter importance. PLoS One 2021; 16:e0258721. [PMID: 34710119 PMCID: PMC8553137 DOI: 10.1371/journal.pone.0258721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
In daylight, cone photoreceptors in the retina are responsible for the bulk of visual perception, yet compared to rods, far less is known quantitatively about their biochemistry. This is partly because it is hard to isolate and purify cone proteins. The issue is also complicated by the synergistic interaction of these parameters in producing systems biology outputs, such as photoresponse. Using a 3-D resolved, finite element model of cone outer segments, here we conducted a study of parameter significance using global sensitivity analysis, by Sobol indices, which was contextualized within the uncertainty surrounding these parameters in the available literature. The analysis showed that a subset of the parameters influencing the circulating dark current, such as the turnover rate of cGMP in the dark, may be most influential for variance with experimental flash response, while the shut-off rates of photoexcited rhodopsin and phosphodiesterase also exerted sizable effect. The activation rate of transducin by rhodopsin and the light-induced hydrolysis rate of cGMP exerted measurable effects as well but were estimated as relatively less significant. The results of this study depend on experimental ranges currently described in the literature and should be revised as these become better established. To that end, these findings may be used to prioritize parameters for measurement in future investigations.
Collapse
Affiliation(s)
- Colin Klaus
- The Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Giovanni Caruso
- CNR, Ist. Tecnologie Applicate ai Beni Culturali, Rome, Italy
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Clint L. Makino
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
5
|
Abtout A, Fain G, Reingruber J. Analysis of waveform and amplitude of mouse rod and cone flash responses. J Physiol 2021; 599:3295-3312. [PMID: 33977528 DOI: 10.1113/jp281225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction pathway consisting of many biological processes to transform light into an electrical response. We dissect and quantify the contribution of each of these processes to the photoreceptor light response by using a novel method of analysis that provides an analytical solution for the entire time course of the dim-flash light response. We find that the shape of the light response is exclusively controlled by deactivation parameters. Activation parameters scale this shape and alter the response amplitude. We show that the rising phase of the response depends on Ca2+ feedback, and we identify the deactivation parameters that control the recovery phase of the response. We devise new methods to extract values for deactivation and activation parameters from a separate analysis of response shape and response amplitude. ABSTRACT Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyse with a novel method based on the log transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.
Collapse
Affiliation(s)
- Annia Abtout
- Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - Gordon Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
6
|
Caruso G, Klaus CJ, Hamm HE, Gurevich VV, Makino CL, DiBenedetto E. Position of rhodopsin photoisomerization on the disk surface confers variability to the rising phase of the single photon response in vertebrate rod photoreceptors. PLoS One 2020; 15:e0240527. [PMID: 33052986 PMCID: PMC7556485 DOI: 10.1371/journal.pone.0240527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
Retinal rods function as accurate photon counters to provide for vision under very dim light. To do so, rods must generate highly amplified, reproducible responses to single photons, yet outer segment architecture and randomness in the location of rhodopsin photoisomerization on the surface of an internal disk introduce variability to the rising phase of the photon response. Soon after a photoisomerization at a disk rim, depletion of cGMP near the plasma membrane closes ion channels and hyperpolarizes the rod. But with a photoisomerization in the center of a disk, local depletion of cGMP is distant from the channels in the plasma membrane. Thus, channel closure is delayed by the time required for the reduction of cGMP concentration to reach the plasma membrane. Moreover, the local fall in cGMP dissipates over a larger volume before affecting the channels, so response amplitude is reduced. This source of variability increases with disk radius. Using a fully space-resolved biophysical model of rod phototransduction, we quantified the variability attributable to randomness in the location of photoisomerization as a function of disk structure. In mouse rods that have small disks bearing a single incisure, this variability was negligible in the absence of the incisure. Variability was increased slightly by the incisure, but randomness in the shutoff of rhodopsin emerged as the main source of single photon response variability at all but the earliest times. Variability arising from randomness in the transverse location of photoisomerization increased in magnitude and persisted over a longer period in the photon response of large salamander rods. A symmetric arrangement of multiple incisures in the disks of salamander rods greatly reduced this variability during the rising phase, but the incisures had the opposite effect on variability arising from randomness in rhodopsin shutoff at later times.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Roma, Italy
| | - Colin J. Klaus
- The Mathematical Biosciences Institute, Ohio State University, Columbus, OH, United States of America
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
7
|
Caruso G, Gurevich VV, Klaus C, Hamm H, Makino CL, DiBenedetto E. Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods. PLoS One 2019; 14:e0225948. [PMID: 31805112 PMCID: PMC6894879 DOI: 10.1371/journal.pone.0225948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022] Open
Abstract
The single photon response (SPR) in vertebrate photoreceptors is inherently variable due to several stochastic events in the phototransduction cascade, the main one being the shutoff of photoactivated rhodopsin. Deactivation is driven by a random number of steps, each of random duration with final quenching occurring after a random delay. Nevertheless, variability of the SPR is relatively low, making the signal highly reliable. Several biophysical and mathematical mechanisms contributing to variability suppression have been examined by the authors. Here we investigate the contribution of local depletion of cGMP by PDE*, the non linear dependence of the photocurrent on cGMP, Ca2+ feedback by making use of a fully space resolved (FSR) mathematical model, applied to two species (mouse and salamander), by varying the cGMP diffusion rate severalfold and rod outer segment diameter by an order of magnitude, and by introducing new, more refined, and time dependent variability functionals. Globally well stirred (GWS) models, and to a lesser extent transversally well stirred models (TWS), underestimate the role of nonlinearities and local cGMP depletion in quenching the variability of the circulating current with respect to fully space resolved models (FSR). These distortions minimize the true extent to which SPR is stabilized by locality in cGMP depletion, nonlinear effects linking cGMP to current, and Ca2+ feedback arising from the physical separation of E* from the ion channels located on the outer shell, and the diffusion of these second messengers in the cytoplasm.
Collapse
Affiliation(s)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America
| | - Colin Klaus
- The Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America
| | - Clint L. Makino
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Field GD, Uzzell V, Chichilnisky EJ, Rieke F. Temporal resolution of single-photon responses in primate rod photoreceptors and limits imposed by cellular noise. J Neurophysiol 2018; 121:255-268. [PMID: 30485153 DOI: 10.1152/jn.00683.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sensory receptor noise corrupts sensory signals, contributing to imperfect perception and dictating central processing strategies. For example, noise in rod phototransduction limits our ability to detect light, and minimizing the impact of this noise requires precisely tuned nonlinear processing by the retina. But detection sensitivity is only one aspect of night vision: prompt and accurate behavior also requires that rods reliably encode the timing of photon arrivals. We show here that the temporal resolution of responses of primate rods is much finer than the duration of the light response and identify the key limiting sources of transduction noise. We also find that the thermal activation rate of rhodopsin is lower than previous estimates, implying that other noise sources are more important than previously appreciated. A model of rod single-photon responses reveals that the limiting noise relevant for behavior depends critically on how rod signals are pooled by downstream neurons. NEW & NOTEWORTHY Many studies have focused on the visual system's ability to detect photons, but not on its ability to encode the relative timing of detected photons. Timing is essential for computations such as determining the velocity of moving objects. Here we examine the timing precision of primate rod photoreceptor responses and show that it is more precise than previously appreciated. This motivates an evaluation of whether scotopic vision approaches limits imposed by rod temporal resolution.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine , Durham, North Carolina
| | - Valerie Uzzell
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies , La Jolla, California
| | - E J Chichilnisky
- Stanford University, Departments of Neurosurgery and Ophthalmology , Stanford, California
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| |
Collapse
|
9
|
Abstract
Fertilization is exceptionally complex and, depending on the species, happens in entirely different environments. External fertilizers in aquatic habitats, like marine invertebrates or fish, release their gametes into the seawater or freshwater, whereas sperm from most internal fertilizers like mammals cross the female genital tract to make their way to the egg. Various chemical and physical cues guide sperm to the egg. Quite generally, these cues enable signaling pathways that ultimately evoke a cellular Ca2+ response that modulates the waveform of the flagellar beat and, hence, the swimming path. To cope with the panoply of challenges to reach and fertilize the egg, sperm from different species have developed their own unique repertoire of signaling molecules and mechanisms. Here, we review the differences and commonalities for sperm sensory signaling in marine invertebrates (sea urchin), fish (zebrafish), and mammals (mouse, human).
Collapse
Affiliation(s)
- Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - U Benjamin Kaupp
- Department Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| |
Collapse
|
10
|
Reingruber J, Holcman D, Fain GL. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception. Bioessays 2015; 37:1243-52. [PMID: 26354340 DOI: 10.1002/bies.201500081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rod photoreceptors are among the most sensitive light detectors in nature. They achieve their remarkable sensitivity across a wide variety of species through a number of essential adaptations: a specialized cellular geometry, a G-protein cascade with an unusually stable receptor molecule, a low-noise transduction mechanism, a nearly perfect effector enzyme, and highly evolved mechanisms of feedback control and receptor deactivation. Practically any change in protein expression, enzyme activity, or feedback control can be shown to impair photon detection, either by decreasing sensitivity or signal-to-noise ratio, or by reducing temporal resolution. Comparison of mammals to amphibians suggests that rod outer-segment morphology and the molecules and mechanism of transduction may have evolved together to optimize light sensitivity in darkness, which culminates in the extraordinary ability of these cells to respond to single photons at the ultimate limit of visual perception.
Collapse
Affiliation(s)
- Jürgen Reingruber
- IBENS, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, Paris, France.,INSERM U1024, Paris, France
| | - David Holcman
- IBENS, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, Paris, France.,Department of Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, Terasaki Life Sciences, University of California, Los Angeles, CA, USA.,Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
The phototransduction machinery in the rod outer segment has a strong efficacy gradient. Proc Natl Acad Sci U S A 2015; 112:E2715-24. [PMID: 25941368 DOI: 10.1073/pnas.1423162112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5-10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light.
Collapse
|
12
|
Azevedo AW, Doan T, Moaven H, Sokal I, Baameur F, Vishnivetskiy SA, Homan KT, Tesmer JJG, Gurevich VV, Chen J, Rieke F. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. eLife 2015; 4:e05981. [PMID: 25910054 PMCID: PMC4438306 DOI: 10.7554/elife.05981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Thuy Doan
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Hormoz Moaven
- Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Iza Sokal
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Kristoff T Homan
- Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - John JG Tesmer
- Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Jeannie Chen
- Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
13
|
Strünker T, Alvarez L, Kaupp UB. At the physical limit - chemosensation in sperm. Curr Opin Neurobiol 2015; 34:110-6. [PMID: 25768273 DOI: 10.1016/j.conb.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/15/2022]
Abstract
Many cells probe their environment for chemical cues. Some cells respond to picomolar concentrations of neuropeptides, hormones, pheromones, or chemoattractants. At such low concentrations, cells encounter only a few molecules. The mechanistic underpinnings of single-molecule sensitivity are not known for any eukaryotic cell. Sea urchin sperm offer a unique model to unveil in quantitative terms the principles underlying chemosensation at the physical limit. Here, we discuss the mechanisms of such exquisite sensitivity and the computational operations performed by sperm during chemotactic steering. Moreover, we highlight commonalities and differences between signalling in sperm and photoreceptors and among sperm from different species.
Collapse
Affiliation(s)
- T Strünker
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - L Alvarez
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - U B Kaupp
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|
14
|
Gross OP, Pugh EN, Burns ME. cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Front Mol Neurosci 2015; 8:6. [PMID: 25788876 PMCID: PMC4349151 DOI: 10.3389/fnmol.2015.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/12/2015] [Indexed: 02/04/2023] Open
Abstract
Vertebrate vision begins when retinal photoreceptors transduce photons into electrical signals that are then relayed to other neurons in the eye, and ultimately to the brain. In rod photoreceptors, transduction of single photons is achieved by a well-understood G-protein cascade that modulates cGMP levels, and in turn, cGMP-sensitive inward current. The spatial extent and depth of the decline in cGMP during the single photon response (SPR) have been major issues in phototransduction research since the discovery that single photons elicit substantial and reproducible changes in membrane current. The spatial profile of cGMP decline during the SPR affects signal gain, and thus may contribute to reduction of trial-to-trial fluctuations in the SPR. Here we summarize the general principles of rod phototransduction, emphasizing recent advances in resolving the spatiotemporal dynamics of cGMP during the SPR.
Collapse
Affiliation(s)
- Owen P Gross
- Center for Neuroscience, University of California Davis Davis, CA, USA
| | - Edward N Pugh
- Departments of Ophthalmology and Vision Science, University of California Davis Davis, CA, USA ; Physiology and Membrane Biology, University of California Davis Davis, CA, USA ; Cell Biology and Human Anatomy, University of California Davis Davis, CA, USA
| | - Marie E Burns
- Center for Neuroscience, University of California Davis Davis, CA, USA ; Departments of Ophthalmology and Vision Science, University of California Davis Davis, CA, USA ; Cell Biology and Human Anatomy, University of California Davis Davis, CA, USA
| |
Collapse
|
15
|
Pichlo M, Bungert-Plümke S, Weyand I, Seifert R, Bönigk W, Strünker T, Kashikar ND, Goodwin N, Müller A, Pelzer P, Van Q, Enderlein J, Klemm C, Krause E, Trötschel C, Poetsch A, Kremmer E, Kaupp UB, Körschen HG, Collienne U. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. J Cell Biol 2014; 206:541-57. [PMID: 25135936 PMCID: PMC4137060 DOI: 10.1083/jcb.201402027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3',5'-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 10(5) GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces "molecule noise." Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.
Collapse
Affiliation(s)
- Magdalena Pichlo
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Stefanie Bungert-Plümke
- Marine Biological Laboratory, Woods Hole, MA 02543 Institute of Complex Systems (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ingo Weyand
- Marine Biological Laboratory, Woods Hole, MA 02543 Institute of Complex Systems (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Timo Strünker
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Nachiket Dilip Kashikar
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543 Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, England, UK
| | - Normann Goodwin
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543 Babraham Institute, Cambridge CB22 3AT, England, UK
| | - Astrid Müller
- Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Patric Pelzer
- Marine Biological Laboratory, Woods Hole, MA 02543 Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Qui Van
- III. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| | - Jörg Enderlein
- III. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| | - Clementine Klemm
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | | | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum. 44801 Bochum, Germany
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, 81377 München, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | | | | |
Collapse
|
16
|
Invergo BM, Dell'Orco D, Montanucci L, Koch KW, Bertranpetit J. A comprehensive model of the phototransduction cascade in mouse rod cells. MOLECULAR BIOSYSTEMS 2014; 10:1481-9. [PMID: 24675755 DOI: 10.1039/c3mb70584f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vertebrate visual phototransduction is perhaps the most well-studied G-protein signaling pathway. A wealth of available biochemical and electrophysiological data has resulted in a rich history of mathematical modeling of the system. However, while the most comprehensive models have relied upon amphibian biochemical and electrophysiological data, modern research typically employs mammalian species, particularly mice, which exhibit significantly faster signaling dynamics. In this work, we present an adaptation of a previously published, comprehensive model of amphibian phototransduction that can produce quantitatively accurate simulations of the murine photoresponse. We demonstrate the ability of the model to predict responses to a wide range of stimuli and under a variety of mutant conditions. Finally, we employ the model to highlight a likely unknown mechanism related to the interaction between rhodopsin and rhodopsin kinase.
Collapse
Affiliation(s)
- Brandon M Invergo
- IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
17
|
Invergo BM, Montanucci L, Koch KW, Bertranpetit J, Dell'orco D. Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell Commun Signal 2013; 11:36. [PMID: 23693153 PMCID: PMC3732082 DOI: 10.1186/1478-811x-11-36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/09/2013] [Indexed: 01/20/2023] Open
Abstract
Background Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. Results We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Conclusions Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Collapse
Affiliation(s)
- Brandon M Invergo
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| | | | | | | | | |
Collapse
|
18
|
Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV. Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 2013; 288:3394-3405. [PMID: 23250748 PMCID: PMC3561558 DOI: 10.1074/jbc.m112.445437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 01/31/2023] Open
Abstract
Arrestin-1 preferentially binds active phosphorylated rhodopsin. Previously, a mutant with enhanced binding to unphosphorylated active rhodopsin (Rh*) was shown to partially compensate for lack of rhodopsin phosphorylation in vivo. Here we showed that reengineering of the receptor binding surface of arrestin-1 further improves the binding to Rh* while preserving protein stability. In mammals, arrestin-1 readily self-associates at physiological concentrations. The biological role of this phenomenon can only be elucidated by replacing wild type arrestin-1 in living animals with a non-oligomerizing mutant retaining all other functions. We demonstrate that constitutively monomeric forms of arrestin-1 are sufficiently stable for in vivo expression. We also tested the idea that individual functions of arrestin-1 can be independently manipulated to generate mutants with the desired combinations of functional characteristics. Here we showed that this approach is feasible; stable forms of arrestin-1 with high Rh* binding can be generated with or without the ability to self-associate. These novel molecular tools open the possibility of testing of the biological role of arrestin-1 self-association and pave the way to elucidation of full potential of compensational approach to gene therapy of gain-of-function receptor mutations.
Collapse
Affiliation(s)
| | - Qiuyan Chen
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Maria C. Palazzo
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Evan K. Brooks
- the University of California Los Angeles, Los Angeles, California 90095
| | | | - Tina M. Iverson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Wayne L. Hubbell
- the University of California Los Angeles, Los Angeles, California 90095
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
19
|
Gross OP, Pugh EN, Burns ME. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 2012; 76:370-82. [PMID: 23083739 PMCID: PMC3594095 DOI: 10.1016/j.neuron.2012.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 11/26/2022]
Abstract
Rod photoreceptors generate amplified, reproducible responses to single photons via a G protein signaling cascade. Surprisingly, genetic perturbations that dramatically alter the deactivation of the principal signal amplifier, the GPCR rhodopsin (R∗), do not much alter the amplitude of single-photon responses (SPRs). These same perturbations, when crossed into a line lacking calcium feedback regulation of cGMP synthesis, produced much larger alterations in SPR amplitudes. Analysis of SPRs from rods with and without feedback reveal that the consequences of trial-to-trial fluctuations in R∗ lifetime in normal rods are also dampened by feedback regulation of cGMP synthesis. Thus, calcium feedback trumps the mechanisms of R∗ deactivation in determining the SPR amplitude, attenuating responses arising from longer R∗ lifetimes to a greater extent than those arising from shorter ones. As a result, rod SPRs achieve a more stereotyped amplitude, a characteristic considered important for reliable transmission through the visual system.
Collapse
Affiliation(s)
- Owen P. Gross
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Edward N. Pugh
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
20
|
Gross OP, Pugh EN, Burns ME. Spatiotemporal cGMP dynamics in living mouse rods. Biophys J 2012; 102:1775-84. [PMID: 22768933 DOI: 10.1016/j.bpj.2012.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022] Open
Abstract
Signaling of single photons in rod photoreceptors decreases the concentration of the second messenger, cyclic GMP (cGMP), causing closure of cGMP-sensitive channels located in the plasma membrane. Whether the spatiotemporal profiles of the fall in cGMP are narrow and deep, or broad and shallow, has important consequences for the amplification and the fidelity of signaling. The factors that determine the cGMP profiles include the diffusion coefficient for cGMP, the spontaneous rate of cGMP hydrolysis, and the rate of cGMP synthesis, which is powerfully regulated by calcium feedback mechanisms. Here, using suction electrodes to record light-dependent changes in cGMP-activated current in living mouse rods lacking calcium feedback, we have determined the rate constant of spontaneous cGMP hydrolysis and the longitudinal cGMP diffusion coefficient. These measurements result in a fully constrained spatiotemporal model of phototransduction, which we used to determine the effect of feedback to cGMP synthesis in spatially constricting the fall of cGMP during the single-photon response of normal rods. We find that the spatiotemporal cGMP profiles during the single-photon response are optimized for maximal amplification and preservation of signal linearity, effectively operating within an axial signaling domain of ~2 μm.
Collapse
Affiliation(s)
- Owen P Gross
- Center for Neuroscience, University of California, Davis, California, USA
| | | | | |
Collapse
|
21
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
22
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|