1
|
Streipert SH, Swigon D, Wilber MQ, Walsman JC. Evolution of pathogen tolerance and reproductive trade-off implications. J Math Biol 2025; 90:53. [PMID: 40304737 DOI: 10.1007/s00285-025-02216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/21/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
We develop an epidemic model that accounts explicitly for the pathogen pool and incorporates population variations in host defense strategy, measured in disease tolerance that is assumed to be perfectly inherited by offspring. Although the proposed model is more general, it is motivated by the devastating Batrachochytrium dendrobatidis (Bd) fungus that is responsible for severe declines in amphibians. We show that the model's basic reproduction number consists of a weighted average of individual basic reproduction numbers associated to each tolerance class. If the individual basic reproduction number associated to the highest tolerance level is less than one, then any solution converges to a (non-unique) disease-free equilibrium. We show that in the absence of a trade-off, different host defense strategies can coexist as long as the disease will go extinct eventually. In contrast, if the disease persists, the set of pandemic equilibria consists of isolated vertex equilibria, implying the survival of an individual host defense strategy. The pandemic equilibrium corresponding to the highest tolerance, i.e., lowest disease-induced death rate is the only asymptotically stable pandemic equilibrium. Additionally, to investigate the impact of a trade-off, we incorporate a tolerance cost in reproduction, whereby a higher tolerance comes at the expense of a lower reproductive rate. Now, the coexistence of host defense strategies in the absence of the disease is no longer supported. However, the set of pandemic equilibria increases in richness to contain equilibria where different tolerance classes are present.
Collapse
Affiliation(s)
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, USA
| | - Jason C Walsman
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, USA
| |
Collapse
|
2
|
Maulenbay A, Rsaliyev A. Fungal Disease Tolerance with a Focus on Wheat: A Review. J Fungi (Basel) 2024; 10:482. [PMID: 39057367 PMCID: PMC11277790 DOI: 10.3390/jof10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In this paper, an extensive review of the literature is provided examining the significance of tolerance to fungal diseases in wheat amidst the escalating global demand for wheat and threats from environmental shifts and pathogen movements. The current comprehensive reliance on agrochemicals for disease management poses risks to food safety and the environment, exacerbated by the emergence of fungicide resistance. While resistance traits in wheat can offer some protection, these traits do not guarantee the complete absence of losses during periods of vigorous or moderate disease development. Furthermore, the introduction of individual resistance genes into wheat monoculture exerts selection pressure on pathogen populations. These disadvantages can be addressed or at least mitigated with the cultivation of tolerant varieties of wheat. Research in this area has shown that certain wheat varieties, susceptible to severe infectious diseases, are still capable of achieving high yields. Through the analysis of the existing literature, this paper explores the manifestations and quantification of tolerance in wheat, discussing its implications for integrated disease management and breeding strategies. Additionally, this paper addresses the ecological and evolutionary aspects of tolerance in the pathogen-plant host system, emphasizing its potential to enhance wheat productivity and sustainability.
Collapse
Affiliation(s)
- Akerke Maulenbay
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| | - Aralbek Rsaliyev
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| |
Collapse
|
3
|
Marrafon-Silva M, Maia T, Calderan-Rodrigues MJ, Strabello M, Oliveira L, Creste S, Melotto M, Monteiro-Vitorello CB. Exploring Potential Surrogate Systems for Studying the Early Steps of the Sporisorium scitamineum Pathogenesis. PHYTOPATHOLOGY 2024; 114:1295-1304. [PMID: 38148162 DOI: 10.1094/phyto-05-23-0156-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Despite its global importance as a primary source of table sugar and bioethanol, sugarcane faces a significant threat to its production due to diseases. One of these diseases, sugarcane smut, involves the emergence of a whip-like structure from the host apical shoot. The slow onset of this pathogenesis is the most substantial challenge for researchers to investigate the molecular events leading to resistance or susceptibility. In this study, we explored the early interaction between the smut fungus Sporisorium scitamineum and foliar tissues of the model plants Arabidopsis thaliana and Nicotiana benthamiana. Upon inoculation with the fungus, A. thaliana showed a compatible reaction, producing lesions during fungus colonization, whereas N. benthamiana showed signs of nonhost resistance. In addition, we propose a sugarcane detached leaf assay using plants cultivated in vitro to reveal sugarcane smut response outcomes. We used two sugarcane genotypes with known contrasting reactions to smut in the field. Although there is no evidence of sugarcane smut fungus infecting host leaves naturally, the sugarcane detached leaf assay enabled a rapid assessment of disease outcomes. Different symptoms in the detached leaves after inoculation distinguished smut-susceptible and smut-resistant sugarcane genotypes. Microscopic observations and gene expression analysis of S. scitamineum candidate effectors confirmed the fungal growth and its restriction on the compatible and incompatible interactions, respectively. These findings offer new prospects into the disease phenotyping of S. scitamineum, which could greatly expedite the comprehension of the initial stages of the pathogenesis and predict smut resistance in sugarcane genotypes.
Collapse
Affiliation(s)
- Mariana Marrafon-Silva
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
| | - Thiago Maia
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
- Departamento de Fitopatologia e Nematologia, USP, ESALQ, Piracicaba, SP, Brazil
| | - Maria Juliana Calderan-Rodrigues
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
| | - Mariana Strabello
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
| | - Lâina Oliveira
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
| | | | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Claudia Barros Monteiro-Vitorello
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
| |
Collapse
|
4
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Moya YS, Medina C, Herrera B, Chamba F, Yu LX, Xu Z, Samac DA. Genetic Mapping of Tolerance to Bacterial Stem Blight Caused by Pseudomonas syringae pv. syringae in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 13:110. [PMID: 38202418 PMCID: PMC10780931 DOI: 10.3390/plants13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
The bacterial stem blight of alfalfa (Medicago sativa L.), first reported in the United States in 1904, has emerged recently as a serious disease problem in the western states. The causal agent, Pseudomonas syringae pv. syringae, promotes frost damage and disease that can reduce first harvest yields by 50%. Resistant cultivars and an understanding of host-pathogen interactions are lacking in this pathosystem. With the goal of identifying DNA markers associated with disease resistance, we developed biparental F1 mapping populations using plants from the cultivar ZG9830. Leaflets of plants in the mapping populations were inoculated with a bacterial suspension using a needleless syringe and scored for disease symptoms. Bacterial populations were measured by culture plating and using a quantitative PCR assay. Surprisingly, leaflets with few to no symptoms had bacterial loads similar to leaflets with severe disease symptoms, indicating that plants without symptoms were tolerant to the bacterium. Genotyping-by-sequencing identified 11 significant SNP markers associated with the tolerance phenotype. This is the first study to identify DNA markers associated with tolerance to P. syringae. These results provide insight into host responses and provide markers that can be used in alfalfa breeding programs to develop improved cultivars to manage the bacterial stem blight of alfalfa.
Collapse
Affiliation(s)
- Yeidymar Sierra Moya
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
| | - Cesar Medina
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA;
| | - Bianca Herrera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
| | | | - Long-Xi Yu
- USDA-ARS-Plant Germplasm Introduction and Testing Research Unit, Prosser, WA 99350, USA;
| | - Zhanyou Xu
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA;
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA;
| |
Collapse
|
6
|
Duque-Jaramillo A, Ulmer N, Alseekh S, Bezrukov I, Fernie AR, Skirycz A, Karasov TL, Weigel D. The genetic and physiological basis of Arabidopsis thaliana tolerance to Pseudomonas viridiflava. THE NEW PHYTOLOGIST 2023; 240:1961-1975. [PMID: 37667565 DOI: 10.1111/nph.19241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
The opportunistic pathogen Pseudomonas viridiflava colonizes > 50 agricultural crop species and is the most common Pseudomonas in the phyllosphere of European Arabidopsis thaliana populations. Belonging to the P. syringae complex, it is genetically and phenotypically distinct from well-characterized P. syringae sensu stricto. Despite its prevalence, we lack knowledge of how A. thaliana responds to its native isolates at the molecular level. Here, we characterize the host response in an A. thaliana - P. viridiflava pathosystem. We measured host and pathogen growth in axenic infections and used immune mutants, transcriptomics, and metabolomics to determine defense pathways influencing susceptibility to P. viridiflava infection. Infection with P. viridiflava increased jasmonic acid (JA) levels and the expression of ethylene defense pathway marker genes. The immune response in a susceptible host accession was delayed compared with a tolerant one. Mechanical injury rescued susceptibility, consistent with an involvement of JA. The JA/ethylene pathway is important for suppression of P. viridiflava, yet suppression capacity varies between accessions. Our results shed light on how A. thaliana can suppress the ever-present P. viridiflava, but further studies are needed to understand how P. viridiflava evades this suppression to spread broadly across A. thaliana populations.
Collapse
Affiliation(s)
| | - Nina Ulmer
- Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ilja Bezrukov
- Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Boyce Thompson Institute, Cornell University, Ithaca, 14850, USA
| | - Talia L Karasov
- Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
- School of Biological Sciences, University of Utah, Salt Lake City, 84112, USA
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
7
|
Arch M, Vidal M, Fuentes E, Abat AS, Cardona PJ. The reproductive status determines tolerance and resistance to Mycobacterium marinum in Drosophila melanogaster. Evol Med Public Health 2023; 11:332-347. [PMID: 37868078 PMCID: PMC10590161 DOI: 10.1093/emph/eoad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/27/2023] [Indexed: 10/24/2023] Open
Abstract
Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic Mycobacterium marinum infection of Drosophila melanogaster. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in D. melanogaster to face infections, demonstrating their importance to determine resistance and tolerance against M. marinum infection.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Esther Fuentes
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
| | - Anmaw Shite Abat
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Department of Veterinary Paraclinical Studies, University of Gondar, Gondar, Ethiopia
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
8
|
Nemchinov LG, Irish BM, Uschapovsky IV, Grinstead S, Shao J, Postnikova OA. Composition of the alfalfa pathobiome in commercial fields. Front Microbiol 2023; 14:1225781. [PMID: 37692394 PMCID: PMC10491455 DOI: 10.3389/fmicb.2023.1225781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Through the recent advances of modern high-throughput sequencing technologies, the "one microbe, one disease" dogma is being gradually replaced with the principle of the "pathobiome". Pathobiome is a comprehensive biotic environment that not only includes a diverse community of all disease-causing organisms within the plant but also defines their mutual interactions and resultant effect on plant health. To date, the concept of pathobiome as a major component in plant health and sustainable production of alfalfa (Medicago sativa L.), the most extensively cultivated forage legume in the world, is non-existent. Here, we approached this subject by characterizing the biodiversity of the alfalfa pathobiome using high-throughput sequencing technology. Our metagenomic study revealed a remarkable abundance of different pathogenic communities associated with alfalfa in the natural ecosystem. Profiling the alfalfa pathobiome is a starting point to assess known and identify new and emerging stress challenges in the context of plant disease management. In addition, it allows us to address the complexity of microbial interactions within the plant host and their impact on the development and evolution of pathogenesis.
Collapse
Affiliation(s)
- Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Brian M. Irish
- Plant Germplasm Introduction and Testing Research Unit, Prosser, WA, United States
| | | | - Sam Grinstead
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Office of The Area Director, Beltsville, MD, United States
| | - Olga A. Postnikova
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
9
|
Hoffmann G, Shukla A, López-González S, Hafrén A. Cauliflower mosaic virus disease spectrum uncovers novel susceptibility factor NCED9 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4751-4764. [PMID: 37249342 PMCID: PMC10433934 DOI: 10.1093/jxb/erad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Viruses are intimately linked with their hosts and especially dependent on gene-for-gene interactions to establish successful infections. On the host side, defence mechanisms such as tolerance and resistance can occur within the same species, leading to differing virus accumulation in relation to symptomology and plant fitness. The identification of novel resistance genes against viruses and susceptibility factors is an important part of understanding viral patho-genesis and securing food production. The model plant Arabidopsis thaliana displays a wide symptom spectrum in response to RNA virus infections, and unbiased genome-wide association studies have proven a powerful tool to identify novel disease-genes. In this study we infected natural accessions of A. thaliana with the pararetrovirus cauliflower mosaic virus (CaMV) to study the phenotypic variations between accessions and their correlation with virus accumulation. Through genome-wide association mapping of viral accumulation differences, we identified several susceptibility factors for CaMV, the strongest of which was the abscisic acid synthesis gene NCED9. Further experiments confirmed the importance of abscisic acid homeostasis and its disruption for CaMV disease.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
10
|
Yang C, Baireddy S, Méline V, Cai E, Caldwell D, Iyer-Pascuzzi AS, Delp EJ. Image-based plant wilting estimation. PLANT METHODS 2023; 19:52. [PMID: 37254098 DOI: 10.1186/s13007-023-01026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Environmental stress due to climate or pathogens is a major threat to modern agriculture. Plant genetic resistance to these stresses is one way to develop more resilient crops, but accurately quantifying plant phenotypic responses can be challenging. Here we develop and test a set of metrics to quantify plant wilting, which can occur in response to abiotic stress such as heat or drought, or in response to biotic stress caused by pathogenic microbes. These metrics can be useful in genomic studies to identify genes and genomic regions underlying plant resistance to a given stress. RESULTS We use two datasets: one of tomatoes inoculated with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease, and another of soybeans exposed to water stress. For both tomato and soybean, the metrics predict the visual wilting score provided by human experts. Specific to the tomato dataset, we demonstrate that our metrics can capture the genetic difference of bacterium wilt resistance among resistant and susceptible tomato genotypes. In soybean, we show that our metrics can capture the effect of water stress. CONCLUSION Our proposed RGB image-based wilting metrics can be useful for identifying plant wilting caused by diverse stresses in different plant species.
Collapse
Affiliation(s)
- Changye Yang
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN, 47907, USA.
| | - Sriram Baireddy
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - Valérian Méline
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - Enyu Cai
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Denise Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Edward J Delp
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Samuel GH, Pohlenz T, Dong Y, Coskun N, Adelman ZN, Dimopoulos G, Myles KM. RNA interference is essential to modulating the pathogenesis of mosquito-borne viruses in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2023; 120:e2213701120. [PMID: 36893279 PMCID: PMC10089172 DOI: 10.1073/pnas.2213701120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/15/2022] [Indexed: 03/11/2023] Open
Abstract
While it has long been known that the transmission of mosquito-borne viruses depends on the establishment of persistent and nonlethal infections in the invertebrate host, specific roles for the insects' antiviral immune pathways in modulating the pathogenesis of viral infections is the subject of speculation and debate. Here, we show that a loss-of-function mutation in the Aedes aegypti Dicer-2 (Dcr-2) gene renders the insect acutely susceptible to a disease phenotype upon infection with pathogens in multiple virus families associated with important human diseases. Additional interrogation of the disease phenotype demonstrated that the virus-induced pathology is controlled through a canonical RNA interference (RNAi) pathway, which functions as a resistance mechanism. These results suggest comparatively modest contributions of proposed tolerance mechanisms to the fitness of A. aegypti infected with these pathogens. Similarly, the production of virus-derived piwi-interacting RNAs (vpiRNAs) was not sufficient to prevent the pathology associated with viral infections in Dcr-2 null mutants, also suggesting a less critical, or potentially secondary, role for vpiRNAs in antiviral immunity. These findings have important implications for understanding the ecological and evolutionary interactions occurring between A. aegypti and the pathogens they transmit to human and animal hosts.
Collapse
Affiliation(s)
- Glady Hazitha Samuel
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - Tyler Pohlenz
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205-2179
| | - Nese Coskun
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - Zach N. Adelman
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205-2179
| | - Kevin M. Myles
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| |
Collapse
|
12
|
A Genome-Wide Association study in Arabidopsis thaliana to decipher the adaptive genetics of quantitative disease resistance in a native heterogeneous environment. PLoS One 2022; 17:e0274561. [PMID: 36190949 PMCID: PMC9529085 DOI: 10.1371/journal.pone.0274561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Pathogens are often the main selective agents acting in plant communities, thereby influencing the distribution of polymorphism at loci affecting resistance within and among natural plant populations. In addition, the outcome of plant-pathogen interactions can be drastically affected by abiotic and biotic factors at different spatial and temporal grains. The characterization of the adaptive genetic architecture of disease resistance in native heterogeneous environments is however still missing. In this study, we conducted an in situ Genome-Wide Association study in the spatially heterogeneous native habitat of a highly genetically polymorphic local mapping population of Arabidopsis thaliana, to unravel the adaptive genetic architecture of quantitative disease resistance. Disease resistance largely differed among three native soils and was affected by the presence of the grass Poa annua. The observation of strong crossing reactions norms among the 195 A. thaliana genotypes for disease resistance among micro-habitats, combined with a negative fecundity-disease resistance relationship in each micro-habitat, suggest that alternative local genotypes of A. thaliana are favored under contrasting environmental conditions at the scale of few meters. A complex genetic architecture was detected for disease resistance and fecundity. However, only few QTLs were common between these two traits. Heterogeneous selection in this local population should therefore promote the maintenance of polymorphism at only few candidate resistance genes.
Collapse
|
13
|
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23:645-662. [PMID: 35710830 DOI: 10.1038/s41580-022-00496-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Collapse
Affiliation(s)
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Amanifar N, Luvisi A. Resistance of Almond ( Prunus dulcis) to Xylella fastidiosa: A Comparative Study on Cultivars. PLANT DISEASE 2022; 106:2625-2630. [PMID: 36075086 DOI: 10.1094/pdis-02-22-0336-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Almond leaf scorch is a disease caused by Xylella fastidiosa, which is increasingly widespread globally in the main almond cultivation areas. Previously confined to America, in the last decade this disease has been reported in Iran and southern Europe. In this comparative study, the resistance to X. fastidiosa subsp. multiplex of 13 almond cultivars (Mamaei, Non-Pareil, Sefied, Rabie, Ferragnes, Shahrood21, Thompson, Merced, Marcona, Frudeul, Kapariel, Princess, and Tuono) grafted onto seedlings of Talkhe was evaluated in controlled conditions. Plants were artificially inoculated and maintained in greenhouse conditions. Approximately 3 months after inoculation, three times at 3-week intervals, disease incidence, disease severity, and disease index were determined based on scaling, and bacterial populations were estimated. The effect of winter survival of bacteria in outdoor potted seedlings was also investigated in all almond cultivars. Findings showed a great degree of variability in response to X. fastidiosa among cultivars considering symptom development and severity, as well as bacterial titer. Thompson and Rabie cultivars scored the best results from both a symptomatological and infectious point of view, indicating resistance against the pathogen compared with other tolerant cultivars (e.g., Ferragnes, Tuono, and Kapariel), thanks to the development of mild symptoms. Mamaei, Non-Pareil, and Sefied scored worst, suggesting a susceptible behavior when infected by X. fastidiosa. Given that the pathogen was not detected by culturing and PCR during the following summer, bacterial population in potted seedlings was reduced significantly by overwintering in outdoor conditions regardless of cultivar susceptibility. This suggests that cold treatment can be used as a preventive treatment to manage nursery almond seedlings.
Collapse
Affiliation(s)
- Naser Amanifar
- Department of Plant Protection Research, Charmahal va Bakhtiary Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran
| | - Andrea Luvisi
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
15
|
Elucidating Mechanisms of Tolerance to Salmonella Typhimurium across Long-Term Infections Using the Collaborative Cross. mBio 2022; 13:e0112022. [PMID: 35880881 PMCID: PMC9426527 DOI: 10.1128/mbio.01120-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular mechanisms underlying resistance and tolerance to pathogen infection may present the opportunity to develop novel interventions. Resistance is the absence of clinical disease with a low pathogen burden, while tolerance is minimal clinical disease with a high pathogen burden. Salmonella is a worldwide health concern. We studied 18 strains of collaborative cross mice that survive acute Salmonella Typhimurium (STm) infections. We infected these strains orally and monitored them for 3 weeks. Five strains cleared STm (resistant), six strains maintained a bacterial load and survived (tolerant), while seven strains survived >7 days but succumbed to infection within the study period and were called “delayed susceptible.” Tolerant strains were colonized in the Peyer’s patches, mesenteric lymph node, spleen, and liver, while resistant strains had significantly reduced bacterial colonization. Tolerant strains had lower preinfection core body temperatures and had disrupted circadian patterns of body temperature postinfection sooner than other strains. Tolerant strains had higher circulating total white blood cells than resistant strains, driven by increased numbers of neutrophils. Tolerant strains had more severe tissue damage and higher circulating levels of monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ), but lower levels of epithelial neutrophil-activating protein 78 (ENA-78) than resistant strains. Quantitative trait locus (QTL) analysis revealed one significant association and six suggestive associations. Gene expression analysis identified 22 genes that are differentially regulated in tolerant versus resistant animals that overlapped these QTLs. Fibrinogen genes (Fga, Fgb, and Fgg) were found across the QTL, RNA, and top canonical pathways, making them the best candidate genes for differentiating tolerance and resistance.
Collapse
|
16
|
Downey J, Randolph HE, Pernet E, Tran KA, Khader SA, King IL, Barreiro LB, Divangahi M. Mitochondrial cyclophilin D promotes disease tolerance by licensing NK cell development and IL-22 production against influenza virus. Cell Rep 2022; 39:110974. [PMID: 35732121 DOI: 10.1016/j.celrep.2022.110974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022] Open
Abstract
Severity of pulmonary viral infections, including influenza A virus (IAV), is linked to excessive immunopathology, which impairs lung function. Thus, the same immune responses that limit viral replication can concomitantly cause lung damage that must be countered by largely uncharacterized disease tolerance mechanisms. Here, we show that mitochondrial cyclophilin D (CypD) protects against IAV via disease tolerance. CypD-/- mice are significantly more susceptible to IAV infection despite comparable antiviral immunity. This susceptibility results from damage to the lung epithelial barrier caused by a reduction in interleukin-22 (IL-22)-producing natural killer (NK) cells. Transcriptomic and functional data reveal that CypD-/- NK cells are immature and have altered cellular metabolism and impaired IL-22 production, correlating with dysregulated bone marrow lymphopoiesis. Administration of recombinant IL-22 or transfer of wild-type (WT) NK cells abrogates pulmonary damage and protects CypD-/- mice after IAV infection. Collectively, these results demonstrate a key role for CypD in NK cell-mediated disease tolerance.
Collapse
Affiliation(s)
- Jeffrey Downey
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Erwan Pernet
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Kim A Tran
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Shabaana A Khader
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Irah L King
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Maziar Divangahi
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
17
|
Tamisier L, Szadkowski M, Girardot G, Djian‐Caporalino C, Palloix A, Hirsch J, Moury B. Concurrent evolution of resistance and tolerance to potato virus Y in Capsicum annuum revealed by genome-wide association. MOLECULAR PLANT PATHOLOGY 2022; 23:254-264. [PMID: 34729890 PMCID: PMC8743019 DOI: 10.1111/mpp.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/21/2023]
Abstract
We performed a genome-wide association study of pepper (Capsicum annuum) tolerance to potato virus Y (PVY). For 254 pepper accessions, we estimated the tolerance to PVY as the coefficient of regression of the fresh weight (or height) of PVY-infected and mock-inoculated plants against within-plant virus load. Small (strongly negative) coefficients of regression indicate low tolerance because plant biomass or growth decreases sharply as virus load increases. The tolerance level varied largely, with some pepper accessions showing no symptoms or fairly mild mosaics, whereas about half (48%) of the accessions showed necrotic symptoms. We found two adjacent single-nucleotide polymorphisms (SNPs) at one extremity of chromosome 9 that were significantly associated with tolerance to PVY. Similarly, in three biparental pepper progenies, we showed that the induction of necrosis on PVY systemic infection segregated as a monogenic trait determined by a locus on chromosome 9. Our results also demonstrate the existence of a negative correlation between resistance and tolerance among the cultivated pepper accessions at both the phenotypic and genetic levels. By comparing the distributions of the tolerance-associated SNP alleles and previously identified PVY resistance-associated SNP alleles, we showed that cultivated pepper accessions possess favourable alleles for both resistance and tolerance less frequently than expected under random associations, while the minority of wild pepper accessions frequently combined resistance and tolerance alleles. This divergent evolution of PVY resistance and tolerance could be related to pepper domestication or farmer's selection.
Collapse
Affiliation(s)
- Lucie Tamisier
- Pathologie VégétaleINRAEMontfavetFrance
- GAFLINRAEMontfavetFrance
| | | | | | | | | | | | | |
Collapse
|
18
|
Singh P, Best A. Simultaneous evolution of host resistance and tolerance to parasitism. J Evol Biol 2021; 34:1932-1943. [PMID: 34704334 DOI: 10.1111/jeb.13947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022]
Abstract
Tolerance and resistance are two modes of defence mechanisms used by hosts when faced with parasites. Here, we assume tolerance reduces infection-induced mortality rate and resistance reduces the susceptibility of getting infected. Importantly, a negative association between these two strategies has often been found experimentally. We study the simultaneous evolution of resistance and tolerance in a host population where they are related by such a trade-off. Using evolutionary invasion theory, we examine the patterns of optimal investment in each defence strategy, under different ecological scenarios. Our focus is on predicting which of the two strategies is favoured under various epidemiological and ecological conditions. Our key findings surround the impact of recovery and sterility of infected hosts. As the rate at which infected hosts recover from the infection, that is the recovery rate increases, the investment in tolerance increases (resistance decreases) when infected hosts are sterile, but this pattern reverses when infected hosts can reproduce. We further found that a change in the parameter determining the intraspecies competition for resources leading to a reduction in birth rate, that is the crowding factor affects investments in tolerance and resistance only when infected hosts can reproduce. These results emphasize the role of fecundity in driving the evolutionary dynamics of a host. We also find that disease prevalence can increase or decrease depending on whether or not the host evolves: prevalence is highest at low recovery rates when the host does not evolve, but the feedback of a change in tolerance and resistance reverses this pattern, leading to lower prevalence at low recovery rates as host evolves.
Collapse
Affiliation(s)
- Prerna Singh
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Mamphogoro TP, Kamutando CN, Maboko MM, Aiyegoro OA, Babalola OO. Epiphytic Bacteria from Sweet Pepper Antagonistic In Vitro to Ralstonia solanacearum BD 261, a Causative Agent of Bacterial Wilt. Microorganisms 2021; 9:microorganisms9091947. [PMID: 34576842 PMCID: PMC8469110 DOI: 10.3390/microorganisms9091947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Biological control of plant pathogens, particularly using microbial antagonists, is posited as the most effective, environmentally-safe, and sustainable strategy to manage plant diseases. However, the roles of antagonists in controlling bacterial wilt, a disease caused by the most devastating and widely distributed pathogen of sweet peppers (i.e., R. solanacearum), are poorly understood. Here, amplicon sequencing and several microbial function assays were used to depict the identities and the potential antagonistic functions of bacteria isolated from 80 red and green sweet pepper fruit samples, grown under hydroponic and open soil conditions, with some plants, fungicide-treated while others were untreated. Amplicon sequencing revealed the following bacterial strains: Bacillus cereus strain HRT7.7, Enterobacter hormaechei strain SRU4.4, Paenibacillus polymyxa strain SRT9.1, and Serratia marcescens strain SGT5.3, as potential antagonists of R. solanacearum. Optimization studies with different carbon and nitrogen sources revealed that maximum inhibition of the pathogen was produced at 3% (w/v) starch and 2,5% (w/v) tryptone at pH 7 and 30 °C. The mode of action exhibited by the antagonistic isolates includes the production of lytic enzymes (i.e., cellulase and protease enzymes) and siderophores, as well as solubilization of phosphate. Overall, the results demonstrated that the maximum antimicrobial activity of bacterial antagonists could only be achieved under specific environmental conditions (e.g., available carbon and nitrogen sources, pH, and temperature levels), and that bacterial antagonists can also indirectly promote crop growth and development through nutrient cycling and siderophore production.
Collapse
Affiliation(s)
- Tshifhiwa Paris Mamphogoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agriculture Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| | - Casper Nyaradzai Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare 0263, Zimbabwe;
| | - Martin Makgose Maboko
- Crop Science Unit, Agriculture Research Council—Vegetable and Ornamental Plants, Private Bag X293, Roodeplaat, Pretoria 0001, South Africa;
| | - Olayinka Ayobami Aiyegoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agriculture Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Research Unit for Environmental Sciences and Management, North-West University, Private Bag X1290, Potchefstroom 2520, South Africa
- Correspondence:
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
20
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
21
|
Barrett-Manako K, Andersen M, Martínez-Sánchez M, Jenkins H, Hunter S, Reese-George J, Montefiori M, Wohlers M, Rikkerink E, Templeton M, Nardozza S. Real-Time PCR and Droplet Digital PCR Are Accurate and Reliable Methods To Quantify Pseudomonas syringae pv. actinidiae Biovar 3 in Kiwifruit Infected Plantlets. PLANT DISEASE 2021; 105:1748-1757. [PMID: 33206018 DOI: 10.1094/pdis-08-20-1703-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudomonas syringae pv. actinidiae is the etiological agent of kiwifruit canker disease, causing severe economic losses in kiwifruit production areas around the world. Rapid diagnosis, understanding of bacterial virulence, and rate of infection in kiwifruit cultivars are important in applying effective measures of disease control. P. syringae pv. actinidiae load in kiwifruit is currently determined by a labor-intense colony counting method with no high-throughput and specific quantification method being validated. In this work, we used three alternative P. syringae pv. actinidiae quantification methods in two infected kiwifruit cultivars: start of growth time, quantitative PCR (qPCR), and droplet digital PCR (ddPCR). Method performance in each case was compared with the colony counting method. Methods were validated using calibration curves obtained with serial dilutions of P. syringae pv. actinidiae biovar 3 (Psa3) inoculum and standard growth curves obtained from kiwifruit samples infected with Psa3 inoculum. All three alternative methods showed high correlation (r > 0.85) with the colony counting method. qPCR and ddPCR were very specific, sensitive (5 × 102 CFU/cm2), highly correlated to each other (r = 0.955), and flexible, allowing for sample storage. The inclusion of a kiwifruit biomass marker increased the methods' accuracy. The qPCR method was efficient and allowed for high-throughput processing, and the ddPCR method showed highly accurate results but was more expensive and time consuming. While not ideal for high-throughput processing, ddPCR was useful in developing accurate standard curves for the qPCR method. The combination of the two methods is high-throughput, specific for Psa3 quantification, and useful for research studies (e.g., disease phenotyping and host-pathogen interactions).
Collapse
Affiliation(s)
| | - Mark Andersen
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | | | - Heather Jenkins
- New Zealand Institute for Plant and Food Research Limited, Christchurch 8140, New Zealand
| | - Shannon Hunter
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Jonathan Reese-George
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Mirco Montefiori
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Mark Wohlers
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Erik Rikkerink
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Matt Templeton
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Simona Nardozza
- New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| |
Collapse
|
22
|
van den Berg N, Swart V, Backer R, Fick A, Wienk R, Engelbrecht J, Prabhu SA. Advances in Understanding Defense Mechanisms in Persea americana Against Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2021; 12:636339. [PMID: 33747014 PMCID: PMC7971113 DOI: 10.3389/fpls.2021.636339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 06/03/2023]
Abstract
Avocado (Persea americana) is an economically important fruit crop world-wide, the production of which is challenged by notable root pathogens such as Phytophthora cinnamomi and Rosellinia necatrix. Arguably the most prevalent, P. cinnamomi, is a hemibiotrophic oomycete which causes Phytophthora root rot, leading to reduced yields and eventual tree death. Despite its' importance, the development of molecular tools and resources have been historically limited, prohibiting significant progress toward understanding this important host-pathogen interaction. The development of a nested qPCR assay capable of quantifying P. cinnamomi during avocado infection has enabled us to distinguish avocado rootstocks as either resistant or tolerant - an important distinction when unraveling the defense response. This review will provide an overview of our current knowledge on the molecular defense pathways utilized in resistant avocado rootstock against P. cinnamomi. Notably, avocado demonstrates a biphasic phytohormone profile in response to P. cinnamomi infection which allows for the timely expression of pathogenesis-related genes via the NPR1 defense response pathway. Cell wall modification via callose deposition and lignification have also been implicated in the resistant response. Recent advances such as composite plant transformation, single nucleotide polymorphism (SNP) analyses as well as genomics and transcriptomics will complement existing molecular, histological, and biochemical assay studies and further elucidate avocado defense mechanisms.
Collapse
Affiliation(s)
- Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alicia Fick
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Raven Wienk
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - S. Ashok Prabhu
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Rodrigues AM, Carrasquinho I, António C. Primary Metabolite Adjustments Associated With Pinewood Nematode Resistance in Pinus pinaster. FRONTIERS IN PLANT SCIENCE 2021; 12:777681. [PMID: 34950168 PMCID: PMC8691400 DOI: 10.3389/fpls.2021.777681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of the pine wilt disease (PWD) and represents one of the major threats to conifer forests. The detection of the PWN in Portugal, associated with Pinus pinaster, increased the concern of its spread to European forests. Despite its susceptibility to PWD, genetic variability found among P. pinaster populations has been associated with heritable PWD resistance. Understanding the mechanisms underlying tree resistance constitutes a valuable resource for breeding programs toward more resilient forest plantations. This study investigated changes in anatomy, chlorophyll a fluorescence (ChlF), and primary metabolism in susceptible and resistant P. pinaster half-sib plants, after PWN inoculation. Susceptible plants showed a general shutdown of central metabolism, osmolyte accumulation, photosynthetic inhibition, and a decrease in the plant water status. The ChlF transient rise (OJIP curve) revealed the appearance of L- and K-bands, indicators of environmental stress. In contrast, resistant plants revealed a regulated defense response and were able to restrict PWN migration and cellular damage. Furthermore, the accumulation of γ-aminobutyric acid (GABA) and succinate suggested a role of these metabolites in PWD resistance and the possible activation of the GABA shunt. Altogether, these results provide new insights to the role of primary metabolism in PWD resistance and in the selection of resistant phenotypes for disease mitigation.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Carla António,
| |
Collapse
|
24
|
Botero-Ramírez A, Laperche A, Guichard S, Jubault M, Gravot A, Strelkov SE, Manzanares-Dauleux MJ. Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape ( Brassica napus) Are Controlled by Four Main QTLs. FRONTIERS IN PLANT SCIENCE 2020; 11:604527. [PMID: 33391316 PMCID: PMC7773761 DOI: 10.3389/fpls.2020.604527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 06/02/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is one of the most important diseases of oilseed rape (Brassica napus L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production. The genetic control of disease index (DI) and resting spores per plant (RSP) was evaluated in a doubled haploid (DH) population consisting of 114 winter oilseed rape lines, obtained from the cross 'Aviso' × 'Montego,' inoculated with P. brassicae isolate "eH." Linkage analysis allowed the identification of three quantitative trait loci (QTLs) controlling DI (PbBn_di_A02, PbBn_di_A04, and PbBn_di_C03). A significant decrease in DI was observed when combining effects of the three resistance alleles at these QTLs. Only one QTL, PbBn_rsp_C03, was found to control RSP, reducing resting spore production by 40%. PbBn_rsp_C03 partially overlapped with PbBn_di_C03 in a nucleotide-binding leucine-rich repeat (NLR) gene-containing region. Consideration of both DI and RSP in breeding for clubroot resistance is recommended for the long-term management of this disease.
Collapse
Affiliation(s)
- Andrea Botero-Ramírez
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anne Laperche
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Solenn Guichard
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Mélanie Jubault
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Antoine Gravot
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maria J. Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
25
|
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 2020; 96:5957528. [DOI: 10.1093/femsec/fiaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
ABSTRACTBacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
26
|
Abstract
Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host-pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
27
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|
28
|
Poulaki EG, Tsolakidou MD, Gkizi D, Pantelides IS, Tjamos SE. The Ethylene Biosynthesis Genes ACS2 and ACS6 Modulate Disease Severity of Verticillium dahliae. PLANTS 2020; 9:plants9070907. [PMID: 32709088 PMCID: PMC7412018 DOI: 10.3390/plants9070907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Verticillium dahliae is one of the most destructive soilborne plant pathogens since it has a broad host range and there is no chemical disease management. Therefore, there is a need to unravel the molecular interaction between the pathogen and the host plant. For this purpose, we examined the role of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs) of Arabidopsis thaliana upon V. dahliae infection. We observed that the acs2, acs6, and acs2/6 plants are partially resistant to V. dahliae, since the disease severity of the acs mutants was lower than the wild type (wt) Col-0 plants. Quantitative polymerase chain reaction analysis revealed that acs2, acs6, and acs2/6 plants had lower endophytic levels of V. dahliae than the wt. Therefore, the observed reduction of the disease severity in the acs mutants is rather associated with resistance than tolerance. It was also shown that ACS2 and ACS6 were upregulated upon V. dahliae infection in the root and the above ground tissues of the wt plants. Furthermore, the addition of 1-aminocyclopropane-1-carboxylic acid (ACC) and aminooxyacetic acid (AOA), the competitive inhibitor of ACS, in wt A. thaliana, before or after V. dahliae inoculation, revealed that both substances decreased Verticillium wilt symptoms compared to controls irrespectively of the application time. Therefore, our results suggest that the mechanism underpinning the partial resistance of acs2 and acs6 seem to be ethylene depended rather than ACC related, since the application of ACC in the wt led to decreased disease severity compared to control.
Collapse
Affiliation(s)
- Eirini G. Poulaki
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.G.P.); (D.G.)
| | - Maria-Dimitra Tsolakidou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus; (M.-D.T.); (I.S.P.)
| | - Danai Gkizi
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.G.P.); (D.G.)
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus; (M.-D.T.); (I.S.P.)
| | - Sotirios E. Tjamos
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.G.P.); (D.G.)
- Correspondence:
| |
Collapse
|
29
|
Mikaberidze A, McDonald BA. A tradeoff between tolerance and resistance to a major fungal pathogen in elite wheat cultivars. THE NEW PHYTOLOGIST 2020; 226:879-890. [PMID: 31917858 DOI: 10.1111/nph.16418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Tolerance and resistance represent two strategies that hosts evolved to protect themselves from pathogens. Tolerance alleviates the reduction in host fitness due to infection without reducing a pathogen's growth, whereas resistance reduces pathogen growth. We investigated the tolerance of wheat to the major fungal pathogen Zymoseptoria tritici in 335 elite wheat cultivars. We used a novel digital phenotyping approach that included 11 152 infected leaves and counted 2069 048 pathogen fruiting bodies. We discovered a new component of tolerance that is based on the relationship between the green area remaining on a leaf and the number of pathogen fruiting bodies. We found a negative correlation between tolerance and resistance among intolerant cultivars, presenting the first compelling evidence for a tradeoff between tolerance and resistance to plant pathogens. Surprisingly, the tradeoff arises due to limits in the host resources available to the pathogen and not due to metabolic constraints, contrary to what ecological theory suggests. The mechanism underlying this tradeoff may be relevant for many plant diseases in which the amount of host resources available to the pathogen can limit the pathogen population. Our analysis indicates that European wheat breeders may have selected for tolerance instead of resistance to an important pathogen.
Collapse
Affiliation(s)
- Alexey Mikaberidze
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, RG6 6AR, UK
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, LFW, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
30
|
Montes N, Vijayan V, Pagán I. Trade-offs between host tolerances to different pathogens in plant-virus interactions. Virus Evol 2020; 6:veaa019. [PMID: 32211198 PMCID: PMC7079720 DOI: 10.1093/ve/veaa019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified the associated mechanisms. To do so, we challenged eighteen Arabidopsis thaliana genotypes with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). We characterized plant life-history trait modifications associated with reduced effects of TuMV and CMV on plant seed production (fecundity tolerance) and life period (mortality tolerance), both measured as a norm of reaction across viral loads (range tolerance). Also, we analysed resistance-tolerance and tolerance-tolerance trade-offs. Results indicate that tolerance to TuMV is associated with changes in the length of the pre-reproductive and reproductive periods, and tolerance to CMV with resource reallocation from growth to reproduction; and that tolerance to TuMV is traded-off against tolerance to CMV in a virulence-dependent manner. Thus, this work provides novel insights on the mechanisms of plant tolerance and highlights the importance of considering the combined effect of different pathogens to understand how plant defences evolve.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain
| |
Collapse
|
31
|
Bonneaud C, Tardy L, Giraudeau M, Hill GE, McGraw KJ, Wilson AJ. Evolution of both host resistance and tolerance to an emerging bacterial pathogen. Evol Lett 2019. [DOI: 10.1002/evl3.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
| | - Luc Tardy
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
| | - Mathieu Giraudeau
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
- School of Life Sciences; Arizona State University; Tempe Arizona 85287
- Current address: Centre for Ecological and Evolutionary Research on Cancer; UMR CNRS/IRD/UM 5290 MIVEGEC; 34394 Montpellier France
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn Alabama 36849
| | - Kevin J. McGraw
- School of Life Sciences; Arizona State University; Tempe Arizona 85287
| | - Alastair J. Wilson
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
| |
Collapse
|
32
|
Ferris C, Best A. The effect of temporal fluctuations on the evolution of host tolerance to parasitism. Theor Popul Biol 2019; 130:182-190. [PMID: 31415775 DOI: 10.1016/j.tpb.2019.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/29/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022]
Abstract
There are many mechanisms that hosts can evolve to defend against parasites, two of which are resistance and tolerance. These defences often have different evolutionary behaviours, and it is important to consider how each individual mechanism may respond to changes in environment. In particular, host defence through tolerance is predicted to be unlikely to lead to variation, despite many observations of diversity in both animal and plant systems. Hence understanding the drivers of diversity in host defence and parasite virulence is vital for predicting future evolutionary changes in infectious disease dynamics. It has been suggested that heterogeneous environments might generally promote diversity, but the effect of temporal fluctuations has received little attention theoretically or empirically, and there has been no examination of how temporal fluctuations affects the evolution of host tolerance. In this study, we use a mathematical model to investigate the evolution of host tolerance in a temporally fluctuating environment. We show that investment in tolerance increases in more variable environments, giving qualitatively different evolutionary behaviours when compared to resistance. Once seasonality is introduced evolutionary branching though tolerance can occur and create diversity within the population, although potentially only temporarily. This branching behaviour arises due to the emergence of a negative feedback with the maximum infected density on a cycle, which is strongest when the infected population is large. This work reinforces the qualitative differences between tolerance and resistance evolution, but also provides theoretical evidence for the theory that heterogeneous environments promote host-parasite diversity, hence constant environment assumptions may omit important evolutionary outcomes.
Collapse
Affiliation(s)
- Charlotte Ferris
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
| |
Collapse
|
33
|
Tsairidou S, Anacleto O, Woolliams JA, Doeschl-Wilson A. Enhancing genetic disease control by selecting for lower host infectivity and susceptibility. Heredity (Edinb) 2019; 122:742-758. [PMID: 30651590 PMCID: PMC6781107 DOI: 10.1038/s41437-018-0176-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/02/2023] Open
Abstract
Infectious diseases have a huge impact on animal health, production and welfare, and human health. Understanding the role of host genetics in disease spread is important for developing disease control strategies that efficiently reduce infection incidence and risk of epidemics. While heritable variation in disease susceptibility has been targeted in livestock breeding, emerging evidence suggests that there is additional genetic variation in host infectivity, but the potential benefits of including infectivity into selection schemes are currently unknown. A Susceptible-Infected-Recovered epidemiological model incorporating polygenic genetic variation in both susceptibility and infectivity was combined with quantitative genetics selection theory to assess the non-linear impact of genetic selection on field measures of epidemic risk and severity. Response to 20 generations of selection was calculated in large simulated populations, exploring schemes differing in accuracy and intensity. Assuming moderate genetic variation in both traits, 50% selection on susceptibility required seven generations to reduce the basic reproductive number R0 from 7.64 to the critical threshold of <1, below which epidemics die out. Adding infectivity in the selection objective accelerated the decline towards R0 < 1, to 3 generations. Our results show that although genetic selection on susceptibility reduces disease risk and prevalence, the additional gain from selection on infectivity accelerates disease eradication and reduces more efficiently the risk of new outbreaks, while it alleviates delays generated by unfavourable correlations. In conclusion, host infectivity was found to be an important trait to target in future genetic studies and breeding schemes, to help reducing the occurrence and impact of epidemics.
Collapse
Affiliation(s)
- Smaragda Tsairidou
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - O Anacleto
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, Brazil
| | - J A Woolliams
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - A Doeschl-Wilson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
34
|
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 2019; 15:e1007810. [PMID: 31136630 PMCID: PMC6555541 DOI: 10.1371/journal.ppat.1007810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild ecosystems through the analysis of plant-virus coevolution, which requires a negative effect of infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diversity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 individuals collected in 76 A. thaliana Iberian wild populations were inoculated with different CMV strains. Resistance was estimated from the level of virus multiplication in infected plants, and tolerance from the effect of infection on host progeny production. Resistance and tolerance to CMV showed substantial genetic variation within and between host populations, and depended on the virus x host genotype interaction, two conditions for coevolution. Resistance and tolerance were co-occurring independent traits that have evolved independently from related life-history traits involved in adaptation to climate. The comparison of the genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses) indicated that both defence traits are likely under uniform selection. These results strongly suggest that CMV infection selects for defence on A. thaliana populations, and support plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the field conditions of the wild A. thaliana populations studied.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
35
|
Masini L, Grenville‐Briggs LJ, Andreasson E, Råberg L, Lankinen Å. Tolerance and overcompensation to infection by Phytophthora infestans in the wild perennial climber Solanum dulcamara. Ecol Evol 2019; 9:4557-4567. [PMID: 31031927 PMCID: PMC6476776 DOI: 10.1002/ece3.5057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Studies of infection by Phytophthora infestans-the causal agent of potato late blight-in wild species can provide novel insights into plant defense responses, and indicate how wild plants might be influenced by recurrent epidemics in agricultural fields. In the present study, our aim was to investigate if different clones of Solanum dulcamara (a relative of potato) collected in the wild differ in resistance and tolerance to infection by a common European isolate of P. infestans. We performed infection experiments with six S. dulcamara genotypes (clones) both in the laboratory and in the field and measured the degree of infection and plant performance traits. In the laboratory, the six evaluated genotypes varied from resistant to susceptible, as measured by degree of infection 20 days post infection. Two of the four genotypes susceptible to infection showed a quadratic (concave downward) relationship between the degree of infection and shoot length, with maximum shoot length at intermediate values of infection. This result suggests overcompensation, that is, an increase in growth in infected individuals. The number of leaves decreased with increasing degree of infection, but at different rates in the four susceptible genotypes, indicating genetic variation for tolerance. In the field, the inoculated genotypes did not show any disease symptoms, but plant biomass at the end of the growing season was higher for inoculated plants than for controls, in-line with the overcompensation detected in the laboratory. We conclude that in S. dulcamara there are indications of genetic variation for both resistance and tolerance to P. infestans infection. Moreover, some genotypes displayed overcompensation. Learning about plant tolerance and overcompensation to infection by pathogens can help broaden our understanding of plant defense in natural populations and help develop more sustainable plant protection strategies for economically important crop diseases.
Collapse
Affiliation(s)
- Laura Masini
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Present address:
British American TobaccoPlant Biotechnology DivisionCambridgeUK
| | | | - Erik Andreasson
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Lars Råberg
- Department of BiologyLund UniversityLundSweden
| | - Åsa Lankinen
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
36
|
Azeez L, Lateef A, Wahab AA, Rufai MA, Salau AK, Ajayi EIO, Ajayi M, Adegbite MK, Adebisi B. Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: Its antiphytopathogenic and hepatoprotective potentials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:109-117. [PMID: 30660676 DOI: 10.1016/j.plaphy.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
This study has reported the effects of biogenic silver nanoparticles (AgNPs) using cocoa pod extract on physiological tolerance indices, antioxidant activity and hepatoprotective potentials of Corchorus olitorius as well as its efficiency for controlling soil phytopathogens. C. olitorius seeds were grown in soil prepared with water (control), 0.05, 0.1, 0.15 and 0.2 mg AgNPs/g soil. C. olitorus grown with AgNPs had significantly (p < 0.05) higher free radical scavenging ability, ferric reducing ability, percentage germination, vigour indices, longer roots and shoots as well as lower moisture content over control. C. olitorius grown with AgNPs attenuated hydrogen peroxide (H2O2)-mediated reduction in catalase concentrations and H2O2-induced malondialdehyde elevations in liver. Efficiency of AgNPs to reduce soil phytopathogens (fungi and nematodes) revealed significant (p < 0.05) reduction in the incidences of soil and shoot Meloidogyne spp., Aspergillus terreus, A. niger, Fusarium spp. and Cladosporium spp. with increase in concentrations of AgNPs. More efficiently, there was complete extermination of A. niger and Fusarium spp. in the leaves of C. olitorius grown with AgNPs. Results in this study have shown the positive influence of AgNPs on C. olitorius by strengthening its resistance against fungi, and nematodes, improvement of its shelf-life, modulation of antioxidant activities and promotion of liver-detoxifying potentials.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria.
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO(+)), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Abideen A Wahab
- Department of Microbiology, Osun State University, Osogbo, Nigeria
| | | | - Amadu K Salau
- Biochemistry and Nutrition Unit, Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | | | - Mercy Ajayi
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | | | - Basirat Adebisi
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| |
Collapse
|
37
|
Soltis NE, Atwell S, Shi G, Fordyce R, Gwinner R, Gao D, Shafi A, Kliebenstein DJ. Interactions of Tomato and Botrytis cinerea Genetic Diversity: Parsing the Contributions of Host Differentiation, Domestication, and Pathogen Variation. THE PLANT CELL 2019; 31:502-519. [PMID: 30647076 PMCID: PMC6447006 DOI: 10.1105/tpc.18.00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 05/26/2023]
Abstract
Although the impacts of crop domestication on specialist pathogens are well known, less is known about the interaction of crop variation and generalist pathogens. To study how genetic variation within a crop affects plant resistance to generalist pathogens, we infected a collection of wild and domesticated tomato accessions with a genetically diverse population of the generalist pathogen Botrytis cinerea We quantified variation in lesion size of 97 B. cinerea genotypes (isolates) on six domesticated tomato genotypes (Solanum lycopersicum) and six wild tomato genotypes (Solanum pimpinellifolium). Lesion size was significantly affected by large effects of the host and pathogen's genotype, with a much smaller contribution of domestication. This pathogen collection also enables genome-wide association mapping of B. cinerea Genome-wide association mapping of the pathogen showed that virulence is highly polygenic and involves a diversity of mechanisms. Breeding against this pathogen would likely require the use of diverse isolates to capture all possible mechanisms. Critically, we identified a subset of B. cinerea genes where allelic variation was linked to altered virulence against wild versus domesticated tomato, as well as loci that could handle both groups. This generalist pathogen already has a large collection of allelic variation that must be considered when designing a breeding program.
Collapse
Affiliation(s)
- Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58102
| | - Rachel Fordyce
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
- Department of Agriculture, Universidade Federal de Lavras, Lavras MG, 37200-000, Brazil
| | - Dihan Gao
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Aysha Shafi
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
38
|
Shourian M, Qureshi ST. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease. Front Immunol 2019; 10:66. [PMID: 30761136 PMCID: PMC6361814 DOI: 10.3389/fimmu.2019.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause of invasive fungal infection in humans. The most recent estimate of global disease burden includes over 200,000 cases of cryptococcal meningitis each year. Cryptococcus neoformans expresses several virulence factors that may have originally evolved to protect against environmental threats, and human infection may be an unintended consequence of these acquired defenses. Traditionally, C. neoformans has been viewed as a purely opportunistic pathogen that targets severely immune compromised hosts; however, during the past decade the spectrum of susceptible individuals has grown considerably. In addition, the closely related strain Cryptococcus gattii has recently emerged in North America and preferentially targets individuals with intact immunity. In parallel to the changing epidemiology of cryptococcosis, an increasing role for host immunity in the pathogenesis of severe disease has been elucidated. Initially, the HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage in the absence of adaptive immunity. Subsequently, the development and clinical implementation of highly active antiretroviral treatment (HAART) led to recognition of an immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals, demonstrating the pathological role of host immunity in disease. A post-infectious inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation has also been documented in HIV-negative individuals following antifungal therapy. These novel clinical conditions illustrate the highly complex host-pathogen relationship that underlies severe cryptococcal disease and the intricate balance between tolerance and resistance that is necessary for effective resolution. In this article, we will review current knowledge of the interactions between cryptococci and mammalian hosts that result in a tolerant phenotype. Future investigations in this area have potential for translation into improved therapies for affected individuals.
Collapse
Affiliation(s)
- Mitra Shourian
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salman T Qureshi
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
39
|
Vorburger C, Perlman SJ. The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 2018; 93:1747-1764. [PMID: 29663622 DOI: 10.1111/brv.12417] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Understanding the coevolution of hosts and parasites is a long-standing goal of evolutionary biology. There is a well-developed theoretical framework to describe the evolution of host-parasite interactions under the assumption of direct, two-species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host-parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade-off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three-species interactions to assess the role of defensive symbionts in host-parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear-cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont-conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont-mediated coevolution between hosts and parasites.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092, Zürich, Switzerland
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
40
|
Abstract
The two major mechanisms of plant defense against pathogens are resistance (the host's ability to limit pathogen multiplication) and tolerance (the host's ability to reduce the effect of infection on its fitness regardless of the level of pathogen multiplication). There is abundant literature on virtually every aspect of plant resistance to pathogens. Although tolerance to plant pathogens is comparatively less understood, studies on this plant defense strategy have led to major insights into its evolution, mechanistic basis and genetic determinants. This review aims at summarizing current theories and experimental evidence on the evolutionary causes and consequences of plant tolerance to pathogens, as well as the existing knowledge on the genetic determinants and mechanisms of tolerance. Our review reveals that (i) in plant-pathogen systems, resistance and tolerance generally coexist, i.e., are not mutually exclusive; (ii) evidence of tolerance polymorphisms is abundant regardless of the pathogen considered; (iii) tolerance is an efficient strategy to reduce the damage on the infected host; and (iv) there is no evidence that tolerance results in increased pathogen multiplication. Taken together, the work discussed in this review indicates that tolerance may be as important as resistance in determining the dynamics of plant-pathogen interactions. Several aspects of plant tolerance to pathogens that still remain unclear and which should be explored in the future, are also outlined.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
41
|
Manzoli DE, Saravia-Pietropaolo MJ, Antoniazzi LR, Barengo E, Arce SI, Quiroga MA, Beldomenico PM. Contrasting consequences of different defence strategies in a natural multihost-parasite system. Int J Parasitol 2018; 48:445-455. [PMID: 29391194 DOI: 10.1016/j.ijpara.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Hosts counteract infections using two distinct defence strategies, resistance (reduction in pathogen fitness) and tolerance (limitation of infection damage). These strategies have been minimally investigated in multi-host systems, where they may vary across host species, entailing consequences both for hosts (virulence) and parasites (transmission). Comprehending the interplay among resistance, tolerance, virulence and parasite success is highly relevant for our understanding of the ecology and evolution of infectious and parasitic diseases. Our work investigated the interaction between an insect parasite and its most common bird host species, focusing on two relevant questions: (i) are defence strategies different between main and alternative hosts and, (ii) what are the consequences (virulence and parasite success) of different defence strategies? We conducted a matched field experiment and longitudinal studies at the host and the parasite levels under natural conditions, using a system comprising Philornis torquans flies and three bird hosts - the main host and two of the most frequently used alternative hosts. We found that main and alternative hosts have contrasting defence strategies, which gave rise in turn to contrasting virulence and parasite success. In the main bird host, minor loss of fitness, no detectable immune response, and high parasite success suggest a strategy of high tolerance and negligible resistance. Alternative hosts, on the contrary, resisted by mounting inflammatory responses, although with very different efficiency, which resulted in highly dissimilar parasite success and virulence. These results show clearly distinct defence strategies between main and alternative hosts in a natural multi-host system. They also highlight the importance of defence strategies in determining virulence and infection dynamics, and hint that defence efficiency is a crucial intervening element in these processes.
Collapse
Affiliation(s)
- Darío E Manzoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - María J Saravia-Pietropaolo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Leandro R Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Emilce Barengo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Sofía I Arce
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Martín A Quiroga
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Pablo M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
42
|
Sharma S, Sahu R, Navathe S, Mishra VK, Chand R, Singh PK, Joshi AK, Pandey SP. Natural Variation in Elicitation of Defense-Signaling Associates to Field Resistance Against the Spot Blotch Disease in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:636. [PMID: 29868089 PMCID: PMC5964214 DOI: 10.3389/fpls.2018.00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/24/2018] [Indexed: 05/03/2023]
Abstract
Spot blotch, caused by the hemibiotropic fungus Bipolaris sorokiniana, is amongst the most damaging diseases of wheat. Still, natural variation in expression of biochemical traits that determine field resistance to spot blotch in wheat remain unaddressed. To understand how genotypic variations relate to metabolite profiles of the components of defense-signaling and the plant performance, as well as to discover novel sources of resistance against spot blotch, we have conducted field studies using 968 wheat genotypes at 5 geographical locations in South-Asia in 2 years. 46 genotypes were identified as resistant. Further, in independent confirmatory trials in subsequent 3 years, over 5 geographical locations, we re-characterized 55 genotypes for their resistance (above 46 along with Yangmai#6, a well characterized resistant genotype, and eight susceptible genotypes). We next determined time-dependent spot blotch-induced metabolite profiles of components of defense-signaling as well as levels of enzymatic components of defense pathway (such as salicylic acid (SA), phenolic acids, and redox components), and derived co-variation patterns with respect to resistance in these 55 genotypes. Spot blotch-induced SA accumulation was negatively correlated to disease progression. Amongst phenolic acids, syringic acid was most strongly inversely correlated to disease progression, indicating a defensive function, which was independently confirmed. Thus, exploring natural variation proved extremely useful in determining traits influencing phenotypic plasticity and adaptation to complex environments. Further, by overcoming environmental heterogeneity, our study identifies germplasm and biochemical traits that are deployable for spot blotch resistance in wheat along South-Asia.
Collapse
Affiliation(s)
- Sandeep Sharma
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Ranabir Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Sudhir Navathe
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod K. Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pawan K. Singh
- The International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Arun K. Joshi
- The International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
| | - Shree P. Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
- *Correspondence: Shree P. Pandey
| |
Collapse
|
43
|
Cui H, Wang C, Qin T, Xu F, Tang Y, Gao Y, Zhao K. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern. PLoS One 2017; 12:e0185925. [PMID: 28982185 PMCID: PMC5628896 DOI: 10.1371/journal.pone.0185925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly conserved in the Oryza genus but absent in other plant species by searching the plant database, suggesting that Xa23 originated along with the diversification of the Oryza genus from the grass family during evolution. This research offers a potential for flexible use of novel Xa23 alleles in rice breeding programs and provide a model for evolution analysis of other executor R genes.
Collapse
Affiliation(s)
- Hua Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Tengfei Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Feifei Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Brusini J, Wayne ML, Franc A, Robin C. The impact of parasitism on resource allocation in a fungal host: the case of Cryphonectria parasitica and its mycovirus, Cryphonectria Hypovirus 1. Ecol Evol 2017; 7:5967-5976. [PMID: 28808558 PMCID: PMC5551080 DOI: 10.1002/ece3.3143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Parasites are known to profoundly affect resource allocation in their host. In order to investigate the effects of Cryphonectria Hypovirus 1 (CHV1) on the life-history traits of its fungal host Cryphonectria parasitica, an infection matrix was completed with the cross-infection of six fungal isolates by six different viruses. Mycelial growth, asexual sporulation, and spore size were measured in the 36 combinations, for which horizontal and vertical transmission of the viruses was also assessed. As expected by life-history theory, a significant negative correlation was found between host somatic growth and asexual reproduction in virus-free isolates. Interestingly this trade-off was found to be positive in infected isolates, illustrating the profound changes in host resource allocation induced by CHV1 infection. A significant and positive relationship was also found in infected isolates between vertical transmission and somatic growth. This last relationship suggests that in this system, high levels of virulence could be detrimental to the vertical transmission of the parasite. Those results underscore the interest of studying host-parasite interaction within the life-history theory framework, which might permit a more accurate understanding of the nature of the modifications triggered by parasite infection on host biology.
Collapse
Affiliation(s)
- Jérémie Brusini
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFLUSA
- BIOGECOINRAUniversity of BordeauxCestasFrance
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Marta L. Wayne
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Alain Franc
- BIOGECOINRAUniversity of BordeauxCestasFrance
| | | |
Collapse
|
45
|
Velásquez AC, Oney M, Huot B, Xu S, He SY. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 214:1673-1687. [PMID: 28295393 PMCID: PMC5423860 DOI: 10.1111/nph.14517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/07/2017] [Indexed: 05/03/2023]
Abstract
Plants are continuously threatened by pathogen attack and, as such, they have evolved mechanisms to evade, escape and defend themselves against pathogens. However, it is not known what types of defense mechanisms a plant would already possess to defend against a potential pathogen that has not co-evolved with the plant. We addressed this important question in a comprehensive manner by studying the responses of 1041 accessions of Arabidopsis thaliana to the foliar pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We characterized the interaction using a variety of established methods, including different inoculation techniques, bacterial mutant strains, and assays for the hypersensitive response, salicylic acid (SA) accumulation and reactive oxygen species production . Fourteen accessions showed resistance to infection by Pst DC3000. Of these, two accessions had a surface-based mechanism of resistance, six showed a hypersensitive-like response while three had elevated SA levels. Interestingly, A. thaliana was discovered to have a recognition system for the effector AvrPto, and HopAM1 was found to modulate Pst DC3000 resistance in two accessions. Our comprehensive study has significant implications for the understanding of natural disease resistance mechanisms at the species level and for the ecology and evolution of plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Matthew Oney
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
| | - Bethany Huot
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shu Xu
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, P. R. China
| | - Sheng Yang He
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Corwin JA, Kliebenstein DJ. Quantitative Resistance: More Than Just Perception of a Pathogen. THE PLANT CELL 2017; 29:655-665. [PMID: 28302676 PMCID: PMC5435431 DOI: 10.1105/tpc.16.00915] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance.
Collapse
Affiliation(s)
- Jason A Corwin
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
47
|
Meunier I, Kaufmann E, Downey J, Divangahi M. Unravelling the networks dictating host resistance versus tolerance during pulmonary infections. Cell Tissue Res 2017; 367:525-536. [PMID: 28168323 PMCID: PMC7088083 DOI: 10.1007/s00441-017-2572-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
The appearance of single cell microorganisms on earth dates back to more than 3.5 billion years ago, ultimately leading to the development of multicellular organisms approximately 3 billion years later. The evolutionary burst of species diversity and the “struggle for existence”, as proposed by Darwin, generated a complex host defense system. Host survival during infection in vital organs, such as the lung, requires a delicate balance between host defense, which is essential for the detection and elimination of pathogens and host tolerance, which is critical for minimizing collateral tissue damage. Whereas the cellular and molecular mechanisms of host defense against many invading pathogens have been extensively studied, our understanding of host tolerance as a key mechanism in maintaining host fitness is extremely limited. This may also explain why current therapeutic and preventive approaches targeting only host defense mechanisms have failed to provide full protection against severe infectious diseases, including pulmonary influenza virus and Mycobacterium tuberculosis infections. In this review, we aim to outline various host strategies of resistance and tolerance for effective protection against acute or chronic pulmonary infections.
Collapse
Affiliation(s)
- Isabelle Meunier
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada. .,RI-MUHC, Centre for Translational Biology, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Block E (EM3.2248), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
48
|
Tissue tolerance: a distinct concept to control acute GVHD severity. Blood 2017; 129:1747-1752. [PMID: 28153825 DOI: 10.1182/blood-2016-09-740431] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Target tissue damage occurs as a consequence of pathological immune responses following allogeneic stem cell transplantation resulting in acute graft-versus-host disease (GVHD). Among those who study infections in plants, it is well recognized that tissues play a distinct role from the immune system in mediating disease severity. Recently, this has also been appreciated in mammals. However, the severity of immunopathology in the context of alloimmune diseases such as acute GVHD has been mainly understood and managed by direct targeting of immune cells to generate immune tolerance. The role of tissue-intrinsic factors that might contribute to regulation of acute GVHD severity has been largely overlooked. Here, we introduce the concept of "tissue tolerance" to discuss the tissue-specific programs that contribute to target tissue resilience, repair, and regeneration, and mitigate severity of acute GVHD without altering the load or function of alloreactive immune cells.
Collapse
|
49
|
Saleem M, Meckes N, Pervaiz ZH, Traw MB. Microbial Interactions in the Phyllosphere Increase Plant Performance under Herbivore Biotic Stress. Front Microbiol 2017; 8:41. [PMID: 28163703 PMCID: PMC5247453 DOI: 10.3389/fmicb.2017.00041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 11/30/2022] Open
Abstract
The phyllosphere supports a tremendous diversity of microbes and other organisms. However, little is known about the colonization and survival of pathogenic and beneficial bacteria alone or together in the phyllosphere across the whole plant life-cycle under herbivory, which hinders our ability to understand the role of phyllosphere bacteria on plant performance. We addressed these questions in experiments using four genetically and biogeographically diverse accessions of Arabidopsis thaliana, three ecologically important bacterial strains (Pseudomonas syringae DC3000, Xanthomonas campestris, both pathogens, and Bacillus cereus, plant beneficial) under common garden conditions that included fungus gnats (Bradysia spp.). Plants supported greater abundance of B. cereus over either pathogenic strain in the phyllosphere under such greenhouse conditions. However, the Arabidopsis accessions performed much better (i.e., early flowering, biomass, siliques, and seeds per plant) in the presence of pathogenic bacteria rather than in the presence of the plant beneficial B. cereus. As a group, the plants inoculated with any of the three bacteria (Pst DC3000, Xanthomonas, or Bacillus) all had a higher fitness than uninoculated controls under these conditions. These results suggest that the plants grown under the pressure of different natural enemies, such as pathogens and an herbivore together perform relatively better, probably because natural enemies induce host defense against each other. However, in general, a positive impact of Bacillus on plant performance under herbivory may be due to its plant-beneficial properties. In contrast, bacterial species in the mixture (all three together) performed poorer than as monocultures in their total abundance and host plant growth promotion, possibly due to negative interspecific interactions among the bacteria. However, bacterial species richness linearly promoted seed production in the host plants under these conditions, suggesting that natural enemies diversity may be beneficial from the host perspective. Collectively, these results highlight the importance of bacterial community composition on plant performance and bacterial abundance in the phyllosphere.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - Nicole Meckes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - Zahida H Pervaiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - Milton B Traw
- Department of Biological Sciences, University of Pittsburgh, PittsburghPA, USA; Department of Biology, Berea College, BereaKY, USA
| |
Collapse
|
50
|
Luo Q, Liu WW, Pan KD, Peng YL, Fan J. Genetic Interaction between Arabidopsis Qpm3.1 Locus and Bacterial Effector Gene hopW1-1 Underlies Natural Variation in Quantitative Disease Resistance to Pseudomonas Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:695. [PMID: 28523008 PMCID: PMC5415610 DOI: 10.3389/fpls.2017.00695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 05/10/2023]
Abstract
Wide quantitative variation in plant disease resistance across Arabidopsis wild populations has been documented and the underlying mechanisms remain largely unknown. To investigate the genetic and molecular basis of this variation, Arabidopsis recombinant inbred lines (RILs) derived from Aa-0 × Col-0 and Gie-0 × Col-0 crosses were constructed and used for inoculation with Pseudomonas syringae pathovars maculicola ES4326 (ES4326) and tomato DC3000 (DC3000). Bacterial growth assays revealed continuous distribution across the large differences between the most and the least susceptible lines in the RILs. Quantitative trait locus (QTL) mapping analyses identified a number of QTLs underpinning the variance in disease resistance, among which Qpm3.1, a major QTL on chromosome III from both Aa-0 and Gie-0 accessions, preferentially restricted the growth of ES4326. A genetic screen for the ES4326 gene selectively leading to bacterial growth inhibition on accession Aa-0 uncovered the effector gene hopW1-1. Further QTL analysis of disease in RILs inoculated with DC3000 carrying hopW1-1 showed that the genetic interaction between Qpm3.1 and hopW1-1 determined Arabidopsis resistance to bacterial infection. These findings illustrate the complexity of Arabidopsis-Pseudomonas interaction and highlight the importance of pathogen effectors in delineating genetic architectures of quantitative variation in plant disease resistance.
Collapse
Affiliation(s)
- Qi Luo
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Wei-Wei Liu
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
| | - Ke-Di Pan
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Jun Fan
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- *Correspondence: Jun Fan,
| |
Collapse
|