1
|
Suzuki K, Goto Y, Otomo A, Shimizu K, Abe S, Moriyama K, Yasuda S, Hashimoto Y, Kurushima J, Mikuriya S, Imai FL, Adachi N, Kawasaki M, Sato Y, Ogasawara S, Iwata S, Senda T, Ikeguchi M, Tomita H, Iino R, Moriya T, Murata T. Na +-V-ATPase inhibitor curbs VRE growth and unveils Na + pathway structure. Nat Struct Mol Biol 2025; 32:450-458. [PMID: 39572733 DOI: 10.1038/s41594-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/03/2024] [Indexed: 03/20/2025]
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) is a major cause of nosocomial infections, particularly endocarditis and sepsis. With the diminishing effectiveness of antibiotics against VRE, new antimicrobial agents are urgently needed. Our previous research demonstrated the crucial role of Na+-transporting V-ATPase in Enterococcus hirae for growth under alkaline conditions. In this study, we identified a compound, V-161, from 70,600 compounds, which markedly inhibits E. hirae V-ATPase activity. V-161 not only inhibits VRE growth in alkaline conditions but also significantly suppresses VRE colonization in the mouse small intestine. Furthermore, we unveiled the high-resolution structure of the membrane VO part due to V-161 binding. V-161 binds to the interface of the c-ring and a-subunit, constituting the Na+ transport pathway in the membrane, thereby halting its rotation. This structural insight presents potential avenues for developing therapeutic agents for VRE treatment and elucidates the Na+ transport pathway and mechanism.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Yoshiyuki Goto
- Membrane Protein Research Center, Chiba University, Chiba, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Japan
| | - Kouki Shimizu
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Shohei Abe
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Jun Kurushima
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Sho Mikuriya
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fabiana L Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Yumi Sato
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan.
- Membrane Protein Research Center, Chiba University, Chiba, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
2
|
Yamamori Y, Tomii K. Application of Homology Modeling by Enhanced Profile-Profile Alignment and Flexible-Fitting Simulation to Cryo-EM Based Structure Determination. Int J Mol Sci 2022; 23:1977. [PMID: 35216093 PMCID: PMC8879198 DOI: 10.3390/ijms23041977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Application of cryo-electron microscopy (cryo-EM) is crucially important for ascertaining the atomic structure of large biomolecules such as ribosomes and protein complexes in membranes. Advances in cryo-EM technology and software have made it possible to obtain data with near-atomic resolution, but the method is still often capable of producing only a density map with up to medium resolution, either partially or entirely. Therefore, bridging the gap separating the density map and the atomic model is necessary. Herein, we propose a methodology for constructing atomic structure models based on cryo-EM maps with low-to-medium resolution. The method is a combination of sensitive and accurate homology modeling using our profile-profile alignment method with a flexible-fitting method using molecular dynamics simulation. As described herein, this study used benchmark applications to evaluate the model constructions of human two-pore channel 2 (one target protein in CASP13 with its structure determined using cryo-EM data) and the overall structure of Enterococcus hirae V-ATPase complex.
Collapse
Affiliation(s)
- Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan;
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan;
- AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
3
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Algieri V, Algieri C, Maiuolo L, De Nino A, Pagliarani A, Tallarida MA, Trombetti F, Nesci S. 1,5-Disubstituted-1,2,3-triazoles as inhibitors of the mitochondrial Ca 2+ -activated F 1 F O -ATP(hydrol)ase and the permeability transition pore. Ann N Y Acad Sci 2020; 1485:43-55. [PMID: 32959908 DOI: 10.1111/nyas.14474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/24/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore (mPTP), a high-conductance channel triggered by a sudden Ca2+ concentration increase, is composed of the F1 FO -ATPase. Since mPTP opening leads to mitochondrial dysfunction, which is a feature of many diseases, a great pharmacological challenge is to find mPTP modulators. In our study, the effects of two 1,5-disubstituted 1,2,3-triazole derivatives, five-membered heterocycles with three nitrogen atoms in the ring and capable of forming secondary interactions with proteins, were investigated. Compounds 3a and 3b were selected among a wide range of structurally related compounds because of their chemical properties and effectiveness in preliminary studies. In swine heart mitochondria, both compounds inhibit Ca2+ -activated F1 FO -ATPase without affecting F-ATPase activity sustained by the natural cofactor Mg2+ . The inhibition is mutually exclusive, probably because of their shared enzyme site, and uncompetitive with respect to the ATP substrate, since they only bind to the enzyme-ATP complex. Both compounds show the same inhibition constant (K'i ), but compound 3a has a doubled inactivation rate constant compared with compound 3b. Moreover, both compounds desensitize mPTP opening without altering mitochondrial respiration. The results strengthen the link between Ca2+ -activated F1 FO -ATPase and mPTP and suggest that these inhibitors can be pharmacologically exploited to counteract mPTP-related diseases.
Collapse
Affiliation(s)
- Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | | | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| |
Collapse
|
5
|
Krah A, Marzinek JK, Bond PJ. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1004-1010. [DOI: 10.1016/j.bbamem.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
|
6
|
Singharoy A, Chipot C, Ekimoto T, Suzuki K, Ikeguchi M, Yamato I, Murata T. Rotational Mechanism Model of the Bacterial V 1 Motor Based on Structural and Computational Analyses. Front Physiol 2019; 10:46. [PMID: 30804798 PMCID: PMC6371843 DOI: 10.3389/fphys.2019.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
V1-ATPase exemplifies the ubiquitous rotary motor, in which a central shaft DF complex rotates inside a hexagonally arranged catalytic A3B3 complex, powered by the energy from ATP hydrolysis. We have recently reported a number of crystal structures of the Enterococcus hirae A3B3DF (V1) complex corresponding to its nucleotide-bound intermediate states, namely the forms waiting for ATP hydrolysis (denoted as catalytic dwell), ATP binding (ATP-binding dwell), and ADP release (ADP-release dwell) along the rotatory catalytic cycle of ATPase. Furthermore, we have performed microsecond-scale molecular dynamics simulations and free-energy calculations to investigate the conformational transitions between these intermediate states and to probe the long-time dynamics of the molecular motor. In this article, the molecular structure and dynamics of the V1-ATPase are reviewed to bring forth a unified model of the motor’s remarkable rotational mechanism.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chris Chipot
- Laboratoire International Associé Centre, Université de Lorraine, Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kano Suzuki
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Ichiro Yamato
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Takeshi Murata
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiba, Japan
| |
Collapse
|
7
|
Sartori SK, Alvarenga ES, Franco CA, Ramos DS, Oliveira DF. One-pot synthesis of anilides, herbicidal activity and molecular docking study. PEST MANAGEMENT SCIENCE 2018; 74:1637-1645. [PMID: 29318774 DOI: 10.1002/ps.4855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND In the context of the demand for more efficient herbicides, the aim of the present work was to synthesize anilides via simple methods, and evaluate their herbicidal activities through seed germination assays. In silico studies were carried out to identify the enzyme target sites in plants for the most active anilides. RESULTS A total of 18 anilides were prepared via one-pot reaction in yields that varied from 36 to 98% through reactions of anilines with sorbic chloride and hexanoic anhydride. According to seed germination assays in three dicotyledonous and one monocotyledonous plant species, the most active anilides showed root and shoot growth inhibition superior to that of Dual (S-metolachlor). In silico studies indicated that histone deacetylase was the probable enzyme target site in plants for these substances. The affinities of the most active anilides for the binding sites of this enzyme were equal to or higher than those calculated for its inhibitors. CONCLUSION Anilides 4d, 4e, 4 g, and 4 h are promising candidates for the development of novel herbicides. According to in silico studies, they inhibit histone deacetylase in plants, which can be exploited for the development of new weed control methods. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Suélen K Sartori
- Chemistry Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elson S Alvarenga
- Chemistry Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Cristiane A Franco
- Chemistry Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Danielle S Ramos
- Chemistry Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
8
|
Yamato I, Murata T, Khrennikov A. Energy and information flows in biological systems: Bioenergy transduction of V 1 -ATPase rotary motor and dynamics of thermodynamic entropy in information flows. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:33-38. [DOI: 10.1016/j.pbiomolbio.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
9
|
Nesci S, Trombetti F, Ventrella V, Pirini M, Pagliarani A. Kinetic properties of the mitochondrial F 1F O-ATPase activity elicited by Ca 2+ in replacement of Mg 2. Biochimie 2017; 140:73-81. [PMID: 28652018 DOI: 10.1016/j.biochi.2017.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
The mitochondrial F-ATPase can be activated either by the classical cofactor Mg2+ or, with lower efficiency, by Ca2+. The latter may play a role when calcium concentration rises in mitochondria, a condition associated with cascade events leading to cell death. Common and distinctive features of these differently activated mitochondrial ATPases were pointed out in swine heart mitochondria. When Ca2+ replaces the natural cofactor Mg2+, the enzyme responsiveness to the transmembrane electrochemical gradient and to the classical F-ATPase inhibitors DCCD and oligomycin as well as the oligomycin sensitivity loss by thiol oxidation, are maintained. Consistently, the two mitochondrial ATPases apparently share the F1FO complex basic structure and mechanism. Peculiar cation-dependent properties, which may affect the F1 catalytic mechanism and/or the FO proton binding site features, may be linked to a different physiological role of the mitochondrial Ca-activated F-ATPase with respect to the Mg-activated F-ATPase.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
10
|
Isaka Y, Ekimoto T, Kokabu Y, Yamato I, Murata T, Ikeguchi M. Rotation Mechanism of Molecular Motor V 1-ATPase Studied by Multiscale Molecular Dynamics Simulation. Biophys J 2017; 112:911-920. [PMID: 28297650 PMCID: PMC5355535 DOI: 10.1016/j.bpj.2017.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/06/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
Enterococcus hirae V1-ATPase is a molecular motor composed of the A3B3 hexamer ring and the central stalk. In association with ATP hydrolysis, three catalytic AB pairs in the A3B3 ring undergo conformational changes, which lead to a 120° rotation of the central stalk. To understand how the conformational changes of three catalytic pairs induce the 120° rotation of the central stalk, we performed multiscale molecular dynamics (MD) simulations in which coarse-grained and all-atom MD simulations were combined using a fluctuation matching methodology. During the rotation, a catalytic AB pair spontaneously adopted an intermediate conformation, which was not included in the initial inputs of the simulations and was essentially close to the “bindable-like” structure observed in a recently solved crystal structure. Furthermore, the creation of a space between the bindable-like and tight pairs was required for the central stalk to rotate without steric hindrance. These cooperative rearrangements of the three catalytic pairs are crucial for the rotation of the central stalk.
Collapse
Affiliation(s)
- Yuta Isaka
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Yuichi Kokabu
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan; JST, PRESTO, Inage, Chiba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan.
| |
Collapse
|
11
|
Suzuki K, Mizutani K, Maruyama S, Shimono K, Imai FL, Muneyuki E, Kakinuma Y, Ishizuka-Katsura Y, Shirouzu M, Yokoyama S, Yamato I, Murata T. Crystal structures of the ATP-binding and ADP-release dwells of the V 1 rotary motor. Nat Commun 2016; 7:13235. [PMID: 27807367 PMCID: PMC5095293 DOI: 10.1038/ncomms13235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kenji Mizutani
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Shintaro Maruyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Fabiana L. Imai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Tokyo 112-8551, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yoshiko Ishizuka-Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Gölz JP, NejatyJahromy Y, Bauer M, Muhammad A, Schnakenburg G, Grimme S, Schiemann O, Menche D. Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids. Chemistry 2016; 22:9591-8. [PMID: 27272435 DOI: 10.1002/chem.201600528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 01/17/2023]
Abstract
Novel types of spin-labeled N,N'-dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin-labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl-4,4'-dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X-ray structure analyses.
Collapse
Affiliation(s)
- Jan Philipp Gölz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Yaser NejatyJahromy
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Mirko Bauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Ashraf Muhammad
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
13
|
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell 2016; 63:445-56. [PMID: 27373333 PMCID: PMC4980432 DOI: 10.1016/j.molcel.2016.05.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. Cryo-EM structure of a yeast F1Fo-ATP synthase dimer Inhibitor-free X-ray structure of the F1 head and rotor complex Mechanism of ATP generation by rotary catalysis Structural basis of cristae formation in the inner mitochondrial membrane
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Kristian Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Maike Bublitz
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Yamato I, Kakinuma Y, Murata T. Operating principles of rotary molecular motors: differences between F 1 and V 1 motors. Biophys Physicobiol 2016; 13:37-44. [PMID: 27924256 PMCID: PMC5042177 DOI: 10.2142/biophysico.13.0_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/11/2016] [Indexed: 12/01/2022] Open
Abstract
Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases.
Collapse
Affiliation(s)
- Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan; JST, PRESTO, Chiba 263-8522, Japan
| |
Collapse
|
15
|
Gölz JP, Bockelmann S, Mayer K, Steinhoff HJ, Wieczorek H, Huss M, Klare JP, Menche D. EPR Studies of V-ATPase with Spin-Labeled Inhibitors DCC and Archazolid: Interaction Dynamics with Proton Translocating Subunit c. ChemMedChem 2015; 11:420-8. [DOI: 10.1002/cmdc.201500500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Jan Philipp Gölz
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Svenja Bockelmann
- Fachbereich Biologie/Chemie; Universität Osnabrück; 49069 Osnabrück Germany
| | - Kerstin Mayer
- Institut für Organische Chemie; Ruprecht-Karls-Universität Heidelberg; INF 270; 69120 Heidelberg Germany
| | | | - Helmut Wieczorek
- Fachbereich Biologie/Chemie; Universität Osnabrück; 49069 Osnabrück Germany
| | - Markus Huss
- Fachbereich Biologie/Chemie; Universität Osnabrück; 49069 Osnabrück Germany
| | - Johann P. Klare
- Fachbereich Physik; Universität Osnabrück; 49069 Osnabrück Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
16
|
Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol 2015; 22:729-35. [DOI: 10.1038/nsmb.3068] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022]
|
17
|
Senouci-Rezkallah K, Jobin MP, Schmitt P. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH. Microbiologyopen 2015; 4:313-322. [PMID: 25740257 PMCID: PMC4398511 DOI: 10.1002/mbo3.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 11/08/2022] Open
Abstract
This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h-1 . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.
Collapse
Affiliation(s)
- Khadidja Senouci-Rezkallah
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France.,Faculté des Sciences de la Nature et de la Vie, Université de Mascara, Mascara, Algérie.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Michel P Jobin
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France
| | - Philippe Schmitt
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France
| |
Collapse
|
18
|
Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Torque generation of Enterococcus hirae V-ATPase. J Biol Chem 2014; 289:31212-23. [PMID: 25258315 DOI: 10.1074/jbc.m114.598177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
Collapse
Affiliation(s)
- Hiroshi Ueno
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Yoshihiro Minagawa
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mayu Hara
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Suhaila Rahman
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Eiro Muneyuki
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Hiroyuki Noji
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, JST, PRESTO, Chiba 263-8522, Japan,
| | - Ryota Iino
- the Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan, and the Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan
| |
Collapse
|
19
|
Active-site structure of the thermophilic Foc-subunit ring in membranes elucidated by solid-state NMR. Biophys J 2014; 106:390-8. [PMID: 24461014 DOI: 10.1016/j.bpj.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/07/2013] [Accepted: 12/03/2013] [Indexed: 11/20/2022] Open
Abstract
FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H(+)-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D (13)C-(13)C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the C(α)i+1-C(α)i correlation spectrum of specifically (13)C,(15)N-labeled TFoc rings. The C(δ) chemical shift of Glu-56, which is essential for H(+) translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H(+)-locked conformation with Asn-23. The chemical shift of Asp-61 C(γ) of the E. coli c ring indicated an involvement of a water molecule in the H(+) locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings.
Collapse
|
20
|
Kandori H, Furutani Y, Murata T. Infrared spectroscopic studies on the V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:134-41. [PMID: 25111748 DOI: 10.1016/j.bbabio.2014.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
V-ATPase is an ATP-driven rotary motor that vectorially transports ions. Together with F-ATPase, a homologous protein, several models on the ion transport have been proposed, but their molecular mechanisms are yet unknown. V-ATPase from Enterococcus hirae forms a large supramolecular protein complex (total molecular weight: ~700,000) and physiologically transports Na⁺ and Li⁺ across a hydrophobic lipid bilayer. Stabilization of these cations in the binding site has been discussed on the basis of X-ray crystal structures of a membrane-embedded domain, the K-ring (Na⁺ and Li⁺ bound forms). Sodium or lithium ion binding-induced difference FTIR spectra of the intact E. hirae V-ATPase have been measured in aqueous solution at physiological temperature. The results suggest that sodium or lithium ion binding induces the deprotonation of Glu139, a hydrogen-bonding change in the tyrosine residue and rigid α-helical structures. Identical difference FTIR spectra between the entire V-ATPase complex and K-ring strongly suggest that protein interaction with the I subunit does not cause large structural changes in the K-ring. This result supports the previously proposed Na⁺ transport mechanism by V-ATPase stating that a flip-flop movement of a carboxylate group of Glu139 without large conformational changes in the K-ring accelerates the replacement of a Na⁺ ion in the binding site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takeshi Murata
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
21
|
Muench SP, Rawson S, Eyraud V, Delmas AF, Da Silva P, Phillips C, Trinick J, Harrison MA, Gressent F, Huss M. PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem 2014; 289:16399-408. [PMID: 24795045 PMCID: PMC4047407 DOI: 10.1074/jbc.m113.541250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Indexed: 12/03/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.
Collapse
Affiliation(s)
- Stephen P Muench
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom,
| | - Shaun Rawson
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - Vanessa Eyraud
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Agnès F Delmas
- the Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 4301, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Pedro Da Silva
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Clair Phillips
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - John Trinick
- the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom, and
| | - Michael A Harrison
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - Frédéric Gressent
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie Universität Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
22
|
Preiss L, Langer JD, Hicks DB, Liu J, Yildiz O, Krulwich TA, Meier T. The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic lifestyle. Mol Microbiol 2014; 92:973-84. [PMID: 24707994 DOI: 10.1111/mmi.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
In the c-ring rotor of ATP synthases ions are shuttled across the membrane during ATP synthesis by a unique rotary mechanism. We investigated characteristics of the c-ring from the alkaliphile Bacillus pseudofirmus OF4 with respect to evolutionary adaptations to operate with protons at high environmental pH. The X-ray structures of the wild-type c13 ring at pH 9.0 and a 'neutralophile-like' mutant (P51A) at pH 4.4, at 2.4 and 2.8 Å resolution, respectively, reveal a dependency of the conformation and protonation state of the proton-binding glutamate (E(54) ) on environmental hydrophobicity. Faster labelling kinetics with the inhibitor dicyclohexylcarbodiimide (DCCD) demonstrate a greater flexibility of E(54) in the mutant due to reduced water occupancy within the H(+) binding site. A second 'neutralophile-like' mutant (V21N) shows reduced growth at high pH, which is explained by restricted conformational freedom of the mutant's E(54) carboxylate. The study directly connects subtle structural adaptations of the c-ring ion binding site to in vivo effects of alkaliphile cell physiology.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Alam J, Yamato I, Arai S, Saijo S, Mizutani K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Kakinuma Y, Murata T. Mutant LV(476-7)AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity. SPRINGERPLUS 2014; 2:689. [PMID: 24404436 PMCID: PMC3879392 DOI: 10.1186/2193-1801-2-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/20/2013] [Indexed: 11/22/2022]
Abstract
Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV476-7AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan
| | - Satoshi Arai
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan
| | - Shinya Saijo
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 Japan ; Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801 Japan
| | - Kenji Mizutani
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - So Iwata
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566 Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba, 263-8522 Japan
| |
Collapse
|
24
|
Stewart AG, Laming EM, Sobti M, Stock D. Rotary ATPases--dynamic molecular machines. Curr Opin Struct Biol 2013; 25:40-8. [PMID: 24878343 DOI: 10.1016/j.sbi.2013.11.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Recent work has provided the detailed overall architecture and subunit composition of three subtypes of rotary ATPases. Composite models of F-type, V-type and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual components into electron microscopy derived envelopes of the intact enzymes. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria. An inherent flexibility in rotary ATPases observed by different techniques suggests greater dynamics during operation than previously envisioned. The concerted movement of subunits within the complex might provide means of regulation and information transfer between distant parts of rotary ATPases thereby fine tuning these molecular machines to their cellular environment, while optimizing their efficiency.
Collapse
Affiliation(s)
- Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia.
| | - Elise M Laming
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Meghna Sobti
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Alam MJ, Arai S, Saijo S, Suzuki K, Mizutani K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Kakinuma Y, Yamato I, Murata T. Loose binding of the DF axis with the A3B3 complex stimulates the initial activity of Enterococcus hirae V1-ATPase. PLoS One 2013; 8:e74291. [PMID: 24058539 PMCID: PMC3772951 DOI: 10.1371/journal.pone.0074291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the result suggested that the DF axis induces structural changes in the A3B3 complex through extensive protein-protein interactions. In this study, we mutated 10 residues at the interface between A3B3 and DF complexes and examined the ATPase activities of the mutated V1 complexes as well as the binding affinities between the mutated A3B3 and DF complexes. Surprisingly, several V1 mutants showed higher initial ATPase activities than wild-type V1-ATPase, whereas these mutated A3B3 and DF complexes showed decreased binding affinities for each other. However, the high ATP hydrolysis activities of the mutants decreased faster over time than the activity of the wild-type V1 complex, suggesting that the mutants were unstable in the reaction because the mutant A3B3 and DF complexes bound each other more weakly. These findings suggest that strong interaction between the DF complex and A3B3 complex lowers ATPase activity, but also that the tight binding is responsible for the stable ATPase activity of the complex.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biological Science and Technology, Tokyo University of Science, Chiba, Japan ; Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schulz S, Iglesias-Cans M, Krah A, Yildiz Ö, Leone V, Matthies D, Cook GM, Faraldo-Gómez JD, Meier T. A new type of Na(+)-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. PLoS Biol 2013; 11:e1001596. [PMID: 23824040 PMCID: PMC3692424 DOI: 10.1371/journal.pbio.1001596] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.
Collapse
Affiliation(s)
- Sarah Schulz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marina Iglesias-Cans
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Krah
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vanessa Leone
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Doreen Matthies
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gregory M. Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence “Macromolecular Complexes,” Goethe University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (JDF-G); (TM)
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence “Macromolecular Complexes,” Goethe University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (JDF-G); (TM)
| |
Collapse
|
27
|
Zhang C, Marcia M, Langer JD, Peng G, Michel H. Role of the N-terminal signal peptide in the membrane insertion ofAquifex aeolicusF1F0ATP synthase c-subunit. FEBS J 2013; 280:3425-35. [DOI: 10.1111/febs.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven CT USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Guohong Peng
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Hartmut Michel
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| |
Collapse
|
28
|
Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. J Bioenerg Biomembr 2013; 45:289-300. [PMID: 23456170 DOI: 10.1007/s10863-013-9504-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
The molecular mechanism by which the membrane-embedded FO sector of the mitochondrial ATP synthase translocates protons, thus dissipating the transmembrane protonmotive force and leading to ATP synthesis, involves the neutralization of the carboxylate residues of the c-ring. Carboxylates are thought to constitute the binding sites for ion translocation. In order to cast light on this mechanism, we exploited N,N'-dicyclohexylcarbodiimide, which covalently binds to FO c-ring carboxylates, and ionophores which selectively modulate the transmembrane electric (Δφ) and chemical (ΔpH) gradients such as valinomycin, nigericin and dinitrophenol. ATP hydrolysis was evaluated in mitochondrial preparations and/or inside-out submitochondrial particles from mussel and mammalian tissues under different experimental conditions. The experiments pointed out striking similarities between mussel and mammalian mitochondrial ATP synthase. Our results support the hypothesis that the ATP synthase of Mytilus galloprovincialis induces intersubunit torque generation and translocates H(+) by coordinating the hydronium ion (H3O(+)) in the ion binding site of FO. Our results are consistent with the hypothesis that in mussel mitochondria the main component of the electrochemical gradient driving proton flux and ATP synthesis is Δφ. Therefore, mussel FO probably contains a small c-ring, which implies a low bioenergetic cost of making ATP as in mammals. These features which make mussel mitochondria as efficient in ATP production as mammalian ones may be especially advantageous in facultative aerobic species which intermittently exploit mitochondrial respiration to generate ATP.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
29
|
Huang C, Qian ZG, Zhong JJ. Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N,N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 2013; 165:30-6. [DOI: 10.1016/j.jbiotec.2013.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 01/12/2013] [Accepted: 02/04/2013] [Indexed: 01/15/2023]
|
30
|
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 2013; 493:703-7. [PMID: 23334411 DOI: 10.1038/nature11778] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/08/2012] [Indexed: 11/09/2022]
Abstract
In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Roles of AtpI and two YidC-type proteins from alkaliphilic Bacillus pseudofirmus OF4 in ATP synthase assembly and nonfermentative growth. J Bacteriol 2012; 195:220-30. [PMID: 23123906 DOI: 10.1128/jb.01493-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AtpI, a membrane protein encoded by many bacterial atp operons, is reported to be necessary for c-ring oligomer formation during assembly of some ATP synthase complexes. We investigated chaperone functions of AtpI and compared them to those of AtpZ, a protein encoded by a gene upstream of atpI that has a role in magnesium acquisition at near-neutral pH, and of SpoIIIJ and YqjG, two YidC/OxaI/Alb3 family proteins, in alkaliphilic Bacillus pseudofirmus OF4. A strain with a chromosomal deletion of atpI grew nonfermentatively, and its purified ATP synthase had a c-ring of normal size, indicating that AtpI is not absolutely required for ATP synthase function. However, deletion of atpI, but not atpZ, led to reduced stability of the ATP synthase rotor, reduced membrane association of the F(1) domain, reduced ATPase activity, and modestly reduced nonfermentative growth on malate at both pH 7.5 and 10.5. Both spoIIIJ and yqjG, but not atpI or atpZ, complemented a YidC-depleted Escherichia coli strain. Consistent with such overlapping functions, single deletions of spoIIIJ or yqjG in the alkaliphile did not affect membrane ATP synthase levels or activities, but functional specialization was indicated by YqjG and SpoIIIJ showing respectively greater roles in malate growth at pH 7.5 and 10.5. Expression of yqjG was elevated at pH 7.5 relative to that at pH 10.5 and in ΔspoIIIJ strains, but it was lower than constitutive spoIIIJ expression. Deletion of atpZ caused the largest increase among the mutants in magnesium concentrations needed for pH 7.5 growth. The basis for this phenotype is not yet resolved.
Collapse
|
32
|
Mayer F, Leone V, Langer JD, Faraldo-Gómez JD, Müller V. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure. J Biol Chem 2012; 287:39327-37. [PMID: 23007388 DOI: 10.1074/jbc.m112.411223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.
Collapse
Affiliation(s)
- Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
33
|
Structural study on the architecture of the bacterial ATP synthase Fo motor. Proc Natl Acad Sci U S A 2012; 109:E2050-6. [PMID: 22736796 DOI: 10.1073/pnas.1203971109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We purified the F(o) complex from the Ilyobacter tartaricus Na(+)-translocating F(1)F(o)-ATP synthase and performed a biochemical and structural study. Laser-induced liquid bead ion desorption MS analysis demonstrates that all three subunits of the isolated F(o) complex were present and in native stoichiometry (ab(2)c(11)). Cryoelectron microscopy of 2D crystals yielded a projection map at a resolution of 7.0 Å showing electron densities from the c(11) rotor ring and up to seven adjacent helices. A bundle of four helices belongs to the stator a-subunit and is in contact with c(11). A fifth helix adjacent to the four-helix bundle interacts very closely with a c-subunit helix, which slightly shifts its position toward the ring center. Atomic force microscopy confirms the presence of the F(o) stator, and a height profile reveals that it protrudes less from the membrane than c(11). The data limit the dimensions of the subunit a/c-ring interface: Three helices from the stator region are in contact with three c(11) helices. The location and distances of the stator helices impose spatial restrictions on the bacterial F(o) complex.
Collapse
|
34
|
Mutagenesis of the residues forming an ion binding pocket of the NtpK subunit of Enterococcus hirae V-ATPase. J Bacteriol 2012; 194:4546-9. [PMID: 22730119 DOI: 10.1128/jb.00714-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structures of the Na(+)- and Li(+)-bound NtpK rings of Enterococcus hirae V-ATPase have been obtained. The coupling ion (Na(+) or Li(+)) was surrounded by five oxygen atoms contributed by residues T64, Q65, Q110, E139, and L61, and the hydrogen bonds of the side chains of Q110, Y68, and T64 stabilized the position of the E139 γ carboxylate essential for ion occlusion (PDB accession numbers 2BL2 and 2CYD). We previously indicated that an NtpK mutant strain (E139D) lost tolerance to sodium but not to lithium at alkaline pHs and suggested that the E139 residue is indispensable for the enzymatic activity of E. hirae V-ATPase linked with the sodium tolerance of this bacterium. In this study, we examined the activities of V-ATPase in which these four residues, except for E139, were substituted. The V-ATPase activities of the Q65A and Y68A mutants were slightly retained, but those of the T64A and Q110A mutants were negligible. Among the residues, T64 and Q110 are indispensable for the ion coupling of E. hirae V-ATPase, in addition to the essential residue E139.
Collapse
|
35
|
Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, Mueller DM. Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 2012; 19:485-91, S1. [PMID: 22504883 PMCID: PMC3343227 DOI: 10.1038/nsmb.2284] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/20/2012] [Indexed: 11/09/2022]
Abstract
The proton pore of the F(1)F(o) ATP synthase consists of a ring of c subunits, which rotates, driven by downhill proton diffusion across the membrane. An essential carboxylate side chain in each subunit provides a proton-binding site. In all the structures of c-rings reported to date, these sites are in a closed, ion-locked state. Structures are here presented of the c(10) ring from Saccharomyces cerevisiae determined at pH 8.3, 6.1 and 5.5, at resolutions of 2.0 Å, 2.5 Å and 2.0 Å, respectively. The overall structure of this mitochondrial c-ring is similar to known homologs, except that the essential carboxylate, Glu59, adopts an open extended conformation. Molecular dynamics simulations reveal that opening of the essential carboxylate is a consequence of the amphiphilic nature of the crystallization buffer. We propose that this new structure represents the functionally open form of the c subunit, which facilitates proton loading and release.
Collapse
Affiliation(s)
- Jindrich Symersky
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| | - Daniel Osowski
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| | - Alexander Krah
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe University of Frankfurt, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe University of Frankfurt, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - David M. Mueller
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|