1
|
Afuwape OA, Chanaday NL, Kasap M, Monteggia LM, Kavalali ET. Persistence of quantal synaptic vesicle recycling in virtual absence of dynamins. J Physiol 2024:10.1113/JP286711. [PMID: 39141823 PMCID: PMC11825889 DOI: 10.1113/jp286711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Dynamins are GTPases required for pinching vesicles off the plasma membrane once a critical curvature is reached during endocytosis. Here, we probed dynamin function in central synapses by depleting all three dynamin isoforms in postnatal hippocampal neurons down to negligible levels. We found a decrease in the propensity of evoked neurotransmission as well as a reduction in synaptic vesicle numbers. Recycling of synaptic vesicles during spontaneous or low levels of evoked activity were largely impervious to dynamin depletion, while retrieval of synaptic vesicle components at higher levels of activity was partially arrested. These results suggest the existence of balancing dynamin-independent mechanisms for synaptic vesicle recycling at central synapses. Classical dynamin-dependent mechanisms are not essential for retrieval of synaptic vesicle proteins after quantal single synaptic vesicle fusion, but they become more relevant for membrane retrieval during intense, sustained neuronal activity. KEY POINTS: Loss of dynamin 2 does not impair synaptic transmission. Loss of all three dynamin isoforms mostly affects evoked neurotransmission. Excitatory synapse function is more susceptible to dynamin loss. Spontaneous neurotransmission is only mildly affected by loss of dynamins. Single synaptic vesicle endocytosis is largely dynamin independent.
Collapse
Affiliation(s)
- Olusoji A.T. Afuwape
- Department of Neurosurgery, University of Arkansas for Medical Sciences, 4301 W. Markham street, Little Rock, AR 72205, USA
| | - Natali L. Chanaday
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Merve Kasap
- U.S. Food and Drug Administration, The Center for Drug Evaluation and Research (CDER), 10903 New Hampshire Ave., Silver spring, MD 20993, USA
| | - Lisa M. Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| |
Collapse
|
2
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
3
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Borges R, Gu C, Machado JD, Ewing AG. The dynamic nature of exocytosis from large secretory vesicles. A view from electrochemistry and imaging. Cell Calcium 2023; 110:102699. [PMID: 36708611 DOI: 10.1016/j.ceca.2023.102699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
In this brief review, we discuss the factors that modulate the quantum size and the kinetics of exocytosis. We also discuss the determinants which motivate the type of exocytosis from the so-called kiss-and-run to full fusion and along the intermediate mode of partial release. Kiss-and-run release comprises the transient opening of a nanometer (approx. 2 nm diameter) fusion pore between vesicle and plasma membrane allowing a small amount of release. Partial release comprises a larger more extended opening of the pore to allow a larger fraction of released vesicle content and is what is observed as normal full release in most electrochemical measurements. Partial release appears to be dominant in dense core vesicles and perhaps synaptic vesicles. The concept of partial release leads to the fraction released as a plastic component of exocytosis. Partial vesicular distension and the kinetics of exocytosis can be modulated by second messengers, physiological modulators, and drugs. This concept adds a novel point of regulation for the exocytotic process.
Collapse
Affiliation(s)
- Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de la Laguna, Tenerife. Spain
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - José-David Machado
- Pharmacology Unit, Medical School, Universidad de la Laguna, Tenerife. Spain
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.
| |
Collapse
|
5
|
Omar-Hmeadi M, Guček A, Barg S. Local PI(4,5)P 2 signaling inhibits fusion pore expansion during exocytosis. Cell Rep 2023; 42:112036. [PMID: 36701234 DOI: 10.1016/j.celrep.2023.112036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) is an important signaling phospholipid that is required for regulated exocytosis and some forms of endocytosis. The two processes share a topologically similar pore structure that connects the vesicle lumen with the outside. Widening of the fusion pore during exocytosis leads to cargo release, while its closure initiates kiss&run or cavicapture endocytosis. We show here, using live-cell total internal reflection fluorescence (TIRF) microscopy of insulin granule exocytosis, that transient accumulation of PI(4,5)P2 at the release site recruits components of the endocytic fission machinery and stalls the late fusion pore expansion that is required for peptide release. The absence of clathrin differentiates this mechanism from clathrin-mediated endocytosis. Knockdown of phosphatidylinositol-phosphate-5-kinase-1c or optogenetic recruitment of 5-phosphatase reduces PI(4,5)P2 transients and accelerates fusion pore expansion, suggesting that acute PI(4,5)P2 synthesis is involved. Thus, local phospholipid signaling inhibits fusion pore expansion and peptide release through an unconventional endocytic mechanism.
Collapse
Affiliation(s)
- Muhmmad Omar-Hmeadi
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden
| | - Alenka Guček
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden.
| |
Collapse
|
6
|
High-speed imaging reveals the bimodal nature of dense core vesicle exocytosis. Proc Natl Acad Sci U S A 2023; 120:e2214897120. [PMID: 36574702 PMCID: PMC9910497 DOI: 10.1073/pnas.2214897120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.
Collapse
|
7
|
Chang CW, Hsiao YT, Scheuer KS, Jackson MB. Full-Fusion and Kiss-and-Run in Chromaffin Cells controlled by Irreversible Vesicle Size-Dependent Fusion Pore Transitions. Cell Calcium 2022; 105:102606. [DOI: 10.1016/j.ceca.2022.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
|
8
|
Qin N, Chen Z, Xue R. A two-subpopulation model that reflects heterogeneity of large dense core vesicles in exocytosis. Cell Cycle 2022; 21:531-546. [PMID: 35067177 PMCID: PMC8942488 DOI: 10.1080/15384101.2022.2026576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exocytosis of large dense core vesicles is responsible for hormone secretion in neuroendocrine cells. The population of primed vesicles ready to release upon cell excitation demonstrates large heterogeneity. However, there are currently no models that clearly reflect such heterogeneity. Here, we develop a novel model based on single vesicle release events from amperometry recordings of PC12 cells using carbon fiber microelectrode. In this model, releasable vesicles can be grouped into two subpopulations, namely, SP1 and SP2. SP1 vesicles replenish quickly, with kinetics of ~0.0368 s-1, but likely undergo slow fusion pore expansion (amperometric signals rise at ~2.5 pA/ms), while SP2 vesicles demonstrate slow replenishment (kinetics of ~0.0048 s-1) but prefer fast dilation of fusion pore, with an amperometric signal rising rate of ~9.1 pA/ms. Phorbol ester enlarges the size of SP2 partially via activation of protein kinase C and conveys SP1 vesicles into SP2. Inhibition of Rho GTPase-dependent actin rearrangement almost completely depletes SP2. We also propose that the phorbol ester-sensitive vesicle subpopulation (SP2) is analogous to the subset of superprimed synaptic vesicles in neurons. This model provides a meticulous description of the architecture of the readily releasable vesicle pool and elucidates the heterogeneity of the vesicle priming mechanism.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China,CONTACT Renhao Xue Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Arriagada-Diaz J, Prado-Vega L, Cárdenas Díaz AM, Ardiles AO, Gonzalez-Jamett AM. Dynamin Superfamily at Pre- and Postsynapses: Master Regulators of Synaptic Transmission and Plasticity in Health and Disease. Neuroscientist 2020; 28:41-58. [PMID: 33300419 DOI: 10.1177/1073858420974313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
11
|
Plasticity in exocytosis revealed through the effects of repetitive stimuli affect the content of nanometer vesicles and the fraction of transmitter released. Proc Natl Acad Sci U S A 2019; 116:21409-21415. [PMID: 31570594 DOI: 10.1073/pnas.1910859116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrochemical techniques with disk and nano-tip electrodes, together with calcium imaging, were used to examine the effect of short-interval repetitive stimuli on both exocytosis and vesicular content in a model cell line. We show that the number of events decreases markedly with repeated stimuli suggesting a depletion of exocytosis machinery. However, repetitive stimuli induce a more stable fusion pore, leading to an increased amount of neurotransmitter release. In contrast, the total neurotransmitter content inside the vesicles decreases after repetitive stimuli, resulting in a higher average release fraction from each event. We suggest a possible mechanism regarding a link between activity-induced plasticity and fraction of release.
Collapse
|
12
|
Guček A, Gandasi NR, Omar-Hmeadi M, Bakke M, Døskeland SO, Tengholm A, Barg S. Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis. eLife 2019; 8:41711. [PMID: 31099751 PMCID: PMC6557626 DOI: 10.7554/elife.41711] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here, we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis. Insulin is the hormone that signals to the body to take up sugar from the blood. Specialized cells in the pancreas – known as β-cells – release insulin after a meal. Before that, insulin molecules are stored in tiny granules inside the β-cells; these granules must fuse with the cells’ surface membranes to release their contents. The first step in this process creates a narrow pore that allows small molecules, but not the larger insulin molecules, to seep out. The pore then widens to release the insulin. Since the small molecules are known to act locally in the pancreas, it is possible that this “molecular sieve” is biologically important. Yet it is not clear how the pore widens. One of the problems for people with type 2 diabetes is that they release less insulin into the bloodstream. Two kinds of drugs used to treat these patients work by stimulating β-cells to release their insulin. One way to achieve this is by raising the levels of a small molecule called cAMP, which is well known to help prepare insulin granules for release. The cAMP molecule also seems to slow the widening of the pore, and Gucek et al. have now investigated how this happens at a molecular level. By observing individual granules of human β-cells using a special microscope, Gucek et al. could watch how different drugs affect pore widening and content release. They also saw that cAMP activated a protein called Epac2, which then recruited two other proteins – amisyn and dynamin – to the small pores. These two proteins together then closed the pore, rather than expanding it to let insulin out. Type 2 diabetes patients sometimes have high levels of amisyn in their β-cells, which could explain why they do not release enough insulin. The microscopy experiments also revealed that two common anti-diabetic drugs activate Epac2 and prevent the pores from widening, thereby counteracting their positive effect on insulin release. The combined effect is likely a shift in the balance between insulin and the locally acting small molecules. These findings suggest that two common anti-diabetic drugs activate a common mechanism that may lead to unexpected outcomes, possibly even reducing how much insulin the β-cells can release. Future studies in mice and humans will have to investigate these effects in whole organisms.
Collapse
Affiliation(s)
- Alenka Guček
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Eyring KW, Tsien RW. Direct Visualization of Wide Fusion-Fission Pores and Their Highly Varied Dynamics. Cell 2019; 173:819-821. [PMID: 29727670 DOI: 10.1016/j.cell.2018.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Cell, Shin et al. report the first live-cell imaging of a fusion pore. Directly visualized pores in neuroendocrine cells can be much larger than expected yet not require vesicular full-collapse. These fusion-fission pores have diverse fates arising from opposing dynamin-driven pore constriction and F-actin-mediated pore expansion.
Collapse
Affiliation(s)
- Katherine W Eyring
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
14
|
Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol 2019; 10:6. [PMID: 30728775 PMCID: PMC6351496 DOI: 10.3389/fphar.2019.00006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023] Open
Abstract
TRPV4 is a non-selective cation channel that tunes the function of different tissues including the vascular endothelium, lung, chondrocytes, and neurons. GSK1016790A is the selective and potent agonist of TRPV4 and a pharmacological tool that is used to study the TRPV4 physiological function in vitro and in vivo. It remains unknown how the sensitivity of TRPV4 to this agonist is regulated. The spatial and temporal dynamics of receptors are the major determinants of cellular responses to stimuli. Membrane translocation has been shown to control the response of several members of the transient receptor potential (TRP) family of ion channels to different stimuli. Here, we show that TRPV4 stimulation with GSK1016790A caused an increase in [Ca2+]i that is stable for a few minutes. Single molecule analysis of TRPV4 channels showed that the density of TRPV4 at the plasma membrane is controlled through two modes of membrane trafficking, complete, and partial vesicular fusion. Further, we show that the density of TRPV4 at the plasma membrane decreased within 20 min, as they translocate to the recycling endosomes and that the surface density is dependent on the release of calcium from the intracellular stores and is controlled via a PI3K, PKC, and RhoA signaling pathway.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Peter Keov
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,Molecular Pharmacology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - William G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Austin Lai
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | | | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Parisa Vahidi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Karin Ejendal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Somasundaram A, Taraska JW. Local protein dynamics during microvesicle exocytosis in neuroendocrine cells. Mol Biol Cell 2018; 29:1891-1903. [PMID: 29874123 PMCID: PMC6085826 DOI: 10.1091/mbc.e17-12-0716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium-triggered exocytosis is key to many physiological processes, including neurotransmitter and hormone release by neurons and endocrine cells. Dozens of proteins regulate exocytosis, yet the temporal and spatial dynamics of these factors during vesicle fusion remain unclear. Here we use total internal reflection fluorescence microscopy to visualize local protein dynamics at single sites of exocytosis of small synaptic-like microvesicles in live cultured neuroendocrine PC12 cells. We employ two-color imaging to simultaneously observe membrane fusion (using vesicular acetylcholine ACh transporter tagged to pHluorin) and the dynamics of associated proteins at the moments surrounding exocytosis. Our experiments show that many proteins, including the SNAREs syntaxin1 and VAMP2, the SNARE modulator tomosyn, and Rab proteins, are preclustered at fusion sites and rapidly lost at fusion. The ATPase N-ethylmaleimide–sensitive factor is locally recruited at fusion. Interestingly, the endocytic Bin-Amphiphysin-Rvs domain–containing proteins amphiphysin1, syndapin2, and endophilins are dynamically recruited to fusion sites and slow the loss of vesicle membrane-bound cargo from fusion sites. A similar effect on vesicle membrane protein dynamics was seen with the overexpression of the GTPases dynamin1 and dynamin2. These results suggest that proteins involved in classical clathrin-mediated endocytosis can regulate exocytosis of synaptic-like microvesicles. Our findings provide insights into the dynamics, assembly, and mechanistic roles of many key factors of exocytosis and endocytosis at single sites of microvesicle fusion in live cells.
Collapse
Affiliation(s)
- Agila Somasundaram
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Shin W, Ge L, Arpino G, Villarreal SA, Hamid E, Liu H, Zhao WD, Wen PJ, Chiang HC, Wu LG. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell 2018; 173:934-945.e12. [PMID: 29606354 PMCID: PMC5935532 DOI: 10.1016/j.cell.2018.02.062] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.
Collapse
Affiliation(s)
- Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lihao Ge
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Seth A Villarreal
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Edaeni Hamid
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Huisheng Liu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Wei-Dong Zhao
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Peter J Wen
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Hsueh-Cheng Chiang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
18
|
Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Arch 2017; 470:1-6. [PMID: 29110079 DOI: 10.1007/s00424-017-2082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The chromaffin cells (CCs) of the adrenal medulla play a key role in the control of circulating catecholamines to adapt our body function to stressful conditions. A huge research effort over the last 35 years has converted these cells into the Escherichia coli of neurobiology. CCs have been the testing bench for the development of patch-clamp and amperometric recording techniques and helped clarify most of the known molecular mechanisms that regulate cell excitability, Ca2+ signals associated with secretion, and the molecular apparatus that regulates vesicle fusion. This special issue provides a state-of-the-art on the many well-known and unsolved questions related to the molecular processes at the basis of CC function. The issue is also the occasion to highlight the seminal work of Antonio G. García (Emeritus Professor at UAM, Madrid) who greatly contributed to the advancement of our present knowledge on CC physiology and pharmacology. All the contributors of the present issue are distinguished scientists who are either staff members, external collaborators, or friends of Prof. García.
Collapse
|
19
|
Abstract
Synaptic vesicle recycling is essential for sustained and reliable neurotransmission. A key component of synaptic vesicle recycling is the synaptic vesicle biogenesis process that is observed in synapses and that maintains the molecular identity of synaptic vesicles. However, the mechanisms by which synaptic vesicles are retrieved and reconstituted after fusion remain unclear. The complex molecular composition of synaptic vesicles renders their rapid biogenesis a daunting task. Therefore, in this context, kiss-and-run type transient fusion of synaptic vesicles with the plasma membrane without loss of their membrane composition and molecular identity remains a viable hypothesis that can account for the fidelity of the synaptic vesicle cycle. In this article, we discuss the biological implications of this problem as well as its possible molecular solutions.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, University of Texas Southwestern Medical Centre, Dallas, TX, 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Centre, Dallas, TX, 75390-9111, USA
| |
Collapse
|
20
|
Jackson MB. Chemistry in a vesicle. J Gen Physiol 2017; 149:893-896. [PMID: 28899933 PMCID: PMC5694936 DOI: 10.1085/jgp.201711894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Slow fusion pore expansion could retain molecules within vesicles, enabling a chemical reaction that modifies secreted products.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI
| |
Collapse
|
21
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
22
|
Eich ML, Dembla E, Wahl S, Dembla M, Schwarz K, Schmitz F. The Calcineurin-Binding, Activity-Dependent Splice Variant Dynamin1xb Is Highly Enriched in Synapses in Various Regions of the Central Nervous System. Front Mol Neurosci 2017; 10:230. [PMID: 28790889 PMCID: PMC5524891 DOI: 10.3389/fnmol.2017.00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
In the present study, we generated and characterized a splice site-specific monoclonal antibody that selectively detects the calcineurin-binding dynamin1 splice variant dynamin1xb. Calcineurin is a Ca2+-regulated phosphatase that enhances dynamin1 activity and is an important Ca2+-sensing mediator of homeostatic synaptic plasticity in neurons. Using this dynamin1xb-specific antibody, we found dynamin1xb highly enriched in synapses of all analyzed brain regions. In photoreceptor ribbon synapses, dynamin1xb was enriched in close vicinity to the synaptic ribbon in a manner indicative of a peri-active zone immunolabeling. Interestingly, in dark-adapted mice we observed an enhanced and selective enrichment of dynamin1xb in both synaptic layers of the retina in comparison to light-adapted mice. This could be due to an illumination-dependent recruitment of dynamin1xb to retinal synapses and/or due to a darkness-induced increase of dynamin1xb biosynthesis. These latter findings indicate that dynamin1xb is part of a versatile and highly adjustable, activity-regulated endocytic synaptic machinery.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Ekta Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Silke Wahl
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Mayur Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
23
|
Lasič E, Stenovec M, Kreft M, Robinson PJ, Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta Gen Subj 2017; 1861:2293-2303. [PMID: 28669852 DOI: 10.1016/j.bbagen.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis. METHODS Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol. RESULTS Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma. CONCLUSIONS Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Xie Z, Long J, Liu J, Chai Z, Kang X, Wang C. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Front Mol Neurosci 2017; 10:47. [PMID: 28348516 PMCID: PMC5346583 DOI: 10.3389/fnmol.2017.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission.
Collapse
Affiliation(s)
- Zhenli Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Xinjiang Kang
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China; College of Life Sciences, Liaocheng UniversityLiaocheng, China; Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
25
|
Balseiro-Gomez S, Flores JA, Acosta J, Ramirez-Ponce MP, Ales E. Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation. J Cell Sci 2016; 129:3989-4000. [PMID: 27624612 DOI: 10.1242/jcs.194340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix. We found the presence of normal-size granules and giant actomyosin- and dynamin-dependent granules, which were characterized by large quantal content. These large structures allowed the recovered mast cells to release a large amount of 5-HT, compensating for the decrease in the number of exocytosed secretory granules. This work uncovers a new physiological role of the exo-endocytosis cycle in the immunological plasticity of mast cells and reveals a new property of their biological secretion.
Collapse
Affiliation(s)
- Santiago Balseiro-Gomez
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - Juan A Flores
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - Jorge Acosta
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - M Pilar Ramirez-Ponce
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - Eva Ales
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| |
Collapse
|
26
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
27
|
Abstract
Endocytosis can be separated into the categories of phagocytosis and pinocytosis. Phagocytosis can be distinguished from pinocytosis primarily by the size of particle ingested and by its dependence on actin polymerization as a key step in particle ingestion. Several specific forms of pinocytosis have been identified that can be distinguished based on their dependence on clathrin or caveolin. Both clathrin and caveolin-dependent pinocytosis appear to require the participation of dynamin to internalize the plasma membrane. Other, less well-characterized forms of pinocytosis have also been described. Although endocytosis has long been known to affect receptor density, recent studies have demonstrated that endocytosis through clathrin- and caveolin-dependent processes plays a key role in receptor-mediated signal transduction. In some cases, blockade of these processes attenuates, or even prevents, signal transduction from taking place. This information, coupled with a better understanding of endocytosis mechanisms, will help advance the field of cell biology as well as present new targets for drug development and disease treatment.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, Room 12, Ruppert Center, 3120 Glendale Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
28
|
Li X, Hu H, Zhao S, Liu YM. Microfluidic Platform with In-Chip Electrophoresis Coupled to Mass Spectrometry for Monitoring Neurochemical Release from Nerve Cells. Anal Chem 2016; 88:5338-44. [PMID: 27111409 DOI: 10.1021/acs.analchem.6b00638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemical stimulus-induced neurotransmitter release from neuronal cells is well-documented. However, the dynamic changes in neurochemical release remain to be fully explored. In this work, a three-layered microfluidic chip was fabricated and evaluated for studying the dynamics of neurotransmitter release from PC-12 cells. The chip features integration of a nanoliter sized chamber for cell perfusion, pneumatic pressure valves for fluidic control, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Deploying this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) was developed to simultaneously quantify important neurotransmitters, including dopamine (DA), serotonin (5-HT), aspartic acid (Asp), and glutamic acid (Glu) without need for labeling or enrichment. Monitoring neurotransmitter release from PC-12 cells exposed to KCl (or alcohol) revealed that all four neurotransmitters investigated were released. Two release patterns were observed, one for the two monoamine neurotransmitters (i.e., DA and 5-HT) and another for the two amino acid neurotransmitters. Release dynamics for the two monoamine neurotransmitters was significantly different. The cells released DA most quickly and heavily in response to the stimulation. After exposure to the chemical stimulus for 4 min, the DA level in the perfusate from the cells was 86% lower than that at the beginning. Very interestingly, the cells started to release 5-HT in large quantities when they stopped releasing DA. These results suggest that DA and 5-HT are packaged into different vesicle pools and they are mobilized differently in response to chemical stimuli. The microfluidic platform proposed is proven useful for monitoring cellular release in biological studies.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University , 1400 Lynch Street, Jackson, Mississippi 39217, United States.,Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China
| | - Hankun Hu
- Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China.,Zhongnan Hospital, Wuhan University , Wuhan 430071, China
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University , Guilin 51004, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University , 1400 Lynch Street, Jackson, Mississippi 39217, United States.,Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China
| |
Collapse
|
29
|
Cárdenas AM, Marengo FD. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 2016; 137:867-79. [DOI: 10.1111/jnc.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso Chile
| | - Fernando D. Marengo
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología; Biología Molecular y Neurociencias (CONICET); Departamento de Fisiología y Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
30
|
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat Commun 2015; 5:3356. [PMID: 24561832 PMCID: PMC4267856 DOI: 10.1038/ncomms4356] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022] Open
Abstract
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles.
Collapse
|
31
|
Reubold TF, Faelber K, Plattner N, Posor Y, Ketel K, Curth U, Schlegel J, Anand R, Manstein DJ, Noé F, Haucke V, Daumke O, Eschenburg S. Crystal structure of the dynamin tetramer. Nature 2015; 525:404-8. [PMID: 26302298 DOI: 10.1038/nature14880] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.
Collapse
Affiliation(s)
- Thomas F Reubold
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Katja Faelber
- Max-Delbrück-Centrum für Molekulare Medizin, Kristallographie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Nuria Plattner
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - York Posor
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Katharina Ketel
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ute Curth
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Forschungseinrichtung Strukturanalyse, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jeanette Schlegel
- Max-Delbrück-Centrum für Molekulare Medizin, Kristallographie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Roopsee Anand
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J Manstein
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Forschungseinrichtung Strukturanalyse, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Frank Noé
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Centrum für Molekulare Medizin, Kristallographie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Susanne Eschenburg
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
32
|
Balseiro-Gomez S, Flores JA, Acosta J, Ramirez-Ponce MP, Ales E. Identification of a New Exo-Endocytic Mechanism Triggered by Corticotropin-Releasing Hormone in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202981 DOI: 10.4049/jimmunol.1500253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The key role of mast cells (MC), either in development of inflammatory pathologies or in response to environmental stress, has been widely reported in recent years. Previous studies have described the effects of corticotropin-releasing hormone (CRH), which is released from inflamed tissues by cellular stress signals, on MC degranulation, a process possibly driven by selective secretion of mediators (piecemeal degranulation). In this study, we introduce a novel granular exo-endocytic pathway induced by CRH on peritoneal MC. We found that CRH triggers substantial exocytosis, which is even stronger than that induced by Ag stimulation and is characterized by large quantal size release events. Membrane fluorescence increases during stimulation in the presence of FM1-43 dye, corroborating the strength of this exocytosis, given that discrete upward fluorescence steps are often observed and suggesting that secretory granules are preferentially released by compound exocytosis. Additionally, the presence of a depot of large tubular organelles in the cytoplasm suggests that the exocytotic process is tightly coupled to a fast compound endocytosis. This CRH-stimulated mechanism is mediated through activation of adenylate cyclase and an increase of cAMP and intracellular Ca(2+), as evidenced by the fact that the effect of CRH is mimicked by forskolin and 8-bromo-cAMP. Thus, these outcomes constitute new evidence for the critical role of MC in pathophysiological conditions within a cellular stress environment and an alternative membrane trafficking route mediated by CRH.
Collapse
Affiliation(s)
- Santiago Balseiro-Gomez
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan A Flores
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Jorge Acosta
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - M Pilar Ramirez-Ponce
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Eva Ales
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
33
|
Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ. Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 2015; 20:810-9. [PMID: 25939402 DOI: 10.1038/mp.2015.56] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.
Collapse
Affiliation(s)
- J Jackson
- Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - A Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - F A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A McCluskey
- Centre for Chemical Biology and Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - P J Robinson
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - D J Keating
- 1] Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia [2] South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
34
|
Wong MY, Cavolo SL, Levitan ES. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles. Mol Biol Cell 2015; 26:2466-74. [PMID: 25904335 PMCID: PMC4571301 DOI: 10.1091/mbc.e15-01-0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Neurons release neuropeptides, enzymes, and neurotrophins by exocytosis of dense-core vesicles (DCVs). Peptide release from individual DCVs has been imaged in vitro with endocrine cells and at the neuron soma, growth cones, neurites, axons, and dendrites but not at nerve terminals, where peptidergic neurotransmission occurs. Single presynaptic DCVs have, however, been tracked in native terminals with simultaneous photobleaching and imaging (SPAIM) to show that DCVs undergo anterograde and retrograde capture as they circulate through en passant boutons. Here dynamin (encoded by the shibire gene) is shown to enhance activity-evoked peptide release at the Drosophila neuromuscular junction. SPAIM demonstrates that activity depletes only a portion of a single presynaptic DCV's content. Activity initiates exocytosis within seconds, but subsequent release occurs slowly. Synaptic neuropeptide release is further sustained by DCVs undergoing multiple rounds of exocytosis. Synaptic neuropeptide release is surprisingly similar regardless of anterograde or retrograde DCV transport into boutons, bouton location, and time of arrival in the terminal. Thus vesicle circulation and bidirectional capture supply synapses with functionally competent DCVs. These results show that activity-evoked synaptic neuropeptide release is independent of a DCV's past traffic and occurs by slow, dynamin-dependent partial emptying of DCVs, suggestive of kiss-and-run exocytosis.
Collapse
Affiliation(s)
- Man Yan Wong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Samantha L Cavolo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
35
|
The role of Pak-interacting exchange factor-β phosphorylation at serines 340 and 583 by PKCγ in dopamine release. J Neurosci 2014; 34:9268-80. [PMID: 25009260 DOI: 10.1523/jneurosci.4278-13.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C (PKC) has been implicated in the control of neurotransmitter release. The AS/AGU rat, which has a nonsense mutation in PKCγ, shows symptoms of parkinsonian syndrome, including dopamine release impairments in the striatum. Here, we found that the AS/AGU rat is PKCγ-knock-out (KO) and that PKCγ-KO mice showed parkinsonian syndrome. However, the PKCγ substrates responsible for the regulated exocytosis of dopamine in vivo have not yet been elucidated. To identify the PKCγ substrates involved in dopamine release, we used PKCγ-KO mice and a phosphoproteome analysis. We found 10 candidate phosphoproteins that had decreased phosphorylation levels in the striatum of PKCγ-KO mice. We focused on Pak-interacting exchange factor-β (βPIX), a Cdc42/Rac1 guanine nucleotide exchange factor, and found that PKCγ directly phosphorylates βPIX at Ser583 and indirectly at Ser340 in cells. Furthermore, we found that PKC phosphorylated βPIX in vivo. Classical PKC inhibitors and βPIX knock-down (KD) significantly suppressed Ca(2+)-evoked dopamine release in PC12 cells. Wild-type βPIX, and not the βPIX mutants Ser340 Ala or Ser583 Ala, fully rescued the decreased dopamine release by βPIX KD. Double KD of Cdc42 and Rac1 decreased dopamine release from PC12 cells. These findings indicate that the phosphorylation of βPIX at Ser340 and Ser583 has pivotal roles in Ca(2+)-evoked dopamine release in the striatum. Therefore, we propose that PKCγ positively modulates dopamine release through β2PIX phosphorylation. The PKCγ-βPIX-Cdc42/Rac1 phosphorylation axis may provide a new therapeutic target for the treatment of parkinsonian syndrome.
Collapse
|
36
|
Bretou M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P, Guillon M, Emiliani V, Gasman S, Desnos C, Lennon-Duménil AM, Darchen F. Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 2014; 25:3195-209. [PMID: 25143404 PMCID: PMC4196869 DOI: 10.1091/mbc.e14-07-1229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On exocytosis, membrane fusion starts with the formation of a narrow fusion pore that must expand to allow the release of secretory compounds. The GTPase Cdc42 promotes fusion pore dilation in neuroendocrine cells by controlling membrane tension. Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.
Collapse
Affiliation(s)
- Marine Bretou
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Ouardane Jouannot
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Isabelle Fanget
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Nathanaël Larochette
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Pierre Gestraud
- Institut Curie, Paris 75248, France Institut National de la Santé et de la Recherche Médicale, U900, Paris 75248, France Ecole des Mines ParisTech, Fontainebleau, 77300 France
| | - Marc Guillon
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Valentina Emiliani
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique/UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Université Strasbourg, 67084 Strasbourg, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| |
Collapse
|
37
|
Wang Q, Fong R, Mason P, Fox AP, Xie Z. Caffeine accelerates recovery from general anesthesia. J Neurophysiol 2014; 111:1331-40. [PMID: 24375022 PMCID: PMC3949308 DOI: 10.1152/jn.00792.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/26/2013] [Indexed: 11/22/2022] Open
Abstract
General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
38
|
Samasilp P, Lopin K, Chan SA, Ramachandran R, Smith C. Syndapin 3 modulates fusion pore expansion in mouse neuroendocrine chromaffin cells. Am J Physiol Cell Physiol 2014; 306:C831-43. [PMID: 24500282 DOI: 10.1152/ajpcell.00291.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenal neuroendocrine chromaffin cells receive excitatory synaptic input from the sympathetic nervous system and secrete hormones into the peripheral circulation. Under basal sympathetic tone, modest amounts of freely soluble catecholamine are selectively released through a restricted fusion pore formed between the secretory granule and the plasma membrane. Upon activation of the sympathoadrenal stress reflex, elevated stimulation drives fusion pore expansion, resulting in increased catecholamine secretion and facilitating release of copackaged peptide hormones. Thus regulated expansion of the secretory fusion pore is a control point for differential hormone release of the sympathoadrenal stress response. Previous work has shown that syndapin 1 deletion alters transmitter release and that the dynamin 1-syndapin 1 interaction is necessary for coupled endocytosis in neurons. Dynamin has also been shown to be involved in regulation of fusion pore expansion in neuroendocrine chromaffin cells through an activity-dependent association with syndapin. However, it is not known which syndapin isoform(s) contributes to pore dynamics in neuroendocrine cells. Nor is it known at what stage of the secretion process dynamin and syndapin associate to modulate pore expansion. Here we investigate the expression and localization of syndapin isoforms and determine which are involved in mediating fusion pore expansion. We show that all syndapin isoforms are expressed in the adrenal medulla. Mutation of the SH3 dynamin-binding domain of all syndapin isoforms shows that fusion pore expansion and catecholamine release are limited specifically by mutation of syndapin 3. The mutation also disrupts targeting of syndapin 3 to the cell periphery. Syndapin 3 exists in a persistent colocalized state with dynamin 1.
Collapse
Affiliation(s)
- Prattana Samasilp
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| | | | | | | | | |
Collapse
|
39
|
González-Jamett AM, Haro-Acuña V, Momboisse F, Caviedes P, Bevilacqua JA, Cárdenas AM. Dynamin-2 in nervous system disorders. J Neurochem 2013; 128:210-23. [DOI: 10.1111/jnc.12455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Jorge A. Bevilacqua
- Departamento de Neurología y Neurocirugía; Hospital Clínico Universidad de Chile; and Programa de Anatomía y Biología del Desarrollo; ICBM; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| |
Collapse
|
40
|
González-Jamett AM, Momboisse F, Haro-Acuña V, Bevilacqua JA, Caviedes P, Cárdenas AM. Dynamin-2 function and dysfunction along the secretory pathway. Front Endocrinol (Lausanne) 2013; 4:126. [PMID: 24065954 PMCID: PMC3776141 DOI: 10.3389/fendo.2013.00126] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022] Open
Abstract
Dynamin-2 is a ubiquitously expressed mechano-GTPase involved in different stages of the secretory pathway. Its most well-known function relates to the scission of nascent vesicles from the plasma membrane during endocytosis; however, it also participates in the formation of new vesicles from the Golgi network, vesicle trafficking, fusion processes and in the regulation of microtubule, and actin cytoskeleton dynamics. Over the last 8 years, more than 20 mutations in the dynamin-2 gene have been associated to two hereditary neuromuscular disorders: Charcot-Marie-Tooth neuropathy and centronuclear myopathy. Most of these mutations are grouped in the pleckstrin homology domain; however, there are no common mutations associated with both disorders, suggesting that they differently impact on dynamin-2 function in diverse tissues. In this review, we discuss the impact of these disease-related mutations on dynamin-2 function during vesicle trafficking and endocytotic processes.
Collapse
Affiliation(s)
- Arlek M. González-Jamett
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Fanny Momboisse
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentina Haro-Acuña
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge A. Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana María Cárdenas
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ana María Cárdenas, Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha 2360102, Valparaíso, Chile e-mail:
| |
Collapse
|
41
|
González-Jamett AM, Momboisse F, Guerra MJ, Ory S, Báez-Matus X, Barraza N, Calco V, Houy S, Couve E, Neely A, Martínez AD, Gasman S, Cárdenas AM. Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells. PLoS One 2013; 8:e70638. [PMID: 23940613 PMCID: PMC3734226 DOI: 10.1371/journal.pone.0070638] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/25/2013] [Indexed: 11/29/2022] Open
Abstract
Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.
Collapse
Affiliation(s)
- Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - María José Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Natalia Barraza
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Valerie Calco
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - Sébastien Houy
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - Eduardo Couve
- Departamento de Biololgía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
- * E-mail: (AMC); (SG)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
- * E-mail: (AMC); (SG)
| |
Collapse
|
42
|
Zanin MP, Mackenzie KD, Peiris H, Pritchard MA, Keating DJ. RCAN1 regulates vesicle recycling and quantal release kinetics via effects on calcineurin activity. J Neurochem 2013; 124:290-9. [PMID: 23134420 DOI: 10.1111/jnc.12086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/11/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here, we use carbon fibre amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells over-expressing RCAN1 (RCAN1(ox)), but not in wild-type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK-506, replicates this effect in WT cells but has no additional effect in RCAN1(ox) cells. When we chronically expose WT cells to cyclosporine A and FK-506 we find that catecholamine release per vesicle and pre-spike foot (PSF) signal parameters are decreased, similar to that in RCAN1(ox) cells. Inhibiting calcineurin activity in RCAN1(ox) cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Although electron microscopy studies indicate these changes are not because of altered vesicle number or distribution in RCAN1(ox) cells, the smaller vesicle and dense core size we observe in RCAN1(ox) cells may underlie the reduced quantal release in these cells. Thus, our results indicate that RCAN1 most likely affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity.
Collapse
Affiliation(s)
- Mark P Zanin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
43
|
Thorn P. New insights into the control of secretion. Commun Integr Biol 2013; 2:315-7. [PMID: 19721876 DOI: 10.4161/cib.2.4.8262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/21/2009] [Indexed: 11/19/2022] Open
Abstract
Vesicular secretion is a fundamental process in the body with vesicle fusion releasing vesicle contents to the outside. This process called exocytosis is usually thought of as leading to an all-or-none release of content; regulation of secretory output dependent on regulating the numbers of fused vesicles. However, it is well established that the fusion pore that forms when the vesicle membrane fuses with the cell membrane is dynamic. More recent evidence indicates the dynamic opening and closing, and the size of the fusion pore, are limiting factors to the release of vesicle content. What remains unclear is whether these fusion pore behaviors are under cellular control and therefore relevant to cell physiology.Accumulating evidence over the last two years points to myosin 2 as one regulator of fusion pore behavior. This is interesting since myosin 2 activity is in turn controlled by kinases and phosphatases, well known to be under cellular control. We conclude that fusion pore behavior is likely a genuine control point for vesicle content release. This leads to a model for secretion with secretory output controlled not only by the numbers of vesicles fused but also by the regulation of the behavior of individual vesicles.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Sciences; University of Queensland; St. Lucia, Queensland Australia
| |
Collapse
|
44
|
Koseoglu S, Dilks JR, Peters CG, Fitch-Tewfik JL, Fadel NA, Jasuja R, Italiano JE, Haynes CL, Flaumenhaft R. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis. Arterioscler Thromb Vasc Biol 2013; 33:481-8. [PMID: 23288151 DOI: 10.1161/atvbaha.112.255737] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. METHODS AND RESULTS We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. CONCLUSIONS These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.
Collapse
Affiliation(s)
- Secil Koseoglu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fitch-Tewfik JL, Flaumenhaft R. Platelet granule exocytosis: a comparison with chromaffin cells. Front Endocrinol (Lausanne) 2013; 4:77. [PMID: 23805129 PMCID: PMC3693082 DOI: 10.3389/fendo.2013.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.
Collapse
Affiliation(s)
- Jennifer L. Fitch-Tewfik
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- *Correspondence: Robert Flaumenhaft, Center for Life Science, Beth Israel Deaconess Medical Center, Room 939, 3 Blackfan Circle, Boston, MA 02215, USA e-mail:
| |
Collapse
|
46
|
Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells. J Neurosci 2012; 32:10438-47. [PMID: 22836276 DOI: 10.1523/jneurosci.1299-12.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neuroendocrine chromaffin cells selectively secrete a variety of transmitter molecules into the circulation as a function of sympathetic activation. Activity-dependent release of transmitter species is controlled through regulation of the secretory fusion pore. Under sympathetic tone, basal synaptic excitation drives chromaffin cells to selectively secrete modest levels of catecholamine through a restricted secretory fusion pore. In contrast, elevated sympathetic activity, experienced under stress, results in fusion pore expansion to evoke maximal catecholamine release and to facilitate release of copackaged peptide transmitters. Therefore, fusion pore expansion is a key control point for the activation of the sympatho-adrenal stress response. Despite the physiological importance of this process, the molecular mechanism by which it is regulated remains unclear. Here we employ fluorescence imaging with electrophysiological and electrochemical-based approaches to investigate the role of dynamin I in the regulation of activity-mediated fusion pore expansion in mouse adrenal chromaffin cells. We show that under elevated stimulation, dynamin I is dephosphorylated at Ser-774 by calcineurin. We also demonstrate that disruption of dynamin I-syndapin binding, an association regulated by calcineurin-dependent dynamin dephosphorylation, limits fusion pore expansion. Last, we show that perturbation of N-WASP function (a syndapin substrate) limits activity-mediated fusion pore expansion. Our results suggest that fusion pore expansion is regulated by a calcineurin-dependent dephosphorylation of dynamin I. Dephosphorylated dynamin I acts via a syndapin/N-WASP signaling cascade to mediate pore expansion.
Collapse
|
47
|
Anantharam A, Axelrod D, Holz RW. Real-time imaging of plasma membrane deformations reveals pre-fusion membrane curvature changes and a role for dynamin in the regulation of fusion pore expansion. J Neurochem 2012; 122:661-71. [PMID: 22671293 DOI: 10.1111/j.1471-4159.2012.07816.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Assays for real-time investigation of exocytosis typically measure what is released from the granule. From this, inferences are made about the dynamics of membrane remodeling as fusion progresses from start to finish. We have recently undertaken a different approach to investigate the fusion process, by focusing not primarily on the granule, but rather its partner in exocytosis - the plasma membrane. We have been guided by the idea that biochemical interactions between the granule and plasma membranes before and during fusion, cause changes in membrane conformation. To enable study of membrane conformation, a novel imaging technique was developed combining polarized excitation of an oriented membrane probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI) with total internal reflection fluorescence microscopy (pTIRFM). Because this technique measures changes in membrane conformation (or deformations) directly, its usefulness persists even after granule cargo reporter (catecholamine, or protein), is no longer present. In this mini-review, we first summarize the workings of pTIRFM. We then discuss the application of the technique to investigate deformations in the membrane preceding fusion, and later, during fusion pore expansion. Finally, we discuss how expansion of the fusion pore may be regulated by the GTPase activity of dynamin.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
48
|
Thorn P. Measuring calcium signals and exocytosis in tissues. Biochim Biophys Acta Gen Subj 2012; 1820:1179-84. [PMID: 22402251 DOI: 10.1016/j.bbagen.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since the 1960s it has been clear that calcium is a key regulator of exocytosis. Early experiments directly showed that the secretory output was calcium dependent. But it has taken improvements in technology and clever experimentation to determine the relationships between the calcium signal and exocytosis. Today controversies still remain because of limitations in our ability to record both the calcium responses within the local domains that control secretion and in the methods used to record exocytosis. SCOPE OF REVIEW Here the techniques used to measure calcium and exocytosis are reviewed with a distinction being drawn between measurements in excitable cells versus measurements in non-excitable cells. The review has a focus on techniques that are relevant to in vitro studies of native tissues and recent in vivo recordings. MAJOR CONCLUSIONS There are a range of methods used to study the stimulus-secretion pathway. Each presents their own advantages and drawbacks. These are discussed with reference to the latest work determining the factors controlling exocytosis in tissues. GENERAL SIGNIFICANCE Stimulus-secretion coupling is the fundamental step in the control of neurotransmitter release, hormone secretion and protein secretion. Understanding secretory control is therefore important in understanding the physiological regulation of processes ranging from learning and memory to pancreatic secretion. Recent technological advances are now enabling us to study stimulus-secretion coupling within native tissues. This is helping us to understand the physiological complexities of secretory control. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Science, University of Queensland, QLD, Australia.
| |
Collapse
|
49
|
Abstract
During exocytosis, neuroendocrine cells can achieve partial release of stored secretory products from dense core vesicles (DCVs) by coupling endocytosis directly at fusion sites and without full discharge. The physiological role of partial secretion is of substantial interest. Much is known about SNARE-mediated initiation of exocytosis and dynamin-mediated completion of endocytosis, but little is known about coupling events. We have used real-time microscopy to examine the role of secretory carrier membrane protein SCAMP1 in exo-endocytic coupling in PC12 cells. While reduced SCAMP1 expression is known to impede dilation of newly opened fusion pores during onset of DCV exocytosis, we now show that SCAMP1 deficiency also inhibits closure of fusion pores after they have opened. Inhibition causes accumulation of fusion figures at the plasma membrane. Closure is recovered by restoring expression and accelerated slightly by overexpression. Interestingly, inhibited pore closure resulting from loss of SCAMP1 appears to increase secondary fusion of DCVs to already-fused DCVs (compound exocytosis). Unexpectedly, reinternalization of expanded DCV membranes following compound exocytosis appears to proceed normally in SCAMP1-deficient cells. SCAMP1's apparent dual role in facilitating dilation and closure of fusion pores implicates its function in exo-endocytic coupling and in the regulation of partial secretion. Secondarily, SCAMP1 may serve to limit the extent of compound exocytosis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology, Molecular, Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22908-0732, USA.
| | | |
Collapse
|
50
|
Chan SA, Doreian B, Smith C. Dynamin and myosin regulate differential exocytosis from mouse adrenal chromaffin cells. Cell Mol Neurobiol 2011; 30:1351-7. [PMID: 21061163 DOI: 10.1007/s10571-010-9591-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 01/27/2023]
Abstract
Neuroendocrine chromaffin cells of the adrenal medulla represent a primary output for the sympathetic nervous system. Chromaffin cells release catecholamine as well as vaso- and neuro-active peptide transmitters into the circulation through exocytic fusion of large dense-core secretory granules. Under basal sympathetic activity, chromaffin cells selectively release modest levels of catecholamines, helping to set the "rest and digest" status of energy storage. Under stress activation, elevated sympathetic firing leads to increased catecholamine as well as peptide transmitter release to set the "fight or flight" status of energy expenditure. While the mechanism for catecholamine release has been widely investigated, relatively little is known of how peptide transmitter release is regulated to occur selectively under elevated stimulation. Recent studies have shown selective catecholamine release under basal stimulation is accomplished through a transient, restricted exocytic fusion pore between granule and plasma membrane, releasing a soluble fraction of the small, diffusible molecules. Elevated cell firing leads to the active dilation of the fusion pore, leading to the release of both catecholamine and the less diffusible peptide transmitters. Here we propose a molecular mechanism regulating the activity-dependent dilation of the fusion pore. We review the immediate literature and provide new data to formulate a working mechanistic hypothesis whereby calcium-mediated dephosphorylation of dynamin I at Ser-774 leads to the recruitment of the molecular motor myosin II to actively dilate the fusion pore to facilitate release of peptide transmitters. Thus, activity-dependent dephosphorylation of dynamin is hypothesized to represent a key molecular step in the sympatho-adrenal stress response.
Collapse
Affiliation(s)
- Shyue-An Chan
- Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4970, USA.
| | | | | |
Collapse
|