1
|
Gray GI, Chukwuma PC, Eldaly B, Perera WWJG, Brambley CA, Rosales TJ, Baker BM. The Evolving T Cell Receptor Recognition Code: The Rules Are More Like Guidelines. Immunol Rev 2025; 329:e13439. [PMID: 39804137 PMCID: PMC11771984 DOI: 10.1111/imr.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work. Here we explore our evolving understanding of TCR recognition, illustrating how structural and biophysical investigations regularly uncover complex phenomena that push against paradigms and expand our understanding of how TCRs bind to and discriminate between peptide/MHC complexes. We discuss the implications of these findings for basic, translational, and predictive immunology, including the challenges in accounting for the inherent adaptability, flexibility, and occasional biophysical sloppiness that characterize TCR recognition.
Collapse
MESH Headings
- Humans
- Animals
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Peptides/immunology
- Peptides/metabolism
- T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Major Histocompatibility Complex
- Protein Conformation
Collapse
Affiliation(s)
- George I. Gray
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - P. Chukwunalu Chukwuma
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Bassant Eldaly
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - W. W. J. Gihan Perera
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
2
|
Karuppiah V, Sangani D, Whaley L, Pengelly R, Uluocak P, Carreira RJ, Hock M, Cristina PD, Bartasun P, Dobrinic P, Smith N, Barnbrook K, Robinson RA, Harper S. Broadening alloselectivity of T cell receptors by structure guided engineering. Sci Rep 2024; 14:26851. [PMID: 39500929 PMCID: PMC11538495 DOI: 10.1038/s41598-024-75140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Specificity of a T cell receptor (TCR) is determined by the combination of its interactions to the peptide and human leukocyte antigen (HLA). TCR-based therapeutic molecules have to date targeted a single peptide in the context of a single HLA allele. Some peptides are presented on multiple HLA alleles, and by engineering TCRs for specific recognition of more than one allele, there is potential to expand the targetable patient population. Here, as a proof of concept, we studied two TCRs, S2 and S8, binding to the PRAME peptide antigen (ELFSYLIEK) presented by HLA alleles HLA-A*03:01 and HLA-A*11:01. By structure-guided affinity maturation targeting a specific residue on the HLA surface, we show that the affinity of the TCR can be modulated for different alleles. Using a combination of affinity maturation and functional T cell assay, we demonstrate that an engineered TCR can target the same peptide on two different HLA alleles with similar affinity and potency. This work highlights the importance of engineering alloselectivity for designing TCR based therapeutics suitable for differing global populations.
Collapse
Affiliation(s)
| | - Dhaval Sangani
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lorraine Whaley
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Robert Pengelly
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Pelin Uluocak
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Miriam Hock
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Paulina Bartasun
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Paula Dobrinic
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Nicola Smith
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Keir Barnbrook
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ross A Robinson
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Stephen Harper
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
3
|
T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat Biotechnol 2022; 40:488-498. [PMID: 34873326 PMCID: PMC9005346 DOI: 10.1038/s41587-021-01089-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Unlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80-94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.
Collapse
|
4
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Dudaniec K, Westendorf K, Nössner E, Uckert W. Generation of Epstein-Barr Virus Antigen-Specific T Cell Receptors Recognizing Immunodominant Epitopes of LMP1, LMP2A, and EBNA3C for Immunotherapy. Hum Gene Ther 2021; 32:919-935. [PMID: 33798008 DOI: 10.1089/hum.2020.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV) infections in healthy individuals are usually cleared by immune cells, wherein CD8+ T lymphocytes play the most important role. However, in some immunocompromised individuals, EBV infections can lead to the development of cancer in B, T, natural killer (NK) cells and epithelial cells. Most EBV-associated cancers express a limited number of virus-specific antigens such as latent membrane proteins (LMP1 and LMP2) and nuclear proteins (EBNA1, -2, EBNA3A, -B, -C, and EBNA-LP). These antigens represent true tumor-specific antigens and can be considered useful targets for T cell receptor (TCR) gene therapy to treat EBV-associated diseases. We used a TCR isolation platform based on a single major histocompatibility complex class I (MHC I) K562 cell library for the detection, isolation, and re-expression of TCRs targeting immunodominant peptide MHC (pMHC). Mature dendritic cells (mDCs) were pulsed with in vitro-transcribed (ivt) RNA encoding for the selected antigen to stimulate autologous T cells. The procedure allowed the mDCs to select an immunogenic epitope of the antigen for processing and presentation on the cell surface in combination with the most suitable MHC I molecule. We isolated eight EBV-specific TCRs. They recognize various pMHCs of EBV antigens LMP1, LMP2A, and EBNA3C, some of them described previously and some newly identified in this study. The TCR genes were molecularly cloned into retroviral vectors and the resultant TCR-engineered T cells secreted interferon-γ after antigen contact and were able to lyse tumor cells. The EBV-specific TCRs can be used as a basis for the generation of a TCR library, which provides a valuable source of TCRs for the production of EBV-specific T cells to treat EBV-associated diseases in patients with different MHC I types.
Collapse
Affiliation(s)
- Krystyna Dudaniec
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerstin Westendorf
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Wolfgang Uckert
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
6
|
Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection. Nat Commun 2020; 11:1314. [PMID: 32161266 PMCID: PMC7066147 DOI: 10.1038/s41467-020-14862-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Major Histocompatibility Complex (MHC) class I molecules selectively bind peptides for presentation to cytotoxic T cells. The peptide-free state of these molecules is not well understood. Here, we characterize a disulfide-stabilized version of the human class I molecule HLA-A*02:01 that is stable in the absence of peptide and can readily exchange cognate peptides. We present X-ray crystal structures of the peptide-free state of HLA-A*02:01, together with structures that have dipeptides bound in the A and F pockets. These structural snapshots reveal that the amino acid side chains lining the binding pockets switch in a coordinated fashion between a peptide-free unlocked state and a peptide-bound locked state. Molecular dynamics simulations suggest that the opening and closing of the F pocket affects peptide ligand conformations in adjacent binding pockets. We propose that peptide binding is co-determined by synergy between the binding pockets of the MHC molecule. Major Histocompatibility Complex (MHC) class I molecules present tightly binding peptides on the cell surface for recognition by cytotoxic T cells. Here, the authors present the crystal structures of a disulfide-stabilized human MHC class I molecule in the peptide-free state and bound with dipeptides, and find that peptide binding is accompanied by concerted conformational switches of the amino acid side chains in the binding pockets.
Collapse
|
7
|
Gowthaman R, Pierce BG. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res 2019; 46:W396-W401. [PMID: 29790966 PMCID: PMC6030954 DOI: 10.1093/nar/gky432] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
T cell receptors (TCRs), along with antibodies, are responsible for specific antigen recognition in the adaptive immune response, and millions of unique TCRs are estimated to be present in each individual. Understanding the structural basis of TCR targeting has implications in vaccine design, autoimmunity, as well as T cell therapies for cancer. Given advances in deep sequencing leading to immune repertoire-level TCR sequence data, fast and accurate modeling methods are needed to elucidate shared and unique 3D structural features of these molecules which lead to their antigen targeting and cross-reactivity. We developed a new algorithm in the program Rosetta to model TCRs from sequence, and implemented this functionality in a web server, TCRmodel. This web server provides an easy to use interface, and models are generated quickly that users can investigate in the browser and download. Benchmarking of this method using a set of nonredundant recently released TCR crystal structures shows that models are accurate and compare favorably to models from another available modeling method. This server enables the community to obtain insights into TCRs of interest, and can be combined with methods to model and design TCR recognition of antigens. The TCRmodel server is available at: http://tcrmodel.ibbr.umd.edu/.
Collapse
Affiliation(s)
- Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Li Q, Liu S, Zhang S, Liu C, Sun M, Li C, Zhang X, Chen J, Yao Y, Shi L. Human leucocyte antigen but not KIR alleles and haplotypes associated with chronic HCV infection in a Chinese Han population. Int J Immunogenet 2019; 46:263-273. [PMID: 30932338 DOI: 10.1111/iji.12425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The host immune system plays a key role in the elimination of infected cells which depend on killer-cell immunoglobulin-like receptors (KIR), human leucocyte antigen (HLA) class I molecules and their combinations. To evaluate the roles of HLAclass I, KIR genes and their combination in Chronic hepatitis C virus (HCV) infection (CHC), a total of 301 CHCs and 239 controls in a Chinese Han population were included for HLA and KIR genotyping using next-generation sequencing and multiplex PCR sequence-specific priming, respectively. The allele frequency of HLA-C*08:01 was significantly higher in the CHCs than that of the controls (0.088 vs. 0.040, OR = 2.332, 95%CI: 1.361-3.996, p = 0.022), while the frequencies of B*13:01 (0.032 vs. 0.084, OR = 0.357, 95%CI: 0.204-0.625, p = 0.009) and C*08:04 (0.008 vs. 0.038, OR = 0.214, 95%CI: 0.079-0.581, p = 0.022) were significantly lower in the CHCs. The frequencies of haplotype A*11:01-C*08:01 were higher in the CHCs (0.058 vs. 0.019, OR = 3.096, 95%CI: 1.486-6.452, p = 0.026), while haplotype B*13:01-C*03:04 were lower in the CHCs compared to the controls (0.028 vs. 0.071, OR = 0.377, 95%CI: 0.207-0.685, p = 0.012). No association of CHC with KIR genes, genotypes, or haplotypes, as well as HLA/KIR combinations was observed. Our results indicated that HLA-C*08:01 was a risk factor for CHC, while HLA-C*08:04 and HLA-B*13:01 were protective factors against CHC. Haplotypes HLA-A*11:01-C*08:01 could increase susceptibility to CHC, while HLA-B*13:01-C*03:04 could be protective against CHC in the Chinese Han population.
Collapse
Affiliation(s)
- Qiongfen Li
- Division for Expended Program of Immunization of Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | | | - Chengxiu Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
9
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
10
|
How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A 2017; 114:E4792-E4801. [PMID: 28572406 DOI: 10.1073/pnas.1700459114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T-cell receptor (TCR) allorecognition is often presumed to be relatively nonspecific, attributable to either a TCR focus on exposed major histocompatibility complex (MHC) polymorphisms or the degenerate recognition of allopeptides. However, paradoxically, alloreactivity can proceed with high peptide and MHC specificity. Although the underlying mechanisms remain unclear, the existence of highly specific alloreactive TCRs has led to their use as immunotherapeutics that can circumvent central tolerance and limit graft-versus-host disease. Here, we show how an alloreactive TCR achieves peptide and MHC specificity. The HCV1406 TCR was cloned from T cells that expanded when a hepatitis C virus (HCV)-infected HLA-A2- individual received an HLA-A2+ liver allograft. HCV1406 was subsequently shown to recognize the HCV nonstructural protein 3 (NS3):1406-1415 epitope with high specificity when presented by HLA-A2. We show that NS3/HLA-A2 recognition by the HCV1406 TCR is critically dependent on features unique to both the allo-MHC and the NS3 epitope. We also find cooperativity between structural mimicry and a crucial peptide "hot spot" and demonstrate its role, along with the MHC, in directing the specificity of allorecognition. Our results help explain the paradox of specificity in alloreactive TCRs and have implications for their use in immunotherapy and related efforts to manipulate TCR recognition, as well as alloreactivity in general.
Collapse
|
11
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
12
|
Abstract
The function of T lymphocytes as orchestrators and effectors of the adaptive immune response is directed by the specificity of their T cell receptors (TCRs). By transferring into T cells the genes encoding antigen-specific receptors, the functional activity of large populations of T cells can be redirected against defined targets including virally infected or cancer cells. The potential of therapeutic T cells to traffic to sites of disease, to expand and to persist after a single treatment remains a major advantage over the currently available immunotherapies that use monoclonal antibodies. Here we review recent progress in the field of TCR gene therapy, outlining challenges to its successful implementation and the strategies being used to overcome them. We detail strategies used in the optimization of affinity and surface expression of the introduced TCR, the choice of T cell subpopulations for gene transfer, and the promotion of persistence of gene-modified T cells in vivo. We review the safety concerns surrounding the use of gene-modified T cells in patients, discussing emerging solutions to these problems, and describe the increasingly positive results from the use of gene-modified T cells in recent clinical trials of adoptive cellular immunotherapy. The increasing sophistication of measures to ensure the safety of engineered T cells is accompanied by an increasing number of clinical trials: these will be essential to guide the effective translation of cellular immunotherapy from the laboratory to the bedside.
Collapse
Affiliation(s)
- Benjamin J Uttenthal
- Department of Immunology, Institute of Immunity, Infection and Transplantation, University College London (UCL), Royal Free Hospital, London, UK.
| | | | | | | |
Collapse
|