1
|
Insights into the structure and function of Est3 from the Hansenula polymorpha telomerase. Sci Rep 2020; 10:11109. [PMID: 32632130 PMCID: PMC7338525 DOI: 10.1038/s41598-020-68107-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme, which maintains genome integrity in eukaryotes and ensures continuous cellular proliferation. Telomerase holoenzyme from the thermotolerant yeast Hansenula polymorpha, in addition to the catalytic subunit (TERT) and telomerase RNA (TER), contains accessory proteins Est1 and Est3, which are essential for in vivo telomerase function. Here we report the high-resolution structure of Est3 from Hansenula polymorpha (HpEst3) in solution, as well as the characterization of its functional relationships with other components of telomerase. The overall structure of HpEst3 is similar to that of Est3 from Saccharomyces cerevisiae and human TPP1. We have shown that telomerase activity in H. polymorpha relies on both Est3 and Est1 proteins in a functionally symmetrical manner. The absence of either Est3 or Est1 prevents formation of a stable ribonucleoprotein complex, weakens binding of a second protein to TER, and decreases the amount of cellular TERT, presumably due to the destabilization of telomerase RNP. NMR probing has shown no direct in vitro interactions of free Est3 either with the N-terminal domain of TERT or with DNA or RNA fragments mimicking the probable telomerase environment. Our findings corroborate the idea that telomerase possesses the evolutionarily variable functionality within the conservative structural context.
Collapse
|
2
|
Shastry S, Steinberg-Neifach O, Lue N, Stone MD. Direct observation of nucleic acid binding dynamics by the telomerase essential N-terminal domain. Nucleic Acids Res 2018; 46:3088-3102. [PMID: 29474579 PMCID: PMC5887506 DOI: 10.1093/nar/gky117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 11/12/2022] Open
Abstract
Telomerase is a specialized enzyme that maintains telomere length by adding DNA repeats to chromosome ends. The catalytic protein subunit of telomerase utilizes the integral telomerase RNA to direct telomere DNA synthesis. The telomerase essential N-terminal (TEN) domain is required for enzyme function; however, the precise mechanism of the TEN domain during catalysis is not known. We report a single-molecule study of dynamic TEN-induced conformational changes in its nucleic acid substrates. The TEN domain from the yeast Candida parapsilosis (Cp) exhibits a strong binding preference for double-stranded nucleic acids, with particularly high affinity for an RNA-DNA hybrid mimicking the template-product complex. Surprisingly, the telomere DNA repeat sequence from C. parapsilosis forms a DNA hairpin that also binds CpTEN with high affinity. Mutations to several residues in a putative nucleic acid-binding patch of CpTEN significantly reduced its affinity to the RNA-DNA hybrid and telomere DNA hairpin. Substitution of comparable residues in the related Candida albicans TEN domain caused telomere maintenance defects in vivo and decreased primer extension activity in vitro. Collectively, our results support a working model in which dynamic interactions with telomere DNA and the template-product hybrid underlie the functional requirement for the TEN domain during the telomerase catalytic cycle.
Collapse
Affiliation(s)
- Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Olga Steinberg-Neifach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Neal Lue
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Lin KW, McDonald KR, Guise AJ, Chan A, Cristea IM, Zakian VA. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat Commun 2015; 6:8290. [PMID: 26365526 PMCID: PMC4579843 DOI: 10.1038/ncomms9290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Almost 400 genes affect yeast telomere length, including Est1, which is critical for recruitment and activation of telomerase. Here we use mass spectrometry to identify novel telomerase regulators by their co-purification with the telomerase holoenzyme. In addition to all known subunits, over 100 proteins are telomerase associated, including all three subunits of the essential Cdc48-Npl4-Ufd1 complex as well as three E3 ubiquitin ligases. The Cdc48 complex is evolutionarily conserved and targets ubiquitinated proteins for degradation. Est1 levels are ∼40-fold higher in cells with reduced Cdc48, yet, paradoxically, telomeres are shorter. Furthermore, Est1 is ubiquitinated and its cell cycle-regulated abundance is lost in Cdc48-deficient cells. Deletion of the telomerase-associated E3 ligase, Ufd4, in cdc48-3 cells further increases Est1 abundance but suppresses the telomere length phenotype of the single mutant. These data argue that, in concert with Ufd4, the Cdc48 complex regulates telomerase by controlling the level and activity of Est1.
Collapse
Affiliation(s)
- Kah-Wai Lin
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Karin R McDonald
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Amanda J Guise
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Angela Chan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| |
Collapse
|
4
|
Functional analysis of the single Est1/Ebs1 homologue in Kluyveromyces lactis reveals roles in both telomere maintenance and rapamycin resistance. EUKARYOTIC CELL 2012; 11:932-42. [PMID: 22544908 DOI: 10.1128/ec.05319-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Est1 and Ebs1 in Saccharomyces cerevisiae are paralogous proteins that arose through whole-genome duplication and that serve distinct functions in telomere maintenance and translational regulation. Here we present our functional analysis of the sole Est1/Ebs1 homologue in the related budding yeast Kluyveromyces lactis (named KlEst1). We show that similar to other Est1s, KlEst1 is required for normal telomere maintenance in vivo and full telomerase primer extension activity in vitro. KlEst1 also associates with telomerase RNA (Ter1) and an active telomerase complex in cell extracts. Both the telomere maintenance and the Ter1 association functions of KlEst1 require its N-terminal domain but not its C terminus. Analysis of clusters of point mutations revealed residues in both the N-terminal TPR subdomain and the downstream helical subdomain (DSH) that are important for telomere maintenance and Ter1 association. A UV cross-linking assay was used to establish a direct physical interaction between KlEst1 and a putative stem-loop in Ter1, which also requires both the TPR and DSH subdomains. Moreover, similar to S. cerevisiae Ebs1 (ScEbs1) (but not ScEst1), KlEst1 confers rapamycin sensitivity and may be involved in nonsense-mediated decay. Interestingly, unlike telomere regulation, this apparently separate function of KlEst1 requires its C-terminal domain. Our findings provide insights on the mechanisms and evolution of Est1/Ebs1 homologues in budding yeast and present an attractive model system for analyzing members of this multifunctional protein family.
Collapse
|
5
|
Cifuentes-Rojas C, Shippen DE. Telomerase regulation. Mutat Res 2012; 730:20-7. [PMID: 22032831 PMCID: PMC3256259 DOI: 10.1016/j.mrfmmm.2011.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/15/2011] [Accepted: 10/12/2011] [Indexed: 02/05/2023]
Abstract
The intimate connection between telomerase regulation and human disease is now well established. The molecular basis for telomerase regulation is highly complex and entails multiple layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in gene dosage and alternative isoforms of core telomerase components have been described. Finally, telomerase localization, recruitment to the telomere and enzymology at the chromosome terminus are all subject to modulation. In this review we summarize recent advances in understanding fundamental mechanisms of telomerase regulation.
Collapse
Affiliation(s)
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
6
|
Abstract
Telomeres are the nucleoprotein structures at the ends of linear chromosomes and maintain the genomic integrity through multiple cell divisions. Telomeres protect the chromosome ends from degradation, end-to-end fusion and abnormal recombination and they also promote the end replication. The budding yeast Saccharomyces cerevisiae is the most well-studied model system with regard to telomere and telomerase regulation. Recently, the opportunistic fungal pathogen Candida albicans has emerged as an attractive model system for investigating telomere biology. Candida underwent rapid evolutionary divergence with respect to telomere sequences. Concomitant with the evolutionary divergence of telomere sequences, telomere repeat binding factors and telomerase components have also evolved, leading to differences in their functions and domain structures. Thus, the comparative analysis of the telomeres and telomerase-related factors in the budding yeast has provided a better understanding on both conserved and variable aspects of telomere regulation. In this review, I will discuss telomeres and telomerase-related factors and their functions in telomere and telomerase regulation in C. albicans.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, NY 10065, USA.
| |
Collapse
|
7
|
Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat Struct Mol Biol 2010; 17:202-9. [PMID: 20098422 DOI: 10.1038/nsmb.1760] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 11/04/2009] [Indexed: 11/08/2022]
Abstract
Telomeres are eukaryotic protein-DNA complexes found at the ends of linear chromosomes that are essential for maintaining genome integrity and are implicated in cellular aging and cancer. The guanine (G)-rich strand of telomeric DNA, usually elongated by the telomerase reverse transcriptase, can form a higher-order structure known as a G-quadruplex in vitro and in vivo. Several factors that promote or resolve G-quadruplexes have been identified, but the functional importance of these structures for telomere maintenance is not well understood. Here we show that the yeast telomerase subunit Est1p, known to be involved in telomerase recruitment to telomeres, can convert single-stranded telomeric G-rich DNA into a G-quadruplex structure in vitro in a Mg(2+)-dependent manner. Cells carrying Est1p mutants deficient in G-quadruplex formation in vitro showed gradual telomere shortening and cellular senescence, indicating a positive regulatory role for G-quadruplex in the maintenance of telomere length.
Collapse
|
8
|
Lee J, Mandell EK, Rao T, Wuttke DS, Lundblad V. Investigating the role of the Est3 protein in yeast telomere replication. Nucleic Acids Res 2010; 38:2279-90. [PMID: 20047960 PMCID: PMC2853109 DOI: 10.1093/nar/gkp1173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Est3 subunit of yeast telomerase, which adopts a predicted OB-fold, is essential for telomere replication. To assess the possible contributions that Est3 might make to enzyme catalysis, we compared telomerase activity from wild type and est3-Delta strains of Saccharomyces castellii, which revealed that loss of the Est3 subunit results in a 2- to 3-fold decline in nucleotide addition. This effect was not primer-specific, based on assessment of a panel of primers that spanned the template of the S. castellii telomerase RNA. Furthermore, using nuclear magnetic resonance chemical shift perturbation, no chemical shift change was observed at any site in the protein upon addition of single-stranded DNA, arguing against a role for Est3 in recognition of telomeric substrates by telomerase. Addition of exogenous Est3 protein, including mutant Est3 proteins that are severely impaired for telomere replication in vivo, fully restored activity in est3-Delta telomerase reactions. Thus, Est3 performs an in vivo regulatory function in telomere replication, which is distinct from any potential contribution that Est3 might make to telomerase activity.
Collapse
Affiliation(s)
- Jaesung Lee
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Telomere binding proteins protect chromosome ends from degradation and mask chromosome termini from checkpoint surveillance. In Saccharomyces cerevisiae, Cdc13 binds single-stranded G-rich telomere repeats, maintaining telomere integrity and length. Two additional proteins, Ten1 and Stn1, interact with Cdc13 but their contributions to telomere integrity are not well defined. Ten1 is known to prevent accumulation of aberrant single-stranded telomere DNA; whether this results from defective end protection or defective telomere replication is unclear. Here we report our analysis of a new group of ten1 temperature-sensitive (ts) mutants. At permissive temperatures, ten1-ts strains display greatly elongated telomeres. After shift to nonpermissive conditions, however, ten1-ts mutants accumulate extensive telomeric single-stranded DNA. Cdk1 activity is required to generate these single-stranded regions, and deleting the EXO1 nuclease partially suppresses ten1-ts growth defects. This is similar to cdc13-1 mutants, suggesting ten1-ts strains are defective for end protection. Moreover, like Cdc13, our analysis reveals Ten1 promotes de novo telomere addition. Interestingly, in ten1-ts strains at high temperatures, telomeric single-stranded DNA and Rad52-YFP repair foci are strongly induced despite Cdc13 remaining associated with telomeres, revealing Cdc13 telomere binding is not sufficient for end protection. Finally, unlike cdc13-1 mutants, ten1-ts strains display strong synthetic interactions with mutations in the POLalpha complex. These results emphasize that Cdc13 relies on Ten1 to execute its essential function, but leave open the possibility that Ten1 has a Cdc13-independent role in DNA replication.
Collapse
|
10
|
Shore D, Bianchi A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 2009; 28:2309-22. [PMID: 19629031 PMCID: PMC2722252 DOI: 10.1038/emboj.2009.195] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/09/2022] Open
Abstract
The conventional DNA polymerase machinery is unable to fully replicate the ends of linear chromosomes. To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utilizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication. This unique, non-DNA templated mode of telomere replication requires a regulatory mechanism to ensure that telomerase acts at telomeres whose TG tracts are too short, but not at those with long tracts, thus maintaining the protective TG repeat 'cap' at an appropriate average length. The prevailing notion in the field is that telomere length regulation is brought about through a negative feedback mechanism that 'counts' TG repeat-bound protein complexes to generate a signal that regulates telomerase action. This review summarizes experiments leading up to this model and then focuses on more recent experiments, primarily from yeast, that begin to suggest how this 'counting' mechanism might work. The emerging picture is that of a complex interplay between the conventional DNA replication machinery, DNA damage response factors, and a specialized set of proteins that help to recruit and regulate the telomerase enzyme.
Collapse
Affiliation(s)
- David Shore
- Department of Molecular Biology and NCCR Program 'Frontiers in Genetics', University of Geneva, Sciences III, Geneva, Switzerland.
| | | |
Collapse
|
11
|
Lee JS, Mandell EK, Tucey TM, Morris DK, Victoria L. The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat Struct Mol Biol 2008; 15:990-7. [PMID: 19172754 PMCID: PMC2669685 DOI: 10.1038/nsmb.1472] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Ever shorter telomeres 3 (Est3) protein is a small regulatory subunit of yeast telomerase which is dispensable for enzyme catalysis but essential for telomere replication in vivo. Using structure prediction combined with in vivo characterization, we show here that Est3 consists of a predicted OB (oligosaccharide/oligonucleotide binding)-fold. We used mutagenesis of predicted surface residues to generate a functional map of one surface of Est3, identifying a site that mediates association with the telomerase complex. Unexpectedly, the predicted OB-fold of Est3 is structurally similar to the OB-fold of the human TPP1 protein, despite the fact that Est3 and TPP1, as components of telomerase and a telomere-capping complex, respectively, perform functionally distinct tasks at chromosome ends. Our analysis of Est3 may be instructive in generating comparable missense mutations on the surface of the OB-fold domain of TPP1.
Collapse
Affiliation(s)
- Jaesung S. Lee
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Edward K. Mandell
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
- Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Timothy M. Tucey
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Danna K. Morris
- Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Lundblad Victoria
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| |
Collapse
|
12
|
Bianchi A, Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell 2008; 31:153-65. [PMID: 18657499 DOI: 10.1016/j.molcel.2008.06.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Indexed: 10/21/2022]
Abstract
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and NCCR Frontiers in Genetics Program, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Geneva, Switzerland
| | | |
Collapse
|
13
|
Vega LR, Phillips JA, Thornton BR, Benanti JA, Onigbanjo MT, Toczyski DP, Zakian VA. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genet 2007; 3:e105. [PMID: 17590086 PMCID: PMC1892048 DOI: 10.1371/journal.pgen.0030105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 05/11/2007] [Indexed: 01/02/2023] Open
Abstract
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13-1, yku80Delta, yku70Delta, yku80-1, and yku80-4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Delta and cdc13-1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13-1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.
Collapse
Affiliation(s)
- Leticia R Vega
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jane A Phillips
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Brian R Thornton
- Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco California, United States of America
| | - Jennifer A Benanti
- Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco California, United States of America
| | - Mutiat T Onigbanjo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - David P Toczyski
- Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco California, United States of America
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Abstract
Telomere function is mediated by the assembly of a protein complex on an array of telomeric DNA (TG) repeats synthesized by the telomerase enzyme. Telomerase action at chromosome ends is finely tuned by the telomeric complex so that a constant average number of repeats is maintained. This is achieved through a negative feedback process that is sensitive to TG tract length, but whose underlying mechanism is unknown. We show that short telomeres, which are preferential substrates for telomerase, display increased association with the enzyme in the S phase of the cell cycle, when telomerase acts. In addition, we provide support for a molecular mechanism by which this key step of telomerase recruitment is regulated by TG tract length.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and National Centre of Competence in Research (NCCR) Frontiers in Genetics Program, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
15
|
Hsu M, McEachern MJ, Dandjinou AT, Tzfati Y, Orr E, Blackburn EH, Lue NF. Telomerase core components protect Candida telomeres from aberrant overhang accumulation. Proc Natl Acad Sci U S A 2007; 104:11682-7. [PMID: 17609387 PMCID: PMC1913905 DOI: 10.1073/pnas.0700327104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Indexed: 12/14/2022] Open
Abstract
Telomerase is a cellular reverse transcriptase that extends one strand (the G-strand) of the telomere terminal repeats. Aside from this role in telomere length maintenance, telomerase has been proposed to serve a protective function at chromosome ends, although this is not well understood mechanistically. Earlier analysis suggests that, in the pathogenic yeast Candida albicans, the catalytic reverse transcriptase subunit of telomerase (TERT/EST2) can protect telomeres against nucleolytic degradation. In this report we demonstrate that the RNA component (TER1) has a similar function; in addition to complete loss of telomerase activity and progressive telomere attrition, the ter1-DeltaDelta strains manifested a dramatic increase in the amount of G-strand overhangs, consistent with aberrant degradation of the complementary C-strand. We also demonstrate that a catalytically incompetent EST2 protein can suppress such overhang accumulation in the est2-DeltaDelta mutant to the same extent as the wild-type protein. Altogether, our data support the notion that the Candida telomerase core components mediate a protective function through a mechanism that is independent of its catalytic activity.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Hsu M, Yu EY, Singh SM, Lue NF. Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. EUKARYOTIC CELL 2007; 6:1330-8. [PMID: 17545315 PMCID: PMC1951134 DOI: 10.1128/ec.00069-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomerase is an RNA-protein complex responsible for extending one strand of the telomere terminal repeats. Analysis of the telomerase complex in budding yeasts has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The TERT subunit is essential for telomerase catalysis, while the functions of Est1p and Est3p have not been precisely elucidated. In an earlier study, we showed that telomerase derived from a Candida est1-null mutant is defective in primer utilization in vitro; it exhibits reduced initiation and processivity on primers that terminate in two regions of the telomere repeat. Here we show that telomerase derived from a Candida est3-null mutant has nearly identical defects in primer utilization and processivity. Further analysis revealed an unexpected mutual dependence of Est1p and Est3p in their assembly into the full telomerase complex, which accounts for the similarity between the mutant enzymes. We also developed an affinity isolation and an in vitro reconstitution protocol for the telomerase complex that will facilitate future mechanistic studies.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
17
|
Steinberg-Neifach O, Lue NF. Modulation of telomere terminal structure by telomerase components in Candida albicans. Nucleic Acids Res 2006; 34:2710-22. [PMID: 16714448 PMCID: PMC1464115 DOI: 10.1093/nar/gkl345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation.
Collapse
Affiliation(s)
| | - Neal F. Lue
- To whom correspondence should be addressed. Tel: +1 212 746 6506; Fax: +1 212 746 8587;
| |
Collapse
|
18
|
Ram R, Uziel O, Lahav M. The importance of the telomere and telomerase system in hematological malignancies. Leuk Lymphoma 2006; 46:1121-35. [PMID: 16085552 DOI: 10.1080/10428190500125853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Telomeres are specialized chromosomal end structures composed of repeat TTAGGG sequences in humans. They shorten with each cell division and thus serve as the "mitotic clock" of the cell. One of their main functions is the maintenance of chromosomal integrity and their excessive shortening is associated with DNA instability. Telomerase, a unique reverse transcriptase, is inactive in most somatic human cells and is up-regulated in most cancer cells. Recently, the biology of the telomere/telomerase system has attracted much attention because of its possible role in carcinogenesis and aging. In this article we review the biology of this system and its relevance to normal and malignant hematopoietic cells. The biological, diagnostic and prognostic value of telomere/telomerase biology is discussed, as well as its potential future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Ron Ram
- Department of Medicine A, Rabin medical Center, Beilinson Campus, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | |
Collapse
|
19
|
Liao XH, Zhang ML, Yang CP, Xu LX, Zhou JQ. Characterization of recombinant Saccharomyces cerevisiae telomerase core enzyme purified from yeast. Biochem J 2005; 390:169-76. [PMID: 15813705 PMCID: PMC1184572 DOI: 10.1042/bj20050208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Telomerase is a cellular reverse transcriptase that elongates the single-stranded chromosome ends and oligonucleotides in vivo and in vitro. In Saccharomyces cerevisiae, Est2p (telomerase catalytic subunit) and Tlc1 (telomerase RNA template subunit) constitute the telomerase core complex. We co-overexpressed GST (glutathione S-transferase)-Est2p and Tlc1 in S. cerevisiae, and reconstituted the telomerase activity. The GST-Est2p-Tlc1 complex was partially purified by ammonium sulphate fractionation and affinity chromatography on glutathione beads, and the partially purified telomerase did not contain the other two subunits of the telomerase holoenzyme, Est1p and Est3p. The purified recombinant GST-Est2p-Tlc1 telomerase core complex could specifically add nucleotides on to the single-stranded TG(1-3) primer in a processive manner, but could not translocate to synthesize more than one telomeric repeat. The purified telomerase core complex exhibited different activities when primers were paired with the Tlc1 template at different positions. The procedure of reconstitution and purification of telomerase core enzyme that we have developed now allows for further mechanistic studies of the functions of other subunits of the telomerase holoenzyme as well as other telomerase regulation proteins.
Collapse
Affiliation(s)
- Xin-Hua Liao
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Liang Zhang
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cui-Ping Yang
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu-Xia Xu
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Qiu Zhou
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Moriarty TJ, Ward RJ, Taboski MAS, Autexier C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell 2005; 16:3152-61. [PMID: 15857955 PMCID: PMC1165400 DOI: 10.1091/mbc.e05-02-0148] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Telomerase-mediated telomeric DNA synthesis is important for eukaryotic cell immortality. Telomerase adds tracts of short telomeric repeats to DNA substrates using a unique repeat addition form of processivity. It has been proposed that repeat addition processivity is partly regulated by a telomerase reverse transcriptase (TERT)-dependent anchor site; however, anchor site-mediating residues have not been identified in any TERT. We report the characterization of an N-terminal human TERT (hTERT) RNA interaction domain 1 (RID1) mutation that caused telomerase activity defects consistent with disruption of a template-proximal anchor site, including reduced processivity on short telomeric primers and reduced activity on substrates with nontelomeric 5' sequences, but not on primers with nontelomeric G-rich 5' sequences. This mutation was located within a subregion of RID1 previously implicated in biological telomerase functions unrelated to catalytic activity (N-DAT domain). Other N-DAT and C-terminal DAT (C-DAT) mutants and a C-terminally tagged hTERT-HA variant were defective in elongating short telomeric primers, and catalytic phenotypes of DAT variants were partially or completely rescued by increasing concentrations of DNA primers. These observations imply that RID1 and the hTERT C terminus contribute to telomerase's affinity for its substrate, and that RID1 may form part of the human telomerase anchor site.
Collapse
Affiliation(s)
- Tara J Moriarty
- Department of Anatomy and Cell Biology, Experimental Medicine Division, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|
21
|
Bianchi A, Negrini S, Shore D. Delivery of Yeast Telomerase to a DNA Break Depends on the Recruitment Functions of Cdc13 and Est1. Mol Cell 2004; 16:139-46. [PMID: 15469829 DOI: 10.1016/j.molcel.2004.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 07/07/2004] [Accepted: 08/16/2004] [Indexed: 11/30/2022]
Abstract
The yeast single-strand TG-repeat telomere binding protein Cdc13 and the telomerase accessory protein Est1 play essential roles in chromosome end replication. To determine whether a proposed Cdc13-Est1 interaction recruits telomerase (Est2), we used a simplified system in which telomere formation was monitored at an HO-induced DNA double-strand break (DSB). Tethering of either Cdc13 or Est1 adjacent to a DSB promoted telomere formation, and tethering of Est1, even in the absence of a DSB, resulted in the recruitment of Est2. Est1 association with a DSB containing an adjacent short TG-repeat sequence depended on the Cdc13-Est1 interaction affected by cdc13-2 and est1-60 mutations, whereas Cdc13 association did not. Similarly, Est2 binding to the DSB also required the Cdc13-Est1 interaction, but not synthesis of new TG repeats at the break site. These data demonstrate a critical role for Est1 in recruiting telomerase to its site of action, in cooperation with the telomere binding protein Cdc13.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and NCCR "Frontiers in Genetics" Program, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | | | | |
Collapse
|
22
|
Abstract
Telomerase is a cellular reverse transcriptase responsible for telomere maintenance in most organisms. It does so by adding telomere repeats onto pre-existing ends using an integral RNA component as template. Compared to "prototypical" reverse transcriptases, telomerase is unique in being able to repetitively copy a short templating RNA segment, thus adding multiple copies of the repeat to the DNA substrate following a single binding event. This uniquely processive property hints at the intricate conformational alterations that the enzyme must choreograph during its reaction cycles. Recent studies have identified distinct structural elements within both the RNA and protein components of telomerase that modulate enzyme processivity. Pharmacological and genetic analysis suggest that telomerase processivity is a significant determinant of telomere length. Because telomere maintenance and the lack thereof have been linked to tumor progression and aging, further investigation of telomerase processivity may lead to novel medical intervention strategies.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
23
|
Teixeira MT, Arneric M, Sperisen P, Lingner J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 2004; 117:323-35. [PMID: 15109493 DOI: 10.1016/s0092-8674(04)00334-4] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 02/17/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
Telomerase counteracts telomere erosion that stems from incomplete chromosome end replication and nucleolytic processing. A precise understanding of telomere length homeostasis has been hampered by the lack of assays that delineate the nonuniform telomere extension events of single chromosome molecules. Here, we measure telomere elongation at nucleotide resolution in Saccharomyces cerevisiae. The number of nucleotides added to a telomere in a single cell cycle varies between a few to more than 100 nucleotides and is independent of telomere length. Telomerase does not act on every telomere in each cell cycle, however. Instead, it exhibits an increasing preference for telomeres as their lengths decline. Deletion of the telomeric proteins Rif1 or Rif2 gives rise to longer telomeres by increasing the frequency of elongation events. Thus, by taking a molecular snapshot of a single round of telomere replication, we demonstrate that telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states.
Collapse
Affiliation(s)
- M Teresa Teixeira
- Swiss Institute for Experimental Cancer Research and National Center of Competence in Research Frontiers in Genetics, CH-1066 Epalinges/s Lausanne, Switzerland
| | | | | | | |
Collapse
|
24
|
Abstract
Telomere integrity plays a crucial role in the capacity for continuous cell proliferation. In some circumstances, shortened telomeres contribute to cell arrest or death, but in others, shortened telomeres may actually enhance the incidence and spectrum of tumors. Resolution of this apparent paradox requires a more detailed understanding of a non-functional telomere. Recent evidence reveals that critically shortened or uncapped telomeres share molecular hallmarks of damaged DNA. It is likely that the cellular response to this DNA damage, influenced by the nature of the damage itself, affects the outcome of loss of telomere function.
Collapse
Affiliation(s)
- Lea Harrington
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.
| |
Collapse
|
25
|
Current awareness on yeast. Yeast 2003; 20:1227-34. [PMID: 14609010 DOI: 10.1002/yea.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Lee SR, Wong JMY, Collins K. Human telomerase reverse transcriptase motifs required for elongation of a telomeric substrate. J Biol Chem 2003; 278:52531-6. [PMID: 14565961 DOI: 10.1074/jbc.m311359200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reverse transcriptase telomerase copies an internal RNA template to synthesize telomeric simple-sequence repeats. In the cellular context, telomerase must elongate its few intended substrates (authentic chromosome ends) without spurious activity on other potential substrates (chromosome ends created by damage, repair, or recombination). Many mechanisms have been proposed to account for the biological substrate specificity of telomerase, with most models focusing on protein-protein interactions between telomerase and telomeric chromatin. Telomerase activity assays testing the elongation of model oligonucleotide substrates have revealed that in addition to hybridization with the RNA template, optimal DNA substrates also engage telomerase protein-based interaction sites. The physiological significance of these non-template interaction sites has not been established. We used in vivo reconstitution to assemble telomerase enzymes with variant telomerase reverse transcriptase proteins. Several telomerase enzyme variants retained a wild-type level of catalytic function in vitro when assayed using an artificial sequence substrate but exhibited reduced activity on a more physiological telomeric-sequence substrate. Telomerases that demonstrated this defect in telomeric substrate usage in vitro also failed to support telomere length maintenance in vivo. Our findings suggest that non-template interactions of the telomerase ribonucleoprotein with telomeric DNA play a critical role in supporting telomerase function on its appropriate cellular substrates.
Collapse
Affiliation(s)
- Suzanne R Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|