1
|
Bodhale N, Nair A, Saha B. Isoform-specific functions of Ras in T-cell development and differentiation. Eur J Immunol 2023; 53:e2350430. [PMID: 37173132 DOI: 10.1002/eji.202350430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Ras GTPases, well characterized for their role in oncogenesis, are the cells' molecular switches that signal to maintain immune homeostasis through cellular development, proliferation, differentiation, survival, and apoptosis. In the immune system, T cells are the central players that cause autoimmunity if dysregulated. Antigen-specific T-cell receptor (TCR) stimulation activates Ras-isoforms, which exhibit isoform-specific activator and effector requirements, functional specificities, and a selective role in T-cell development and differentiation. Recent studies show the role of Ras in T-cell-mediated autoimmune diseases; however, there is a scarcity of knowledge about the role of Ras in T-cell development and differentiation. To date, limited studies have demonstrated Ras activation in response to positive and negative selection signals and Ras isoform-specific signaling, including subcellular signaling, in immune cells. The knowledge of isoform-specific functions of Ras in T cells is essential, but still inadequate to develop the T-cell-targeted Ras isoform-specific treatment strategies for the diseases caused by altered Ras-isoform expression and activation in T cells. In this review, we discuss the role of Ras in T-cell development and differentiation, critically analyzing the isoform-specific functions.
Collapse
Affiliation(s)
| | - Arathi Nair
- National Centre for Cell Science, Pune, India
| | | |
Collapse
|
2
|
Zeng M, Liu J, Yang W, Zhang S, Liu F, Dong Z, Peng Y, Sun L, Xiao L. Identification of key biomarkers in diabetic nephropathy via bioinformatic analysis. J Cell Biochem 2019; 120:8676-8688. [PMID: 30485525 DOI: 10.1002/jcb.28155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease. Although intense efforts have been made to elucidate the pathogenesis, the molecular mechanisms of DN remain to be clarified. To identify the candidate genes in the progression of DN, microarray datasets GSE30122, GSE30528, and GSE47183 were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network was constructed and the module analysis was performed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 61 DEGs were identified. The enriched functions and pathways of the DEGs included glomerulus development, extracellular exosome, collagen binding, and the PI3K-Akt signaling pathway. Fifteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in acute inflammatory response, inflammatory response, and blood vessel development. Correlation analysis between unexplored hub genes and clinical features of DN suggested that COL6A3, MS4A6A,PLCE1, TNNC1, TNNI1, TNN2, and VSIG4 may involve in the progression of DN. In conclusion, DEGs and hub genes identified in this study may deepen our understanding of molecular mechanisms underlying the progression of DN, and provide candidate targets for diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Regan L, Hinrichsen MR, Oi C. Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level. Expert Rev Proteomics 2016; 13:481-93. [PMID: 27031866 DOI: 10.1586/14789450.2016.1172966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic.
Collapse
Affiliation(s)
- Lynne Regan
- a Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA.,c Integrated Graduate Program in Physical and Engineering Biology , Yale University , New Haven , CT , USA
| | - Michael R Hinrichsen
- a Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| | | |
Collapse
|
4
|
Maneechotesuwan K, Kasetsinsombat K, Wamanuttajinda V, Wongkajornsilp A, Barnes PJ. Statins enhance the effects of corticosteroids on the balance between regulatory T cells and Th17 cells. Clin Exp Allergy 2013; 43:212-22. [PMID: 23331562 DOI: 10.1111/cea.12067] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Plasticity of CD4(+) lymphocyte Th17/regulatory T cell (Treg) subsets is involved in the pathogenesis of chronic airway inflammatory diseases, such as asthma. Reversal of Th17/Treg cell balance towards Treg cells may be beneficial for the suppression of chronic Th2 cell-mediated inflammatory diseases, such as asthma. However, the effect of the combination of corticosteroids and a statin on the ratio of Treg/Th17 cells is unknown. OBJECTIVE We investigated the in vitro effects of the combination of simvastatin and fluticasone propionate (FP) on the numbers of Treg and Th17 cells in asthmatic patients after co-incubation with monocyte-derived DCs (mDCs), and explored the underlying signalling pathways involved. METHODS Using flow cytometry, we determined the effects of FP and simvastatin on Treg/Th17 balance after co-incubation of asthmatic CD4(+) T cells with mDCs. We also measured the relevant Treg and Th17-polarizing cytokines released from mDCs and also investigated the role of indoleamine 2, 3-dioxygenase (IDO) in this response. RESULTS The combination of simvastatin and FP significantly increased Treg and concomitantly reduced Th17 cell numbers to a greater extent than FP or statin treatment alone. The enhancing effects of simvastatin on FP effects were mediated through the up-regulation of indoleamine 2, 3-dioxygenase and interleukin (IL)-10, together with down-regulation of IL-6 and IL-23 expression in mDCs. CONCLUSION On the basis of this in vitro model of asthma, we suggest that the combination of a statin and a corticosteroid could augment the Treg/Th17 cell ratio and thus more effectively suppress airway inflammation in asthma patients. This may be particularly relevant in the treatment of severe asthma where Th17 cells are activated and linked to neutrophilic inflammation.
Collapse
Affiliation(s)
- K Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Internal Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | | | |
Collapse
|
5
|
Gajewski TF, Salama AKS, Niedzwiecki D, Johnson J, Linette G, Bucher C, Blaskovich MA, Sebti SM, Haluska F. Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). J Transl Med 2012; 10:246. [PMID: 23228035 PMCID: PMC3543225 DOI: 10.1186/1479-5876-10-246] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/30/2012] [Indexed: 11/20/2022] Open
Abstract
Background Multiple farnesylated proteins are involved in signal transduction in cancer. Farnesyltransferase inhibitors (FTIs) have been developed as a strategy to inhibit the function of these proteins. As FTIs inhibit proliferation of melanoma cell lines, we undertook a study to assess the impact of a FTI in advanced melanoma. As farnesylated proteins are also important for T cell activation, measurement of effects on T cell function was also pursued. Methods A 3-stage trial design was developed with a maximum of 40 patients and early stopping if there were no responders in the first 14, or fewer than 2 responders in the first 28 patients. Eligibility included performance status of 0–1, no prior chemotherapy, at most 1 prior immunotherapy, no brain metastases, and presence of at least 2 cutaneous lesions amenable to biopsy. R115777 was administered twice per day for 21 days of a 28-day cycle. Patients were evaluated every 2 cycles by RECIST. Blood and tumor were analyzed pre-treatment and during week 7. Results Fourteen patients were enrolled. Two patients had grade 3 toxicities, which included myelosuppression, nausea/vomiting, elevated BUN, and anorexia. There were no clinical responses. All patients analyzed showed potent inhibition of FT activity (85-98%) in tumor tissue; inhibition of phosphorylated ERK and Akt was also observed. T cells showed evidence of FT inhibition and diminished IFN-γ production. Conclusions Despite potent target inhibition, R115777 showed no evidence of clinical activity in this cohort of melanoma patients. Inhibition of T cell function by FTIs has potential clinical implications. Clinicaltrials.gov number NCT00060125
Collapse
Affiliation(s)
- Thomas F Gajewski
- The University of Chicago, Section of Hematology/Oncology, 5841 S, Maryland Ave, MC2115, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen TS, Keating AE. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Protein Sci 2012; 21:949-63. [PMID: 22593041 DOI: 10.1002/pro.2096] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/11/2012] [Indexed: 11/11/2022]
Abstract
Given the importance of protein-protein interactions for nearly all biological processes, the design of protein affinity reagents for use in research, diagnosis or therapy is an important endeavor. Engineered proteins would ideally have high specificities for their intended targets, but achieving interaction specificity by design can be challenging. There are two major approaches to protein design or redesign. Most commonly, proteins and peptides are engineered using experimental library screening and/or in vitro evolution. An alternative approach involves using protein structure and computational modeling to rationally choose sequences predicted to have desirable properties. Computational design has successfully produced novel proteins with enhanced stability, desired interactions and enzymatic function. Here we review the strengths and limitations of experimental library screening and computational structure-based design, giving examples where these methods have been applied to designing protein interaction specificity. We highlight recent studies that demonstrate strategies for combining computational modeling with library screening. The computational methods provide focused libraries predicted to be enriched in sequences with the properties of interest. Such integrated approaches represent a promising way to increase the efficiency of protein design and to engineer complex functionality such as interaction specificity.
Collapse
Affiliation(s)
- T Scott Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
7
|
|
8
|
Hu L, Edamatsu H, Takenaka N, Ikuta S, Kataoka T. Crucial role of phospholipase Cepsilon in induction of local skin inflammatory reactions in the elicitation stage of allergic contact hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2009; 184:993-1002. [PMID: 20007527 DOI: 10.4049/jimmunol.0901816] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phospholipase Cepsilon (PLCepsilon) is an effector of Ras/Rap small GTPases. We previously demonstrated that PLCepsilon plays a crucial role in development of phorbor ester-induced skin inflammation, which is intimately involved in the promotion of skin carcinogenesis. In this study, we have examined its role in local skin inflammatory reactions during development of contact hypersensitivity toward a hapten 2,4-dinitrofluorobenzene (DNFB). PLCepsilon(+/+) and PLCepsilon(-/-) mice were sensitized with DNFB, followed by a DNFB challenge on the ears. PLCepsilon(-/-) mice exhibited substantially attenuated inflammatory reactions compared with PLCepsilon(+/+) mice as shown by suppression of ear swelling, neutrophil infiltration, and proinflammatory cytokine production. In contrast, the extent and kinetics of CD4+ T cell infiltration showed no difference depending on the PLCepsilon background. Adoptive transfer of CD4+ T cells from the sensitized mice to naive mice between PLCepsilon(+/+) and PLCepsilon(-/-) backgrounds indicated that PLCepsilon exerts its function in cells other than CD4+ T cells, presumably fibroblasts or keratinocytes of the skin, to augment inflammatory reactions during the elicitation stage of contact hypersensitivity. Moreover, dermal fibroblasts and epidermal keratinocytes cultured from the skin expressed proinflammatory cytokines in a PLCepsilon-dependent manner on stimulation with T cell-derived cytokines such as IL-17, IFN-gamma, TNF-alpha, and IL-4. These results indicate that PLCepsilon plays a crucial role in induction of proinflammatory cytokine expression in fibroblasts and keratinocytes at the challenged sites, where infiltrated CD4+ T cells produce their intrinsic cytokines, thereby augmenting the local inflammatory reactions.
Collapse
Affiliation(s)
- Lizhi Hu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
9
|
Van der Sloot AM, Kiel C, Serrano L, Stricher F. Protein design in biological networks: from manipulating the input to modifying the output. Protein Eng Des Sel 2009; 22:537-42. [DOI: 10.1093/protein/gzp032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Czyzyk J, Chen HC, Bottomly K, Flavell RA. p21 Ras/impedes mitogenic signal propagation regulates cytokine production and migration in CD4 T cells. J Biol Chem 2008; 283:23004-15. [PMID: 18577512 DOI: 10.1074/jbc.m804084200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The propensity of T cells to generate coordinated cytokine responses is critical for the host to develop resistance to pathogens while maintaining the state of immunotolerance to self-antigens. The exact mechanisms responsible for preventing the overproduction of proinflammatory cytokines including interferon (IFN)-gamma are not fully understood, however. In this study, we examined the role of a recently described Ras GTPase effector and repressor of the Raf/MEK/ERK cascade called impedes mitogenic signal propagation (Imp) in limiting the induction of T-cell cytokines. We found that stimulation of the T cell receptor complex leads to the rapid development of a physical association between Ras and Imp. Consistent with the hypothesis that Imp inhibits signal transduction, we also found that disengagement of this molecule by the Ras(V12G37) effector loop mutant or RNA interference markedly enhances the activation of the NFAT transcription factor and IFN-gamma secretion. A strong output of IFN-gamma is responsible for the distinct lymphocyte traffic pattern observed in vivo because the transgenic or retroviral expression of Ras(V12G37) caused T cells to accumulate preferentially in the lymph nodes and delayed their escape from the lymphoid tissue, respectively. Together, our results describe a hitherto unrecognized negative regulatory role for Imp in the production of IFN-gamma in T cells and point to Ras-Imp binding as an attractive target for therapeutic interventions in conditions involving the production of this inflammatory cytokine.
Collapse
Affiliation(s)
- Jan Czyzyk
- Departments of Pathology and Immunobiology
| | | | | | | |
Collapse
|
11
|
Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. J Cell Sci 2006; 119:1307-19. [PMID: 16537651 DOI: 10.1242/jcs.02835] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
R-Ras, an atypical member of the Ras subfamily of small GTPases, enhances integrin-mediated adhesion and signaling through a poorly understood mechanism. Dynamic analysis of cell spreading by total internal reflection fluorescence (TIRF) microscopy demonstrated that active R-Ras lengthened the duration of initial membrane protrusion, and promoted the formation of a ruffling lamellipod, rich in branched actin structures and devoid of filopodia. By contrast, dominant-negative R-Ras enhanced filopodia formation. Moreover, RNA interference (RNAi) approaches demonstrated that endogenous R-Ras contributed to cell spreading. These observations suggest that R-Ras regulates membrane protrusions through organization of the actin cytoskeleton. Our results suggest that phospholipase Cepsilon (PLCepsilon) is a novel R-Ras effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion, because R-Ras was co-precipitated with PLCepsilon and increased its activity. Knockdown of PLCepsilon with siRNA reduced the formation of the ruffling lamellipod in R-Ras cells. Consistent with this pathway, inhibitors of PLC activity, or chelating intracellular Ca2+ abolished the ability of R-Ras to promote membrane protrusions and spreading. Overall, these data suggest that R-Ras signaling regulates the organization of the actin cytoskeleton to sustain membrane protrusion through the activity of PLCepsilon.
Collapse
Affiliation(s)
- Aude S Ada-Nguema
- Department of Pharmacology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Ras proteins function as signaling hubs that are activated by convergent signaling pathways initiated by extracellular stimuli. Activated Ras in turn regulates a diversity of downstream cytoplasmic signaling cascades. Ras proteins are founding members of a large superfamily of small GTPases that have significant sequence and biochemical similarities. Recent observations have established a complex signaling interplay between Ras and other members of the family. A key biochemical mechanism facilitating this crosstalk involves guanine nucleotide exchange factors (GEFs), which serve as regulators and effectors, as well as signaling integrators, of Ras signaling.
Collapse
Affiliation(s)
- Natalia Mitin
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, NC 27599, USA.
| | | | | |
Collapse
|
13
|
Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK. The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 2005; 139:101-11. [PMID: 15606619 PMCID: PMC1809263 DOI: 10.1111/j.1365-2249.2005.02665.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bisphosphonates are a novel class of drug that have been registered for various clinical applications worldwide. Bisphosphonates, and in particular the aminobisphosphonates (nBPs), are known to have a number of side-effects including a rise in body temperature and accompanying flu-like symptoms that resemble a typical acute phase response. The mechanism for this response has been partially elucidated and appears to be associated with the release of tumour necrosis factor (TNF)alpha and interleukin (IL)6, although the effector cells that release these cytokines and the mechanism of action remain enigmatic. Here, we show that the nBP-induced acute phase response differs from the typical acute phase response in that CD14+ cells such as monocytes and macrophages are not the primary cytokine producing cells. We show that by inhibiting the mevalonate pathway, nBPs induce rapid and copious production of TNFalpha and IL6 by peripheral blood gammadelta T cells. Prior treatment with statins, which inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, blocks nBP-induced production of these proinflammatory cytokines by gammadelta T cells and may offer a means of avoiding the associated acute phase response. In addition, our findings provide a further mechanism for the anti-inflammatory effects attributed to inhibitors of HMG CoA reductase.
Collapse
Affiliation(s)
- R E Hewitt
- The T Cell Modulation Group, The Peter Medawar Building for Pathogen Research,Oxford, UK
| | | | | | | | | | | |
Collapse
|
14
|
Remans PHJ, Gringhuis SI, van Laar JM, Sanders ME, Papendrecht-van der Voort EAM, Zwartkruis FJT, Levarht EWN, Rosas M, Coffer PJ, Breedveld FC, Bos JL, Tak PP, Verweij CL, Reedquist KA. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:920-31. [PMID: 15240679 DOI: 10.4049/jimmunol.173.2.920] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transient production of reactive oxygen species (ROS) plays an important role in optimizing transcriptional and proliferative responses to TCR signaling in T lymphocytes. Conversely, chronic oxidative stress leads to decreased proliferative responses and enhanced transcription of inflammatory gene products, and is thought to underlie the altered pathogenic behavior of T lymphocytes in some human diseases, such as rheumatoid arthritis (RA). Although the signaling mechanisms regulating ROS production in T lymphocytes has not been identified, activation of the small GTPase Ras has been shown to couple agonist stimulation to ROS production in other cell types. We find that Ras signaling via Ral stimulates ROS production in human T lymphocytes, and is required for TCR and phorbol ester-induced ROS production. The related small GTPase Rap1 suppresses agonist, Ras and Ral-dependent ROS production through a PI3K-dependent pathway, identifying a novel mechanism by which Rap1 can distally antagonize Ras signaling pathways. In synovial fluid T lymphocytes from RA patients we observed a high rate of endogenous ROS production, correlating with constitutive Ras activation and inhibition of Rap1 activation. Introduction of dominant-negative Ras into synovial fluid T cells restored redox balance, providing evidence that deregulated Ras and Rap1 signaling underlies oxidative stress and consequent altered T cell function observed in RA.
Collapse
Affiliation(s)
- Philip H J Remans
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zisoulis DG, Kansas GS. H-Ras and phosphoinositide 3-kinase cooperate to induce alpha(1,3)-fucosyltransferase VII expression in Jurkat T cells. J Biol Chem 2004; 279:39495-504. [PMID: 15262995 DOI: 10.1074/jbc.m407904200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha(1,3)-fucosyltransferase FucT-VII is essential for the biosynthesis of selectin ligands, but the signaling pathways mediating FucT-VII induction in T cells and other lymphocytes are poorly understood. We have shown previously that sustained activation of Ras in Jurkat T cells induces FucT-VII transcription, which requires the Raf-MEK-ERK pathway. In this study we report that FucT-VII induction is specific to the H-Ras isoform. Jurkat T cells retrovirally transduced with constitutively active H-Ras but not N- or K-Ras up-regulated expression of FucT-VII. Pharmacological inhibition studies also revealed that phosphoinositide 3-kinase (PI3K) activity is required for H-Ras-mediated FucT-VII induction. However, the ability of H-Ras to selectively induce FucT-VII is not a function of the inability of the N- or K-Ras isoforms to activate Raf or PI3K pathways. The use of effector-loop domain mutants of H-Ras, which are impaired for their ability to interact selectively with individual effectors alone or in combination with active Raf, indicated that induction of FucT-VII requires the concomitant activation of at least three signaling pathways. These studies show that H-Ras mediates FucT-VII induction in Jurkat T cells via the activation of the Raf, PI3K, and a distinct, H-Ras-specific effector signaling pathway.
Collapse
Affiliation(s)
- Dimitrios G Zisoulis
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | |
Collapse
|
16
|
McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY. A Novel Anti-Inflammatory Role of Simvastatin in a Murine Model of Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2004; 172:2903-8. [PMID: 14978092 DOI: 10.4049/jimmunol.172.5.2903] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Statins, the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, are effective serum cholesterol-lowering agents in clinical practice, and they may also have anti-inflammatory properties. Asthma is characterized by chronic eosinophilic inflammation in the airways, which is thought to be regulated by the activity of T lymphocytes. We therefore examined the anti-inflammatory activity of simvastatin in a murine model of allergic asthma. In mice previously sensitized to OVA, simvastatin treatment, either orally or i.p., reduced the total inflammatory cell infiltrate and eosinophilia in bronchoalveolar lavage fluid in response to inhaled OVA challenge. Simvastatin therapy i.p. was also associated with a reduction in IL-4 and IL-5 levels in bronchoalveolar lavage fluid and, at higher doses, a histological reduction in inflammatory infiltrates in the lungs. OVA-induced IL-4, IL-5, IL-6, and IFN-gamma secretion was reduced in thoracic lymph node cultures from simvastatin-treated mice. Simvastatin treatment did not alter serum total IgE or OVA-specific IgG1 and IgG2a levels. These data demonstrate the therapeutic potential of statin-sensitive pathways in allergic airways disease.
Collapse
Affiliation(s)
- Anne McKay
- Division of Immunology, Infection, and Inflammation, Section of Respiratory Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|