1
|
Khan N, Li Z, Ali A, Quan B, Kang J, Ullah M, Yin XJ, Shafiq M. Comprehensive transcriptomic analysis of myostatin-knockout pigs: insights into muscle growth and lipid metabolism. Transgenic Res 2025; 34:12. [PMID: 39979478 DOI: 10.1007/s11248-025-00431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Pigs are a vital source of protein worldwide, contributing approximately 43% of global meat production. Recent genetic advancements in the myostatin (MSTN) gene have facilitated the development of double-muscling traits in livestock. In this study, we investigate the transcriptomic profiles of second-generation MSTN-knockout (MSTN-/-) pigs, generated through CRISPR/Cas9 gene editing and somatic cell nuclear transfer (SCNT). Using RNA sequencing, we compared the transcriptomic landscapes of muscle tissues from MSTN-/- pigs and wild-type (WT) counterparts. The sequencing yielded an average unique read mapping rate of 86.7% to the Sus scrofa reference genome. Our analysis revealed 15,142 differentially expressed genes (DEGs), including 121 novel genes, with 2554 genes upregulated and 1629 downregulated in the MSTN-/- group relative to the wild-type group. Notable transcriptomic changes were identified in genes associated with muscle development, lipid metabolism, and other physiological processes. These findings provide valuable insights into the molecular consequences of MSTN inactivation, with potential applications in the optimization of livestock breeding and advancements in biomedical research.
Collapse
Affiliation(s)
- Nasar Khan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhouyan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Akbar Ali
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Biaohu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Jindan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Munib Ullah
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Bilal M, Geng J, Chen L, García-Caparros P, Hu T. Genome editing for grass improvement and future agriculture. HORTICULTURE RESEARCH 2025; 12:uhae293. [PMID: 39906167 PMCID: PMC11789526 DOI: 10.1093/hr/uhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Grasses, including turf and forage, cover most of the earth's surface; predominantly important for land, water, livestock feed, soil, and water conservation, as well as carbon sequestration. Improved production and quality of grasses by modern molecular breeding is gaining more research attention. Recent advances in genome-editing technologies are helping to revolutionize plant breeding and also offering smart and efficient acceleration on grass improvement. Here, we reviewed all recent researches using (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing tools to enhance the growth and quality of forage and turf grasses. Furthermore, we highlighted emerging approaches aimed at advancing grass breeding program. We assessed the CRISPR-Cas effectiveness, discussed the challenges associated with its application, and explored future perspectives primarily focusing on turf and forage grasses. Despite the promising potential of genome editing in grasses, its current efficiency remains limited due to several bottlenecks, such as the absence of comprehensive reference genomes, the lack of efficient gene delivery tools, unavailability of suitable vector and delivery for grass species, high polyploidization, and multiple homoeoalleles, etc. Despite these challenges, the CRISPR-Cas system holds great potential to fully harness its benefits in grass breeding and genetics, aiming to improve and sustain the quantity and quality of turf and forage grasses.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jie Geng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pedro García-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almeria, Spain
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
3
|
Thangaraj A, Kaul R, Sharda S, Kaul T. Revolutionizing cotton cultivation: A comprehensive review of genome editing technologies and their impact on breeding and production. Biochem Biophys Res Commun 2025; 742:151084. [PMID: 39637703 DOI: 10.1016/j.bbrc.2024.151084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Cotton (Gossypium hirsutum L.), a vital global cash crop, significantly impacts both the agricultural and industrial sectors, providing essential fiber for textiles and valuable byproducts such as cottonseed oil and animal feed. The cultivation of cotton supports millions of livelihoods worldwide, particularly in developing regions, making it a cornerstone of rural economies. Despite its importance, cotton production faces numerous challenges, including biotic stresses from pests and diseases, and abiotic stresses like drought, salinity, and extreme temperatures. These challenges necessitate innovative solutions to ensure sustainable production. Genome editing technologies, particularly CRISPR/Cas9, have revolutionized cotton breeding by enabling precise genetic modifications. These advancements hold promise for developing cotton varieties with enhanced resistance to pests, diseases, and environmental stresses. Early genome editing tools like ZFNs and TALENs paved the way for more precise modifications but were limited by complexity and cost. The introduction of CRISPR/Cas-based technology with its simplicity and efficiency, has dramatically transformed the field, making it the preferred tool for genome editing in crops. Improved version of the technology like CRISPR/Cas12a, CRISPR/Cas13, base and prime editing, developed from CRISPR/Cas systems, provide additional tools with distinct mechanisms, further expanding their potential applications in crop improvement. This comprehensive review explores the impact of genome editing on cotton breeding and production. It discusses the technical challenges, including off-target effects and delivery methods for genome editing components, and highlights ongoing research efforts to overcome these hurdles. The review underscores the potential of genome editing technologies to revolutionize cotton cultivation, enhancing yield, quality, and resilience, ultimately contributing to a sustainable future for the cotton industry.
Collapse
Affiliation(s)
- Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Shivani Sharda
- Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
4
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Duan S, Ai H, Liu S, Zhou A, Cao Y, Huang X. Functional nutritional rice: current progresses and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1488210. [PMID: 39628528 PMCID: PMC11611556 DOI: 10.3389/fpls.2024.1488210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
More than half of the world's population relies on rice as their staple food for three meals a day. From a dietary perspective, rice can be considered the most important grain in the world. With the continuous improvement of people's living standards, the demand for food has gradually shifted from being full and eating well to being nutritious and healthy. Developing functional nutritional rice has become an important research direction and strategic initiative for developing a major food concept. In this paper, we review the current progress in the breeding of functional nutritional rice and mineral-biofortified rice. This review focuses on the following aspects: (i) the concept, rice basic structure, nutritional components, and categorization of functional nutritional rice; (ii) genes that have been applied and identified so far, including nutritional functional rice genes, mineral bioenhancement-related genes, and their regulatory mechanisms; (iii) based on the history and technical mainline of rice breeding, research progress in nutritional functional rice using conventional breeding, a combination of conventional breeding and marker-assisted breeding, mutagenesis breeding, genetic engineering technology, and gene editing technology. Based on the current research and industrialization issues, we highlight an outlook of the problems and future developmental directions in nutritional functional rice research.
Collapse
Affiliation(s)
- Sumei Duan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Shengqin Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Aifeng Zhou
- Anhui Xin Fu Xiang Tian Ecological Agriculture Co. Ltd., Ma’anshan, China
| | - Yuhong Cao
- Ma’anshan Agriculture and Rural Bureau, Ma’anshan, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
6
|
Zhang Y, Agresti JJ, Zheng Y, Weitz DA. High-throughput direct screening of restriction endonuclease using a microfluidic fluorescence-activated drop sorter based on the SOS response in Escherichia coli. Analyst 2024; 149:3575-3584. [PMID: 38758107 DOI: 10.1039/d4an00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A restriction endonuclease (RE) is an enzyme that can recognize a specific DNA sequence and cleave that DNA into fragments with double-stranded breaks. This sequence-specific cleaving ability and its ease of use have made REs commonly used tools in molecular biology since their first isolation and characterization in 1970s. While artificial REs still face many challenges in large-scale synthesis and precise activity control for practical use, searching for new REs in natural samples remains a viable route to expanding the RE pool for fundamental research and industrial applications. In this paper, we propose a new strategy to search for REs in an efficient manner. We constructed a host bacterial cell to link the genotype of REs to the phenotype of β-galactosidase expression based on the bacterial SOS response, and used a high-throughput microfluidic platform to isolate, detect and sort the REs in microfluidic drops at a frequency of ∼800 drops per second. We employed this strategy to screen for the XbaI gene from the constructed libraries of varied sizes. In a single round of sorting, a 90-fold target enrichment was achieved within 1 h. Compared to conventional RE-screening methods, the direct screening approach that we propose excels at efficient search of desirable REs in natural samples - especially unculturable samples - and can be tailored to high-throughput screening of a wide range of genotoxic targets.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Jeremy J Agresti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Yu Zheng
- New England BioLabs, Inc., Ipswich, MA 01938, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593977. [PMID: 38798498 PMCID: PMC11118498 DOI: 10.1101/2024.05.13.593977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs are often deployed as pairs, with each arm comprised of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this constraint, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated αDdCBEs that contain modified TALE proteins engineered to recognize all 5' bases. Notably, 5'-T-noncompliant, canonical DdCBEs efficiently edited mtDNA at diverse loci. However, DdCBEs were frequently outperformed by αDdCBEs, which consistently displayed significant improvements in activity and specificity, regardless of the 5'-most bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with DddA tox and its derivatives DddA6, and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes at a single target site. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
|
9
|
Atia M, Jiang W, Sedeek K, Butt H, Mahfouz M. Crop bioengineering via gene editing: reshaping the future of agriculture. PLANT CELL REPORTS 2024; 43:98. [PMID: 38494539 PMCID: PMC10944814 DOI: 10.1007/s00299-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Genome-editing technologies have revolutionized research in plant biology, with major implications for agriculture and worldwide food security, particularly in the face of challenges such as climate change and increasing human populations. Among these technologies, clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated protein [Cas] systems are now widely used for editing crop plant genomes. In this review, we provide an overview of CRISPR-Cas technology and its most significant applications for improving crop sustainability. We also review current and potential technological advances that will aid in the future breeding of crops to enhance food security worldwide. Finally, we discuss the obstacles and challenges that must be overcome to realize the maximum potential of genome-editing technologies for future crop and food production.
Collapse
Affiliation(s)
- Mohamed Atia
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
10
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
11
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
12
|
Gim GM, Jang G. Outlook on genome editing application to cattle. J Vet Sci 2024; 25:e10. [PMID: 38311323 PMCID: PMC10839183 DOI: 10.4142/jvs.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 02/07/2024] Open
Abstract
In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.
Collapse
Affiliation(s)
| | - Goo Jang
- LARTBio Inco, Seoul 06221, Korea
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
13
|
Ge N, Liu M, Li R, Allen NM, Galvin J, Shen S, O'Brien T, Prendiville TW. Using Ribonucleoprotein-based CRISPR/Cas9 to Edit Single Nucleotide on Human Induced Pluripotent Stem Cells to Model Type 3 Long QT Syndrome (SCN5A ±). Stem Cell Rev Rep 2023; 19:2774-2789. [PMID: 37653182 PMCID: PMC10661835 DOI: 10.1007/s12015-023-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been widely used in cardiac disease modelling, drug discovery, and regenerative medicine as they can be differentiated into patient-specific cardiomyocytes. Long QT syndrome type 3 (LQT3) is one of the more malignant congenital long QT syndrome (LQTS) variants with an SCN5A gain-of-function effect on the gated sodium channel. Moreover, the predominant pathogenic variants in LQTS genes are single nucleotide substitutions (missense) and small insertion/deletions (INDEL). CRISPR/Cas9 genome editing has been utilised to create isogenic hiPSCs to control for an identical genetic background and to isolate the pathogenicity of a single nucleotide change. In this study, we described an optimized and rapid protocol to introduce a heterozygous LQT3-specific variant into healthy control hiPSCs using ribonucleoprotein (RNP) and single-stranded oligonucleotide (ssODN). Based on this protocol, we successfully screened hiPSCs carrying a heterozygous LQT3 pathogenic variant (SCN5A±) with high efficiency (6 out of 69) and confirmed no off-target effect, normal karyotype, high alkaline phosphatase activity, unaffected pluripotency, and in vitro embryonic body formation capacity within 2 weeks. In addition, we also provide protocols to robustly differentiate hiPSCs into cardiomyocytes and evaluate the electrophysiological characteristics using Multi-electrode Array. This protocol is also applicable to introduce and/or correct other disease-specific variants into hiPSCs for future pharmacological screening and gene therapeutic development.
Collapse
Affiliation(s)
- Ning Ge
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Liu
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Nicholas M Allen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Paediatrics, University of Galway, Galway, Ireland
| | - Joseph Galvin
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
| | - Terence W Prendiville
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland.
- National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin 12, Ireland.
| |
Collapse
|
14
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Singh C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan, Nimmy MS, Yadav R, Gupta SK, Abdallah NA, Hamwieh A, Kumar R. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet 2023; 14:1085024. [PMID: 37144131 PMCID: PMC10153629 DOI: 10.3389/fgene.2023.1085024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 09/09/2023] Open
Abstract
Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.
Collapse
Affiliation(s)
- Charul Singh
- USBT, Guru Govind Singh Indraprastha University, Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad Prayagraj, Prayagraj, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Sharmista Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Tripti Singhal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gayacharan
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Nimmy
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | | - Aladdin Hamwieh
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
17
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
18
|
Moreno-Nombela S, Romero-Parra J, Ruiz-Ojeda FJ, Solis-Urra P, Baig AT, Plaza-Diaz J. Genome Editing and Protein Energy Malnutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:215-232. [DOI: 10.1007/978-981-19-5642-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y, Yang N. Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci 2023; 17:1158030. [PMID: 37090805 PMCID: PMC10117674 DOI: 10.3389/fnins.2023.1158030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Gene therapy has become an essential treatment for optic nerve injury (ONI) in recent years, and great strides have been made using animal models. ONI, which is characterized by the loss of retinal ganglion cells (RGCs) and axons, can induce abnormalities in the pupil light reflex, visual field defects, and even vision loss. The eye is a natural organ to target with gene therapy because of its high accessibility and certain immune privilege. As such, numerous gene therapy trials are underway for treating eye diseases such as glaucoma. The aim of this review was to cover research progress made in gene therapy for ONI. Specifically, we focus on the potential of gene therapy to prevent the progression of neurodegenerative diseases and protect both RGCs and axons. We cover the basic information of gene therapy, including the classification of gene therapy, especially focusing on genome editing therapy, and then we introduce common editing tools and vector tools such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -Cas9 and adeno-associated virus (AAV). We also summarize the progress made on understanding the roles of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), phosphatase-tensin homolog (PTEN), suppressor of cytokine signal transduction 3 (SOCS3), histone acetyltransferases (HATs), and other important molecules in optic nerve protection. However, gene therapy still has many challenges, such as misalignment and mutations, immunogenicity of AAV, time it takes and economic cost involved, which means that these issues need to be addressed before clinical trials can be considered.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yiqiao Xing,
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Ning Yang,
| |
Collapse
|
20
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
21
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
22
|
Identification of the CKM Gene as a Potential Muscle-Specific Safe Harbor Locus in Pig Genome. Genes (Basel) 2022; 13:genes13050921. [PMID: 35627307 PMCID: PMC9140944 DOI: 10.3390/genes13050921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Genetically modified pigs have shown considerable application potential in the fields of life science research and livestock breeding. Nevertheless, a barrier impedes the production of genetically modified pigs. There are too few safe harbor loci for the insertion of foreign genes into the pig genome. Only a few loci (pRosa26, pH11 and Pifs501) have been successfully identified to achieve the ectopic expression of foreign genes and produce gene-edited pigs. Here, we use CRISPR/Cas9-mediated homologous directed repair (HDR) to accurately knock the exogenous gene-of-interest fragments into an endogenous CKM gene in the porcine satellite cells. After porcine satellite cells are induced to differentiate, the CKM gene promoter simultaneously initiates the expression of the CKM gene and the exogenous gene. We infer preliminarily that the CKM gene can be identified as a potential muscle-specific safe harbor locus in pigs for the integration of exogenous gene-of-interest fragments.
Collapse
|
23
|
Takatsuka A, Kazama T, Arimura SI, Toriyama K. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:994-1004. [PMID: 35218074 DOI: 10.1111/tpj.15715] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Cytoplasmic male sterility (CMS) is a trait that causes pollen or anther dysfunctions, resulting in the lack of seed setting. CMS is considered to be caused by the expression of a unique mitochondrial open reading frame referred to as CMS-associated gene. orf312 has been reported as a CMS-associated gene of Tadukan-type CMS (TAA) in rice (Oryza sativa L.), which exhibits impaired anther dehiscence; however, evidence thereof has not yet been reported. Here, we took a loss-of-function approach, using a mitochondria-targeted transcription activator-like effector nuclease (mitoTALEN) designed to knock out orf312 in TAA, to prove that orf312 indeed is a CMS-causative gene. Out of 28 transgenic TAA plants harboring the mitoTALEN expression vector, deletion of orf312 was detected in 24 plants by PCR, Southern blot, and sequencing analyses. The 24 plants were grouped into three groups based on the deleted regions. All orf312-depleted TAA plants exhibited recovery of anther dehiscence and seed setting. The depletion of orf312 and fertility restoration was maintained in the next generation, even in mitoTALEN expression cassette null segregants. In contrast, orf312-retaining plants were sterile. These results provide robust evidence that orf312 is a Tadukan-type CMS-causative gene.
Collapse
Affiliation(s)
- Ayumu Takatsuka
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Tomohiko Kazama
- Laboratory of Genome Chemistry and Engineering, Graduate School of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyou-ku, Tokyo, 113-8657, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
24
|
Zhao Y, Yang L, Su G, Wei Z, Liu X, Song L, Hai C, Wu D, Hao Z, Wu Y, Zhang L, Bai C, Li G. Growth Traits and Sperm Proteomics Analyses of Myostatin Gene-Edited Chinese Yellow Cattle. Life (Basel) 2022; 12:627. [PMID: 35629295 PMCID: PMC9147296 DOI: 10.3390/life12050627] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Chinese Yellow Cattle, an ancient and domesticated breed for draft service, provide unique animal genetic resources with excellent genetic features, including crude feed tolerance, good stress resistance, strong adaptability, and tender meat quality; however, their production performance and meat yield are significantly inferior. Herein, the myostatin gene (MSTN), a negative regulator of skeletal muscle development, was knocked out by CRISPR/Cas9 technology. Eight MSTN gene-edited bull calves (MT) were born, and six of them are well-developed. Compared with the control cattle (WT), the growth trait indexes of MT cattle were generally increased, and the hindquarters especially were significantly improved. The biochemical indexes and the semen characteristics demonstrated that MT bulls were healthy and fertile. Consistent with our conjecture, the wobble and beating of MT bull spermatozoa were significantly higher than that of WT. Nine sperm motility-related proteins and nineteen mitochondrial-related proteins were identified by up-regulation in MT bull spermatozoa using FLQ proteomic technique and act to govern sperm flagellum assembly, organization, and beating and provide sufficient energy for sperm motility. The current study confirmed that the MSTN gene-edited Chinese Yellow cattle have improved growth traits and normal fertility, which can be used for beef cattle production and breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| |
Collapse
|
25
|
Raza SHA, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA, Alotaibi MA, Al-Hazani TM, Abd El-Aziz AH, Cheng G, Zan L. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J Biol Sci 2022; 29:1928-1935. [PMID: 35531207 PMCID: PMC9072931 DOI: 10.1016/j.sjbs.2021.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, significant progress has been achieved in genome editing applications using new programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9). These genome editing tools are capable of nicking DNA precisely by targeting specific sequences, and enable the addition, removal or substitution of nucleotides via double-stranded breakage at specific genomic loci. CRISPR/Cas system, one of the most recent genome editing tools, affords the ability to efficiently generate multiple genomic nicks in single experiment. Moreover, CRISPR/Cas systems are relatively easy and cost effective when compared to other genome editing technologies. This is in part because CRISPR/Cas systems rely on RNA-DNA binding, unlike other genome editing tools that rely on protein-DNA interactions, which affords CRISPR/Cas systems higher flexibility and more fidelity. Genome editing tools have significantly contributed to different aspects of livestock production such as disease resistance, improved performance, alterations of milk composition, animal welfare and biomedicine. However, despite these contributions and future potential, genome editing technologies also have inherent risks, and therefore, ethics and social acceptance are crucial factors associated with implementation of these technologies. This review emphasizes the impact of genome editing technologies in development of livestock breeding and production in numerous species such as cattle, pigs, sheep and goats. This review also discusses the mechanisms behind genome editing technologies, their potential applications, risks and associated ethics that should be considered in the context of livestock.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameer D. Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650 Australia
| | - Sun Bing
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Tahani Mohamed Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-Kharj 11940, Saudi Arabia
| | - Ayman H. Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Daman Hour University, Damanhour, Egypt
| | - Gong Cheng
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Linsen Zan
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| |
Collapse
|
26
|
Nguyen Tran MT, Kc R, Hewitt AW. A Taxonomic and Phylogenetic Classification of Diverse Base Editors. CRISPR J 2022; 5:311-328. [PMID: 35244489 DOI: 10.1089/crispr.2021.0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Base editors mediate the targeted conversion of single nucleobases in a therapeutically relevant manner. Herein, we present a hypothetical taxonomic and phylogenetic framework for the classification of more than 200 different DNA base editors, and we categorize them based on their described properties. Following evaluation of their in situ activity windows, which were derived by cataloguing their activity in published literature, organization is done hierarchically, with specific base editor signatures being subcategorized according to their on-target activity or nonspecific, genome- or transcriptome-wide activity. Based on this categorization, we curate a phylogenetic framework, based on protein homology alignment, and describe a taxonomic structure that clusters base editor variants on their target chemistry, endonuclease component, identity of their deaminase component, and their described properties into discrete taxa. Thus, we establish a hypothetical taxonomic structure that can describe and organize current and potentially future base editing variants into clearly defined groups that are defined by their characteristics. Finally, we summarize our findings into a navigable database (ShinyApp in R) that allows users to select through our repository to nominate ideal base editor candidates as a starting point for further testing in their specific application.
Collapse
Affiliation(s)
- Minh Thuan Nguyen Tran
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia; and The University of Melbourne, Melbourne, Australia
| | - Rajendra Kc
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia; and The University of Melbourne, Melbourne, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia; and The University of Melbourne, Melbourne, Australia.,Centre for Eye Research Australia, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
27
|
Bijlani S, Pang KM, Sivanandam V, Singh A, Chatterjee S. The Role of Recombinant AAV in Precise Genome Editing. Front Genome Ed 2022; 3:799722. [PMID: 35098210 PMCID: PMC8793687 DOI: 10.3389/fgeed.2021.799722] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The replication-defective, non-pathogenic, nearly ubiquitous single-stranded adeno-associated viruses (AAVs) have gained importance since their discovery about 50 years ago. Their unique life cycle and virus-cell interactions have led to the development of recombinant AAVs as ideal genetic medicine tools that have evolved into effective commercialized gene therapies. A distinctive property of AAVs is their ability to edit the genome precisely. In contrast to all current genome editing platforms, AAV exclusively utilizes the high-fidelity homologous recombination (HR) pathway and does not require exogenous nucleases for prior cleavage of genomic DNA. Together, this leads to a highly precise editing outcome that preserves genomic integrity without incorporation of indel mutations or viral sequences at the target site while also obviating the possibility of off-target genotoxicity. The stem cell-derived AAV (AAVHSCs) were found to mediate precise and efficient HR with high on-target accuracy and at high efficiencies. AAVHSC editing occurs efficiently in post-mitotic cells and tissues in vivo. Additionally, AAV also has the advantage of an intrinsic delivery mechanism. Thus, this distinctive genome editing platform holds tremendous promise for the correction of disease-associated mutations without adding to the mutational burden. This review will focus on the unique properties of direct AAV-mediated genome editing and their potential mechanisms of action.
Collapse
|
28
|
Gaba Y, Pareek A, Singla-Pareek SL. Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Curr Genomics 2021; 22:450-467. [PMID: 35340361 PMCID: PMC8886625 DOI: 10.2174/1389202922666210928151247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/29/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background In order to meet the demands of the ever-increasing human population, it has become necessary to raise climate-resilient crops. Plant breeding, which involves crossing and selecting superior gene pools, has contributed tremendously towards achieving this goal during the past few decades. The relatively newer methods of crop improvement based on genetic engineering are relatively simple, and targets can be achieved in an expeditious manner. More recently emerged genome editing technique using CRISPR has raised strong hopes among plant scientists for precise integration of valuable traits and removal of undesirable ones. Conclusion Genome editing using Site-Specific Nucleases (SSNs) is a good alternative to the plant breeding and genetic engineering approaches as it can modify the genomes specifically and precisely at the target site in the host genome. Another added advantage of the genome editing approach is the simpler biosafety regulations that have been adopted by many countries for commercialization of the products thus generated. This review provides a critical assessment of the available methods for improving the stress tolerance in crop plants. Special emphasis has been given on genome editing approach in light of the diversity of tools, which are being discovered on an everyday basis and the practical applications of the same. This information will serve as a beginner's guide to initiate the crop improvement programs as well as giving technical insight to the expert to plan the research strategically to tackle even multigenic traits in crop plants.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
29
|
Kawasaki T, Shimizu Y. Carcinogenesis Models Using Small Fish. Chem Pharm Bull (Tokyo) 2021; 69:962-969. [PMID: 34602577 DOI: 10.1248/cpb.c21-00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental animals are indispensable in life science-related research, including cancer studies. After rats and mice, small fishes, such as zebrafish and medaka, are the second most frequently used model species. Fish models have some advantageous physical characteristics that make them suitable for research, including their small size, some transparency, genetic manipulability, ease of handling, and highly ortholog correspondence with humans. This review introduces technological advances in carcinogenesis model production using small fish. Carcinogenesis model production begins with chemical carcinogenesis, followed by mutagenesis. Gene transfer technology has made it possible to incorporate various mechanisms that act on cancer-related genes in individuals. For example, scientists may now spatiotemporally control gene expression in a single fish through methods including the localization of an expression site via a tissue-specific promoter and expression control using light, heat, or a chemical substance. In addition, genome editing technology is realizing more specific and more efficient gene disruption than conventional mutagenesis, in which the disruption of the gene of interest depends on chance. These technological advances have improved animal models and will soon create carcinogenesis models that better mimic human pathology. We conclude by discussing future expectations for cancer research using small fish.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Shimizu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
30
|
Ali Z, Mahfouz MM. CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond. PLANT PHYSIOLOGY 2021; 186:1770-1785. [PMID: 35237805 PMCID: PMC8331158 DOI: 10.1093/plphys/kiab220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 05/02/2023]
Abstract
Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
31
|
Gazi AD, Kokkinidis M, Fadouloglou VE. α-Helices in the Type III Secretion Effectors: A Prevalent Feature with Versatile Roles. Int J Mol Sci 2021; 22:ijms22115412. [PMID: 34063760 PMCID: PMC8196651 DOI: 10.3390/ijms22115412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Type III Secretion Systems (T3SSs) are multicomponent nanomachines located at the cell envelope of Gram-negative bacteria. Their main function is to transport bacterial proteins either extracellularly or directly into the eukaryotic host cell cytoplasm. Type III Secretion effectors (T3SEs), latest to be secreted T3S substrates, are destined to act at the eukaryotic host cell cytoplasm and occasionally at the nucleus, hijacking cellular processes through mimicking eukaryotic proteins. A broad range of functions is attributed to T3SEs, ranging from the manipulation of the host cell's metabolism for the benefit of the bacterium to bypassing the host's defense mechanisms. To perform this broad range of manipulations, T3SEs have evolved numerous novel folds that are compatible with some basic requirements: they should be able to easily unfold, pass through the narrow T3SS channel, and refold to an active form when on the other side. In this review, the various folds of T3SEs are presented with the emphasis placed on the functional and structural importance of α-helices and helical domains.
Collapse
Affiliation(s)
- Anastasia D. Gazi
- Unit of Technology & Service Ultrastructural Bio-Imaging (UTechS UBI), Institut Pasteur, 75015 Paris, France
- Correspondence: (A.D.G.); (V.E.F.)
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion, 70013 Crete, Greece;
- Department of Biology, Voutes University Campus, University of Crete, Heraklion, 70013 Crete, Greece
| | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence: (A.D.G.); (V.E.F.)
| |
Collapse
|
32
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
33
|
Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct Target Ther 2021; 6:80. [PMID: 33627635 PMCID: PMC7904846 DOI: 10.1038/s41392-021-00462-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/09/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor-based T-cell immunotherapy is a promising strategy for treatment of hematological malignant tumors; however, its efficacy towards solid cancer remains challenging. We therefore focused on developing nanobody-based CAR-T cells that treat the solid tumor. CD105 expression is upregulated on neoangiogenic endothelial and cancer cells. CD105 has been developed as a drug target. Here we show the generation of a CD105-specific nanobody, an anti-human CD105 CAR-T cells, by inserting the sequences for anti-CD105 nanobody-linked standard cassette genes into AAVS1 site using CRISPR/Cas9 technology. Co-culture with CD105+ target cells led to the activation of anti-CD105 CAR-T cells that displayed the typically activated cytotoxic T-cell characters, ability to proliferate, the production of pro-inflammatory cytokines, and the specific killing efficacy against CD105+ target cells in vitro. The in vivo treatment with anti-CD105 CAR-T cells significantly inhibited the growth of implanted CD105+ tumors, reduced tumor weight, and prolonged the survival time of tumor-bearing NOD/SCID mice. Nanobody-based CAR-T cells can therefore function as an antitumor agent in human tumor xenograft models. Our findings determined that the strategy of nanobody-based CAR-T cells engineered by CRISPR/Cas9 system has a certain potential to treat solid tumor through targeting CD105 antigen.
Collapse
|
34
|
Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021; 16:1089-1128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
Genome editing has transformed the life sciences and has exciting prospects for use in treating genetic diseases. Our laboratory developed base editing to enable precise and efficient genome editing while minimizing undesired byproducts and toxicity associated with double-stranded DNA breaks. Adenine and cytosine base editors mediate targeted A•T-to-G•C or C•G-to-T•A base pair changes, respectively, which can theoretically address most human disease-associated single-nucleotide polymorphisms. Current base editors can achieve high editing efficiencies-for example, approaching 100% in cultured mammalian cells or 70% in adult mouse neurons in vivo. Since their initial description, a large set of base editor variants have been developed with different on-target and off-target editing characteristics. Here, we describe a protocol for using base editing in cultured mammalian cells. We provide guidelines for choosing target sites, appropriate base editor variants and delivery strategies to best suit a desired application. We further describe standard base-editing experiments in HEK293T cells, along with computational analysis of base-editing outcomes using CRISPResso2. Beginning with target DNA site selection, base-editing experiments in mammalian cells can typically be completed within 1-3 weeks and require only standard molecular biology techniques and readily available plasmid constructs.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
35
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
36
|
Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:3-33. [PMID: 33369120 DOI: 10.1111/jipb.13063] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
Collapse
Affiliation(s)
- Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Xianyang, 712100, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
37
|
Ovchinnikov DA. Genetically-modified cell lines: categorisation and considerations for characterisation. Stem Cell Res 2020; 49:102103. [PMID: 33291011 DOI: 10.1016/j.scr.2020.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022] Open
Abstract
Stem Cell Research is pleased to introduce into its publication portfolio a new article type: a template-driven short report on the generation of a novel Genetically Modified Cell Line. This resource type is typically derived from human pluripotent stem cell lines via the introduction of nucleases and/or foreign genetic material leading to stable genomic alterations, maintained in a single cell-derived clonal cell line. Interest in, and demand for, genetically modified cell lines has grown exponentially in the last few years. This overview provides a brief introduction to this incredibly versatile lab resource and marks the beginning of a new and exciting addition to the publication portfolio of Stem Cell Research. A dramatic increase in the accessibility of the human genome in the last decade has given a long-anticipated boost to advanced biomedical studies in human in vitro systems. Pluripotent stem cells represent a particularly attractive gateway into this line of experimentation due to their unique suitability for the isolation of clonal genetically modified cell lines (GMCLs), and the ability to be differentiated into essentially any cell type upon the lines' virtually limitless expansion.
Collapse
|
38
|
Gunji YP, Kawai T, Murakami H, Tomaru T, Minoura M, Shinohara S. Lévy Walk in Swarm Models Based on Bayesian and Inverse Bayesian Inference. Comput Struct Biotechnol J 2020; 19:247-260. [PMID: 33425255 PMCID: PMC7773539 DOI: 10.1016/j.csbj.2020.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
While swarming behavior is regarded as a critical phenomenon in phase transition and frequently shows the properties of a critical state such as Lévy walk, a general mechanism to explain the critical property in swarming behavior has not yet been found. Here, we address this problem with a simple swarm model, the Self-Propelled Particle (SPP) model, and propose a way to explain this critical behavior by introducing agents making decisions via the data-hypothesis interaction in Bayesian inference, namely, Bayesian and inverse Bayesian inference (BIB). We compare three SPP models, namely, the simple SPP, the SPP with Bayesian-only inference (BO) and the SPP with BIB models. We show that only the BIB model entails coexisting tornado, splash and translation behaviors, and the Lévy walk pattern.
Collapse
Affiliation(s)
- Yukio-Pegio Gunji
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takeshi Kawai
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hisashi Murakami
- Research Center for Advanced Science and Technology, The University of Tokyo Komaba 4-6-1, Meguro-ku, Tokyo, 153-0041, Japan
| | - Takenori Tomaru
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Mai Minoura
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Shuji Shinohara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
39
|
Bennett EP, Petersen BL, Johansen IE, Niu Y, Yang Z, Chamberlain CA, Met Ö, Wandall HH, Frödin M. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res 2020; 48:11958-11981. [PMID: 33170255 PMCID: PMC7708060 DOI: 10.1093/nar/gkaa975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Advances in genome editing technologies have enabled manipulation of genomes at the single base level. These technologies are based on programmable nucleases (PNs) that include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) nucleases and have given researchers the ability to delete, insert or replace genomic DNA in cells, tissues and whole organisms. The great flexibility in re-designing the genomic target specificity of PNs has vastly expanded the scope of gene editing applications in life science, and shows great promise for development of the next generation gene therapies. PN technologies share the principle of inducing a DNA double-strand break (DSB) at a user-specified site in the genome, followed by cellular repair of the induced DSB. PN-elicited DSBs are mainly repaired by the non-homologous end joining (NHEJ) and the microhomology-mediated end joining (MMEJ) pathways, which can elicit a variety of small insertion or deletion (indel) mutations. If indels are elicited in a protein coding sequence and shift the reading frame, targeted gene knock out (KO) can readily be achieved using either of the available PNs. Despite the ease by which gene inactivation in principle can be achieved, in practice, successful KO is not only determined by the efficiency of NHEJ and MMEJ repair; it also depends on the design and properties of the PN utilized, delivery format chosen, the preferred indel repair outcomes at the targeted site, the chromatin state of the target site and the relative activities of the repair pathways in the edited cells. These variables preclude accurate prediction of the nature and frequency of PN induced indels. A key step of any gene KO experiment therefore becomes the detection, characterization and quantification of the indel(s) induced at the targeted genomic site in cells, tissues or whole organisms. In this survey, we briefly review naturally occurring indels and their detection. Next, we review the methods that have been developed for detection of PN-induced indels. We briefly outline the experimental steps and describe the pros and cons of the various methods to help users decide a suitable method for their editing application. We highlight recent advances that enable accurate and sensitive quantification of indel events in cells regardless of their genome complexity, turning a complex pool of different indel events into informative indel profiles. Finally, we review what has been learned about PN-elicited indel formation through the use of the new methods and how this insight is helping to further advance the genome editing field.
Collapse
Affiliation(s)
- Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Ida Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yiyuan Niu
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J Biotechnol 2020; 324:34-60. [DOI: 10.1016/j.jbiotec.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
41
|
Zhang M, Eshraghian EA, Jammal OA, Zhang Z, Zhu X. CRISPR technology: The engine that drives cancer therapy. Biomed Pharmacother 2020; 133:111007. [PMID: 33227699 DOI: 10.1016/j.biopha.2020.111007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
CRISPR gene editing technology belongs to the third generation of gene editing technology. Since its discovery, it has attracted the attention of a large number of researchers. Investigators have published a series of academic articles and obtained breakthrough research results through in-depth research. In recent years, this technology has developed rapidly and been widely applied in many fields, especially in medicine. This review focuses on concepts of CRISPR gene editing technology, its application in cancer treatments, its existing limitations, and the new progress in recent years for detailed analysis and sharing.
Collapse
Affiliation(s)
- Mingtao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Emily A Eshraghian
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, CA 92093, USA
| | - Omar Al Jammal
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, CA 92093, USA
| | - Zhibi Zhang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
42
|
Xu X, Yuan Y, Feng B, Deng W. CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fruits are an essential part of a healthy, balanced diet and it is particularly important for fibre, essential vitamins, and trace elements. Improvement in the quality of fruit and elongation of shelf life are crucial goals for researchers. However, traditional techniques have some drawbacks, such as long period, low efficiency, and difficulty in the modification of target genes, which limit the progress of the study. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique was developed and has become the most popular gene-editing technology with high efficiency, simplicity, and low cost. CRISPR/Cas9 technique is widely accepted to analyse gene function and complete genetic modification. This review introduces the latest progress of CRISPR/Cas9 technology in fruit quality improvement. For example, CRISPR/Cas9-mediated targeted mutagenesis of RIPENING INHIBITOR gene (RIN), Lycopene desaturase (PDS), Pectate lyases (PL), SlMYB12, and CLAVATA3 (CLV3) can affect fruit ripening, fruit bioactive compounds, fruit texture, fruit colouration, and fruit size. CRISPR/Cas9-mediated mutagenesis has become an efficient method to modify target genes and improve fruit quality.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
43
|
Ates I, Rathbone T, Stuart C, Bridges PH, Cottle RN. Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes (Basel) 2020; 11:E1113. [PMID: 32977396 PMCID: PMC7597956 DOI: 10.3390/genes11101113] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Impressive therapeutic advances have been possible through the advent of zinc-finger nucleases and transcription activator-like effector nucleases. However, discovery of the more efficient and highly tailorable clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas9) has provided unprecedented gene-editing capabilities for treatment of various inherited and acquired diseases. Despite recent clinical trials, a major barrier for therapeutic gene editing is the absence of safe and effective methods for local and systemic delivery of gene-editing reagents. In this review, we elaborate on the challenges and provide practical considerations for improving gene editing. Specifically, we highlight issues associated with delivery of gene-editing tools into clinically relevant cells.
Collapse
Affiliation(s)
- Ilayda Ates
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Tanner Rathbone
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Callie Stuart
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - P. Hudson Bridges
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Renee N. Cottle
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| |
Collapse
|
44
|
Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:51-65. [PMID: 32661897 DOI: 10.1007/s11427-020-1699-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/29/2020] [Indexed: 10/23/2022]
Abstract
The pathogenic bacterial genus Xanthomonas infects a wide variety of host plants and causes devastating diseases in many crops. Transcription activator-like effectors (TALEs) are important virulence factors secreted by Xanthomonas with the ability to directly bind to the promoters of target genes in plant hosts and activate their expression, which often facilitates the proliferation of pathogens. Understanding how plants cope with TALEs will provide mechanistic insights into crop breeding for Xanthomonas defense. Over the past 30 years, numerous studies have revealed the modes of action of TALEs in plant cells and plant defense strategies to overcome TALE attack. Based on these findings, new technologies were adopted for disease management to optimize crop production. In this article, we will review the most recent advances in the evolutionary arms race between plant resistance and TALEs from Xanthomonas, with a specific focus on TALE applications in the development of novel breeding strategies for durable and broad-spectrum resistance.
Collapse
Affiliation(s)
- Jiao Xue
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Zhanhua Lu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Shiguang Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Dongbai Lu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Xiaofei Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Xiuying He
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
| |
Collapse
|
45
|
Development of Cellular Models to Study Efficiency and Safety of Gene Edition by Homologous Directed Recombination Using the CRISPR/Cas9 System. Cells 2020; 9:cells9061492. [PMID: 32570971 PMCID: PMC7349026 DOI: 10.3390/cells9061492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
In spite of the enormous potential of CRISPR/Cas in basic and applied science, the levels of undesired genomic modifications cells still remain mostly unknown and controversial. Nowadays, the efficiency and specificity of the cuts generated by CRISPR/Cas is the main concern. However, there are also other potential drawbacks when DNA donors are used for gene repair or gene knock-ins. These GE strategies should take into account not only the specificity of the nucleases, but also the fidelity of the DNA donor to carry out their function. The current methods to quantify the fidelity of DNA donor are costly and lack sensitivity to detect illegitimate DNA donor integrations. In this work, we have engineered two reporter cell lines (K562_SEWAS84 and K562GWP) that efficiently quantify both the on-target and the illegitimate DNA donor integrations in a WAS-locus targeting setting. K562_SEWAS84 cells allow the detection of both HDR-and HITI-based donor integration, while K562GWP cells only report HDR-based GE. To the best of our knowledge, these are the first reporter systems that allow the use of gRNAs targeting a relevant locus to measure efficacy and specificity of DNA donor-based GE strategies. By using these models, we have found that the specificity of HDR is independent of the delivery method and that the insertion of the target sequence into the DNA donor enhances efficiency but do not affect specificity. Finally, we have also shown that the higher the number of the target sites is, the higher the specificity and efficacy of GE will be.
Collapse
|
46
|
Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, Sonah H, Deshmukh R. Genome Editing in Cereals: Approaches, Applications and Challenges. Int J Mol Sci 2020; 21:E4040. [PMID: 32516948 PMCID: PMC7312557 DOI: 10.3390/ijms21114040] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.
Collapse
Affiliation(s)
- Waquar A. Ansari
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Sonali U. Chandanshive
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Altafhusain B. Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Sanskriti Vats
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (S.V.); (H.S.)
| | | | - Humira Sonah
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (S.V.); (H.S.)
| | - Rupesh Deshmukh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (S.V.); (H.S.)
| |
Collapse
|
47
|
Tan YY, Du H, Wu X, Liu YH, Jiang M, Song SY, Wu L, Shu QY. Gene editing: an instrument for practical application of gene biology to plant breeding. J Zhejiang Univ Sci B 2020; 21:460-473. [PMID: 32478492 PMCID: PMC7306633 DOI: 10.1631/jzus.b1900633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Plant breeding is well recognized as one of the most important means to meet food security challenges caused by the ever-increasing world population. During the past three decades, plant breeding has been empowered by both new knowledge on trait development and regulation (e.g., functional genomics) and new technologies (e.g., biotechnologies and phenomics). Gene editing, particularly by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and its variants, has become a powerful technology in plant research and may become a game-changer in plant breeding. Traits are conferred by coding and non-coding genes. From this perspective, we propose different editing strategies for these two types of genes. The activity of an encoded enzyme and its quantity are regulated at transcriptional and post-transcriptional, as well as translational and post-translational, levels. Different strategies are proposed to intervene to generate gene functional variations and consequently phenotype changes. For non-coding genes, trait modification could be achieved by regulating transcription of their own or target genes via gene editing. Also included is a scheme of protoplast editing to make gene editing more applicable in plant breeding. In summary, this review provides breeders with a host of options to translate gene biology into practical breeding strategies, i.e., to use gene editing as a mechanism to commercialize gene biology in plant breeding.
Collapse
Affiliation(s)
- Yuan-yuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Hao Du
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-hua Liu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shi-yong Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Wu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-yao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene 2020; 753:144795. [PMID: 32450202 DOI: 10.1016/j.gene.2020.144795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The advent of genetic selection and genome modification method assure about a real novel reformation in biotechnology and genetic engineering. With the extensive capabilities of molecular markers of them being stable, cost-effective and easy to use, they ultimately become a potent tool for variety of applications such a gene targeting, selection, editing, functional genomics; mainly for the improvisation of commercially important crops. Three main benefits of molecular marker in the field of agriculture and crop improvement programmes first, reduction of the duration of breeding programmes, second, they allow creation of new genetic variation and genetic diversity of plants and third most promising benefit is help in production of engineered plant for disease resistance, or resistance from pathogen and herbicides. This review is anticipated to present an outline how the techniques have been evolved from the simple conventional applications of DNA based molecular markers to highly throughput CRISPR technology and geared the crop yield. Techniques like using Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) systems have revolutionised in the field of genome editing. These have been promptly accepted in both the research and commercial industry. On the whole, the widespread use of molecular markers with their types, their appliance in plant breeding along with the advances in genetic selection and genome editing together being a novel strategy to boost crop yield has been reviewed.
Collapse
Affiliation(s)
- Pallavi Dheer
- Department of Life Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, India
| | - Indra Rautela
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Vandana Sharma
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Manjul Dhiman
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Aditi Sharma
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Nishesh Sharma
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India.
| |
Collapse
|
49
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
50
|
Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5529-5538. [PMID: 32372640 DOI: 10.1021/acs.jafc.9b08069] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Methyl jasmonate (MeJA), a natural phytohormone, played a critical role not only in plant growth but also in plant defense response to biotic and abiotic stresses. MYC2, a basic helix-loop-helix transcription factor, is a master regulator in MeJA signaling pathway. In the present work, slmyc2 mutants were generated by the clustered regularly interspaced short palindromic repeats and associated Cas9 protein (CRISPR/Cas9) system to investigate the role of SlMYC2 in tomato plant growth and fruit disease resistance induced by exogenous MeJA. The results showed that slmyc2 mutants possessed a higher number of flowers and a lower fruit setting rate in comparison with wild-type plants. In addition, the fruit shape of slmyc2 mutant was prolate, while the control fruits were oblate. Knockout of SlMYC2 significantly decreased the activities of disease defensive and antioxidant enzymes, as well as the expression levels of pathogen-related (PR) genes (SlPR-1 and SlPR-STH2) and the key genes related to jasmonic acid (JA) biosynthesis and signaling pathway including allene oxide cyclase (SlAOC), lipoxygenase D (SlLOXD), SlMYC2, and coronatine insensitive 1 (SlCOI1), and consequently aggravated the disease symptoms. By contrast, the disease symptoms were largely reduced in MeJA-treated fruit that possessed higher activities of these enzymes and expression levels of genes. However, the induction effects of MeJA on fruit disease resistance and these enzymes' activities and genes' expressions were significantly attenuated by knockout of SlMYC2. Therefore, the results indicated that SlMYC2 played positive regulatory roles not only in the growth of tomato plants but also in MeJA-induced disease resistance and the antioxidant process in tomato fruits.
Collapse
Affiliation(s)
- Pan Shu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Ziye Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Dedong Min
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Wen Ai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Jiaozhuo Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Jingxiang Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Zilong Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Fujun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, P. R. China
| |
Collapse
|