1
|
Rozova ON, But SY, Melnikov OI, Shavkunov KS, Ekimova GA, Khmelenina VN, Mustakhimov II. Methanotroph Methylotuvimicrobium alcaliphilum 20Z-3E as a fumarate producer: transcriptomic analysis and the role of malic enzyme. Int Microbiol 2025:10.1007/s10123-025-00647-6. [PMID: 40035991 DOI: 10.1007/s10123-025-00647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
The halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z is a promising biotechnological strain that has been repeatedly tested as a producer of high-added-value polycarbon compounds. The mutant M. alcaliphilum 20Z-3E lacking two fumarases and a malic enzyme is a potential fumarate producer. The analysis of strand-specific 3'-end sequencing of mRNA did not reveal any effects of the mutations on the central metabolism of the methanotroph; however, it showed a dramatic change in the expression of putative iron transport genes, as well as some genes associated with stress response. When the strain 20Z-3E grows at low salinity under methane, some part of fumarate is formed from aspartate, since the increase in salinity results in the biosynthesis of ectoine and the decrease in fumarate concentration. However, when the strain grows on methanol, the fumarate pool is lower and does not depend on the salinity of the medium. Our results have shown that deletion of the mae gene encoding malic enzyme makes a significant contribution to the fumarate accumulation. The strain 20Z-2F with the deletion of only two genes, fumI and fumII, demonstrated delayed growth under methane in comparison with 20Z and 20Z-3E strains. The branching of the tricarboxylic acid cycle due to the adenylosuccinate shunt, as well as the presence of malic enzyme, provides metabolic flexibility to M. alcaliphilum, which allows the methanotroph to adapt to a variety of external conditions and, on the other hand, us to modify its genome to obtain valuable products.
Collapse
Affiliation(s)
- O N Rozova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - S Y But
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - O I Melnikov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - K S Shavkunov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences,", Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - G A Ekimova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - V N Khmelenina
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - I I Mustakhimov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Ren Y, Liu C, Luo J, Deng X, Zheng D, Shao J, Xu Z, Zhang N, Xiong W, Liu H, Li R, Miao Y, Zhang R, Shen Q, Xun W. Substrate preference triggers metabolic patterns of indigenous microbiome during initial composting stages. BIORESOURCE TECHNOLOGY 2025; 419:132034. [PMID: 39761730 DOI: 10.1016/j.biortech.2024.132034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages. Indigenous synthetic communities exhibit substrate-specific adaptations, increasing compost temperatures by 2 %-10 %, microbial abundance by 44 %-233 %, and microbial activity by 26 %-60 %. Key dissolved substrates, such as choline and succinic acid in straw compost, and phloretin and uric acid in manure compost, drive these microbial preferences. These findings highlight how substrate-specific microbiomes can be engineered to enhance microbial activity, accelerate temperature rise, and extend the thermophilic phase, providing a targeted framework to improve composting efficiency and tailor strategies to different organic waste types.
Collapse
Affiliation(s)
- Yi Ren
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiayu Luo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Daoyue Zheng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
3
|
Jockusch S, Kräutler B. H/D-Isotope sensitive dual fluorescence of the corrin-ligand of vitamin B 12. Chem Commun (Camb) 2025; 61:3904-3907. [PMID: 39936483 PMCID: PMC11816046 DOI: 10.1039/d4cc06373b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The photoexcited state of the corrin-ligand of vitamin B12 is an old puzzle. We show here that the metal-free corrin-ligand emits dual fluorescence in its singlet excited state. As a specific consequence of the asymmetry of the natural corrin-ligand, its strongly emitting singlet excited state exists as a pair of isomers that interconvert rapidly in an unprecedented H/D-Isotope sensitive way in competition with their fluorescent decay.
Collapse
Affiliation(s)
- Steffen Jockusch
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Bernhard Kräutler
- Institute of Organic Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Zhu L, Wang Y, Wu X, Wu G, Zhang G, Liu C, Zhang S. Protein design accelerates the development and application of optogenetic tools. Comput Struct Biotechnol J 2025; 27:717-732. [PMID: 40092664 PMCID: PMC11908464 DOI: 10.1016/j.csbj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
Collapse
Affiliation(s)
| | | | - Xiaomin Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohao Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shaowei Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
5
|
Wegner SV, Raab CA. Analysis of Light-Controlled Artificial Cell-Cell Adhesions. Methods Mol Biol 2025; 2840:245-254. [PMID: 39724357 DOI: 10.1007/978-1-0716-4047-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The precise spatial and temporal regulation of cell-cell adhesions is crucial for understanding the underlying biological processes and for assembling multicellular structures in tissue engineering. Traditional approaches have relied on chemical membrane functionalization and regulated gene expression of native cell adhesion molecules (CAMs), but these methods lack the necessary control and can be detrimental to cells. In contrast, engineered photoswitchable cell-cell adhesions offer a reversible and dynamic regulation at a single-cell resolution. This is achieved by expressing different photodimerizers as artificial CAMs on the cell surfaces. Here, we describe a straightforward method for the functional analysis of these photoswitchable cell-cell adhesions in a 3D suspension culture.
Collapse
Affiliation(s)
- Seraphine V Wegner
- University of Münster Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany.
| | - Christopher A Raab
- University of Münster Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany
| |
Collapse
|
6
|
Bannon CC, Soto MA, Rowland E, Chen N, Gleason A, Devred E, LaRoche J, Bertrand EM. Production and utilization of pseudocobalamin in marine Synechococcus cultures and communities. Environ Microbiol 2024; 26:e16701. [PMID: 39445547 DOI: 10.1111/1462-2920.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024]
Abstract
Cobalamin influences marine microbial communities because an exogenous source is required by most eukaryotic phytoplankton, and demand can exceed supply. Pseudocobalamin is a cobalamin analogue produced and used by most cyanobacteria but is not directly available to eukaryotic phytoplankton. Some microbes can remodel pseudocobalamin into cobalamin, but a scarcity of pseudocobalamin measurements impedes our ability to evaluate its importance for marine cobalamin production. Here, we perform simultaneous measurements of pseudocobalamin and methionine synthase (MetH), the key protein that uses it as a co-factor, in Synechococcus cultures and communities. In Synechococcus sp. WH8102, pseudocobalamin quota decreases in low temperature (17°C) and low nitrogen to phosphorus ratio, while MetH did not. Pseudocobalamin and MetH quotas were influenced by culture methods and growth phase. Despite the variability present in cultures, we found a comparably consistent quota of 300 ± 100 pseudocobalamin molecules per cyanobacterial cell in the Northwest Atlantic Ocean, suggesting that cyanobacterial cell counts may be sufficient to estimate pseudocobalamin inventories in this region. This work offers insights into cellular pseudocobalamin metabolism, environmental and physiological conditions that may influence it, and provides environmental measurements to further our understanding of when and how pseudocobalamin can influence marine microbial communities.
Collapse
Affiliation(s)
- Catherine C Bannon
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maria A Soto
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elden Rowland
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nan Chen
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna Gleason
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emmanuel Devred
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Fok HKF, Dai X, Yi Q, Che CM, Jiang L, Duan L, Huang J, Yang Z, Sun F. Red-Shifting B 12-Dependent Photoreceptor Protein via Optical Coupling for Inducible Living Materials. Angew Chem Int Ed Engl 2024:e202411105. [PMID: 39239776 DOI: 10.1002/anie.202411105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.
Collapse
Affiliation(s)
- Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Qikun Yi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Chi Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, 999077, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Research Institute of Tsinghua Pearl River Delta, Guangzhou, 510530, China
| |
Collapse
|
8
|
García de Fuentes A, Möglich A. Reduction midpoint potential of a paradigm light-oxygen-voltage receptor and its modulation by methionine residues. RSC Chem Biol 2024; 5:530-543. [PMID: 38846079 PMCID: PMC11151830 DOI: 10.1039/d4cb00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Light-dependent adaptations of organismal physiology, development, and behavior abound in nature and depend on sensory photoreceptors. As one class, light-oxygen-voltage (LOV) photoreceptors harness flavin-nucleotide chromophores to sense blue light. Photon absorption drives the LOV receptor to its signaling state, characterized by a metastable thioadduct between the flavin and a conserved cysteine residue. With this cysteine absent, LOV receptors instead undergo photoreduction to the flavin semiquinone which however can still elicit downstream physiological responses. Irrespective of the cysteine presence, the LOV photochemical response thus entails a formal reduction of the flavin. Against this backdrop, we here investigate the reduction midpoint potential E 0 in the paradigmatic LOV2 domain from Avena sativa phototropin 1 (AsLOV2), and how it can be deliberately varied. Replacements of residues at different sites near the flavin by methionine consistently increase E 0 from its value of around -280 mV by up to 40 mV. Moreover, methionine introduction invariably impairs photoactivation efficiency and thus renders the resultant AsLOV2 variants less light-sensitive. Although individual methionine substitutions also affect the stability of the signaling state and downstream allosteric responses, no clear-cut correlation with the redox properties emerges. With a reduction midpoint potential near -280 mV, AsLOV2 and, by inference, other LOV receptors may be partially reduced inside cells which directly affects their light responsiveness. The targeted modification of the chromophore environment, as presently demonstrated, may mitigate this effect and enables the design of LOV receptors with stratified redox sensitivities.
Collapse
Affiliation(s)
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth 95447 Bayreuth Germany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth 95447 Bayreuth Germany
- North-Bavarian NMR Center, Universität Bayreuth 95447 Bayreuth Germany
| |
Collapse
|
9
|
Lu Q, Sun Y, Liang Z, Zhang Y, Wang Z, Mei Q. Nano-optogenetics for Disease Therapies. ACS NANO 2024; 18:14123-14144. [PMID: 38768091 DOI: 10.1021/acsnano.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
10
|
Pérez-Castaño R, Aranda J, Widner FJ, Kieninger C, Deery E, Warren MJ, Orozco M, Elías-Arnanz M, Padmanabhan S, Kräutler B. The Rhodium Analogue of Coenzyme B 12 as an Anti-Photoregulatory Ligand Inhibiting Bacterial CarH Photoreceptors. Angew Chem Int Ed Engl 2024; 63:e202401626. [PMID: 38416546 DOI: 10.1002/anie.202401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Florian J Widner
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona (Spain); the Joint BSC-IRB Research Program in Computational Biology, and Department of Biochemistry and Biomedicine, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física Blas Cabrera (IQF-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 119 c/Serrano, 28006, Madrid, Spain
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| |
Collapse
|
11
|
Zhang S, Jeffreys LN, Poddar H, Yu Y, Liu C, Patel K, Johannissen LO, Zhu L, Cliff MJ, Yan C, Schirò G, Weik M, Sakuma M, Levy CW, Leys D, Heyes DJ, Scrutton NS. Photocobilins integrate B 12 and bilin photochemistry for enzyme control. Nat Commun 2024; 15:2740. [PMID: 38548733 PMCID: PMC10979010 DOI: 10.1038/s41467-024-46995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.
Collapse
Affiliation(s)
- Shaowei Zhang
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China.
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Harshwardhan Poddar
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yuqi Yu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Kaylee Patel
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Cunyu Yan
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
12
|
Pucelik S, Becker M, Heyber S, Wöhlbrand L, Rabus R, Jahn D, Härtig E. The blue light-dependent LOV-protein LdaP of Dinoroseobacter shibae acts as antirepressor of the PpsR repressor, regulating photosynthetic gene cluster expression. Front Microbiol 2024; 15:1351297. [PMID: 38404597 PMCID: PMC10890935 DOI: 10.3389/fmicb.2024.1351297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In the marine α-proteobacterium Dinoroseobacter shibae more than 40 genes of the aerobic anoxygenic photosynthesis are regulated in a light-dependent manner. A genome-wide screen of 5,605 clones from a D. shibae transposon library for loss of pigmentation and changes in bacteriochlorophyll absorbance identified 179 mutant clones. The gene encoding the LOV-domain containing protein Dshi_1135 was identified by its colorless phenotype. The mutant phenotype was complemented by the expression of a Dshi_1135-strep fusion protein in trans. The recombinantly produced and chromatographically purified Dshi_1135 protein was able to undergo a blue light-induced photocycle mediated by bound FMN. Transcriptome analyses revealed an essential role for Dshi_1135 in the light-dependent expression of the photosynthetic gene cluster. Interactomic studies identified the repressor protein PpsR as an interaction partner of Dshi_1135. The physical contact between PpsR and the Dshi_1135 protein was verified in vivo using the bacterial adenylate cyclase-based two-hybrid system. In addition, the antirepressor function of the Dshi_1135 protein was demonstrated in vivo testing of a bchF-lacZ reporter gene fusion in a heterologous Escherichia coli-based host system. We therefore propose to rename the Dshi_1135 protein to LdaP (light-dependent antirepressor of PpsR). Using the bacterial two-hybrid system, it was also shown that cobalamin (B12) is essential for the interaction of the antirepressor PpaA with PpsR. A regulatory model for the photosynthetic gene cluster in D. shibae was derived, including the repressor PpsR, the light-dependent antirepressor LdaP and the B12-dependent antirepressor PpaA.
Collapse
Affiliation(s)
- Saskia Pucelik
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Miriam Becker
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffi Heyber
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Tulin G, Figueroa NR, Checa SK, Soncini FC. The multifarious MerR family of transcriptional regulators. Mol Microbiol 2024; 121:230-242. [PMID: 38105009 DOI: 10.1111/mmi.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The MerR family of transcriptional regulators includes a variety of bacterial cytoplasmic proteins that respond to a wide range of signals, including toxins, metal ions, and endogenous metabolites. Its best-characterized members share similar structural and functional features with the family founder, the mercury sensor MerR, although most of them do not respond to metal ions. The group of "canonical" MerR homologs displays common molecular mechanisms for controlling the transcriptional activation of their target genes in response to inducer signals. This includes the recognition of distinctive operator sequences located at suboptimal σ70 -dependent promoters. Interestingly, an increasing number of proteins assigned to the MerR family based on their DNA-binding domain do not match in structure, sequence, or mode of action with any of the canonical MerR-like regulators. Here, we analyzed several members of the family, including this last group. Based on a phylogenetic analysis, and similarities in structural/functional features and position of their target operators relative to the promoter elements, we propose to assign these "atypical/divergent" MerR regulators to a phylogenetically separated group. These atypical/divergent homologs represent a new class of transcriptional regulators with novel regulatory mechanisms.
Collapse
Affiliation(s)
- Gonzalo Tulin
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Nicolás R Figueroa
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| |
Collapse
|
14
|
Chen H, Chen TY. From Monomers to Hexamers: A Theoretical Probability of the Neighbor Density Approach to Dissect Protein Oligomerization in Cells. Anal Chem 2024; 96:895-903. [PMID: 38156958 PMCID: PMC10842889 DOI: 10.1021/acs.analchem.3c04728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Deciphering the oligomeric state of proteins within cells is pivotal to understanding their role in intricate cellular processes. With the recent advances in single-molecule localization microscopy, previous efforts have harnessed protein location density approaches, coupled with simulations, to extract membrane protein oligomeric states in cells, highlighting the value of such techniques. However, a comprehensive theoretical approach that can be universally applied across different proteins (e.g., membrane and cytosolic proteins) remains elusive. Here, we introduce the theoretical probability of neighbor density (PND) as a robust tool to discern protein oligomeric states in cellular environments. Utilizing our approach, the theoretical PND was validated against simulated data for both membrane and cytosolic proteins, consistently aligning with experimental baselines for membrane proteins. This congruence was maintained even when adjusting for protein concentrations or exploring proteins of various oligomeric states. The strength of our method lies not only in its precision but also in its adaptability, accommodating diverse cellular protein scenarios without compromising the accuracy. The development and validation of the theoretical PND facilitate accurate protein oligomeric state determination and bolster our understanding of protein-mediated cellular functions.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204
| |
Collapse
|
15
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
16
|
Li J, Kumar A, Lewis JC. Non-native Intramolecular Radical Cyclization Catalyzed by a B 12 -Dependent Enzyme. Angew Chem Int Ed Engl 2023; 62:e202312893. [PMID: 37874184 PMCID: PMC11328698 DOI: 10.1002/anie.202312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Despite the unique reactivity of vitamin B12 and its derivatives, B12 -dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12 -dependent transcription factor CarH to enable non-native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ- and δ-lactams through either redox-neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12 cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3-diene products instead of 1,4-dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12 and expanding the synthetic utility of B12 -dependent enzymes.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Amardeep Kumar
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Camacho IS, Wall E, Sazanovich IV, Gozzard E, Towrie M, Hunt NT, Hay S, Jones AR. Tuning of B 12 photochemistry in the CarH photoreceptor to avoid radical photoproducts. Chem Commun (Camb) 2023; 59:13014-13017. [PMID: 37831010 DOI: 10.1039/d3cc03900e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the light-activated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
Collapse
Affiliation(s)
- Ines S Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| | - Emma Wall
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Igor V Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Emma Gozzard
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Mike Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| |
Collapse
|
18
|
Zhao Y, Liu Z, Zhang B, Cai J, Yao X, Zhang M, Deng Y, Hu B. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat Commun 2023; 14:5394. [PMID: 37669961 PMCID: PMC10480208 DOI: 10.1038/s41467-023-41224-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Mutualism is commonly observed in nature but not often reported for bacterial communities. Although abiotic stress is thought to promote microbial mutualism, there is a paucity of research in this area. Here, we monitor microbial communities in a quasi-natural composting system, where temperature variation (20 °C-70 °C) is the main abiotic stress. Genomic analyses and culturing experiments provide evidence that temperature selects for slow-growing and stress-tolerant strains (i.e., Thermobifida fusca and Saccharomonospora viridis), and mutualistic interactions emerge between them and the remaining strains through the sharing of cobalamin. Comparison of 3000 bacterial pairings reveals that mutualism is common (~39.1%) and competition is rare (~13.9%) in pairs involving T. fusca and S. viridis. Overall, our work provides insights into how high temperature can favour mutualism and reduce competition at both the community and species levels.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Poddar H, Rios-Santacruz R, Heyes DJ, Shanmugam M, Brookfield A, Johannissen LO, Levy CW, Jeffreys LN, Zhang S, Sakuma M, Colletier JP, Hay S, Schirò G, Weik M, Scrutton NS, Leys D. Redox driven B 12-ligand switch drives CarH photoresponse. Nat Commun 2023; 14:5082. [PMID: 37604813 PMCID: PMC10442372 DOI: 10.1038/s41467-023-40817-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Ronald Rios-Santacruz
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Muralidharan Shanmugam
- Photon Science Institute, Department of Chemistry, University of Manchester, Manchester, UK
| | - Adam Brookfield
- Photon Science Institute, Department of Chemistry, University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK.
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Mackintosh MJ, Lodowski P, Kozlowski PM. Photoproduct formation in coenzyme B 12-dependent CarH photoreceptor via a triplet pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112751. [PMID: 37441852 DOI: 10.1016/j.jphotobiol.2023.112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
CarH is a cobalamin-based photoreceptor which has attracted significant interest due to its complex mechanism involving its organometallic coenzyme-B12 chromophore. While several experimental and computational studies have sought to understand CarH's mechanism of action, there are still many aspects of the mechanism which remain unclear. While light is needed to activate the Co-C5' bond, it is not entirely clear whether reaction pathway involves singlet or triplet diradical states. A recent experimental study implicated triplet pathway and importance of intersystem crossing (ISC) as a viable mechanistic route for photoproduct formation in CarH. Herein, a combined quantum mechanics/molecular mechanics approach (QM/MM) was used to explore the involvement of triplet states in CarH. Two possibilities were explored. The first possibility involved photo-induced homolytic cleavage of the Co-C5' where the radical pair (RP) would deactivate to a triplet state (T0) on the ground state potential energy surface (PES). However, a pathway for the formation of the photoproduct, 4',5'-anhydroadenosine (anhAdo), on the triplet ground state PES was not energetically feasible. The second possibility involved exploring a manifold of low-lying triplet excited states computed using TD-DFT within the QM/MM framework. Viable crossings of triplet excited states with singlet excited states were identified using semiclassical Landau-Zener theory and the effectiveness of spin-orbit coupling by El-Sayed rules. Several candidates along both the Co-NIm potential energy curve (PEC) and Co-C5'/Co-NIm PES were identified, which appear to corroborate experimental findings and implicate the possible role of triplet states in CarH.
Collapse
Affiliation(s)
- Megan J Mackintosh
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Piotr Lodowski
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
21
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
22
|
Complete Genome Sequence Assembly and Annotation for Myxococcus xanthus Strains DK1050 and DK101. Microbiol Resour Announc 2023; 12:e0102022. [PMID: 36749079 PMCID: PMC10019317 DOI: 10.1128/mra.01020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Myxococcus xanthus is a social Gram-negative soil bacterium and the best studied member of the order Myxococcales in the class Deltaproteobacteria, which was recently reclassified as the phylum Myxococcota. Here, we report complete genomes, obtained using Illumina and PacBio sequencing, of M. xanthus strains DK1050 and DK101 (GenBank accession numbers CP104804 and CP104803, respectively).
Collapse
|
23
|
Chen X, Liu Z, Lou C, Guan Y, Ouyang Q, Xiang Y. Improving cooperativity of transcription activators by oligomerization domains in mammalian cells. Synth Syst Biotechnol 2023; 8:114-120. [PMID: 36605704 PMCID: PMC9804245 DOI: 10.1016/j.synbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cooperative activation is critical for the applications of synthetic biology in mammalian cells. In this study, we have developed cooperative transcription factor by fusing oligomerization domain in mammalian cells. Firstly, we demonstrated that two oligomerized domains (CI434 and CI) successfully improved transcription factor cooperativity in bacterial cells but failed to increase cooperativity in mammalian cells, possibly because the additional mammalian activation domain disrupted their oligomerization capability. Therefore, we chose a different type of oligomerized domain (CarHC), whose ability to oligomerize is not dependent on its C-terminal domains, to fuse with a transcription factor (RpaR) and activation domain (VTR3), forming a potential cooperative transcription activator RpaR-CarH-VTR3 for mammalian regulatory systems. Compared with RpaR-VTR3, the cooperativity of RpaR-CarH-VTR3 was significantly improved with higher Hill coefficient and a narrower input range in the inducible switch system in mammalian cells. Moreover, a mathematical model based on statistical mechanics model was developed and the simulation results supported the hypothesis that the tetramer of the CarH domain in mammalian cells was the reason for the cooperative capacity of RpaR-CarH-VTR3.
Collapse
Affiliation(s)
- Xinmao Chen
- School of Physics, Peking University, Beijing, 100871, China
| | - Ziming Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Guan
- School of Physics, Peking University, Beijing, 100871, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100871, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing, 100871, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
24
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Koide T, Ono T, Shimakoshi H, Hisaeda Y. Functions of bioinspired pyrrole cobalt complexes–recently developed catalytic systems of vitamin B12 related complexes and porphycene complexes–. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
27
|
Padmanabhan S, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Del Rey Navalón I, Pérez-Castaño R, Galbis-Martínez ML, Fontes M, Elías-Arnanz M. Plasmalogens and Photooxidative Stress Signaling in Myxobacteria, and How it Unmasked CarF/TMEM189 as the Δ1'-Desaturase PEDS1 for Human Plasmalogen Biosynthesis. Front Cell Dev Biol 2022; 10:884689. [PMID: 35646900 PMCID: PMC9131029 DOI: 10.3389/fcell.2022.884689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond that endows them with unique physical-chemical properties. They have proposed biological roles in membrane organization, fluidity, signaling, and antioxidative functions, and abnormal plasmalogen levels correlate with various human pathologies, including cancer and Alzheimer’s disease. The presence of plasmalogens in animals and in anaerobic bacteria, but not in plants and fungi, is well-documented. However, their occurrence in the obligately aerobic myxobacteria, exceptional among aerobic bacteria, is often overlooked. Tellingly, discovery of the key desaturase indispensable for vinyl ether bond formation, and therefore fundamental in plasmalogen biogenesis, emerged from delving into how the soil myxobacterium Myxococcus xanthus responds to light. A recent pioneering study unmasked myxobacterial CarF and its human ortholog TMEM189 as the long-sought plasmanylethanolamine desaturase (PEDS1), thus opening a crucial door to study plasmalogen biogenesis, functions, and roles in disease. The findings demonstrated the broad evolutionary sweep of the enzyme and also firmly established a specific signaling role for plasmalogens in a photooxidative stress response. Here, we will recount our take on this fascinating story and its implications, and review the current state of knowledge on plasmalogens, their biosynthesis and functions in the aerobic myxobacteria.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Irene Del Rey Navalón
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
28
|
Investigating radical pair reaction dynamics of B 12 coenzymes 2: Time-resolved electron paramagnetic resonance spectroscopy. Methods Enzymol 2022; 669:283-301. [PMID: 35644175 DOI: 10.1016/bs.mie.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemistry of B12 coenzymes is highly sensitive to the nature of their upper axial ligand and can be further tuned by their environment. Methylcobalamin, for example, generates RPs photochemically but undergoes non-radical biochemistry when bound to its dependent enzymes. Owing to the transient nature of the reaction intermediates, it remains a challenge to investigate how their environment controls reactivity. Here, we describe how to use time-resolved electron paramagnetic spectroscopy to directly monitor the generation and evolution of transient radicals that result from the photolysis of a B12 coenzyme. This method produces evolving, spin-polarized spectra that are rich in mechanistic detail.
Collapse
|
29
|
Hughes JA, Hardman SJO, Lukinović V, Woodward JR, Jones AR. Investigating radical pair reaction dynamics of B 12 coenzymes 1: Transient absorption spectroscopy and magnetic field effects. Methods Enzymol 2022; 669:261-281. [PMID: 35644174 DOI: 10.1016/bs.mie.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B12 coenzymes are vital to healthy biological function across nature. They undergo radical chemistry in a variety of contexts, where spin-correlated radical pairs can be generated both thermally and photochemically. Owing to the unusual magnetic properties of B12 radical pairs, however, most of the reaction and spin dynamics occur on a timescale (picoseconds-nanoseconds) that cannot be resolved by most measurement techniques. Here, we describe a method that combines femtosecond transient absorption spectroscopy with magnetic field exposure, which enables the direct scrutiny of such rapid processes. This approach should provide a means by which to investigate the apparently profound effect protein environments have on the generation and reactivity of B12 radical pairs.
Collapse
Affiliation(s)
- Joanna A Hughes
- Laboratory of Ultrafast Spectroscopy, ISIC, and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | | | | | - Alex R Jones
- Biometrology, Department of Chemical and Biological Sciences, National Physical Laboratory, Middlesex, United Kingdom.
| |
Collapse
|
30
|
Poddar H, Heyes DJ, Zhang S, Hardman SJ, Sakuma M, Scrutton NS. An unusual light-sensing function for coenzyme B 12 in bacterial transcription regulator CarH. Methods Enzymol 2022; 668:349-372. [PMID: 35589201 DOI: 10.1016/bs.mie.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coenzyme B12 is one of the most complex cofactors found in nature and synthesized de novo by certain groups of bacteria. Although its use in various enzymatic reactions is well characterized, only recently an unusual light-sensing function has been ascribed to coenzyme B12. It has been reported that the coenzyme B12 binding protein CarH, found in the carotenoid biosynthesis pathway of several thermostable bacteria, binds to the promoter region of DNA and suppresses transcription. To overcome the harmful effects of light-induced damage in the cells, CarH releases DNA in the presence of light and promotes transcription and synthesis of carotenoids, thereby working as a photoreceptor. CarH is able to achieve this by exploiting the photosensitive nature of the CoC bond between the adenosyl moiety and the cobalt atom in the coenzyme B12 molecule. Extensive structural and spectroscopy studies provided a mechanistic understanding of the molecular basis of this unique light-sensitive reaction. Most studies on CarH have used the ortholog from the thermostable bacterium Thermus thermophilus, due to the ease with which it can be expressed and purified in high quantities. In this chapter we give an overview of this intriguing class of photoreceptors and report a step-by-step protocol for expression, purification and spectroscopy experiments (both static and time-resolved techniques) employed in our laboratory to study CarH from T. thermophilus. We hope the contents of this chapter will be of interest to the wider coenzyme B12 community and apprise them of the potential and possibilities of using coenzyme B12 as a light-sensing probe in a protein scaffold.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Samantha J Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
31
|
Baumschlager A. Engineering Light-Control in Biology. Front Bioeng Biotechnol 2022; 10:901300. [PMID: 35573251 PMCID: PMC9096073 DOI: 10.3389/fbioe.2022.901300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| |
Collapse
|
32
|
Dragnea V, Gonzalez-Gutierrez G, Bauer CE. Structural Analyses of CrtJ and Its B 12-Binding Co-Regulators SAerR and LAerR from the Purple Photosynthetic Bacterium Rhodobacter capsulatus. Microorganisms 2022; 10:912. [PMID: 35630357 PMCID: PMC9144470 DOI: 10.3390/microorganisms10050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Among purple photosynthetic bacteria, the transcription factor CrtJ is a major regulator of photosystem gene expression. Depending on growing conditions, CrtJ can function as an aerobic repressor or an anaerobic activator of photosystem genes. Recently, CrtJ's activity was shown to be modulated by two size variants of a B12 binding co-regulator called SAerR and LAerR in Rhodobacter capsulatus. The short form, SAerR, promotes CrtJ repression, while the longer variant, LAerR, converts CrtJ into an activator. In this study, we solved the crystal structure of R. capsulatus SAerR at a 2.25 Å resolution. Hydroxycobalamin bound to SAerR is sandwiched between a 4-helix bundle cap, and a Rossman fold. This structure is similar to a AerR-like domain present in CarH from Thermus termophilus, which is a combined photoreceptor/transcription regulator. We also utilized AlphaFold software to predict structures for the LAerR, CrtJ, SAerR-CrtJ and LAerR-CrtJ co-complexes. These structures provide insights into the role of B12 and an LAerR N-terminal extension in regulating the activity of CrtJ.
Collapse
Affiliation(s)
| | | | - Carl E. Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA; (V.D.); (G.G.-G.)
| |
Collapse
|
33
|
Padmanabhan S, Pérez-Castaño R, Osete-Alcaraz L, Polanco MC, Elías-Arnanz M. Vitamin B 12 photoreceptors. VITAMINS AND HORMONES 2022; 119:149-184. [PMID: 35337618 DOI: 10.1016/bs.vh.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Lucía Osete-Alcaraz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
34
|
Dent MR, Roberts MG, Bowman HE, Weaver BR, McCaslin DR, Burstyn JN. Quaternary Structure and Deoxyribonucleic Acid-Binding Properties of the Heme-Dependent, CO-Sensing Transcriptional Regulator PxRcoM. Biochemistry 2022; 61:678-688. [PMID: 35394749 PMCID: PMC11155679 DOI: 10.1021/acs.biochem.2c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RcoM, a heme-containing, CO-sensing transcription factor, is one of two known bacterial regulators of CO metabolism. Unlike its analogue CooA, the structure and DNA-binding properties of RcoM remain largely uncharacterized. Using a combination of size exclusion chromatography and sedimentation equilibrium, we demonstrate that RcoM-1 from Paraburkholderia xenovorans is a dimer, wherein the heme-binding domain mediates dimerization. Using bioinformatics, we show that RcoM is found in three distinct genomic contexts, in accordance with the previous literature. We propose a refined consensus DNA-binding sequence for RcoM based on sequence alignments of coxM-associated promoters. The RcoM promoter consensus sequence bears two well-conserved direct repeats, consistent with other LytTR domain-containing transcription factors. In addition, there is a third, moderately conserved direct repeat site. Surprisingly, PxRcoM-1 requires all three repeat sites to cooperatively bind DNA with a [P]1/2 of 250 ± 10 nM and an average Hill coefficient, n, of 1.7 ± 0.1. The paralog PxRcoM-2 binds to the same triplet motif with comparable affinity and cooperativity. Considering this unusual DNA binding stoichiometry, that is, a dimeric protein with a triplet DNA repeat-binding site, we hypothesize that RcoM interacts with DNA in a manner distinct from other LytTR domain-containing transcription factors.
Collapse
Affiliation(s)
- Matthew R Dent
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Madeleine G Roberts
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hannah E Bowman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian R Weaver
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Darrell R McCaslin
- Biophysics Instrumentation Facility, Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
35
|
Yang Z, Fok HKF, Luo J, Yang Y, Wang R, Huang X, Sun F. B 12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics. SCIENCE ADVANCES 2022; 8:eabm5482. [PMID: 35363531 PMCID: PMC10938628 DOI: 10.1126/sciadv.abm5482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Although the tools based on split proteins have found broad applications, ranging from controlled biological signaling to advanced molecular architectures, many of them suffer from drawbacks such as background reassembly, low thermodynamic stability, and static structural features. Here, we present a chemically inducible protein assembly method enabled by the dissection of the carboxyl-terminal domain of a B12-dependent photoreceptor, CarHC. The resulting segments reassemble efficiently upon addition of cobalamin (AdoB12, MeB12, or CNB12). Photolysis of the cofactors such as AdoB12 and MeB12 further leads to stable protein adducts harboring a bis-His-ligated B12. Split CarHC enables the creation of a series of protein hydrogels, of which the mechanics can be either photostrengthened or photoweakened, depending on the type of B12. These materials are also well suited for three dimensional cell culturing. Together, this new protein chemistry, featuring negligible background autoassembly, stable conjugation, and phototunability, has opened up opportunities for designing smart materials.
Collapse
Affiliation(s)
- Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiren Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yang Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ri Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xinyu Huang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
- Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
36
|
Ghosh AP, Lodowski P, Kozlowski PM. Aerobic photolysis of methylcobalamin: unraveling the photoreaction mechanism. Phys Chem Chem Phys 2022; 24:6093-6106. [PMID: 35212341 DOI: 10.1039/d1cp02013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-reactivity of cobalamins (Cbls) is influenced by the nature of axial ligands and the cofactor's environment. While the biologically active forms of Cbls with alkyl axial ligands, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are considered to be photolytically active, in contrast, the non-alkyl Cbls are photostable. In addition to these, the photolytic properties of Cbls can also be modulated in the presence of molecular oxygen, i.e., under aerobic conditions. Herein, the photoreaction of the MeCbl in the presence of oxygen has been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT). The first stage of the aerobic photoreaction is the activation of the Co-C bond and the formation of the ligand field (LF) electronic state through the displacement of axial bonds. Once the photoreaction reaches the LF excited state, three processes can occur: namely the formation of OO-CH3 through the reaction of CH3 with molecular oxygen, de-activation of the {Im⋯[CoII(corrin)]⋯CH3}+ sub-system from the LF electronic state by changing the electronic configuration from (dyz)1(dz2)2 to (dyz)2(dz2)1 and the formation of the deactivation complex (DC) complex via the recombination of OO-CH3 species with the de-excited [CoII(corrin)] system. In the proposed mechanism, the deactivation of the [CoII(corrin)] subsystem may coexist with the formation of OO-CH3, followed by immediate relaxation of the subsystems in the ground state. Moreover, the formation of the OO-CH3 species followed by the formation of the {[CoIII(corrin)]-OO-CH3}+ complex stabilizes the system compared to the reactant complex.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
37
|
Ghosh AP, Toda MJ, Kozlowski PM. Photolytic properties of B 12-dependent enzymes: A theoretical perspective. VITAMINS AND HORMONES 2022; 119:185-220. [PMID: 35337619 DOI: 10.1016/bs.vh.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically active vitamin B12 derivates, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are ubiquitous organometallic cofactors. In addition to their key roles in enzymatic catalysis, B12 cofactors have complex photolytic properties which have been the target of experimental and theoretical studies. With the recent discovery of B12-dependent photoreceptors, there is an increased need to elucidate the underlying photochemical mechanisms of these systems. This book chapter summarizes the photolytic properties of MeCbl- and AdoCbl-dependent enzymes with particular emphasis on the effect of the environment of the cofactor on the excited state processes. These systems include isolated MeCbl and AdoCbl as well as the enzymes, ethanolamine ammonia-lyase (EAL), glutamate mutase (GLM), methionine synthase (MetH), and photoreceptor CarH. Central to determining the photodissociation mechanism of each system is the analysis of the lowest singlet excited state (S1) potential energy surface (PES). Time-dependent density functional theory (TD-DFT), employing BP86/TZVPP, is widely used to construct such PESs. Regardless of the environment, the topology of the S1 PES of AdoCbl or MeCbl is marked by characteristic features, namely the metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions. Conversely, the relative energetics of these electronic states are affected by the environment. Applications and outlooks for Cbl photochemistry are also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
38
|
Jin X, Yang Y, Cao H, Gao B, Zhao Z. Eco-phylogenetic analyses reveal divergent evolution of vitamin B 12 metabolism in the marine bacterial family 'Psychromonadaceae'. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:147-163. [PMID: 34921716 DOI: 10.1111/1758-2229.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Cobalamin (vitamin B12 ) is an essential micronutrient required by both prokaryotes and eukaryotes. Nevertheless, with high genetic and metabolic cost, de novo cobalamin biosynthesis is exclusive to a subset of prokaryotic taxa. Many Cyanobacterial and Archaeal taxa have been implicated in de novo cobalamin biosynthesis in epi- and mesopelagic ocean respectively. However, the contributions of Gammaproteobacteria particularly the family 'Psychromonadaceae' is largely unknown. Through phylo-pangenomic analyses using concatenated single-copy proteins and homologous gene clusters respectively, the phylogenies within 'Psychromonadaceae' recapitulate both their taxonomic delineations and environmental distributions. Moreover, uneven distribution of cobalamin de novo biosynthetic operon and cobalamin-dependent light-responsive regulon were observed, and of which the linkages to the environmental conditions where cobalamin availability and light regime can be varied respectively were discussed, suggesting the impacts of ecological divergence in shaping their disparate cobalamin-related metabolisms. Functional analysis demonstrated a varying degree of cobalamin dependency for both central metabolic processes and cobalamin-mediated light-responsive regulation, and underlying sequence characteristics of cis- and trans-regulatory elements were revealed. Our findings emphasized the potential roles of cobalamin in shaping the ecological distributions and driving the metabolic evolution in the marine bacterial family 'Psychromonadaceae', and have further implications for an improved understanding of nutritional interdependencies and community metabolism modulated by cobalamin.
Collapse
Affiliation(s)
- Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yaofang Yang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Haihang Cao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| |
Collapse
|
39
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
40
|
Yang X, Gerroll BHR, Jiang Y, Kumar A, Zubi YS, Baker LA, Lewis JC. Controlling Non-Native Cobalamin Reactivity and Catalysis in the Transcription Factor CarH. ACS Catal 2022; 12:935-942. [PMID: 35340760 DOI: 10.1021/acscatal.1c04748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vitamin B12 derivatives catalyze a wide range of organic transformations, but B12-dependent enzymes are underutilized in biocatalysis relative to other metalloenzymes. In this study, we engineered a variant of the transcription factor CarH, called CarH*, that catalyzes styrene C-H alkylation with improved yields (2-6.5-fold) and selectivity relative to cobalamin. While the native function of CarH involves transcription regulation via adenosylcobalamin (AdoCbl) Co(III)-carbon bond cleavage and β-hydride elimination to generate 4',5'-didehydroadenosine, CarH*-catalyzed styrene alkylation proceeds via non-native oxidative addition and olefin addition coupled with a native-like β-hydride elimination. Mechanistic studies on this reaction echo findings from earlier studies on AdoCbl homolysis to suggest that CarH* selectivity results from its ability to impart a cage effect on radical intermediates. These findings lay the groundwork for the development of B12-dependent enzymes as catalysts for non-native transformations.
Collapse
Affiliation(s)
- Xinhang Yang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Amardeep Kumar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yasmine S. Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A. Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Pérez-Castaño R, Bastida-Martínez E, Fernández Zapata J, Polanco MDC, Galbis-Martínez ML, Iniesta AA, Fontes M, Padmanabhan S, Elías-Arnanz M. Coenzyme B 12 -dependent and independent photoregulation of carotenogenesis across Myxococcales. Environ Microbiol 2022; 24:1865-1886. [PMID: 35005822 PMCID: PMC9304148 DOI: 10.1111/1462-2920.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Light-induced carotenogenesis in Myxococcus xanthus is controlled by the B12 -based CarH repressor and photoreceptor, and by a separate intricate pathway involving singlet oxygen, the B12 -independent CarH paralog CarA and various other proteins, some eukaryotic-like. Whether other myxobacteria conserve these pathways and undergo photoregulated carotenogenesis is unknown. Here, comparative analyses across 27 Myxococcales genomes identified carotenogenic genes, albeit arranged differently, with carH often in their genomic vicinity, in all three Myxococcales suborders. However, CarA and its associated factors were found exclusively in suborder Cystobacterineae, with carA-carH invariably in tandem in a syntenic carotenogenic operon, except for Cystobacter/Melittangium, which lack CarA but retain all other factors. We experimentally show B12 -mediated photoregulated carotenogenesis in representative myxobacteria, and a remarkably plastic CarH operator design and DNA binding across Myxococcales. Unlike the two characterized CarH from other phyla, which are tetrameric, Cystobacter CarH (the first myxobacterial homolog amenable to analysis in vitro) is a dimer that combines direct CarH-like B12 -based photoregulation with CarA-like DNA-binding and inhibition by an antirepressor. This study provides new molecular insights into B12 -dependent photoreceptors. It further establishes the B12 -dependent pathway for photoregulated carotenogenesis as broadly prevalent across myxobacteria and its evolution, exclusively in one suborder, into a parallel complex B12 -independent circuit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Jesús Fernández Zapata
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - María Del Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
42
|
Fok HKF, Yang Z, Jiang B, Sun F. From 4-arm star proteins to diverse stimuli-responsive molecular networks enabled by orthogonal genetically encoded click chemistries. Polym Chem 2022. [DOI: 10.1039/d2py00036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integrated use of genetically encoded click chemistries and protein topology engineering enabled the creation of various smart protein hydrogels.
Collapse
Affiliation(s)
- Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bojing Jiang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
| |
Collapse
|
43
|
Li Y, Sun J, Li J, Liu K, Zhang H. Engineered protein nanodrug as an emerging therapeutic tool. NANO RESEARCH 2022; 15:5161-5172. [PMID: 35281219 PMCID: PMC8900963 DOI: 10.1007/s12274-022-4103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Functional proteins are the most versatile macromolecules. They can be obtained by extraction from natural sources or by genetic engineering technologies. The outstanding selectivity, specificity, binding activity, and biocompatibility endow engineered proteins with outstanding performance for disease therapy. Nevertheless, their stability is dramatically impaired in blood circulation, hindering clinical translations. Thus, many strategies have been developed to improve the stability, efficacy, bioavailability, and productivity of therapeutic proteins for clinical applications. In this review, we summarize the recent progress in the fabrication and application of therapeutic proteins. We first introduce various strategies for improving therapeutic efficacy via bioengineering and nanoassembly. Furthermore, we highlight their diverse applications as growth factors, nanovaccines, antibody-based drugs, bioimaging molecules, and cytokine receptor antagonists. Finally, a summary and perspective for the future development of therapeutic proteins are presented.
Collapse
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081 Germany
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
44
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
45
|
Cooper CL, Panitz N, Edwards TA, Goyal P. Role of the CarH photoreceptor protein environment in the modulation of cobalamin photochemistry. Biophys J 2021; 120:3688-3696. [PMID: 34310939 DOI: 10.1016/j.bpj.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/17/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemistry of cobalamins has recently been found to have biological importance, with the discovery of bacterial photoreceptor proteins, such as CarH and AerR. CarH and AerR, are involved in the light regulation of carotenoid biosynthesis and bacteriochlorophyll biosynthesis, respectively, in bacteria. Experimental transient absorption spectroscopic studies have indicated unusual photochemical behavior of 5'-deoxy-5'-adenosylcobalamin (AdoCbl) in CarH, with excited-state charge separation between cobalt and adenosyl and possible heterolytic cleavage of the Co-adenosyl bond, as opposed to the homolytic cleavage observed in aqueous solution and in many AdoCbl-based enzymes. We employ molecular dynamics and hybrid quantum mechanical/molecular mechanical calculations to obtain a microscopic understanding of the modulation of the excited electronic states of AdoCbl by the CarH protein environment, in contrast to aqueous solution and AdoCbl-based enzymes. Our results indicate a progressive stabilization of the electronic states involving charge transfer (CT) from cobalt/corrin to adenine on changing the environment from gas phase to water to solvated CarH. The solvent exposure of the adenosyl ligand in CarH, the π-stacking interaction between a tryptophan and the adenine moiety, and the hydrogen-bonding interaction between a glutamate and the lower axial ligand of cobalt are found to contribute to the stabilization of the states involving CT to adenine. The combination of these three factors, the latter two of which can be experimentally tested via mutagenesis studies, is absent in an aqueous solvent environment and in AdoCbl-based enzymes. The favored CT from metal and/or corrin to adenine in CarH may promote heterolytic cleavage of the cobalt-adenosyl bond proposed by experimental studies. Overall, this work provides novel, to our knowledge, physical insights into the mechanism of CarH function and directions for future experimental investigations. The fundamental understanding of the mechanism of CarH functioning will serve the development of optogenetic tools based on the new class of B12-dependent photoreceptors.
Collapse
Affiliation(s)
- Courtney L Cooper
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Naftali Panitz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Travyse A Edwards
- Department of Physics, State University of New York at Binghamton, Binghamton, New York
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
46
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
47
|
Abstract
Cobalamin (vitamin B12; VB12) is an indispensable nutrient for all living entities in the Earth’s biosphere and plays a vital role in both natural and host environments. Currently in the metagenomic era, gene families of interest are extracted and analyzed based on functional profiles by searching shotgun metagenomes against public databases. However, critical issues exist in applying public databases for specific processes such as VB12 biosynthesis pathways. We developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 biosynthesis gene families of microbial communities in complex environments. VB12Path contains a total of 60 VB12 synthesis gene families, 287,731 sequences, and 21,154 homology groups, and it aims to provide accurate functional and taxonomic profiles of VB12 synthesis pathways for shotgun metagenomes and minimize false-positive assignments. VB12Path was applied to characterize cobalamin biosynthesis gene families in human intestines and marine environments. The results demonstrated that ocean and human intestine had dramatically different VB12 synthesis processes and that gene families belonging to salvage and remodeling pathway dominated human intestine but were lowest in the ocean ecosystem. VB12Path is expected to be a useful tool to study cobalamin biosynthesis processes via shotgun metagenome sequencing in both environmental and human microbiome research. IMPORTANCE Vitamin B12 (VB12) is an indispensable nutrient for all living entities in the world but can only be synthesized by a small subset of prokaryotes. Therefore, this small subset of prokaryotes controls ecosystem stability and host health to some extent. However, critical accuracy and comprehensiveness issues exist in applying public databases to profile VB12 synthetic gene families and taxonomic groups in complex metagenomes. In this study, we developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 communities in complex environments. VB12Path is expected to serve as a valuable tool to uncover the hidden microbial communities producing this precious nutrient on Earth.
Collapse
|
48
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
49
|
Camacho IS, Black R, Heyes DJ, Johannissen LO, Ramakers LAI, Bellina B, Barran PE, Hay S, Jones AR. Interplay between chromophore binding and domain assembly by the B 12-dependent photoreceptor protein, CarH. Chem Sci 2021; 12:8333-8341. [PMID: 34221314 PMCID: PMC8221060 DOI: 10.1039/d1sc00522g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organisms across the natural world respond to their environment through the action of photoreceptor proteins. The vitamin B12-dependent photoreceptor, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids to protect against photo-oxidative stress. The binding of B12 to CarH monomers in the dark results in the formation of a homo-tetramer that complexes with DNA; B12 photochemistry results in tetramer dissociation, releasing DNA for transcription. Although the details of the response of CarH to light are beginning to emerge, the biophysical mechanism of B12-binding in the dark and how this drives domain assembly is poorly understood. Here – using a combination of molecular dynamics simulations, native ion mobility mass spectrometry and time-resolved spectroscopy – we reveal a complex picture that varies depending on the availability of B12. When B12 is in excess, its binding drives structural changes in CarH monomers that result in the formation of head-to-tail dimers. The structural changes that accompany these steps mean that they are rate-limiting. The dimers then rapidly combine to form tetramers. Strikingly, when B12 is scarcer, as is likely in nature, tetramers with native-like structures can form without a B12 complement to each monomer, with only one apparently required per head-to-tail dimer. We thus show how a bulky chromophore such as B12 shapes protein/protein interactions and in turn function, and how a protein can adapt to a sub-optimal availability of resources. This nuanced picture should help guide the engineering of B12-dependent photoreceptors as light-activated tools for biomedical applications. The function of the bacterial photoreceptor protein, CarH, is regulated by changes to its oligomeric state. Camacho et al. detail how binding of vitamin B12 in the dark drives assembly of the protein tetramer that in turn blocks transcription.![]()
Collapse
Affiliation(s)
- Inês S Camacho
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Rachelle Black
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Lennart A I Ramakers
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alex R Jones
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
50
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|