1
|
Suchartlikitwong P, Saninjuk K, Tirapattanun A, Kongsai J, Benjatikun W, Wongsurawat T, Chirakul S. Emergence of Ceftazidime Resistance in Burkholderia pseudomallei During Therapy: Clinical, Phenotypic and Genotypic Insights from Paired Isolates. J Glob Antimicrob Resist 2025:S2213-7165(25)00110-9. [PMID: 40368162 DOI: 10.1016/j.jgar.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVES This study aimed to characterize the clinical, phenotypic, and genomic attributes of Burkholderia pseudomallei isolates before and after the development of decreased susceptibility to β-lactam antibiotics during therapy. METHODS Paired B. pseudomallei isolates collected before (SCBP001) and 23 days after intravenous ceftazidime (CAZ) therapy (SCBP007) were evaluated. Minimal inhibitory concentrations (MICs) for CAZ and meropenem (MEM) were initially determined using Etest and subsequently confirmed by broth microdilution (BMD). Whole-genome sequencing (WGS) was performed to identify genetic mutations associated with resistance. RESULTS A 12-year-old boy presented with acute pyelonephritis and kidney injury. MICs showed decreased susceptibility to CAZ and MEM, although the value remained within the susceptible range according to Clinical and Laboratory Standards Institute (CLSI) breakpoint criteria. MICs increased from 1 µg/mL for both CAZ and MEM in SCBP001 to 8 µg/mL for CAZ and 3 µg/mL for MEM in SCBP007. BMD confirmed a further increase in CAZ MIC to 32 µg/mL in SCBP007. WGS revealed no known CAZ-resistance mutations in penA coding sequences but identified a G(-78)A mutation upstream of penA, associated with increased promoter activity and β-lactam resistance. Multi-locus sequence typing (MLST) confirmed both isolates as sequence type 99, originating from the same clone. Phenotypic evaluation on Ashdown's agar showed consistent morphotype I characteristics for both isolates. CONCLUSION This case highlights the potential for B. pseudomallei to develop resistance during therapy. Early detection of decreased susceptibility, even within the susceptible range, using rapid molecular diagnostics is critical for timely antibiotic adjustments and improved patient outcomes.
Collapse
Affiliation(s)
- Pintip Suchartlikitwong
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence for Pediatric Infectious Diseases and Vaccines, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kritsakorn Saninjuk
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chiang Rai, Thailand
| | - Aschana Tirapattanun
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jindaporn Kongsai
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Watcharin Benjatikun
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Siriraj Long-read Lab, Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunisa Chirakul
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Sia TLL, Lai CD, Manan K, Khiu FL, Bakhtiar SZ, Chor YK, Chien SL, Tan LS, Ooi MH, Mohan A. Ceftazidime-resistance in pediatric melioidosis: A case report and literature review. IDCases 2025; 39:e02149. [PMID: 39877723 PMCID: PMC11773197 DOI: 10.1016/j.idcr.2025.e02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
We report a first case of ceftazidime-resistant pediatric melioidosis involving a previously healthy seven-year-old boy who presented with right lobar pneumonia complicated with a 5-cm lung abscess. Ceftazidime was initiated on Day-6 of admission when Burkholderia pseudomallei (ceftazidime-susceptible, minimum inhibitory concentration [MIC] 1.0 mcg/mL) was isolated from blood. Despite ceftazidime therapy at the recommended dosage, he developed fulminant septic shock and respiratory failure on Day-18 of hospitalization, requiring invasive ventilation, hemodynamic support, and continuous renal replacement therapy. His antibiotic was empirically escalated to meropenem; ceftazidime-resistant B. pseudomallei (MIC 32 mcg/mL) was subsequently isolated from blood and endotracheal secretions. He improved after two weeks of intensive care and was discharged well after two months of hospitalization. Our literature review on ceftazidime-resistant B. pseudomallei infection indicates that acquired resistance is a rare but potentially lethal treatment-related complication. All melioidosis patients should be carefully monitored during treatment with ceftazidime (or other β-lactams) for the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Tonnii Loong-Loong Sia
- Imperial College, London, United Kingdom
- Department of Medicine, Miri Hospital, Miri, Sarawak, Malaysia
| | - Charles Dekun Lai
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Sarawak, Malaysia
- Department of Pediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Kamilah Manan
- Department of Radiology, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Fu-Lung Khiu
- Department of Pediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | | | - Yek-Kee Chor
- Department of Pediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Su-Lin Chien
- Department of Pathology, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Lee-See Tan
- Department of Pathology, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Mong-How Ooi
- Department of Pediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - Anand Mohan
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
- Department of Pediatrics, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| |
Collapse
|
3
|
Mojica MF, Nukaga M, Becka SA, Zeiser ET, Hoshino T, LiPuma JJ, Papp-Wallace KM. Frameshift Mutations in Genes Encoding PBP3 and PBP4 Trigger an Unusual, Extreme β-Lactam Resistance Phenotype in Burkholderia multivorans. ACS Infect Dis 2024; 10:3810-3820. [PMID: 39440926 DOI: 10.1021/acsinfecdis.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In our curated panel of Burkholderia cepacia complex isolates, Burkholderia multivorans strain AU28442 was unusually highly β-lactam resistant. To explore the molecular mechanisms leading to this phenotype, we performed whole genome sequencing (WGS) and microbiological and biochemical assays. WGS analysis revealed that strain AU28442 produced two β-lactamases, AmpC22 and a novel PenA-like β-lactamase denominated PenA39. Additionally, the strain presented frame-shift mutations in the genes encoding penicillin binding proteins 3 (PBP3) and 4 (PBP4). The antibiotic susceptibilities of the parent AU28442 strain carrying blaPenA39 vs the isogenic E. colistrain producing blaPenA39 were discrepant with ceftazidime MICs of >512 and 1 μg/mL, respectively. Accordingly, PenA39 was found to poorly hydrolyze β-lactams with kcat values of ≤8.8 s-1. An overlay of the crystal structure of PenA39 with PenA1 revealed a shift in the SDN loop in the variant, which may affect the catalytic efficiency of PenA39 toward substrates and inhibitors. Moreover, microscopic examination of AU28442 revealed shortened rod-shaped cells compared to B. multivoransATCC 17616, which carries a full complement of intact PBPs. Further complementation assays confirmed that the loss of PBP3 and PBP4 was the main factor contributing to the high-level β-lactam resistance observed in B. multivoransAU28442. This information allowed us to revert susceptibility by pairing a potent β-lactamase inhibitor with a β-lactam with promiscuous PBP binding. This detailed characterization of B. multivoransprovides an illustration of the myriad ways in which bacteria under antibiotic selection can develop resistance and demonstrates a mechanism to overcome it.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio 44106, United States
| | - Michiyoshi Nukaga
- Pharmaceutical Sciences, Josai International University, Togane City, Chiba 283-8555, Japan
| | - Scott A Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
| | - Elise T Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 263-8522, Japan
| | - John J LiPuma
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Krisztina M Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio 44106, United States
- Departments of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
McMillan IA, Norris MH, Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Hartney BA, Filipowska LK, Islam MN, Crick DC, Borlee BR, Hoang TT. TetR-like regulator BP1026B_II1561 controls aromatic amino acid biosynthesis and intracellular pathogenesis in Burkholderia pseudomallei. Front Microbiol 2024; 15:1441330. [PMID: 39211319 PMCID: PMC11358695 DOI: 10.3389/fmicb.2024.1441330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Burkholderia pseudomallei (Bp) causes the tropical disease melioidosis that afflicts an estimated 165,000 people each year. Bp is a facultative intracellular pathogen that transits through distinct intracellular stages including attachment to host cells, invasion through the endocytic pathway, escape from the endosome, replication in the cytoplasm, generation of protrusions towards neighboring cells, and host cell fusion allowing Bp infection to spread without exiting the intracellular environment. We have identified a TetR-like transcriptional regulator, BP1026B_II1561, that is up-regulated during the late stages of infection as Bp protrudes toward neighboring cells. We have characterized BP1026B_II1561 and determined that it has a role in pathogenesis. A deletional mutant of BP1026B_II1561 is attenuated in RAW264.7 macrophage and BALB/c mouse models of infection. Using RNA-seq, we found that BP1026B_II1561 controls secondary metabolite biosynthesis, fatty acid degradation, and propanoate metabolism. In addition, we identified that BP1026B_II1561 directly controls expression of an outer membrane porin and genes in the shikimate biosynthetic pathway using ChIP-seq. Transposon mutants of genes within the BP1026B_II1561 regulon show defects during intracellular replication in RAW264.7 cells confirming the role of this transcriptional regulator and the pathways it controls in pathogenesis. BP1026B_II1561 also up-regulates the majority of the enzymes in shikimate and tryptophan biosynthetic pathways, suggesting their importance for Bp physiology. To investigate this, we tested fluorinated analogs of anthranilate and tryptophan, intermediates and products of the shikimate and tryptophan biosynthetic pathways, respectively, and showed inhibition of Bp growth at nanomolar concentrations. The expression of these pathways by BP1026b_II1561 and during intracellular infection combined with the inhibition of Bp growth by fluorotryptophan/anthranilate highlights these pathways as potential targets for therapeutic intervention against melioidosis. In the present study, we have identified BP1026B_II1561 as a critical transcriptional regulator for Bp pathogenesis and partially characterized its role during host cell infection.
Collapse
Affiliation(s)
- Ian A. McMillan
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Michael H. Norris
- Pathogen Analysis and Translational Health Group, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Zhenxin Sun
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Brooke A. Hartney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Liliana K. Filipowska
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - M. Nurul Islam
- Department of Chemistry, Biochemistry, and Physics, South Dakota State University, Brookings, SD, United States
| | - Dean C. Crick
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tung T. Hoang
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| |
Collapse
|
5
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
6
|
Yao J, Zhang Z, Tian S, Luo N, Tan J, Zhang Y, Gu S, Xia Q. Synchronous detection of Burkholderia pseudomallei and its ceftazidime resistance mutation based on RNase-HII hydrolysis combined with lateral flow strip assay. Microbiol Spectr 2023; 11:e0112523. [PMID: 37815337 PMCID: PMC10714834 DOI: 10.1128/spectrum.01125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/19/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE This study focused on the development of a reaction system using rhPCR to amplify a specific gene, ORF2, of B. pseudomallei and to identify the P174L mutation associated with increased drug resistance to ceftazidime (CAZ). The system incorporated universal primer probes and a simple temperature cycle reaction. The amplified products were then analyzed using lateral flow strip assay (LFSA) for strain identification and mutation interpretation. The developed system provides a reliable basis for diagnosing melioidosis and selecting appropriate drugs. Its potential impact is particularly significant in resource-limited settings where access to advanced diagnostic techniques is limited. This platform stands out for its simplicity, convenience, sensitivity, specificity, and portability. It shows promise as a point-of-care testing method for detecting single nucleotide polymorphism in genes associated with other diseases. By leveraging the advantages of this platform, researchers and healthcare professionals can potentially expand its use beyond melioidosis and apply it to the rapid detection of genetic variations in other disease-related genes.
Collapse
Affiliation(s)
- Juan Yao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
- Nanobiosensing and Microfluidic Point-of-Care Testing Key Laboratory of LuZhou, Luzhou, Sichuan, China
| | - Zhang Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
- Department of Neurosurgery, Neurology Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Nini Luo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jun Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yue Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Shuo Gu
- Department of Neurosurgery, Neurology Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
7
|
Jena J, Behera B, Nayak G, Mohanty S, Mahapatra A, Purushotham P, Radhakrishnan A, Tripathy M. In Vitro Susceptibility of Burkholderia pseudomallei Isolates to Cefiderocol and Ceftazidime/Avibactam from Odisha, India. J Lab Physicians 2023; 15:573-577. [PMID: 37780886 PMCID: PMC10539071 DOI: 10.1055/s-0043-1770067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/19/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction and Objectives The availability of a limited arsenal of antibacterial agents effective against Burkholderia pseudomallei, the causative agent of melioidosis, together with sporadic reports of emergence of resistance necessitates an evaluation of in vitro activity of new antimicrobials against clinical B. pseudomallei isolates. Cefiderocol (CFDC), a novel siderophore cephalosporin, and ceftazidime-avibactam (CZA), a new β lactam combination agent, have shown promising results for the treatment of difficult-to-treat Gram-negative bacilli infections with limited treatment options. This study was conducted to determine the in vitro activity of CFDC and CZA against a contemporary collection of 60 B. pseudomallei clinical isolates. Materials and Methods Minimum inhibitory concentrations (MIC) of CFDC and CZA were determined by broth microdilution and E-test, respectively. The performance of disk diffusion was also evaluated for CFDC. Results All B. pseudomallei isolates were susceptible to CFDC and CZA with MIC range of 0.125 to 2 mg/L and 0.19 to 1 mg/L, respectively. Zone diameters for CFDC ranged from 31 to 40 mm. Conclusion CFDC and CZA exhibited excellent in vitro activity against 60 B. pseudomallei isolates. Further pharmacokinetic-pharmacodynamics studies and clinical trials are needed to prove the clinical efficacy of CFDC and CZA in the treatment of melioidosis.
Collapse
Affiliation(s)
- Jayanti Jena
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Bijayini Behera
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Gayatree Nayak
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Srujana Mohanty
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Ashoka Mahapatra
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Prashanth Purushotham
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Anjuna Radhakrishnan
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Manaswiny Tripathy
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Mojica MF, Zeiser ET, Becka SA, LiPuma JJ, Six DA, Moeck G, Papp-Wallace KM. Examining the activity of cefepime-taniborbactam against Burkholderia cepacia complex and Burkholderia gladioli isolated from cystic fibrosis patients in the United States. Antimicrob Agents Chemother 2023; 67:e0049823. [PMID: 37768313 PMCID: PMC10648927 DOI: 10.1128/aac.00498-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
The novel clinical-stage β-lactam-β-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D β-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
| | - Elise T. Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Scott A. Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Hall CM, Somprasong N, Hagen JP, Nottingham R, Sahl JW, Webb JR, Mayo M, Currie BJ, Podin Y, Wagner DM, Keim P, Schweizer HP. Exploring Cefiderocol Resistance Mechanisms in Burkholderia pseudomallei. Antimicrob Agents Chemother 2023; 67:e0017123. [PMID: 37133377 PMCID: PMC10269091 DOI: 10.1128/aac.00171-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Cefiderocol is a siderophore cephalosporin designed mainly for treatment of infections caused by β-lactam and multidrug-resistant Gram-negative bacteria. Burkholderia pseudomallei clinical isolates are usually highly cefiderocol susceptible, with in vitro resistance found in a few isolates. Resistance in clinical B. pseudomallei isolates from Australia is caused by a hitherto uncharacterized mechanism. We show that, like in other Gram-negatives, the PiuA outer membrane receptor plays a major role in cefiderocol nonsusceptibility in isolates from Malaysia.
Collapse
Affiliation(s)
- Carina M. Hall
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Nawarat Somprasong
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Johannah P. Hagen
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Roxanne Nottingham
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jason W. Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jessica R. Webb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Yuwana Podin
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - David M. Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Herbert P. Schweizer
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
10
|
Fen SHY, Tandhavanant S, Phunpang R, Ekchariyawat P, Saiprom N, Chewapreecha C, Seng R, Thiansukhon E, Morakot C, Sangsa N, Chayangsu S, Chuananont S, Tanwisaid K, Silakun W, Buasi N, Chaisuksant S, Hompleum T, Chetchotisakd P, Day NPJ, Chantratita W, Lertmemongkolchai G, West TE, Chantratita N. Antibiotic susceptibility of clinical Burkholderia pseudomallei isolates in northeast Thailand during 2015-2018 and the genomic characterization of β-lactam-resistant isolates. Antimicrob Agents Chemother 2023; 95:AAC.02230-20. [PMID: 33593842 PMCID: PMC8092913 DOI: 10.1128/aac.02230-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Melioidosis is an often fatal infection in tropical regions caused by an environmental bacterium, Burkholderia pseudomallei Current recommended melioidosis treatment requires intravenous β-lactam antibiotics such as ceftazidime (CAZ), meropenem (MEM) or amoxicillin-clavulanic acid (AMC) and oral trimethoprim-sulfamethoxazole. Emerging antibiotic resistance could lead to therapy failure and high mortality. We performed a prospective multicentre study in northeast Thailand during 2015-2018 to evaluate antibiotic susceptibility and characterize β-lactam resistance in clinical B. pseudomallei isolates. Collection of 1,317 B. pseudomallei isolates from patients with primary and relapse infections were evaluated for susceptibility to CAZ, imipenem (IPM), MEM and AMC. β-lactam resistant isolates were confirmed by broth microdilution method and characterized by whole genome sequence analysis, penA expression and β-lactamase activity. The resistant phenotype was verified via penA mutagenesis. All primary isolates were IPM-susceptible but we observed two CAZ-resistant and one CAZ-intermediate resistant isolates, two MEM-less susceptible isolates, one AMC-resistant and two AMC-intermediate resistant isolates. One of 13 relapse isolates was resistant to both CAZ and AMC. Two isolates were MEM-less susceptible. Strains DR10212A (primary) and DR50054E (relapse) were multi-drug resistant. Genomic and mutagenesis analyses supplemented with gene expression and β-lactamase analyses demonstrated that CAZ-resistant phenotype was caused by PenA variants: P167S (N=2) and penA amplification (N=1). Despite the high mortality rate in melioidosis, our study revealed that B. pseudomallei isolates had a low frequency of β-lactam resistance caused by penA alterations. Clinical data suggest that resistant variants may emerge in patients during antibiotic therapy and be associated with poor response to treatment.
Collapse
Affiliation(s)
- Shirley Hii Yi Fen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peeraya Ekchariyawat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, UK
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | | | | | | | | | - Noppol Buasi
- Department of Medicine, Sisaket Hospital, Sisaket, Thailand
| | | | - Tanin Hompleum
- Department of Surgery, Khon Kaen Hospital, Khon Kaen, Thailand
| | - Ploenchan Chetchotisakd
- Department of Medicine, Srinagarind Hospital, Faculty of Medicine and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, UK
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
| | - Ganjana Lertmemongkolchai
- Department of Clinical Immunology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - T Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Pakkulnan R, Thonglao N, Chareonsudjai S. DNase I and chitosan enhance efficacy of ceftazidime to eradicate Burkholderia pseudomallei biofilm cells. Sci Rep 2023; 13:1059. [PMID: 36658182 PMCID: PMC9852466 DOI: 10.1038/s41598-023-27790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Biofilm-associated Burkholderia pseudomallei infection contributes to antibiotic resistance and relapse of melioidosis. Burkholderia pseudomallei biofilm matrix contains extracellular DNA (eDNA) that is crucial for biofilm establishment. However, the contribution of eDNA to antibiotic resistance by B. pseudomallei remains unclear. In this study, we first demonstrated in vitro that DNase I with the administration of ceftazidime (CAZ) at 24 h considerably inhibited the 2-day biofilm formation and reduced the number of viable biofilm cells of clinical B. pseudomallei isolates compared to biofilm treated with CAZ alone. A 3-4 log reduction in numbers of viable cells embedded in the 2-day biofilm was observed when CAZ was combined with DNase I. Confocal laser-scanning microscope visualization emphasized the competence of DNase I followed by CAZ supplementation to significantly limit B. pseudomallei biofilm development and to eradicate viable embedded B. pseudomallei biofilm cells. Furthermore, DNase I supplemented with chitosan (CS) linked with CAZ (CS/CAZ) significantly eradicated shedding planktonic and biofilm cells. These findings indicated that DNase I effectively degraded eDNA leading to biofilm inhibition and dispersion, subsequently allowing CAZ and CS/CAZ to eradicate both shedding planktonic and embedded biofilm cells. These findings provide efficient strategies to interrupt biofilm formation and improve antibiotic susceptibility of biofilm-associated infections.
Collapse
Affiliation(s)
- Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. .,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
12
|
Madden DE, Olagoke O, Baird T, Neill J, Ramsay KA, Fraser TA, Bell SC, Sarovich DS, Price EP. Express Yourself: Quantitative Real-Time PCR Assays for Rapid Chromosomal Antimicrobial Resistance Detection in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2022; 66:e0020422. [PMID: 35467369 PMCID: PMC9112894 DOI: 10.1128/aac.00204-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023] Open
Abstract
The rise of antimicrobial-resistant (AMR) bacteria is a global health emergency. One critical facet of tackling this epidemic is more rapid AMR diagnosis in serious multidrug-resistant pathogens like Pseudomonas aeruginosa. Here, we designed and then validated two multiplex quantitative real-time PCR (qPCR) assays to simultaneously detect differential expression of the resistance-nodulation-division efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM, the AmpC β-lactamase, and the porin OprD, which are commonly associated with chromosomally encoded AMR. Next, qPCRs were tested on 15 sputa from 11 participants with P. aeruginosa respiratory infections to determine AMR profiles in vivo. We confirmed multiplex qPCR testing feasibility directly on sputa, representing a key advancement in in vivo AMR diagnosis. Notably, comparison of sputa with their derived isolates grown in Luria-Bertani broth (±2.5% NaCl) or a 5-antibiotic cocktail showed marked expression differences, illustrating the difficulty in replicating in vivo expression profiles in vitro. Cystic fibrosis sputa showed significantly reduced mexE and mexY expression compared with chronic obstructive pulmonary disease sputa, despite harboring fluoroquinolone- and aminoglycoside-resistant strains, indicating that these loci do not contribute to AMR in vivo. oprD was also significantly downregulated in cystic fibrosis sputa, even in the absence of contemporaneous carbapenem use, suggesting a common adaptive trait in chronic infections that may affect carbapenem efficacy. Sputum ampC expression was highest in participants receiving carbapenems (6.7 to 15×), some of whom were simultaneously receiving cephalosporins, the latter of which would be rendered ineffective by the upregulated ampC. Our qPCR assays provide valuable insights into the P. aeruginosa resistome, and their use on clinical specimens will permit timely treatment alterations that will improve patient outcomes and antimicrobial stewardship measures.
Collapse
Affiliation(s)
- Danielle E. Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Olusola Olagoke
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Kay A. Ramsay
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Tamieka A. Fraser
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Scott C. Bell
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Derek S. Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
13
|
McLaughlin HP, Gulvik CA, Sue D. In silico analyses of penicillin binding proteins in Burkholderia pseudomallei uncovers SNPs with utility for phylogeography, species differentiation, and sequence typing. PLoS Negl Trop Dis 2022; 16:e0009882. [PMID: 35417451 PMCID: PMC9037935 DOI: 10.1371/journal.pntd.0009882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Burkholderia pseudomallei causes melioidosis. Sequence typing this pathogen can reveal geographical origin and uncover epidemiological associations. Here, we describe B. pseudomallei genes encoding putative penicillin binding proteins (PBPs) and investigate their utility for determining phylogeography and differentiating closely related species. We performed in silico analysis to characterize 10 PBP homologs in B. pseudomallei 1026b. As PBP active site mutations can confer β-lactam resistance in Gram-negative bacteria, PBP sequences in two resistant B. pseudomallei strains were examined for similar alterations. Sequence alignments revealed single amino acid polymorphisms (SAAPs) unique to the multidrug resistant strain Bp1651 in the transpeptidase domains of two PBPs, but not directly within the active sites. Using BLASTn analyses of complete assembled genomes in the NCBI database, we determined genes encoding PBPs were conserved among B. pseudomallei (n = 101) and Burkholderia mallei (n = 26) strains. Within these genes, single nucleotide polymorphisms (SNPs) useful for predicting geographic origin of B. pseudomallei were uncovered. SNPs unique to B. mallei were also identified. Based on 11 SNPs identified in two genes encoding predicted PBP-3s, a dual-locus sequence typing (DLST) scheme was developed. The robustness of this typing scheme was assessed using 1,523 RefSeq genomes from B. pseudomallei (n = 1,442) and B. mallei (n = 81) strains, resulting in 32 sequence types (STs). Compared to multi-locus sequence typing (MLST), the DLST scheme demonstrated less resolution to support the continental separation of Australian B. pseudomallei strains. However, several STs were unique to strains originating from a specific country or region. The phylogeography of Western Hemisphere B. pseudomallei strains was more highly resolved by DLST compared to internal transcribed spacer (ITS) typing, and all B. mallei strains formed a single ST. Conserved genes encoding PBPs in B. pseudomallei are useful for strain typing, can enhance predictions of geographic origin, and differentiate strains of closely related Burkholderia species. Burkholderia pseudomallei causes the life-threatening disease melioidosis and is considered a biological threat and select agent by the United States government. This soil-dwelling bacterium is commonly found in regions of southeast Asia and northern Australia, but it is also detected in other tropical and sub-tropical areas around the world. With a predicted global burden of 165,000 annual cases and mortality rate that can exceed 40% without prompt and appropriate antibiotic treatment, understanding the epidemiology of melioidosis and mechanisms of antibiotic resistance in B. pseudomallei can benefit public health and safety. Recently, we identified ten conserved genes encoding putative penicillin binding proteins (PBPs) in B. pseudomallei. Here, we examined B. pseudomallei PBP sequences for amino acid mutations that may contribute to β-lactam resistance. We also uncovered nucleotide mutations with utility to predict the geographical origin of B. pseudomallei strains and to differentiate closely related Burkholderia species. Based on 11 informative single nucleotide polymorphisms in two genes each encoding a PBP-3, we developed a simple, targeted dual-locus typing approach.
Collapse
Affiliation(s)
- Heather P. McLaughlin
- Biodefense Research and Development Laboratory, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Christopher A. Gulvik
- Zoonoses and Select Agent Laboratory, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David Sue
- Biodefense Research and Development Laboratory, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Bové M, Coenye T. The anti-virulence activity of the non-mevalonate pathway inhibitor FR900098 towards Burkholderia cenocepacia is maintained during experimental evolution. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35358034 DOI: 10.1099/mic.0.001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Burkholderia cenocepacia infections are difficult to treat and there is an urgent need for alternative (combination) treatments. The use of anti-virulence therapies in combination with antibiotics is a possible strategy to increase the antimicrobial susceptibility of the pathogen and to slow down the development of resistance. In the present study we evaluated the β-lactam and colistin-potentiating activity, and anti-virulence effect of the non-mevalonate pathway inhibitor FR900098 against B. cenocepacia in various in vitro and in vivo models. In addition, we evaluated whether repeated exposure to FR900098 alone or when combined with ceftazidime leads to increased resistance. FR900098 potentiated the activity of colistin and several β-lactam antibiotics (aztreonam, cefepime, cefotaxime, ceftazidime, mecillinam and piperacillin) but not of imipenem and meropenem. When used alone or in combination with ceftazidime, FR900098 increased the survival of infected Galleria mellonella and Caenorhabditis elegans. Furthermore, combining ceftazidime with FR900098 resulted in a significant inhibition of the biofilm formation of B. cenocepacia. Repeated exposure to FR900098 in the C. elegans infection model did not lead to decreased activity, and the susceptibility of the evolved B. cenocepacia HI2424 lineages to ceftazidime, FR900098 and the combination of both remained unchanged. In conclusion, FR900098 reduces B. cenocepacia virulence and potentiates ceftazidime in an in vivo C. elegans model, and this activity is not lost during the experimental evolution experiment carried out in the present study.
Collapse
Affiliation(s)
- Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Thonglao N, Pakkulnan R, Paluka J, Chareonsudjai P, Kanokmedhakul S, Kanokmedhakul K, Chareonsudjai S. Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. Int J Biol Macromol 2022; 201:676-685. [PMID: 35063492 DOI: 10.1016/j.ijbiomac.2022.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/05/2022]
Abstract
Biofilm-associated Burkholderia pseudomallei infections (melioidosis) are problematic because of reduced sensitivity to antibiotics and high frequency of relapse. Biofilm dispersal agents are essential to liberate the biofilm-encased cells, which then become planktonic and are more susceptible to antibiotics. This study aimed to evaluate the ability of deacetylated chitosan (dCS), an antimicrobial and antibiofilm biological macromolecule, to disrupt established biofilms, thus enabling ceftazidime (CAZ) to kill biofilm-embedded B. pseudomallei. We combined dCS with CAZ using a mechanical stirring method to generate dCS/CAZ. In combination, 1.25-2.5 mg ml-1 dCS/1-2 μg ml-1 CAZ acted synergistically to kill cells more effectively than did either dCS or CAZ alone. Notably, a combination of 5-10 mg ml-1 dCS with 256-512 μg ml-1 CAZ, prepared either by mechanical stirring (dCS/CAZ) or mixing (dCS + CAZ), drastically improved bactericidal activities against biofilm cells leading to a 3-6 log CFU reduction. Confocal laser-scanning microscope (CLSM) images revealed that 10 mg ml-1 dCS/512 μg ml-1 CAZ is by far the best formulation to diminish B. pseudomallei biofilm biomass and produces the lowest live/dead cell ratios of B. pseudomallei in biofilm matrix. Collectively, these findings emphasize the potential of novel therapeutic antibacterial and antibiofilm agents to fight against antibiotic-tolerant B. pseudomallei biofilm-associated infections.
Collapse
Affiliation(s)
- Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jakkapat Paluka
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
16
|
Zheng H, Qin J, Chen H, Hu H, Zhang X, Yang C, Wu Y, Li Y, Li S, Kuang H, Zhou H, Shen D, Song K, Song Y, Zhao T, Yang R, Tan Y, Cui Y. Genetic diversity and transmission patterns of Burkholderia pseudomallei on Hainan island, China, revealed by a population genomics analysis. Microb Genom 2021; 7. [PMID: 34762026 PMCID: PMC8743561 DOI: 10.1099/mgen.0.000659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative soil-dwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Previous studies have identified the overall genetic and evolutionary characteristics of B. pseudomallei on a global scale, including its origin and transmission routes. However, beyond its known hyperendemicity foci in northern Australia and Southeast Asia, the distribution and genetic characteristics of B. pseudomallei in most tropical regions remain poorly understood, including in southern China. Here, we sequenced the genomes of 122 B. pseudomallei strains collected from Hainan, an island in southern China, in 2002–2018, to investigate the population structure, relationships with global strains, local epidemiology, and virulence and antimicrobial-resistance factors. A phylogenetic analysis and hierarchical clustering divided the Hainan strains into nine phylogenic groups (PGs), 80 % of which were concentrated within five major groups (group 1: corresponding to minor sequence types [STs], 12.3 %; group 3: ST46 and ST50, 31.1 %; group 9: ST58, 13.1 %; group 11: ST55, 8.2 %; group 15: mainly ST658, 15.6%). A phylogenetic analysis that included global strains suggested that B. pseudomallei in Hainan originated from Southeast Asian countries, transmitted in multiple historical importation events. We also identified several mutual transmission events between Hainan and Southeast Asian countries in recent years, including three importation events from Thailand and Singapore to Hainan and three exportation events from Hainan to Singapore, Malaysia, and Taiwan island. A statistical analysis of the temporal distribution showed that the Hainan strains of groups 3, 9, and 15 have dominated the disease epidemic locally in the last 5 years. The spatial distribution of the Hainan strains demonstrated that some PGs are distributed in different cities on Hainan island, and by combining phylogenic and geographic distribution information, we detected 21 between-city transmission events, indicating its frequent local transmission. The detection of virulence factor genes showed that 56 % of the Hainan strains in group 1 encode a B. pseudomallei-specific adherence factor, boaB, confirming the specific pathogenic characteristics of the Hainan strains in group 1. An analysis of the antimicrobial-resistance potential of B. pseudomallei showed that various kinds of alterations were identified in clinically relevant antibiotic resistance factors, such as AmrR, PenA and PBP3, etc. Our results clarify the population structure, local epidemiology, and pathogenic characteristics of B. pseudomallei in Hainan, providing further insight into its regional and global transmission networks and improving our knowledge of its global phylogeography.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Hai Chen
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yuanli Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Sha Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hanwang Zhou
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Dingxia Shen
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| |
Collapse
|
17
|
Chattagul S, Khan MM, Scott AJ, Nita-Lazar A, Ernst RK, Goodlett DR, Sermswan RW. Transcriptomics Analysis Uncovers Transient Ceftazidime Tolerance in Burkholderia Biofilms. ACS Infect Dis 2021; 7:2324-2336. [PMID: 34138549 DOI: 10.1021/acsinfecdis.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia pseudomallei is an etiological agent of melioidosis, a severe community-acquired infectious disease. B. pseudomallei strain K96243 is sensitive to the drug ceftazidime (CAZ), but has been shown to exhibit transient CAZ tolerance when in a biofilm form. To investigate an observed shift in gene expression profile during CAZ tolerance condition and to better understand the mechanistic aspects of this transient tolerance, RNA-sequencing was performed on B. pseudomallei K96243 from the following three states: planktonic, biofilm, and planktonic shedding. Results indicated that the expression of 651 genes (10.97%) were significantly changed in both biofilm (resistant) and planktonic shedding (sensitive) cells in comparison to the planktonic state. The top four highly expressed genes identified in both states are associated with nitrosative stress response (BPSL2368), Fe-S homeostasis (BPSL2369), and nitrate respiration (BPSS1154 and BPSS1158). Additionally, five orthologous genes, BPSL2370-BPSL2374, implicated in Fe-S cluster biogenesis, and another gene, BPSL2863, involved in DNA-binding of the stress protein ferritin, were shown to increase expression by RT-qPCR. The shift in gene expression was especially prominent at the late stages of biofilm growth (72 and 96 h), specifically in the biofilm-challenged CAZ survivor cells. This suggested that in response to stress in a biofilm, differential expression of these genes may support development of the CAZ tolerance in Burkholderia. The application of iron chelator deferoxamine (DFO) to the biofilm caused a significant reduction in biofilm formation and associated CAZ tolerance. Therefore, the shift in Fe-S metabolism when B. pseudomallei is in a biofilm may help stabilize the levels of reactive oxygen species (ROS), thereby limiting tolerance to CAZ.
Collapse
Affiliation(s)
- Supaksorn Chattagul
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mohd M. Khan
- University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry,Baltimore, Maryland 21201, United States
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry,Baltimore, Maryland 21201, United States
| | - David R. Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry,Baltimore, Maryland 21201, United States
| | - Rasana W. Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
18
|
Malawong S, Thammawithan S, Sirithongsuk P, Daduang S, Klaynongsruang S, Wong PT, Patramanon R. Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen. Antibiotics (Basel) 2021; 10:839. [PMID: 34356761 PMCID: PMC8300767 DOI: 10.3390/antibiotics10070839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
Collapse
Affiliation(s)
- Sathit Malawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
| | - Pawinee Sirithongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
19
|
Heacock-Kang Y, McMillan IA, Norris MH, Sun Z, Zarzycki-Siek J, Bluhm AP, Cabanas D, Norton RE, Ketheesan N, Miller JF, Schweizer HP, Hoang TT. The Burkholderia pseudomallei intracellular 'TRANSITome'. Nat Commun 2021; 12:1907. [PMID: 33772012 PMCID: PMC7998038 DOI: 10.1038/s41467-021-22169-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michael H Norris
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Andrew P Bluhm
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Darlene Cabanas
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert E Norton
- Townsville Hospital, Townsville, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Natkunam Ketheesan
- Science and Technology, University of New England, New South Wales, Australia
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
20
|
Drug screening to identify compounds to act as co-therapies for the treatment of Burkholderia species. PLoS One 2021; 16:e0248119. [PMID: 33764972 PMCID: PMC7993816 DOI: 10.1371/journal.pone.0248119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/21/2021] [Indexed: 11/22/2022] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling organism present throughout the tropics. It is the causative agent of melioidosis, a disease that is believed to kill 89,000 people per year. It is naturally resistant to many antibiotics, requiring at least two weeks of intravenous treatment with ceftazidime, imipenem or meropenem followed by 6 months of orally delivered co-trimoxazole. This places a large treatment burden on the predominantly middle-income nations where the majority of disease occurs. We have established a high-throughput assay for compounds that could be used as a co-therapy to potentiate the effect of ceftazidime, using the related non-pathogenic bacterium Burkholderia thailandensis as a surrogate. Optimization of the assay gave a Z’ factor of 0.68. We screened a library of 61,250 compounds and identified 29 compounds with a pIC50 (-log10(IC50)) greater than five. Detailed investigation allowed us to down select to six “best in class” compounds, which included the licensed drug chloroxine. Co-treatment of B. thailandensis with ceftazidime and chloroxine reduced culturable cell numbers by two orders of magnitude over 48 hours, compared to treatment with ceftazidime alone. Hit expansion around chloroxine was performed using commercially available compounds. Minor modifications to the structure abolished activity, suggesting that chloroxine likely acts against a specific target. Finally, an initial study demonstrates the utility of chloroxine to act as a co-therapy to potentiate the effect of ceftazidime against B. pseudomallei. This approach successfully identified potential co-therapies for a recalcitrant Gram-negative bacterial species. Our assay could be used more widely to aid in chemotherapy to treat infections caused by these bacteria.
Collapse
|
21
|
Chavas TEJ, Su FY, Srinivasan S, Roy D, Lee B, Lovelace-Macon L, Rerolle GF, Limqueco E, Skerrett SJ, Ratner DM, West TE, Stayton PS. A macrophage-targeted platform for extending drug dosing with polymer prodrugs for pulmonary infection prophylaxis. J Control Release 2021; 330:284-292. [PMID: 33221351 PMCID: PMC7909327 DOI: 10.1016/j.jconrel.2020.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 01/03/2023]
Abstract
Pulmonary melioidosis is a bacterial disease with high morbidity and a mortality rate that can be as high as 40% in resource-poor regions of South Asia. This disease burden is linked to the pathogen's intrinsic antibiotic resistance and protected intracellular localization in alveolar macrophages. Current treatment regimens require several antibiotics with multi-month oral and intravenous administrations that are difficult to implement in under-resourced settings. Herein, we report that a macrophage-targeted polyciprofloxacin prodrug acts as a surprisingly effective pre-exposure prophylactic in highly lethal murine models of aerosolized human pulmonary melioidosis. A single dose of the polymeric prodrug maintained high lung drug levels and targeted an intracellular depot of ciprofloxacin to the alveolar macrophage compartment that was sustained over a period of 7 days above minimal inhibitory concentrations. This intracellular pharmacokinetic profile provided complete pre-exposure protection in a BSL-3 model with an aerosolized clinical isolate of Burkholderia pseudomallei from Thailand. This total protection was achieved despite the bacteria's relative resistance to ciprofloxacin and where an equivalent dose of pulmonary-administered ciprofloxacin was ineffective. For the first time, we demonstrate that targeting the intracellular macrophage compartment with extended antibiotic dosing can achieve pre-exposure prophylaxis in a model of pulmonary melioidosis. This fully synthetic and modular therapeutic platform could be an important therapeutic approach with new or re-purposed antibiotics for melioidosis prevention and treatment, especially as portable inhalation devices in high-risk, resource-poor settings.
Collapse
Affiliation(s)
- Thomas E J Chavas
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Fang-Yi Su
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Brian Lee
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98104, United States
| | - Lara Lovelace-Macon
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98104, United States; Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Guilhem F Rerolle
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98104, United States; Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Elaine Limqueco
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Shawn J Skerrett
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98104, United States.
| | - Daniel M Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.
| | - T Eoin West
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98104, United States; Department of Global Health, University of Washington, Seattle, Washington 98195, United States.
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.
| |
Collapse
|
22
|
Schnetterle M, Gorgé O, Nolent F, Boughammoura A, Sarilar V, Vigier C, Guillier S, Koch L, Degand N, Ramisse V, Tichadou X, Girleanu M, Favier AL, Valade E, Biot F, Neulat-Ripoll F. Genomic and RT-qPCR analysis of trimethoprim-sulfamethoxazole and meropenem resistance in Burkholderia pseudomallei clinical isolates. PLoS Negl Trop Dis 2021; 15:e0008913. [PMID: 33592059 PMCID: PMC7909661 DOI: 10.1371/journal.pntd.0008913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/26/2021] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Melioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated. PRINCIPAL FINDINGS We performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter. CONCLUSION The development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.
Collapse
Affiliation(s)
- Marine Schnetterle
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
- Ecole du Val de Grace, Paris, France
| | - Olivier Gorgé
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Flora Nolent
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Aïda Boughammoura
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Véronique Sarilar
- Molecular Biology Unit, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Cécile Vigier
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Sophie Guillier
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Lionel Koch
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
- Ecole du Val de Grace, Paris, France
| | - Nicolas Degand
- Laboratoire de bactériologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Vincent Ramisse
- DGA MNRBC- Le Bouchet, Division Biologie, ABIO, Vert-le-Petit, France
| | - Xavier Tichadou
- DGA MNRBC- Le Bouchet, Division Biologie, ABIO, Vert-le-Petit, France
| | - Maria Girleanu
- Imagery Unit, Departement of plateforms and technology research, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- Imagery Unit, Departement of plateforms and technology research, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Eric Valade
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
- Ecole du Val de Grace, Paris, France
| | - Fabrice Biot
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| | - Fabienne Neulat-Ripoll
- Bacteriology Unit, UMR-MD1 INSERM 1261, French Armed Biomedical Research Institut, Brétigny-sur-Orge, France
| |
Collapse
|
23
|
Madden DE, Webb JR, Steinig EJ, Currie BJ, Price EP, Sarovich DS. Taking the next-gen step: Comprehensive antimicrobial resistance detection from Burkholderia pseudomallei. EBioMedicine 2020; 63:103152. [PMID: 33285499 PMCID: PMC7724162 DOI: 10.1016/j.ebiom.2020.103152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a major threat to human health. Whole-genome sequencing holds great potential for AMR identification; however, there remain major gaps in accurately and comprehensively detecting AMR across the spectrum of AMR-conferring determinants and pathogens. METHODS Using 16 wild-type Burkholderia pseudomallei and 25 with acquired AMR, we first assessed the performance of existing AMR software (ARIBA, CARD, ResFinder, and AMRFinderPlus) for detecting clinically relevant AMR in this pathogen. B. pseudomallei was chosen due to limited treatment options, high fatality rate, and AMR caused exclusively by chromosomal mutation (i.e. single-nucleotide polymorphisms [SNPs], insertions-deletions [indels], copy-number variations [CNVs], inversions, and functional gene loss). Due to poor performance with existing tools, we developed ARDaP (Antimicrobial Resistance Detection and Prediction) to identify the spectrum of AMR-conferring determinants in B. pseudomallei. FINDINGS CARD, ResFinder, and AMRFinderPlus failed to identify any clinically-relevant AMR in B. pseudomallei; ARIBA identified AMR encoded by SNPs and indels that were manually added to its database. However, none of these tools identified CNV, inversion, or gene loss determinants, and ARIBA could not differentiate AMR determinants from natural genetic variation. In contrast, ARDaP accurately detected all SNP, indel, CNV, inversion, and gene loss AMR determinants described in B. pseudomallei (n≈50). Additionally, ARDaP accurately predicted three previously undescribed determinants. In mixed strain data, ARDaP identified AMR to as low as ~5% allelic frequency. INTERPRETATION Existing AMR software packages are inadequate for chromosomal AMR detection due to an inability to detect resistance conferred by CNVs, inversions, and functional gene loss. ARDaP overcomes these major shortcomings. Further, ARDaP enables AMR prediction from mixed sequence data down to 5% allelic frequency, and can differentiate natural genetic variation from AMR determinants. ARDaP databases can be constructed for any microbial species of interest for comprehensive AMR detection. FUNDING National Health and Medical Research Council (BJC, EPP, DSS); Australian Government (DEM, ES); Advance Queensland (EPP, DSS).
Collapse
Affiliation(s)
- Danielle E Madden
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia
| | - Eike J Steinig
- Australian Institute of Tropical and Health Medicine, James Cook University, Townsville, Queensland, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Tiwi, Northern Territory, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia
| | - Derek S Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia.
| |
Collapse
|
24
|
Pomposello MM, Nemes K, Mosovsky K. Dietary antioxidant seleno-L-methionine protects macrophages infected with Burkholderia thailandensis. PLoS One 2020; 15:e0238174. [PMID: 32881891 PMCID: PMC7470333 DOI: 10.1371/journal.pone.0238174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
Burkholderia pseudomallei is a facultative intracellular pathogen and the causative agent of melioidosis, a potentially life-threatening disease endemic in Southeast Asia and Northern Australia. Treatment of melioidosis is a long and costly process and the pathogen is inherently resistant to several classes of antibiotics, therefore there is a need for new treatments that can help combat the pathogen. Previous work has shown that the combination of interferon-gamma, an immune system activator, and the antibiotic ceftazidime synergistically reduced the bacterial burden of RAW 264.7 macrophages that had been infected with either B. pseudomallei or Burkholderia thailandensis. The mechanism of the interaction was found to be partially dependent on interferon-gamma-induced production of reactive oxygen species inside the macrophages. To further confirm the role of reactive oxygen species in the effectiveness of the combination treatment, we investigated the impact of the antioxidant and reactive oxygen species scavenger, seleno-L-methionine, on intracellular and extracellular bacterial burden of the infected macrophages. In a dose-dependent manner, high concentrations of seleno-L-methionine (1000 μM) were protective towards infected macrophages, resulting in a reduction of bacteria, on its own, that exceeded the reduction caused by the antibiotic alone and rivaled the effect of ceftazidime and interferon-gamma combined. Seleno-L-methionine treatment also resulted in improved viability of infected macrophages compared to untreated controls. We show that the protective effect of seleno-L-methionine was partly due to its inhibition of bacterial growth. In summary, our study shows a role for high dose seleno-L-methionine to protect and treat macrophages infected with B. thailandensis.
Collapse
Affiliation(s)
- Michelle M. Pomposello
- Department of Biological Sciences, Moravian College, Bethlehem, Pennsylvania, United States of America
| | - Kaitlyn Nemes
- Department of Biological Sciences, Moravian College, Bethlehem, Pennsylvania, United States of America
| | - Kara Mosovsky
- Department of Biological Sciences, Moravian College, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
25
|
Saiprom N, Sangsri T, Tandhavanant S, Sengyee S, Phunpang R, Preechanukul A, Surin U, Tuanyok A, Lertmemongkolchai G, Chantratita W, West TE, Chantratita N. Genomic loss in environmental and isogenic morphotype isolates of Burkholderia pseudomallei is associated with intracellular survival and plaque-forming efficiency. PLoS Negl Trop Dis 2020; 14:e0008590. [PMID: 32991584 PMCID: PMC7546507 DOI: 10.1371/journal.pntd.0008590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an environmental bacterium that causes melioidosis. A facultative intracellular pathogen, B. pseudomallei can induce multinucleated giant cells (MNGCs) leading to plaque formation in vitro. B. pseudomallei can switch colony morphotypes under stress conditions. In addition, different isolates have been reported to have varying virulence in vivo, but genomic evolution and the relationship with plaque formation is poorly understood. METHODOLOGY/PRINCIPLE FINDINGS To gain insights into genetic underpinnings of virulence of B. pseudomallei, we screened plaque formation of 52 clinical isolates and 11 environmental isolates as well as 4 isogenic morphotype isolates of B. pseudomallei strains K96243 (types II and III) and 153 (types II and III) from Thailand in A549 and HeLa cells. All isolates except one environmental strain (A4) and K96243 morphotype II were able to induce plaque formation in both cell lines. Intracellular growth assay and confocal microscopy analyses demonstrated that the two plaque-forming-defective isolates were also impaired in intracellular replication, actin polymerization and MNGC formation in infected cells. Whole genome sequencing analysis and PCR revealed that both isolates had a large genomic loss on the same region in chromosome 2, which included Bim cluster, T3SS-3 and T6SS-5 genes. CONCLUSIONS/SIGNIFICANCE Our plaque screening and genomic studies revealed evidence of impairment in plaque formation in environmental isolates of B. pseudomallei that is associated with large genomic loss of genes important for intracellular multiplication and MNGC formation. These findings suggest that the genomic and phenotypic differences of environmental isolates may be associated with clinical infection.
Collapse
Affiliation(s)
- Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanes Sangsri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anucha Preechanukul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Uriwan Surin
- Department of Medical Laboratory, Nakhon Phanom Hospital, Nakhon Phanom, Thailand
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Department of Clinical Immunology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Optical microscopy reveals the dynamic nature of B. pseudomallei morphology during β-lactam antimicrobial susceptibility testing. BMC Microbiol 2020; 20:209. [PMID: 32677888 PMCID: PMC7364477 DOI: 10.1186/s12866-020-01865-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023] Open
Abstract
Background In Gram-negative species, β-lactam antibiotics target penicillin binding proteins (PBPs) resulting in morphological alterations of bacterial cells. Observations of antibiotic-induced cell morphology changes can rapidly and accurately differentiate drug susceptible from resistant bacterial strains; however, resistant cells do not always remain unchanged. Burkholderia pseudomallei is a Gram-negative, biothreat pathogen and the causative agent of melioidosis, an often fatal infectious disease for humans. Results Here, we identified β-lactam targets in B. pseudomallei by in silico analysis. Ten genes encoding putative PBPs, including PBP-1, PBP-2, PBP-3 and PBP-6, were detected in the genomes of susceptible and resistant strains. Real-time, live-cell imaging of B. pseudomallei strains demonstrated dynamic morphological changes in broth containing clinically relevant β-lactam antibiotics. At sub-inhibitory concentrations of ceftazidime (CAZ), amoxicillin-clavulanic acid (AMC), and imipenem (IPM), filamentation, varying in length and proportion, was an initial response of the multidrug-resistant strain Bp1651 in exponential phase. However, a dominant morphotype reemerged during stationary phase that resembled cells unexposed to antibiotics. Similar morphology dynamics were observed for AMC-resistant strains, MSHR1655 and 724644, when exposed to sub-inhibitory concentrations of AMC. For all B. pseudomallei strains evaluated, increased exposure time and exposure to increased concentrations of AMC at and above minimal inhibitory concentrations (MICs) in broth resulted in cell morphology shifts from filaments to spheroplasts and/or cell lysis. B. pseudomallei morphology changes were more consistent in IPM. Spheroplast formation followed by cell lysis was observed for all strains in broth containing IPM at concentrations greater than or equal to MICs, however, the time to cell lysis was variable. B. pseudomallei cell lengths were strain-, drug- and drug concentration-dependent. Conclusions Both resistant and susceptible B. pseudomallei strains exhibited filamentation during early exposure to AMC and CAZ at concentrations used to interpret susceptibility (based on CLSI guidelines). While developing a rapid β-lactam antimicrobial susceptibility test based on cell-shape alone requires more extensive analyses, optical microscopy detected B. pseudomallei growth attributes that lend insight into antibiotic response and antibacterial mechanisms of action.
Collapse
|
27
|
Somprasong N, Hall CM, Webb JR, Sahl JW, Wagner DM, Keim P, Currie BJ, Schweizer HP. Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A β-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria. mBio 2020; 11:e00592-20. [PMID: 32291300 PMCID: PMC7157819 DOI: 10.1128/mbio.00592-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met.IMPORTANCEBurkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures.
Collapse
Affiliation(s)
- Nawarat Somprasong
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Carina M Hall
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jessica R Webb
- Global and Tropical Heath Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J Currie
- Global and Tropical Heath Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
30
|
Sarovich DS, Webb JR, Pitman MC, Viberg LT, Mayo M, Baird RW, Robson JM, Currie BJ, Price EP. Raising the Stakes: Loss of Efflux Pump Regulation Decreases Meropenem Susceptibility in Burkholderia pseudomallei. Clin Infect Dis 2019; 67:243-250. [PMID: 29394337 DOI: 10.1093/cid/ciy069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Background Burkholderia pseudomallei, the causative agent of the high-mortality disease melioidosis, is a gram-negative bacterium that is naturally resistant to many antibiotics. There is no vaccine for melioidosis, and effective eradication is reliant on biphasic and prolonged antibiotic administration. The carbapenem drug meropenem is the current gold standard option for treating severe melioidosis. Intrinsic B. pseudomallei resistance toward meropenem has not yet been documented; however, resistance could conceivably develop over the course of infection, leading to prolonged sepsis and treatment failure. Methods We examined our 30-year clinical collection of melioidosis cases to identify B. pseudomallei isolates with reduced meropenem susceptibility. Isolates were subjected to minimum inhibitory concentration (MIC) testing toward meropenem. Paired isolates from patients who had evolved decreased susceptibility were subjected to whole-genome sequencing. Select agent-compliant genetic manipulation was carried out to confirm the molecular mechanisms conferring resistance. Results We identified 11 melioidosis cases where B. pseudomallei isolates developed decreased susceptibility toward meropenem during treatment, including 2 cases not treated with this antibiotic. Meropenem MICs increased from 0.5-0.75 µg/mL to 3-8 µg/mL. Comparative genomics identified multiple mutations affecting multidrug resistance-nodulation-division (RND) efflux pump regulators, with concomitant overexpression of their corresponding pumps. All cases were refractory to treatment despite aggressive, targeted therapy, and 2 were associated with a fatal outcome. Conclusions This study confirms the role of RND efflux pumps in decreased meropenem susceptibility in B. pseudomallei. These findings have important ramifications for the diagnosis, treatment, and management of life-threatening melioidosis cases.
Collapse
Affiliation(s)
- Derek S Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Northern Territory.,Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland
| | - Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Northern Territory
| | - Matthew C Pitman
- Department of Territory Pathology, Royal Darwin Hospital, Tiwi, Northern Territory.,Infectious Diseases, Royal Darwin Hospital, Tiwi, Northern Territory
| | - Linda T Viberg
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Northern Territory
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Northern Territory
| | - Robert W Baird
- Department of Territory Pathology, Royal Darwin Hospital, Tiwi, Northern Territory.,Infectious Diseases, Royal Darwin Hospital, Tiwi, Northern Territory
| | | | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Northern Territory.,Infectious Diseases, Royal Darwin Hospital, Tiwi, Northern Territory.,Northern Territory Medical Program, Royal Darwin Hospital, Tiwi, Australia
| | - Erin P Price
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Northern Territory.,Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland
| |
Collapse
|
31
|
Shearer JD, Saylor ML, Butler CM, Treston AM, Heine HS, Chirakul S, Schweizer HP, Louie A, Drusano GL, Zumbrun SD, Warfield KL. GC-072: A Novel Therapeutic Candidate for Oral Treatment of Melioidosis and Infections Caused by Select Biothreat Pathogens. Antimicrob Agents Chemother 2019; 63:AAC.00834-19. [PMID: 31548183 PMCID: PMC6879241 DOI: 10.1128/aac.00834-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/13/2019] [Indexed: 12/03/2022] Open
Abstract
Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis, is a Gram-negative bacterium with additional concern as a biothreat pathogen. The mortality rate from B. pseudomallei varies depending on the type of infection and extent of available health care, but in the case of septicemia left untreated it can range from 50 - 90%. Current therapy for melioidosis is biphasic, consisting of parenteral acute-phase treatment for two weeks or longer, followed by oral eradication-phase treatment lasting several months. An effective oral therapeutic for outpatient treatment of acute-phase melioidosis is needed. GC-072 is a potent, 4-oxoquinolizine antibiotic with selective inhibitory activity against bacterial topoisomerases. GC-072 has demonstrated in vitro potency against susceptible and drug-resistant strains of B. pseudomallei and is also active against Burkholderia mallei, Bacillus anthracis, Yersinia pestis, and Francisella tularensis GC-072 is bactericidal both extra- and intracellularly, with rapid killing noted within a few hours and reduced development of resistance compared to ceftazidime. GC-072, delivered intragastrically to mimic oral administration, promoted dose-dependent survival in mice using lethal inhalational models of B. pseudomallei infection following exposure to a 24 or 339 LD50 challenge with B. pseudomallei strain 1026b. Overall, GC-072 appears to be a strong candidate for first-line, oral treatment of melioidosis.
Collapse
Affiliation(s)
| | | | | | | | - Henry S Heine
- Institute for Therapeutic Innovation, University of Florida, College of Medicine, Orlando, FL
| | - Sunisa Chirakul
- Emerging Pathogens Institute, University of Florida, College of Medicine, Gainesville, FL
| | - Herbert P Schweizer
- Institute for Therapeutic Innovation, University of Florida, College of Medicine, Orlando, FL
- Emerging Pathogens Institute, University of Florida, College of Medicine, Gainesville, FL
| | - Arnold Louie
- Institute for Therapeutic Innovation, University of Florida, College of Medicine, Orlando, FL
| | - George L Drusano
- Institute for Therapeutic Innovation, University of Florida, College of Medicine, Orlando, FL
| | - Steven D Zumbrun
- United States Army Medical Research Institute of Infectious Diseases, Frederick MD
| | | |
Collapse
|
32
|
Hadpanus P, Permsirivisarn P, Roytrakul S, Tungpradabkul S. Biomarker discovery in the biofilm-forming process of Burkholderia pseudomallei by mass-spectrometry. J Microbiol Methods 2019; 159:26-33. [PMID: 30797019 DOI: 10.1016/j.mimet.2019.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
A serious human infectious disease called Melioidosis is a result of Burkholderia pseudomallei infection. Treatment for infected individuals is difficult due to a wide range of ineffective antibiotics including a high level of antibiotic tolerance which has been known to be caused by biofilm production. However, biofilm forming processes of this bacterium are not well documented despite multiple-methodologies being applied. In this study, we utilized a proteomics strategy called whole cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (whole cell MALDI-TOF MS) to discover a potential biomarker relating biofilm forming in B. pseudomallei. The results presented a novel specific type of enzyme amylo-alpha-1, 6-glucosidase, which was demonstrated by a higher level of gene expression during the biofilm development. Our results also suggested a list of candidate markers that might be involved in this scenario. Eventually, this knowledge may expand valuable data to the biofilm study that may increase effective treatments for people infected with B. pseudomallei and possibly other antibiotic tolerant bacteria.
Collapse
Affiliation(s)
- Piyapong Hadpanus
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Sitthiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand.
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
33
|
Gislason AS, Turner K, Domaratzki M, Cardona ST. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia. Microb Genom 2019; 3. [PMID: 29208119 PMCID: PMC5729917 DOI: 10.1099/mgen.0.000140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkholderia cenocepacia K56-2 belongs to the Burkholderia cepacia complex, a group of Gram-negative opportunistic pathogens that have large and dynamic genomes. In this work, we identified the essential genome of B. cenocepacia K56-2 using high-density transposon mutagenesis and insertion site sequencing (Tn-seq circle). We constructed a library of one million transposon mutants and identified the transposon insertions at an average of one insertion per 27 bp. The probability of gene essentiality was determined by comparing of the insertion density per gene with the variance of neutral datasets generated by Monte Carlo simulations. Five hundred and eight genes were not significantly disrupted, suggesting that these genes are essential for survival in rich, undefined medium. Comparison of the B. cenocepacia K56-2 essential genome with that of the closely related B. cenocepacia J2315 revealed partial overlapping, suggesting that some essential genes are strain-specific. Furthermore, 158 essential genes were conserved in B. cenocepacia and two species belonging to the Burkholderia pseudomallei complex, B. pseudomallei K96243 and Burkholderia thailandensis E264. Porins, including OpcC, a lysophospholipid transporter, LplT, and a protein involved in the modification of lipid A with aminoarabinose were found to be essential in Burkholderia genomes but not in other bacterial essential genomes identified so far. Our results highlight the existence of cell envelope processes that are uniquely essential in species of the genus Burkholderia for which the essential genomes have been identified by Tn-seq.
Collapse
Affiliation(s)
- April S Gislason
- 1Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith Turner
- 2Monsanto Company, 700 Chesterfield Parkway W, Chesterfield, MO, 63017, USA
| | - Mike Domaratzki
- 3Department of Computer Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Silvia T Cardona
- 4Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
34
|
Persistent Burkholderia pseudomallei Bacteremia in A Filipino Immigrant to the United States: A Case Report. Trop Med Infect Dis 2019; 4:tropicalmed4010020. [PMID: 30696064 PMCID: PMC6473904 DOI: 10.3390/tropicalmed4010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2019] [Accepted: 01/26/2019] [Indexed: 11/28/2022] Open
Abstract
Melioidosis is rare in the United States and endemic to Southeast Asia and Australia. Treatment includes an initial intensive phase of intravenous ceftazidime or meropenem monotherapy depending on severity. The following report describes a case of persistent bacteremia with ceftazidime failure and prolonged meropenem therapy on a ceftazidime-susceptible strain of Burkholderia pseudomallei.
Collapse
|
35
|
Chirakul S, Somprasong N, Norris MH, Wuthiekanun V, Chantratita N, Tuanyok A, Schweizer HP. Burkholderia pseudomallei acquired ceftazidime resistance due to gene duplication and amplification. Int J Antimicrob Agents 2019; 53:582-588. [PMID: 30639528 DOI: 10.1016/j.ijantimicag.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Ceftazidime (CAZ) is the antibiotic of choice for the treatment of Burkholderia pseudomallei infection (melioidosis). The chromosomally-encoded PenA β-lactamase possesses weak cephalosporinase activity. The wild-type penA gene confers clinically significant CAZ resistance only when overexpressed due to a promoter mutation, transcriptional antitermination or by gene duplication and amplification (GDA). Here we characterise a reversible 33-kb GDA event involving wild-type penA in a CAZ-resistant B. pseudomallei clinical isolate from Thailand. We show that duplication arises from exchanges between short (<10 bp) chromosomal sequences, which in this example consist of 4-bp repeats flanked by 3-bp inverted repeats. GDA involving β-lactamases may be a common CAZ resistance mechanism in B. pseudomallei.
Collapse
Affiliation(s)
- Sunisa Chirakul
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA
| | - Nawarat Somprasong
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA
| | - Michael H Norris
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
McLaughlin HP, Sue D. Rapid antimicrobial susceptibility testing and β-lactam-induced cell morphology changes of Gram-negative biological threat pathogens by optical screening. BMC Microbiol 2018; 18:218. [PMID: 30563467 PMCID: PMC6299660 DOI: 10.1186/s12866-018-1347-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND For Yersinia pestis, Burkholderia pseudomallei, and Burkholderia mallei, conventional broth microdilution (BMD) is considered the gold standard for antimicrobial susceptibility testing (AST) and, depending on the species, requires an incubation period of 16-20 h, or 24-48 h according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. After a diagnosis of plague, melioidosis or glanders during an outbreak or after an exposure event, the timely distribution of appropriate antibiotics for treatment or post-exposure prophylaxis of affected populations could reduce mortality rates. RESULTS Herein, we developed and evaluated a rapid, automated susceptibility test for these Gram-negative bacterial pathogens based on time-lapse imaging of cells incubating in BMD microtitre drug panels using an optical screening instrument (oCelloScope). In real-time, the instrument screened each inoculated well containing broth with various concentrations of antibiotics published by CLSI for primary testing: ciprofloxacin (CIP), doxycycline (DOX) and gentamicin (GEN) for Y. pestis; imipenem (IPM), ceftazidime (CAZ) and DOX for B. mallei; and IPM, DOX, CAZ, amoxicillin-clavulanic acid (AMC) and trimethoprim-sulfamethoxazole (SXT) for B. pseudomallei. Based on automated growth kinetic data, the time required to accurately determine susceptibility decreased by ≥70% for Y. pestis and ≥ 50% for B. mallei and B. pseudomallei compared to the times required for conventional BMD testing. Susceptibility to GEN, IPM and DOX could be determined in as early as three to six hours. In the presence of CAZ, susceptibility based on instrument-derived growth values could not be determined for the majority of B. pseudomallei and B. mallei strains tested. Time-lapse video imaging of these cultures revealed that the formation of filaments in the presence of this cephalosporin at inhibitory concentrations was detected as growth. Other β-lactam-induced cell morphology changes, such as the formation of spheroplasts and rapid cell lysis, were also observed and appear to be strain- and antibiotic concentration-dependent. CONCLUSIONS A rapid, functional AST was developed and real-time video footage captured β-lactam-induced morphologies of wild-type B. mallei and B. pseudomallei strains in broth. Optical screening reduced the time to results required for AST of three Gram-negative biothreat pathogens using clinically relevant, first-line antibiotics compared to conventional BMD.
Collapse
Affiliation(s)
- Heather P. McLaughlin
- Laboratory of Preparedness and Response Branch, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS-H17-5, Atlanta, GA 30333 USA
| | - David Sue
- Laboratory of Preparedness and Response Branch, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS-H17-5, Atlanta, GA 30333 USA
| |
Collapse
|
37
|
Webb JR, Price EP, Somprasong N, Schweizer HP, Baird RW, Currie BJ, Sarovich DS. Development and validation of a triplex quantitative real-time PCR assay to detect efflux pump-mediated antibiotic resistance in Burkholderia pseudomallei. Future Microbiol 2018; 13:1403-1418. [PMID: 30256166 PMCID: PMC6190177 DOI: 10.2217/fmb-2018-0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/23/2018] [Indexed: 01/12/2023] Open
Abstract
AIM To develop a probe-based triplex quantitative real-time PCR assay to simultaneously detect the upregulation of the efflux pumps AmrAB-OprA, BpeAB-OprB and BpeEF-OprC in Burkholderia pseudomallei strains exhibiting increased minimum inhibitory concentrations toward meropenem, doxycycline or trimethoprim-sulfamethoxazole. METHODS The triplex assay was developed and subsequently tested on RNA isolated from eight clinical and eight laboratory-generated B. pseudomallei mutants harboring efflux pump regulator mutations. RESULTS The triplex assay accurately detected efflux pump upregulation in all clinical and laboratory mutants, which corresponded with decreased antibiotic susceptibility or antibiotic resistance. CONCLUSION Rapid detection of antibiotic resistance provides clinicians with a tool to identify potential treatment failure in near real time, enabling informed alteration of treatment during an infection and improved patient outcomes.
Collapse
Affiliation(s)
- Jessica R Webb
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Erin P Price
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nawarat Somprasong
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Robert W Baird
- Departments of Infectious Diseases & Pathology & Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Departments of Infectious Diseases & Pathology & Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
38
|
Heacock-Kang Y, McMillan IA, Zarzycki-Siek J, Sun Z, Bluhm AP, Cabanas D, Hoang TT. The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp. Sci Rep 2018; 8:12422. [PMID: 30127446 PMCID: PMC6102250 DOI: 10.1038/s41598-018-30853-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022] Open
Abstract
Natural competency requires uptake of exogenous DNA from the environment and the integration of that DNA into recipient bacteria can be used for DNA-repair or genetic diversification. The Burkholderia genus is unique in that only some of the species and strains are naturally competent. We identified and characterized two genes, comE and crp, from naturally competent B. pseudomallei 1026b that play a role in DNA uptake and catabolism. Single-copies of rhamnose-inducible comE and crp genes were integrated into a Tn7 attachment-site in non-naturally competent Burkholderia including pathogens B. pseudomallei K96243, B. cenocepacia K56-2, and B. mallei ATCC23344. Strains expressing comE or crp were assayed for their ability to uptake and catabolize DNA. ComE and Crp allowed non-naturally competent Burkholderia species to catabolize DNA, uptake exogenous gfp DNA and express GFP. Furthermore, we used synthetic comE and crp to expand the utility of the λ-red recombineering system for genetic manipulation of non-competent Burkholderia species. A newly constructed vector, pKaKa4, was used to mutate the aspartate semialdehyde dehydrogenase (asd) gene in four B. mallei strains, leading to the complete attenuation of these tier-1 select-agents. These strains have been excluded from select-agent regulations and will be of great interest to the field.
Collapse
Affiliation(s)
- Yun Heacock-Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Ian A McMillan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Andrew P Bluhm
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Darlene Cabanas
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Tung T Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| |
Collapse
|
39
|
Rhodes KA, Somprasong N, Podnecky NL, Mima T, Chirakul S, Schweizer HP. Molecular determinants of Burkholderia pseudomallei BpeEF-OprC efflux pump expression. MICROBIOLOGY-SGM 2018; 164:1156-1167. [PMID: 30024368 DOI: 10.1099/mic.0.000691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Burkholderia pseudomallei, the cause of melioidosis, is intrinsically resistant to many antibiotics. Acquired multidrug resistance, including resistance to doxycycline and co-trimoxazole used for melioidosis eradication phase therapy, is mainly attributed to constitutive expression of the BpeEF-OprC efflux pump. Constitutive expression of this pump is caused by mutations affecting two highly similar LysR-type transcriptional regulators (LTTR), BpeT and BpeS, but their interaction with the regulatory region governing BpeEF-OprC expression has not yet been studied. The bpeE-bpeF-oprC genes are distally located in the llpE-bpeE-bpeF-oprC operon. The llpE gene encodes a putative lipase/esterase of unknown function. We show that in a bpeT mutant llpE is constitutively co-transcribed with bpeE-bpeF-oprC. As expected from previous studies with B. cenocepacia, deletion of llpE does not affect antibiotic efflux. Using transcriptional bpeE'-lacZ fusions, we demonstrate that the 188 bp bpeT-llpE intergenic region located between bpeT and the llpE-bpeE-bpeF-oprC operon contains regulatory elements needed for control of bpeT and llpE-bpeE-bpeF-oprC operon expression. By native polyacrylamide gel electrophoresis and electrophoretic mobility shift assays with purified recombinant BpeT and BpeS proteins, we show BpeT and BpeS form oligomers that share a 14 bp binding site overlapping the essential region required for llpE-bpeE-bpeF-oprC expression. The binding site contains the conserved T-N11-A LTTR box motif involved in binding of LysR proteins, which in concert with two other possible LTTR boxes may mediate BpeT and BpeS regulation of BpeEF-OprC expression. These studies form the basis for further investigation of BpeEF-OprC expression and regulation at the molecular level by yet unknown external stimuli.
Collapse
Affiliation(s)
- Katherine A Rhodes
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,†Present address: University of Arizona BIO5 Institute, Tucson, AZ 85721, USA
| | - Nawarat Somprasong
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Nicole L Podnecky
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,‡Present address: Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Tromsø, 9037 Tromsø, Norway
| | - Takehiko Mima
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,§Present address: Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sunisa Chirakul
- 2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- 3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
40
|
Chirakul S, Norris MH, Pagdepanichkit S, Somprasong N, Randall LB, Shirley JF, Borlee BR, Lomovskaya O, Tuanyok A, Schweizer HP. Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance. Sci Rep 2018; 8:10652. [PMID: 30006637 PMCID: PMC6045580 DOI: 10.1038/s41598-018-28843-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/01/2018] [Indexed: 01/15/2023] Open
Abstract
Therapy of Burkholderia pseudomallei acute infections is largely limited to a few β-lactam antibiotics such as ceftazidime or meropenem. Although relatively rare, resistance emergence during therapy leads to treatment failures with high mortality rates. In the absence of acquired external resistance determinants in B. pseudomallei emergence of β-lactam resistance is invariably caused by mutational modification of genomically encoded factors. These include the deletion of the ceftazidime target penicillin-binding protein 3 or amino acid changes in the Class A PenA β-lactamase that expand its substrate spectrum, as well as penA gene duplication and amplification or its overexpression via transcriptional up-regulation. Evidence is presented that penA is co-transcribed with the upstream nlpD1 gene, that the transcriptional terminator for nlpD1 serves as a penA attenuator and that generation of a new promoter immediately upstream of the terminator/attenuator by a conserved G to A transition leads to anti-termination and thus constitutive PenA expression and extended β-lactam resistance. Further evidence obtained with the extensively β-lactam resistant clinical isolate Bp1651 shows that in addition to PenA overexpression and structural mutations other adaptive mechanisms contribute to intrinsic and acquired B. pseudomallei β-lactam resistance.
Collapse
Affiliation(s)
- Sunisa Chirakul
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Michael H Norris
- University of Florida, College of Veterinary Medicine, Emerging Pathogens Institute, Department of Infectious Diseases and Immunity, Gainesville, FL, 32610, USA
| | - Sirawit Pagdepanichkit
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
- Chulalongkorn University, Faculty of Veterinary Science, Department of Veterinary Public Health, Research Unit in Microbial Food Safety and Antimicrobial Resistance, Bangkok, 10330, Thailand
| | - Nawarat Somprasong
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Linnell B Randall
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
- Cornell University, Boyd Thompson Institute, Ithaca, NY, 14853, USA
| | - James F Shirley
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Bradley R Borlee
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Fort Collins, CO, 80523, USA
| | | | - Apichai Tuanyok
- University of Florida, College of Veterinary Medicine, Emerging Pathogens Institute, Department of Infectious Diseases and Immunity, Gainesville, FL, 32610, USA
| | - Herbert P Schweizer
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA.
| |
Collapse
|
41
|
Targeting the Nonmevalonate Pathway in Burkholderia cenocepacia Increases Susceptibility to Certain β-Lactam Antibiotics. Antimicrob Agents Chemother 2018; 62:AAC.02607-17. [PMID: 29439968 DOI: 10.1128/aac.02607-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
The nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality of dxr, the second gene of the nonmevalonate pathway, in B. cenocepacia and to determine whether interfering with the nonmevalonate pathway increases susceptibility toward antibiotics. To this end, a rhamnose-inducible conditional dxr knockdown mutant of B. cenocepacia strain K56-2 (B. cenocepacia K56-2dxr) was constructed, using a plasmid which enables the delivery of a rhamnose-inducible promoter in the chromosome. Expression of dxr is essential for bacterial growth; the growth defect observed in the dxr mutant could be complemented by expressing dxr in trans under the control of a constitutive promoter, but not by providing 2-C-methyl-d-erythritol-4-phosphate, the reaction product of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase). B. cenocepacia K56-2dxr showed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, and cefotaxime, while susceptibility to other antibiotics was not (or was much less) affected; this increased susceptibility could also be complemented by in trans expression of dxr A similarly increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the nonmevalonate pathway is essential in B. cenocepacia and suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combat B. cenocepacia infections.
Collapse
|
42
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
43
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
44
|
Boottanun P, Potisap C, Hurdle JG, Sermswan RW. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express 2017; 7:16. [PMID: 28050857 PMCID: PMC5209304 DOI: 10.1186/s13568-016-0302-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
Abstract
Bacillus species are Gram-positive bacteria found in abundance in nature and their secondary metabolites were found to possess various potential activities, notably antimicrobial. In this study, Bacillus amyloliquefaciens N2-4 and N3-8 were isolated from soil and their metabolites could kill Burkholderia pseudomallei, a Gram-negative pathogenic bacterium also found in soil in its endemic areas. Moreover, the metabolites were able to kill drug resistant isolates of B. pseudomallei and also inhibit other pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii but not the non-pathogenic Burkholderia thailandensis, which is closely related to B. pseudomallei. Since the antimicrobial activity of N3-8 was not partially decreased or abolished when treated with proteolytic enzymes or autoclaved, but N2-4 was, these two strains should have produced different compounds. The N3-8 metabolites with antimicrobial activity consisted of both protein and non-protein compounds. The inhibition spectrum of the precipitated proteins compared to the culture supernatant indicated a possible synergistic effect of the non-protein and peptide compounds of N3-8 isolates against other pathogens. When either N2-4 or N3-8 isolates was co-cultured with B. pseudomallei the numbers of the bacteria decreased by 5 log10 within 72 h. Further purification and characterization of the metabolites is required for future use of the bacteria or their metabolites as biological controls of B. pseudomallei in the environment or for development as new drugs for problematic pathogenic bacteria.
Collapse
|
45
|
Sengyee S, Saiprom N, Paksanont S, Limmathurotsakul D, Wuthiekanun V, Chantratita N. Susceptibility of Clinical Isolates of Burkholderia pseudomallei to a Lipid A Biosynthesis Inhibitor. Am J Trop Med Hyg 2017; 97:62-67. [PMID: 28719324 PMCID: PMC5508901 DOI: 10.4269/ajtmh.16-0858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a serious infection associated with high mortality and relapse. Current antimicrobial therapy using ceftazidime (CAZ) is often ineffective. Inhibitors of LpxC, the enzyme responsible for lipid A biosynthesis, have potential antimicrobial activity against several Gram-negative bacteria in vivo, but their activity against B. pseudomallei is unclear. Herein, we investigated the susceptibility of B. pseudomallei clinical isolates to LpxC-4, an LpxC inhibitor, and LpxC-4 in combination with CAZ. Time-kill assays for bactericidal activity were conducted for B. pseudomallei K96243, revealing growth inhibition and bactericidal effect at LpxC-4 concentrations of 2 μg/mL and 4 μg/mL, respectively. No significant synergistic effect was observed with the combination of LpxC-4 and CAZ. LpxC-4 susceptibility was tested on three groups of clinical isolates:1) CAZ- and trimethoprim-sulfamethoxazole (SXT)-susceptible (N = 71), 2) CAZ-resistant (N = 14), and 3) SXT-resistant (N = 23) isolates, by broth microdilution. The minimum concentration of LpxC-4 required to inhibit the growth of 90% of organisms was 2 μg/mL for all isolates. The median minimum inhibitory concentration of both the CAZ/SXT-susceptible and CAZ-resistant groups was 1 μg/mL (interquartile range [IQR] = 1-2 μg/mL), compared with 2 μg/mL (IQR = 2-4 μg/mL) for the SXT-resistant group. Cell morphology was observed after drug exposure by immunofluorescent staining, and a change from rod-shaped to cell wall-defective spherical cells was observed in surviving bacteria. LpxC-4 is a potent bactericidal agent against B. pseudomallei and warrants further testing as a new antibiotic to treat melioidosis.
Collapse
Affiliation(s)
- Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suporn Paksanont
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Price EP, Currie BJ, Sarovich DS. Genomic Insights Into the Melioidosis Pathogen, Burkholderia pseudomallei. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0111-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Norris MH, Rahman Khan MS, Schweizer HP, Tuanyok A. An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis. BMC Microbiol 2017; 17:132. [PMID: 28592242 PMCID: PMC5461690 DOI: 10.1186/s12866-017-1040-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The work was undertaken to expand the tools available for researching Burkholderia pseudomallei (Bp), the etiological agent of the tropical disease melioidosis. Melioidosis has the potential to pose a severe threat to public health and safety. In the United States, Bp is listed as a Tier-1 select agent by the Centers for Disease Control and Prevention (CDC), thus requiring high levels of regulation and biosafety level 3 (BSL3) facilities for experimental manipulation of live organisms. An avirulent ∆purM derivative of strain 1026b (Bp82) has proven to be a valuable tool for biosafe research as a select-agent excluded strain, but the high level of genetic diversity between Bp strains necessitates an expansion of the biosafe toolset. RESULTS The ∆purM mutation was recapitulated in the Bp 576a strain, a serotype B background. An important difference between strains 1026b and 576a is the lipopolysaccharide (LPS), a major virulence factor and protective antigen. Polyclonal sera from 1026b-challenged non-human primates showed no cross reactivity with strain 576a LPS and low reactivity with whole cell lysate. Strain 576a replicates to higher levels in mouse organs and induces more TNF-α in the lungs of BALB/c mice compared to 1026b. The newly created Bp 576a ∆purM strain, designated 576mn, was auxotrophic for adenine in minimal media, capable of wild-type growth in rich media with addition of adenine, and auxotrophy was abrogated with single-copy complementation. Bp 576mn was unable to replicate in human cells and was avirulent in BALB/c mice following high-dose intranasal inoculation, similar to Bp82. Organ loads indicated a significant reduction in bacterial replication. CONCLUSIONS In this work, the new biosafe strain 576mn with atypical type B LPS was generated. This strain should prove a valuable addition to the toolkit for biosafe studies of Bp and development of therapeutic and preventative strategies aimed at combatting melioidosis. Strain 576mn is an ideal candidate for select-agent exclusion.
Collapse
Affiliation(s)
- Michael H Norris
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Md Siddiqur Rahman Khan
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Apichai Tuanyok
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
48
|
Bugrysheva JV, Sue D, Gee JE, Elrod MG, Hoffmaster AR, Randall LB, Chirakul S, Tuanyok A, Schweizer HP, Weigel LM. Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis. Antimicrob Agents Chemother 2017; 61:e00010-17. [PMID: 28396541 PMCID: PMC5444168 DOI: 10.1128/aac.00010-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis.
Collapse
Affiliation(s)
| | - David Sue
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jay E Gee
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mindy G Elrod
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Linnell B Randall
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Sunisa Chirakul
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Apichai Tuanyok
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Linda M Weigel
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
49
|
Loss of Methyltransferase Function and Increased Efflux Activity Leads to Doxycycline Resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 2017; 61:AAC.00268-17. [PMID: 28348161 DOI: 10.1128/aac.00268-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023] Open
Abstract
The soil-dwelling bacterium Burkholderia pseudomallei is the causative agent of the potentially fatal disease melioidosis. The lack of a vaccine toward B. pseudomallei means that melioidosis treatment relies on prolonged antibiotic therapy, which can last up to 6 months in duration or longer. Due to intrinsic resistance, few antibiotics are effective against B. pseudomallei The lengthy treatment regimen required increases the likelihood of resistance development, with subsequent potentially fatal relapse. Doxycycline (DOX) has historically played an important role in the eradication phase of melioidosis treatment. Both primary and acquired DOX resistances have been documented in B. pseudomallei; however, the molecular mechanisms underpinning DOX resistance have remained elusive. Here, we identify and functionally characterize the molecular mechanisms conferring acquired DOX resistance in an isogenic B. pseudomallei pair. Two synergistic mechanisms were identified. The first mutation occurred in a putative S-adenosyl-l-methionine-dependent methyltransferase (encoded by BPSL3085), which we propose leads to altered ribosomal methylation, thereby decreasing DOX binding efficiency. The second mutation altered the function of the efflux pump repressor gene, amrR, resulting in increased expression of the resistance-nodulation-division efflux pump, AmrAB-OprA. Our findings highlight the diverse mechanisms by which B. pseudomallei can become resistant to antibiotics used in melioidosis therapy and the need for resistance monitoring during treatment regimens, especially in patients with prolonged or recrudesced positive cultures for B. pseudomallei.
Collapse
|
50
|
Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC, Currie BJ, Price EP. Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients. mBio 2017; 8:e00356-17. [PMID: 28400528 PMCID: PMC5388805 DOI: 10.1128/mbio.00356-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder characterized by progressive lung function decline. CF patients are at an increased risk of respiratory infections, including those by the environmental bacterium Burkholderia pseudomallei, the causative agent of melioidosis. Here, we compared the genomes of B. pseudomallei isolates collected between ~4 and 55 months apart from seven chronically infected CF patients. Overall, the B. pseudomallei strains showed evolutionary patterns similar to those of other chronic infections, including emergence of antibiotic resistance, genome reduction, and deleterious mutations in genes involved in virulence, metabolism, environmental survival, and cell wall components. We documented the first reported B. pseudomallei hypermutators, which were likely caused by defective MutS. Further, our study identified both known and novel molecular mechanisms conferring resistance to three of the five clinically important antibiotics for melioidosis treatment. Our report highlights the exquisite adaptability of microorganisms to long-term persistence in their environment and the ongoing challenges of antibiotic treatment in eradicating pathogens in the CF lung. Convergent evolution with other CF pathogens hints at a degree of predictability in bacterial evolution in the CF lung and potential targeted eradication of chronic CF infections in the future.IMPORTANCEBurkholderia pseudomallei, the causative agent of melioidosis, is an environmental opportunistic bacterium that typically infects immunocompromised people and those with certain risk factors such as cystic fibrosis (CF). Patients with CF tend to develop chronic melioidosis infections, for reasons that are not well understood. This report is the first to describe B. pseudomallei evolution within the CF lung during chronic infection. We show that the pathways by which B. pseudomallei adapts to the CF lung are similar to those seen in better-studied CF pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia complex species. Adaptations include the accumulation of antibiotic resistance, loss of nonessential genes, metabolic alterations, and virulence factor attenuation. Known and novel mechanisms of resistance to three of the five antibiotics used in melioidosis treatment were identified. Similar pathways of evolution in CF pathogens, including B. pseudomallei, provide exciting avenues for more-targeted treatment of chronic, recalcitrant infections.
Collapse
Affiliation(s)
- Linda T Viberg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - James B Geake
- Department of Respiratory Medicine, The Lyell McEwin Hospital, Elizabeth Vale, South Australia, Australia
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Erin P Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|