1
|
Albocher-Kedem N, Heidenreich M, Fadel A, Sirotkin E, Goldberger O, Nussbaum-Shochat A, Levy ED, Schueler-Furman O, Schuldiner M, Amster-Choder O. Uncovering the mechanism for polar sequestration of the major bacterial sugar regulator by high-throughput screens and 3D interaction modeling. Cell Rep 2025; 44:115436. [PMID: 40100851 PMCID: PMC11937232 DOI: 10.1016/j.celrep.2025.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
The poles of rod-shaped bacteria emerge as regulatory hubs. We have shown that enzyme I (EI), the major bacterial sugar metabolism regulator, is sequestered when not needed in TmaR phase-separated condensates in Escherichia coli cell poles. Here, we combined genetic and automated microscopy screens to identify residues in EI and TmaR that are important for their interaction and colocalization. Mutating these residues affects EI-TmaR interaction in bacteria and impairs co-phase separation in yeast. The results were used to generate an EI-TmaR interaction model, which agrees with coevolution data and is supported by conservation of the interacting residues and EI-TmaR colocalization in other species. Mutating residues predicted to interact electrostatically further supports our model. The model explains how TmaR controls EI activity and its interaction with the phosphoprotein HPr and, hence, sugar uptake. Our study highlights the importance of sugar metabolism spatial regulation during evolution and presents a way to unravel protein-protein interactions.
Collapse
Affiliation(s)
- Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Fadel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elizabeta Sirotkin
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
2
|
Irastortza-Olaziregi M, Amster-Choder O. RNA localization in prokaryotes: Where, when, how, and why. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1615. [PMID: 32851805 DOI: 10.1002/wrna.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Only recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species. This localization, which often overlaps with that of the encoded proteins, can be achieved either in a translation-dependent or translation-independent fashion. The latter implies that RNAs carry sequence-level features that determine their final localization with the aid of RNA-targeting factors. Localization of transcripts regulates their posttranscriptional fate by affecting their degradation and processing, translation efficiency, sRNA-mediated regulation, and/or propensity to undergo RNA modifications. By facilitating complex assembly and liquid-liquid phase separation, RNA localization is not only a consequence but also a driver of subcellular spatiotemporal complexity. We foresee that in the coming years the study of RNA localization in prokaryotes will produce important novel insights regarding the fundamental understanding of membrane-less subcellular organization and lead to practical outputs with biotechnological and therapeutic implications. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Kannaiah S, Livny J, Amster-Choder O. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation. Mol Cell 2019; 76:574-589.e7. [PMID: 31540875 DOI: 10.1016/j.molcel.2019.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/28/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
4
|
Kurgan G, Sievert C, Flores A, Schneider A, Billings T, Panyon L, Morris C, Taylor E, Kurgan L, Cartwright R, Wang X. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Biotechnol Bioeng 2019; 116:2074-2086. [PMID: 31038200 PMCID: PMC11161036 DOI: 10.1002/bit.27004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022]
Abstract
Efficient xylose utilization will facilitate microbial conversion of lignocellulosic sugar mixtures into valuable products. In Escherichia coli, xylose catabolism is controlled by carbon catabolite repression (CCR). However, in E. coli such as the succinate-producing strain KJ122 with disrupted CCR, xylose utilization is still inhibited under fermentative conditions. To probe the underlying genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose fermentation abilities in parallel and characterized the potential convergent genetic changes shared by multiple independently evolved strains. Whole-genome sequencing revealed that convergent mutations occurred in the galactose regulon during adaptive laboratory evolution potentially decreasing the transcriptional level or the activity of GalP, a galactose permease. We showed that deletion of galP increased xylose utilization in both KJ122 and wild-type E. coli, demonstrating a common repressive role of GalP for xylose fermentation. Concomitantly, induced expression of galP from a plasmid repressed xylose fermentation. Transcriptome analysis using RNA sequencing indicates that galP inactivation increases transcription levels of many catabolic genes for secondary sugars including xylose and arabinose. The repressive role of GalP for fermenting secondary sugars in E. coli suggests that utilization of GalP as a substitute glucose transporter is undesirable for conversion of lignocellulosic sugar mixtures.
Collapse
Affiliation(s)
- Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Christian Sievert
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Andrew Flores
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona
| | - Aidan Schneider
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Thomas Billings
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Larry Panyon
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Chandler Morris
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Eric Taylor
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Logan Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Reed Cartwright
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
5
|
Regulation of Bacterial Gene Expression by Transcription Attenuation. Microbiol Mol Biol Rev 2019; 83:83/3/e00019-19. [PMID: 31270135 DOI: 10.1128/mmbr.00019-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A wide variety of mechanisms that control gene expression in bacteria are based on conditional transcription termination. Generally, in these mechanisms, a transcription terminator is located between a promoter and a downstream gene(s), and the efficiency of the terminator is controlled by a regulatory effector that can be a metabolite, protein, or RNA. The most common type of regulation involving conditional termination is transcription attenuation, in which the primary regulatory target is an essential element of a single terminator. The terminator can be either intrinsic or Rho dependent, with each presenting unique regulatory targets. Transcription attenuation mechanisms can be divided into five classes based primarily on the manner in which transcription termination is rendered conditional. This review summarizes each class of control mechanisms from a historical perspective, describes important examples in a physiological context and the current state of knowledge, highlights major advances, and discusses expectations of future discoveries.
Collapse
|
6
|
Pagano GJ, Arsenault RJ. Advances, challenges and tools in characterizing bacterial serine, threonine and tyrosine kinases and phosphorylation target sites. Expert Rev Proteomics 2019; 16:431-441. [DOI: 10.1080/14789450.2019.1601015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Giovanni J. Pagano
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
7
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
8
|
Wise AA, Binns AN. The Receiver of the Agrobacterium tumefaciens VirA Histidine Kinase Forms a Stable Interaction with VirG to Activate Virulence Gene Expression. Front Microbiol 2016; 6:1546. [PMID: 26779177 PMCID: PMC4705274 DOI: 10.3389/fmicb.2015.01546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
The plant pathogen Agrobacterium tumefaciens carries a virulence gene system that is required for the initiation of crown gall tumors on susceptible plants. Expression of the vir genes is activated by the VirA/VirG two component regulatory system. VirA is a histidine kinase which signals the presence of certain chemicals found at the site of a plant wound. The receiver domain located at its carboxyl terminus defines VirA as a hybrid histidine kinase. Here, we show that the VirA receiver interacts with the DNA-binding domain of VirG. This finding supports the hypothesis that the receiver acts as a recruiting factor for VirG. In addition, we show that removal of the VirA receiver allowed vir gene expression in response to glucose in a dose dependent manner, indicating that the receiver controls VirG activation and suggesting that the supplementary ChvE-sugar signal increases this activity.
Collapse
Affiliation(s)
- Arlene A Wise
- Binns Lab, Department of Biology, University of Pennsylvania, Philadelphia PA, USA
| | - Andrew N Binns
- Binns Lab, Department of Biology, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
9
|
Gordon N, Rosenblum R, Nussbaum-Shochat A, Eliahoo E, Amster-Choder O. A Search for Ribonucleic Antiterminator Sites in Bacterial Genomes: Not Only Antitermination? J Mol Microbiol Biotechnol 2015; 25:143-53. [PMID: 26159075 DOI: 10.1159/000375263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BglG/LicT-like proteins are transcriptional antiterminators that prevent termination of transcription at intrinsic terminators by binding to ribonucleic antiterminator (RAT) sites and stabilizing an RNA conformation which is mutually exclusive with the terminator structure. The known RAT sites, which are located in intergenic regions of sugar utilization operons, show low sequence conservation but significant structural analogy. To assess the prevalence of RATs in bacterial genomes, we employed bioinformatic tools that describe RNA motifs based on both sequence and structural constraints. Using descriptors with different stringency, we searched the genomes of Escherichiacoli K12, uropathogenic E. coli and Bacillus subtilis for putative RATs. Our search identified all known RATs and additional putative RAT elements. Surprisingly, most putative RATs do not overlap an intrinsic terminator and many reside within open reading frames (ORFs). The ability of one of the putative RATs, which is located within an antiterminator-encoding ORF and does not overlap a terminator, to bind to its cognate antiterminator protein in vitro and in vivo was confirmed experimentally. Our results suggest that the capacity of RAT elements has been exploited during evolution to mediate activities other than antitermination, for example control of transcription elongation or of RNA stability.
Collapse
Affiliation(s)
- Noa Gordon
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
10
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
11
|
Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes. J Bacteriol 2015; 197:1559-72. [PMID: 25691525 DOI: 10.1128/jb.02522-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Listeriae take up glucose and mannose predominantly through a mannose class phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS(Man)), whose three components are encoded by the manLMN genes. The expression of these genes is controlled by ManR, a LevR-type transcription activator containing two PTS regulation domains (PRDs) and two PTS-like domains (enzyme IIA(Man) [EIIA(Man)]- and EIIB(Gat)-like). We demonstrate here that in Listeria monocytogenes, ManR is activated via the phosphorylation of His585 in the EIIA(Man)-like domain by the general PTS components enzyme I and HPr. We also show that ManR is regulated by the PTS(Mpo) and that EIIB(Mpo) plays a dual role in ManR regulation. First, yeast two-hybrid experiments revealed that unphosphorylated EIIB(Mpo) interacts with the two C-terminal domains of ManR (EIIB(Gat)-like and PRD2) and that this interaction is required for ManR activity. Second, in the absence of glucose/mannose, phosphorylated EIIB(Mpo) (P∼EIIB(Mpo)) inhibits ManR activity by phosphorylating His871 in PRD2. The presence of glucose/mannose causes the dephosphorylation of P∼EIIB(Mpo) and P∼PRD2 of ManR, which together lead to the induction of the manLMN operon. Complementation of a ΔmanR mutant with various manR alleles confirmed the antagonistic effects of PTS-catalyzed phosphorylation at the two different histidine residues of ManR. Deletion of manR prevented not only the expression of the manLMN operon but also glucose-mediated repression of virulence gene expression; however, repression by other carbohydrates was unaffected. Interestingly, the expression of manLMN in Listeria innocua was reported to require not only ManR but also the Crp-like transcription activator Lin0142. Unlike Lin0142, the L. monocytogenes homologue, Lmo0095, is not required for manLMN expression; its absence rather stimulates man expression. IMPORTANCE Listeria monocytogenes is a human pathogen causing the foodborne disease listeriosis. The expression of most virulence genes is controlled by the transcription activator PrfA. Its activity is strongly repressed by carbohydrates, including glucose, which is transported into L. monocytogenes mainly via a mannose/glucose-specific phosphotransferase system (PTS(Man)). Expression of the man operon is regulated by the transcription activator ManR, the activity of which is controlled by a second, low-efficiency PTS of the mannose family, which functions as glucose sensor. Here we demonstrate that the EIIB(Mpo) component plays a dual role in ManR regulation: it inactivates ManR by phosphorylating its His871 residue and stimulates ManR by interacting with its two C-terminal domains.
Collapse
|
12
|
Amster-Choder O. The compartmentalized vessel: The bacterial cell as a model for subcellular organization (a tale of two studies). CELLULAR LOGISTICS 2014; 1:77-81. [PMID: 21686257 DOI: 10.4161/cl.1.2.16152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/22/2022]
Abstract
The traditional view of bacterial cells as non-compartmentalized, which is based on the lack of membrane-engulfed organelles, is currently being reassessed. Many studies in recent years led to the realization that bacteria have an intricate internal organization that is vital for various cellular processes. Specifically, various machineries were shown to localize to the poles of rod-shaped bacteria. We have recently shown that the control center of the PTS system, which governs carbon uptake and metabolism, localizes to the poles of E. coli cells. Notably, the machinery that controls bacterial taxis along chemical gradients (chemotaxis) has a similar localization pattern. The fact that the two systems need to communicate in order to generate an optimal metabolic response suggests that their similar spatial organization is not a coincidence. Rather, due to their special characteristics, the poles may function as hubs for signaling systems to allow for efficient crosstalk between different pathways in order to improve coordination of their actions.The regulatory mechanisms that underlie the spatial and temporal organization of microbial cells are largely unknown. Thus far, these mechanisms were believed to rely on embedded features of the localized proteins. In another study, we have recently shown that mRNAs are capable of migrating to particular domains in the bacterial cell where their protein products are required. In contrast to the view that transcription and translation are coupled in bacteria, localization of bacterial transcripts may occur in a translation-independent manner. Hence, it seems that the mechanistic basis for separating transcription and translation is more primitive than assumed up until now. We propose that bacteria synthesize proteins either by a transcription-translation coupled mechanism or by transporting mRNAs away from the transcription apparatus. Obviously, eukaryotic cells rely on the latter mechanism. Hence, the capacity of prokaryotic cells to adopt the division between transcription and translation was a crucial step in the evolution of nucleus-containing cells from the prokaryotic origin. Summarily, the line that separates cells with nucleus and cells without is fading, leading to the realization that bacteria are suitable model organisms for studying universal mechanisms that underlie spatial regulation of cellular processes.
Collapse
Affiliation(s)
- Orna Amster-Choder
- Department of Microbiology and Molecular Genetics; IMRIC; Hadassah Medical School; The Hebrew University; Jerusalem, Israel
| |
Collapse
|
13
|
Kannaiah S, Amster-Choder O. Protein targeting via mRNA in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1457-65. [PMID: 24263243 DOI: 10.1016/j.bbamcr.2013.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023]
Abstract
Proteins of all living organisms must reach their subcellular destination to sustain the cell structure and function. The proteins are transported to one of the cellular compartments, inserted into the membrane, or secreted across the membrane to the extracellular milieu. Cells have developed various mechanisms to transport proteins across membranes, among them localized translation. Evidence for targeting of Messenger RNA for the sake of translation of their respective protein products at specific subcellular sites in many eukaryotic model organisms have been accumulating in recent years. Cis-acting RNA localizing elements, termed RNA zip-codes, which are embedded within the mRNA sequence, are recognized by RNA-binding proteins, which in turn interact with motor proteins, thus coordinating the intracellular transport of the mRNA transcripts. Despite the rareness of conventional organelles, first and foremost a nucleus, pieces of evidence for mRNA localization to specific subcellular domains, where their protein products function, have also been obtained for prokaryotes. Although the underlying mechanisms for transcript localization in bacteria are yet to be unraveled, it is now obvious that intracellular localization of mRNA is a common mechanism to spatially localize proteins in both eukaryotes and prokaryotes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University - Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University - Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
14
|
Heravi KM, Altenbuchner J. Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. MICROBIOLOGY-SGM 2013; 160:91-101. [PMID: 24196428 DOI: 10.1099/mic.0.071233-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of mannitol utilization genes in Bacillus subtilis is directed by PmtlA, the promoter of the mtlAFD operon, and PmtlR, the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIB(Gat)-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates PmtlA in vivo. In the mtlR-H342D C419A mutant, PmtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled PmtlA and PmtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of PmtlA-PlicB hybrid promoters, as well as increasing the distance between the MtlR operator and the -35 box of PmtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at PmtlA and PmtlR during transcription initiation.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 2013; 4:e00443-13. [PMID: 24129255 PMCID: PMC3812706 DOI: 10.1128/mbio.00443-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. Despite their tiny size and the scarcity of membrane-bounded organelles, bacteria are capable of sorting macromolecules to distinct subcellular domains, thus optimizing functionality of vital processes. Understanding the cues that organize bacterial cells should provide novel insights into the complex organization of higher organisms. Previously, we have shown that the general proteins of the phosphotransferase system (PTS) signaling system, which governs utilization of carbon sources in bacteria, localize to the poles of Escherichia coli cells. Here, we show that geometric cues, i.e., strong negative membrane curvature, mediate positioning of the PTS proteins. Furthermore, localization to negatively curved regions seems to support the PTS functionality.
Collapse
|
16
|
Dynamic localization of a transcription factor in Bacillus subtilis: the LicT antiterminator relocalizes in response to inducer availability. J Bacteriol 2013; 195:2146-54. [PMID: 23475962 DOI: 10.1128/jb.00117-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis transports β-glucosides such as salicin by a dedicated phosphotransferase system (PTS). The expression of the β-glucoside permease BglP is induced in the presence of the substrate salicin, and this induction requires the binding of the antiterminator protein LicT to a specific RNA target in the 5' region of the bglP mRNA to prevent the formation of a transcription terminator. LicT is composed of an N-terminal RNA-binding domain and two consecutive PTS regulation domains, PRD1 and PRD2. In the absence of salicin, LicT is phosphorylated on PRD1 by BglP and thereby inactivated. In the presence of the inducer, the phosphate group from PRD1 is transferred back to BglP and consequently to the incoming substrate, resulting in the activation of LicT. In this study, we have investigated the intracellular localization of LicT. While the protein was evenly distributed in the cell in the absence of the inducer, we observed a subpolar localization of LicT if salicin was present in the medium. Upon addition or removal of the inducer, LicT rapidly relocalized in the cells. This dynamic relocalization did not depend on the binding of LicT to its RNA target sites, since the localization pattern was not affected by deletion of all LicT binding sites. In contrast, experiments with mutants affected in the PTS components as well as mutations of the LicT phosphorylation sites revealed that phosphorylation of LicT by the PTS components plays a major role in the control of the subcellular localization of this RNA-binding transcription factor.
Collapse
|
17
|
Joyet P, Bouraoui H, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Ventroux M, Nessler S, Noirot-Gros MF, Deutscher J, Milohanic E. Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1415-24. [PMID: 23318733 DOI: 10.1016/j.bbapap.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022]
Abstract
Numerous bacteria possess transcription activators and antiterminators composed of regulatory domains phosphorylated by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). These domains, called PTS regulation domains (PRDs), usually contain two conserved histidines as potential phosphorylation sites. While antiterminators possess two PRDs with four phosphorylation sites, transcription activators contain two PRDs plus two regulatory domains resembling PTS components (EIIA and EIIB). The activity of these transcription regulators is controlled by up to five phosphorylations catalyzed by PTS proteins. Phosphorylation by the general PTS components EI and HPr is usually essential for the activity of PRD-containing transcription regulators, whereas phosphorylation by the sugar-specific components EIIA or EIIB lowers their activity. For a specific regulator, for example the Bacillus subtilis mtl operon activator MtlR, the functional phosphorylation sites can be different in other bacteria and consequently the detailed mode of regulation varies. Some of these transcription regulators are also controlled by an interaction with a sugar-specific EIIB PTS component. The EIIBs are frequently fused to the membrane-spanning EIIC and EIIB-mediated membrane sequestration is sometimes crucial for the control of a transcription regulator. This is also true for the Escherichia coli repressor Mlc, which does not contain a PRD but nevertheless interacts with the EIIB domain of the glucose-specific PTS. In addition, some PRD-containing transcription activators interact with a distinct EIIB protein located in the cytoplasm. The phosphorylation state of the EIIB components, which changes in response to the presence or absence of the corresponding carbon source, affects their interaction with transcription regulators. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Philippe Joyet
- Institut National de la Recherche Agronomique, UMR1319 Microbiologie de l'alimentation au service de la santé humaine Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bouraoui H, Ventroux M, Noirot-Gros MF, Deutscher J, Joyet P. Membrane sequestration by the EIIB domain of the mannitol permease MtlA activates the Bacillus subtilis mtl operon regulator MtlR. Mol Microbiol 2013; 87:789-801. [PMID: 23279188 DOI: 10.1111/mmi.12131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
Abstract
In most firmicutes expression of the mannitol operon is regulated by MtlR. This transcription activator is controlled via phosphorylation of its regulatory domains by components of the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS). We found that activation of Bacillus subtilis MtlR also requires an interaction with the EIIB(Mtl) domain of the mannitol permease MtlA (EIICB(Mtl) ). The constitutive expression of the mtlAFD operon in an mtlF mutant was prevented when entire mtlA or only its 3' part (EIIB(Mtl) ) were deleted. Yeast two-hybrid experiments revealed a direct interaction of the EIIB(Mtl) domain with the two C-terminal domains of MtlR. Complementation of the Δ3'-mtlA ΔmtlF or ΔmtlAFD mutants with mtlA restored constitutive MtlR activity, whereas complementation with only 3'-mtlA had no effect. Moreover, synthesis of EIIB(Mtl) in strains producing constitutively active MtlR caused MtlR inactivation. Interestingly, EIIB(Mtl) fused to the trans-membrane protein YwqC restored constitutive MtlR activity in the above mutants. Replacing the phosphorylatable Cys with Asp in MtlA or soluble EIIB(Mtl) lowered MtlR activation, indicating that MtlR does not interact with phosphorylatyed EIIB(Mtl) . Induction of the B. subtilis mtl operon therefore follows a novel regulation mechanism where the transcription activator needs to be sequestered to the membrane by unphosphorylated EIICB(Mtl) in order to be functional.
Collapse
Affiliation(s)
- Houda Bouraoui
- Institut de la Recherche Agronomique, UMR1319 Microbiologie de l'alimentation au service de la santé humaine Micalis, F-78350 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
19
|
Papanastasiou M, Orfanoudaki G, Koukaki M, Kountourakis N, Sardis MF, Aivaliotis M, Karamanou S, Economou A. The Escherichia coli peripheral inner membrane proteome. Mol Cell Proteomics 2012; 12:599-610. [PMID: 23230279 DOI: 10.1074/mcp.m112.024711] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.
Collapse
|
20
|
Görke B. Killing two birds with one stone: an ABC transporter regulates gene expression through sequestration of a transcriptional regulator at the membrane. Mol Microbiol 2012; 85:597-601. [PMID: 22742494 DOI: 10.1111/j.1365-2958.2012.08156.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional regulators are controlled through various, mostly well-understood, principles. In the study of Richet et al., published in this issue of Molecular Microbiology, fluorescence microscopy was used to uncover an unorthodox mechanism that relies on the dynamic shuttling of a gene regulator between the membrane and the chromosome. When not occupied with transport, the maltose-specific ABC transporter sequesters and thereby inactivates its cognate transcriptional regulator MalT. Upon maltose transport, MalT is released from the membrane and activates the maltose utilization and transport genes. This mechanism prevents induction of MalT by endogenously produced maltotriose, which is the inducer. Thus, the maltose uptake system is a trigger transporter with a bi-functional role in transport and regulation.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany.
| |
Collapse
|
21
|
Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012; 28:314-22. [DOI: 10.1016/j.tig.2012.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
22
|
Tsai YH, Wei JR, Lin CS, Chen PH, Huang S, Lin YC, Wei CF, Lu CC, Lai HC. RssAB signaling coordinates early development of surface multicellularity in Serratia marcescens. PLoS One 2011; 6:e24154. [PMID: 21887380 PMCID: PMC3162612 DOI: 10.1371/journal.pone.0024154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/01/2011] [Indexed: 11/18/2022] Open
Abstract
Bacteria can coordinate several multicellular behaviors in response to environmental changes. Among these, swarming and biofilm formation have attracted significant attention for their correlation with bacterial pathogenicity. However, little is known about when and where the signaling occurs to trigger either swarming or biofilm formation. We have previously identified an RssAB two-component system involved in the regulation of swarming motility and biofilm formation in Serratia marcescens. Here we monitored the RssAB signaling status within single cells by tracing the location of the translational fusion protein EGFP-RssB following development of swarming or biofilm formation. RssAB signaling is specifically activated before surface migration in swarming development and during the early stage of biofilm formation. The activation results in the release of RssB from its cognate inner membrane sensor kinase, RssA, to the cytoplasm where the downstream gene promoters are located. Such dynamic localization of RssB requires phosphorylation of this regulator. By revealing the temporal activation of RssAB signaling following development of surface multicellular behavior, our findings contribute to an improved understanding of how bacteria coordinate their lifestyle on a surface.
Collapse
Affiliation(s)
- Yu-Huan Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Chuan-Sheng Lin
- Department of Biochemistry and Molecular Biology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Po-Han Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Stella Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yu-Ching Lin
- Department of Medical Biotechnology and Laboratory Science, and Research Center for Pathogenic Bacteria, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China
| | - Chia-Fong Wei
- Department of Medical Biotechnology and Laboratory Science, and Research Center for Pathogenic Bacteria, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Sinjhuang, Taipei, Taiwan, Republic of China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, and Research Center for Pathogenic Bacteria, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
23
|
Aké FMD, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011; 81:274-93. [PMID: 21564334 DOI: 10.1111/j.1365-2958.2011.07692.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.
Collapse
Affiliation(s)
- Francine M D Aké
- Laboratoire de Microbiologie de l'Alimentation au Service de la Santé, AgroParisTech-INRA UMR1319, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
24
|
Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O. Translation-independent localization of mRNA in E. coli. Science 2011; 331:1081-4. [PMID: 21350180 DOI: 10.1126/science.1195691] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the organization of a bacterial cell requires the elucidation of the mechanisms by which proteins localize to particular subcellular sites. Thus far, such mechanisms have been suggested to rely on embedded features of the localized proteins. Here, we report that certain messenger RNAs (mRNAs) in Escherichia coli are targeted to the future destination of their encoded proteins, cytoplasm, poles, or inner membrane in a translation-independent manner. Cis-acting sequences within the transmembrane-coding sequence of the membrane proteins are necessary and sufficient for mRNA targeting to the membrane. In contrast to the view that transcription and translation are coupled in bacteria, our results show that, subsequent to their synthesis, certain mRNAs are capable of migrating to particular domains in the cell where their future protein products are required.
Collapse
Affiliation(s)
- Keren Nevo-Dinur
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Post Office Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
25
|
Insight into bacterial phosphotransferase system-mediated signaling by interspecies transplantation of a transcriptional regulator. J Bacteriol 2011; 193:2013-26. [PMID: 21335451 DOI: 10.1128/jb.01459-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial sugar:phosphotransferase system (PTS) delivers phosphoryl groups via proteins EI and HPr to the EII sugar transporters. The antitermination protein LicT controls β-glucoside utilization in Bacillus subtilis and belongs to a family of bacterial transcriptional regulators that are antagonistically controlled by PTS-catalyzed phosphorylations at two homologous PTS regulation domains (PRDs). LicT is inhibited by phosphorylation of PRD1, which is mediated by the β-glucoside transporter EII(Bgl). Phosphorylation of PRD2 is catalyzed by HPr and stimulates LicT activity. Here, we report that LicT, when artificially expressed in the nonrelated bacterium Escherichia coli, is likewise phosphorylated at both PRDs, but the phosphoryl group donors differ. Surprisingly, E. coli HPr phosphorylates PRD1 rather than PRD2, while the stimulatory phosphorylation of PRD2 is carried out by the HPr homolog NPr. This demonstrates that subtle differences in the interaction surface of HPr can switch its affinities toward the PRDs. NPr transfers phosphoryl groups from EI(Ntr) to EIIA(Ntr). Together these proteins form the paralogous PTS(Ntr), which controls the activity of K(+) transporters in response to unknown signals. This is achieved by binding of dephosphorylated EIIA(Ntr) to other proteins. We generated LicT mutants that were controlled either negatively by HPr or positively by NPr and were suitable bio-bricks, in order to monitor or to couple gene expression to the phosphorylation states of these two proteins. With the aid of these tools, we identified the stringent starvation protein SspA as a regulator of EIIA(Ntr) phosphorylation, indicating that PTS(Ntr) represents a stress-related system in E. coli.
Collapse
|
26
|
Spatial and temporal organization of the E. coli PTS components. EMBO J 2010; 29:3630-45. [PMID: 20924357 DOI: 10.1038/emboj.2010.240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 09/06/2010] [Indexed: 01/25/2023] Open
Abstract
The phosphotransferase system (PTS) controls preferential use of sugars in bacteria. It comprises of two general proteins, enzyme I (EI) and HPr, and various sugar-specific permeases. Using fluorescence microscopy, we show here that EI and HPr localize near the Escherichia coli cell poles. Polar localization of each protein occurs independently, but HPr is released from the poles in an EI- and sugar-dependent manner. Conversely, the β-glucoside-specific permease, BglF, localizes to the cell membrane. EI, HPr and BglF control the β-glucoside utilization (bgl) operon by modulating the activity of the BglG transcription factor; BglF inactivates BglG by membrane sequestration and phosphorylation, whereas EI and HPr activate it by an unknown mechanism in response to β-glucosides availability. Using biochemical, genetic and imaging methodologies, we show that EI and HPr interact with BglG and affect its subcellular localization in a phosphorylation-independent manner. Upon sugar stimulation, BglG migrates from the cell periphery to the cytoplasm through the poles. Hence, the PTS components appear to control bgl operon expression by ushering BglG between the cellular compartments. Our results reinforce the notion that signal transduction in bacteria involves dynamic localization of proteins.
Collapse
|
27
|
Joyet P, Derkaoui M, Poncet S, Deutscher J. Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR. Mol Microbiol 2010; 76:1279-94. [PMID: 20444094 DOI: 10.1111/j.1365-2958.2010.07175.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many bacteria transport mannitol via the mtlAF-encoded phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). In most firmicutes the transcriptional activator MtlR controls expression of the mtl operon. MtlR possesses an N-terminal DNA binding domain, two PTS regulation domains (PRDs), an EIIB(Gat)- and EIIA(Mtl)-like domain. These four regulatory domains contain one or two potential PTS phosphorylation sites. Replacement of His-342 or His-399 in PRD2 with Ala prevented the phosphorylation of Bacillus subtilis MtlR by PEP, EI and HPr. These mutations as well as EI inactivation caused a loss of MtlR function in vivo. In contrast, phosphomimetic replacement of His-342 with Asp rendered MtlR constitutively active. The absence of phosphorylation in PRD2 serves as catabolite repression mechanism. When EIIA(Mtl) and the soluble EIIB(Mtl) domain of the EIICB(Mtl) permease were included in the phosphorylation mixture, His-599 in the EIIA-like domain of MtlR also became phosphorylated. Replacement of His-599 with Asp rendered MtlR inactive, while His599Ala replacement caused slightly constitutive, glucose-repressible MtlR activity. Doubly mutated His342Ala/His599Ala MtlR was still phosphorylated by EI, HPr and EIIA(Mtl) at Cys-419 in the EIIB(Gat)-like domain. Cys419Ala replacement and deletion of EIIA(Mtl) caused strong constitutive glucose-repressible MtlR activity. This is the first report that Cys phosphorylation controls PRD-containing transcriptional activators.
Collapse
Affiliation(s)
- Philippe Joyet
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-CNRS-AgroParisTech UMR2585, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
28
|
Modulation of transcription antitermination in the bgl operon of Escherichia coli by the PTS. Proc Natl Acad Sci U S A 2009; 106:13523-8. [PMID: 19633194 DOI: 10.1073/pnas.0902559106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BglG, which regulates expression of the beta-glucoside utilization (bgl) operon in Escherichia coli, represents a family of RNA-binding transcriptional antiterminators that positively regulate transcription of sugar utilization genes in Gram-negative and Gram-positive organisms. BglG is negatively regulated by the beta-glucoside phosphotransferase, BglF, by means of phosphorylation and physical association, and it is positively regulated by the general phosphoenolpyruvate phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr. We studied the positive regulation of BglG both in vitro and in vivo. Here, we show that although EI and HPr are essential for BglG activity, this mode of activation does not require phosphorylation of BglG by HPr, as opposed to the phosphorylation-mediated activation of many BglG-like antiterminators in Gram-positive organisms. The effect of EI and HPr on BglG is not mediated by BglF. Nevertheless, the release of BglG from BglF, which is stimulated by the extracellular sugar in a sugar uptake-independent manner, is a prerequisite for BglG activation. Taken together, the results indicate that activation of BglG is a 2-stage process: a sugar-stimulated release from the membrane-bound sugar sensor followed by a phosphorylation-independent stimulatory effect exerted by the general PTS proteins.
Collapse
|
29
|
Tetsch L, Jung K. How are signals transduced across the cytoplasmic membrane? Transport proteins as transmitter of information. Amino Acids 2009; 37:467-77. [PMID: 19198980 DOI: 10.1007/s00726-009-0235-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/29/2008] [Indexed: 01/18/2023]
Abstract
In order to adapt to ever changing environmental conditions, bacteria sense environmental stimuli, and convert them into signals that are transduced intracellularly. Several mechanisms have evolved by which receptors transmit signals across the cytoplasmic membrane. Stimulus perception may trigger receptor dimerization and/or conformational changes. Another mechanism involves the proteolytic procession of a receptor whereby a diffusible cytoplasmic protein is generated. Finally, there is increasing evidence that transport proteins play an important role in transducing signals across the membrane. Transport proteins either directly translocate signaling molecules into the cytoplasm, or transmit information via conformational changes to their interacting partners such as membrane-integrated or soluble components of signal transduction cascades. Employing transport proteins as sensors and regulators of signal transduction represents a sophisticated way of interconnecting metabolic flux and transcriptional regulation in cells.
Collapse
Affiliation(s)
- Larissa Tetsch
- Department of Biology I, Center for Integrated Protein Science Munich, Microbiology of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | |
Collapse
|
30
|
Monderer-Rothkoff G, Amster-Choder O. Genetic dissection of the divergent activities of the multifunctional membrane sensor BglF. J Bacteriol 2007; 189:8601-15. [PMID: 17905978 PMCID: PMC2168942 DOI: 10.1128/jb.01220-07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BglF catalyzes beta-glucoside phosphotransfer across the cytoplasmic membrane in Escherichia coli. In addition, BglF acts as a sugar sensor that controls expression of beta-glucoside utilization genes by reversibly phosphorylating the transcriptional antiterminator BglG. Thus, BglF can exist in two opposed states: a nonstimulated state that inactivates BglG by phosphorylation and a sugar-stimulated state that activates BglG by dephosphorylation and phosphorylates the incoming sugar. Sugar phosphorylation and BglG (de)phosphorylation are both catalyzed by the same residue, Cys24. To investigate the coordination and the structural requirements of the opposing activities of BglF, we conducted a genetic screen that led to the isolation of mutations that shift the balance toward BglG phosphorylation. We show that some of the mutants that are impaired in dephosphorylation of BglG retained the ability to catalyze the concurrent activity of sugar phosphotransfer. These mutations map to two regions in the BglF membrane domain that, based on their predicted topology, were suggested to be implicated in activity. Using in vivo cross-linking, we show that a glycine in the membrane domain, whose substitution impaired the ability of BglF to dephosphorylate BglG, is spatially close to the active-site cysteine located in a hydrophilic domain. This residue is part of a newly identified motif conserved among beta-glucoside permeases associated with RNA-binding transcriptional antiterminators. The phenotype of the BglF mutants could be suppressed by BglG mutants that were isolated by a second genetic screen. In summary, we identified distinct sites in BglF that are involved in regulating phosphate flow via the common active-site residue in response to environmental cues.
Collapse
Affiliation(s)
- Galya Monderer-Rothkoff
- Department of Molecular Biology, The Hebrew University Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
31
|
Pang Z, Chen R, Manna D, Higgins NP. A gyrase mutant with low activity disrupts supercoiling at the replication terminus. J Bacteriol 2005; 187:7773-83. [PMID: 16267301 PMCID: PMC1280326 DOI: 10.1128/jb.187.22.7773-7783.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
When a mutation in an essential gene shows a temperature-sensitive phenotype, one usually assumes that the protein is inactive at nonpermissive temperature. DNA gyrase is an essential bacterial enzyme composed of two subunits, GyrA and GyrB. The gyrB652 mutation results from a single base change that substitutes a serine residue for arginine 436 (R436-S) in the GyrB protein. At 42 degrees C, strains with the gyrB652 allele stop DNA replication, and at 37 degrees C, such strains grow but have RecA-dependent SOS induction and show constitutive RecBCD-dependent DNA degradation. Surprisingly, the GyrB652 protein is not inactive at 42 degrees C in vivo or in vitro and it doesn't directly produce breaks in chromosomal DNA. Rather, this mutant has a low k(cat) compared to wild-type GyrB subunit. With more than twice the normal mean number of supercoil domains, this gyrase hypomorph is prone to fork collapse and topological chaos near the terminus of DNA replication.
Collapse
Affiliation(s)
- Zhenhua Pang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
32
|
Amster-Choder O. The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol 2005; 8:127-34. [PMID: 15802242 DOI: 10.1016/j.mib.2005.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bgl system represents a family of sensory systems composed of membrane-bound sugar-sensors and transcriptional antiterminators, which regulate expression of genes involved in sugar utilization in response to the presence of the corresponding sugar in the growth medium. The BglF sensor catalyzes different activities depending on its stimulation state: in its non-stimulated state, it phosphorylates the BglG transcriptional regulator, thus inactivating it; in the presence of the stimulating sugar, it transports the sugar and phosphorylates it and also activates BglG by dephosphorylation, leading to bgl operon expression. The sugar stimulates BglF by inducing a change in its membrane topology. BglG exists in several conformations: a dimer, which is active, and compact and non-compact monomers, which are inactive. BglF modulates the transition of BglG from one conformation to another, depending on sugar availability. The two Bgl proteins form a pre-complex at the membrane that dissociates upon stimulation, enabling BglG to exert its effect on transcription.
Collapse
Affiliation(s)
- Orna Amster-Choder
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
33
|
Graille M, Zhou CZ, Receveur-Bréchot V, Collinet B, Declerck N, van Tilbeurgh H. Activation of the LicT Transcriptional Antiterminator Involves a Domain Swing/Lock Mechanism Provoking Massive Structural Changes. J Biol Chem 2005; 280:14780-9. [PMID: 15699035 DOI: 10.1074/jbc.m414642200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional antiterminator protein LicT regulates the expression of Bacillus subtilis operons involved in beta-glucoside metabolism. It consists of an N-terminal RNA-binding domain (co-antiterminator (CAT)) and two phosphorylatable phosphotransferase system regulation domains (PRD1 and PRD2). In the activated state, each PRD forms a dimeric unit with the phosphorylation sites totally buried at the dimer interface. Here we present the 1.95 A resolution structure of the inactive LicT PRDs as well as the molecular solution structure of the full-length protein deduced from small angle x-ray scattering. Comparison of native (inactive) and mutant (constitutively active) PRD crystal structures shows massive tertiary and quaternary rearrangements of the entire regulatory domain. In the inactive state, a wide swing movement of PRD2 results in dimer opening and brings the phosphorylation sites to the protein surface. This movement is accompanied by additional structural rearrangements of both the PRD1-PRD1 ' interface and the CAT-PRD1 linker. Small angle x-ray scattering experiments indicate that the amplitude of the PRD2 swing might even be wider in solution than in the crystals. Our results suggest that PRD2 is highly mobile in the native protein, whereas it is locked upon activation by phosphorylation.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS-UPR9063, Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
35
|
Marchesini MI, Ugalde JE, Czibener C, Comerci DJ, Ugalde RA. N-terminal-capturing screening system for the isolation of Brucella abortus genes encoding surface exposed and secreted proteins. Microb Pathog 2004; 37:95-105. [PMID: 15312849 DOI: 10.1016/j.micpath.2004.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 06/10/2004] [Indexed: 12/15/2022]
Abstract
Secreted as well as surface exposed proteins are assumed to play major roles in bacterial virulence. In this report we describe the construction of an N-terminal protein-capturing system and its use for the isolation of Brucella abortus S2308 genes coding for putative surface exposed or secreted proteins. For this purpose, a cloning vector that generates gene fusions to a ribosome binding site and start codon deficient Chloramphenicol Acetyl Transferase (CAT) reporter gene was constructed and the resulting library introduced into B. abortus S2308 and virB mutant strains. Secreted translational fusions were identified by determining CAT activity in culture supernatants. Secretion was confirmed by Western Blot using a polyclonal anti-CAT antibody. A total of 864 clones were screened and 10 genes encoding putative secreted/surface exposed proteins were identified. Seven are Brucella proteins with an assigned function, whereas three are hypothetical proteins. The number of amino acid residues that promotes CAT secretion varies from 5 to 386 and no conserved motifs were detected. Secretion in a virB mutant background of some of the isolated fusion proteins was also determined. Interestingly, some hybrid proteins seemed to require a full VirB system for their secretion.
Collapse
Affiliation(s)
- María Inés Marchesini
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín (IIB-UNSAM), Consejo Nacional de Investigaciones Científicas, Provincia de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
36
|
Fux L, Nussbaum-Shochat A, Lopian L, Amster-Choder O. Modulation of monomer conformation of the BglG transcriptional antiterminator from Escherichia coli. J Bacteriol 2004; 186:6775-81. [PMID: 15466029 PMCID: PMC522206 DOI: 10.1128/jb.186.20.6775-6781.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/17/2004] [Indexed: 11/20/2022] Open
Abstract
The BglG protein positively regulates expression of the bgl operon in Escherichia coli by binding as a dimer to the bgl transcript and preventing premature termination of transcription in the presence of beta-glucosides. BglG activity is negatively controlled by BglF, the beta-glucoside phosphotransferase, which reversibly phosphorylates BglG according to beta-glucoside availability, thus modulating its dimeric state. BglG consists of an RNA-binding domain and two homologous domains, PRD1 and PRD2. Based on structural studies of a BglG homologue, the two PRDs fold similarly, and the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have recently shown that the affinity between PRD1 and PRD2 of BglG is high, and a fraction of the BglG monomers folds in the cell into a compact conformation, in which PRD1 and PRD2 are in close proximity. We show here that both BglG forms, the compact and noncompact, bind to the active site-containing domain of BglF, IIB(bgl), in vitro. The interaction of BglG with IIB(bgl) or BglF is mediated by PRD2. Both BglG forms are detected as phosphorylated proteins after in vitro phosphorylation with IIB(bgl) and are dephosphorylated by BglF in vitro in the presence of beta-glucosides. Nevertheless, genetic evidence indicates that the interaction of IIB(bgl) and BglF with the compact form is seemingly less favorable. Using in vivo cross-linking, we show that BglF enhances folding of BglG into a compact conformation, whereas the addition of beta-glucosides reduces the amount of this form. Based on these results we suggest a model for the modulation of BglG conformation and activity by BglF.
Collapse
Affiliation(s)
- Liat Fux
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
37
|
Johnson AS, van Horck S, Lewis PJ. Dynamic localization of membrane proteins in Bacillus subtilis. Microbiology (Reading) 2004; 150:2815-2824. [PMID: 15347741 DOI: 10.1099/mic.0.27223-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subcellular localization of membrane proteins in Bacillus subtilis was examined by using fluorescent protein fusions. ATP synthase and succinate dehydrogenase were found to localize within discrete domains on the membrane rather than being homogeneously distributed around the cell periphery as expected. Dual labelling of cells indicated partial colocalization of ATP synthase and succinate dehydrogenase. Further analysis using an ectopically expressed phage protein gave the same localization patterns as ATP synthase and succinate dehydrogenase, implying that membrane proteins are restricted to domains within the membrane. 3D reconstruction of images of the localization of ATP synthase showed that domains were not regular and there was no bias for localization to cell poles or any other positions. Further analysis revealed that this localization was highly dynamic, but random, implying that integral membrane proteins are free to diffuse two-dimensionally around the cytoplasmic membrane.
Collapse
Affiliation(s)
- A S Johnson
- School of Environmental and Life Sciences, Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - S van Horck
- School of Environmental and Life Sciences, Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - P J Lewis
- School of Environmental and Life Sciences, Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
38
|
Joly N, Böhm A, Boos W, Richet E. MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator malt by antagonizing inducer binding. J Biol Chem 2004; 279:33123-30. [PMID: 15180985 DOI: 10.1074/jbc.m403615200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, has long been known to control negatively the activity of MalT, a transcriptional activator dedicated to the maltose regulon. By using a biochemical approach and the soluble form of MalK as a model substrate, we demonstrate that MalK alone inhibits transcription activation by MalT in a purified transcription system. The inhibitory effect observed in vitro is relieved by maltotriose and by two malT mutations and one malK mutation known to interfere with MalT repression by MalK in vivo. MalK interacts directly with the activator in the absence of maltotriose but not in the presence of maltotriose. Conversely, MalK inhibits maltotriose binding by MalT. Altogether, these data strongly suggest that MalK and maltotriose compete for MalT binding. Part, if not all, of the MalK-binding site is located on DT1, the N-terminal domain of MalT. All of these features indicate that MalK inhibits MalT by the same mechanism as two other proteins, MalY and Aes, that also act as negative effectors of MalT by antagonizing maltotriose binding by MalT. These results offer new insights into the mechanism by which gene regulation can be accomplished by the ATPase component of a bacterial ATP-binding cassette-type importer.
Collapse
Affiliation(s)
- Nicolas Joly
- Unité de Génétique Moléculaire, URA CNRS 2172, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
39
|
Deng S, Stein RA, Higgins NP. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci U S A 2004; 101:3398-403. [PMID: 14993611 PMCID: PMC373473 DOI: 10.1073/pnas.0307550101] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 01/13/2004] [Indexed: 11/18/2022] Open
Abstract
Transcription and replication both influence and are influenced by superhelical changes in DNA. Explaining how supercoil movement is channeled in living chromosomes has been a major problem for 30 years. Transcription of membrane-associated proteins leads to localized hypersupercoiling of plasmid DNA, and this behavior indicates the presence of aberrant supercoil diffusion. Using the lambda Red recombination system, we constructed model domains in the Salmonella typhimurium chromosome to analyze supercoiling dynamics of regions encoding membrane proteins. Regulation of Tn10-derived tetracycline resistance involves a repressor, TetR, and a membrane-bound export pump, TetA. Strains deficient in TetR activity had 60-fold higher transcription levels (from P(A)) than TetR-positive strains. High tetA transcription caused a 10- to 80-fold decrease in the gammadelta resolution efficiency for the domain that includes the Tet module. Replacing tetA with genes encoding cytosolic proteins LacZ and Kan also caused the appearance of supercoil diffusion barriers in a defined region of the chromosome. In strains containing a functional TetR located next to a regulated lacZ reporter (P(R)tetR-P(A)lacZ), induction of transcription with chlortetracycline caused a 5-fold drop in resolution efficiency in the test domain interval. A short half-life resolvase showed that barriers appeared and disappeared over a 10- to 20-min span. These studies demonstrate the importance of transcription in chromosome structure and the plasticity of supercoil domains in bacterial chromosomes.
Collapse
MESH Headings
- Antiporters/genetics
- Antiporters/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Genes, Bacterial
- Nucleic Acid Conformation
- Recombination, Genetic
- Salmonella typhimurium/chemistry
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Shuang Deng
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
40
|
Fux L, Nussbaum-Shochat A, Amster-Choder O. Interactions between the PTS regulation domains of the BglG transcriptional antiterminator from Escherichia coli. J Biol Chem 2003; 278:46203-9. [PMID: 12923168 DOI: 10.1074/jbc.m306506200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E. coli BglG protein inhibits transcription termination within the bgl operon in the presence of beta-glucosides. BglG represents a family of transcriptional antiterminators that bind to RNA sequences, which partially overlap rho-independent terminators, and prevent termination by stabilizing an alternative structure of the transcript. The activity of BglG is determined by its dimeric state, which is modulated by reversible phosphorylation catalyzed by BglF, a PTS permease. Only the non-phosphorylated BglG dimer binds to RNA and allows read-through of transcription. BglG is composed of three domains: an RNA-binding domain followed by two domains, PRD1 and PRD2 (PTS regulation domains), which are similar in their sequence and folding. Based on the three-dimensional structure of dimeric LicT, a BglG homologue from Bacillus subtilis, the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have shown before that PRD2 mediates homodimerization very efficiently. Using genetic systems and in vitro techniques that assay and characterize protein-protein interactions, we show here that the PRD1 dimerizes very slowly, but once it does, the homodimers are stable. These results support our model that formation of BglG dimers initiates with PRD2 dimerization followed by zipping up of two BglG monomers to create the active RNA-binding domain. Moreover, our results demonstrate that PRD1 and PRD2 heterodimerize efficiently in vitro and in vivo. The affinity among the PRDs is in the following order: PRD2-PRD2 > PRD1-PRD2 > PRD1-PRD1. The interaction between PRD1 and PRD2 offers an explanation for the requirement of conserved residues in PRD1 for the phosphorylation of PRD2 by BglF.
Collapse
Affiliation(s)
- Liat Fux
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
41
|
Görke B. Regulation of the Escherichia coli antiterminator protein BglG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. J Biol Chem 2003; 278:46219-29. [PMID: 12963714 DOI: 10.1074/jbc.m308002200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.
Collapse
Affiliation(s)
- Boris Görke
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| |
Collapse
|
42
|
Fux L, Nussbaum-Shochat A, Amster-Choder O. A fraction of the BglG transcriptional antiterminator from Escherichia coli exists as a compact monomer. J Biol Chem 2003; 278:50978-84. [PMID: 14514681 DOI: 10.1074/jbc.m308085200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the bgl operon in Escherichia coli, induced by beta-glucosides, is positively regulated by BglG, a transcriptional antiterminator. In the presence of inducer, BglG dimerizes and binds to the bgl transcript to prevent premature termination of transcription. The dimeric state of BglG is determined by BglF, a membrane-bound enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which reversibly phosphorylates BglG according to beta-glucoside availability. BglG is composed of an RNA-binding domain followed by two homologous PTS regulation domains (PRD1 and PRD2). The predicted structure of dimeric LicT, a BglG homologue from Bacillus subtilis, suggests that the two PRDs adopt a similar structure and that the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have shown recently that the PRD1 and PRD2 domains of BglG can form a stable heterodimer. We report here, based on in vitro and in vivo cross-linking experiments, that a fraction of BglG is present in the cell in a compact form in which PRD1 and PRD2 are in close proximity. The compact form is present mainly in the BglG monomers. Our results imply that the monomer-dimer transition involves a conformational change. The possible role of the compact form in preventing untimely induction of the bgl operon is discussed.
Collapse
Affiliation(s)
- Liat Fux
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|