1
|
Parwin S, Srivastava P. Role of Orphan ParA Proteins in Replication and Cell Division in Rhodococcus erythropolis PR4. J Basic Microbiol 2025; 65:e2400428. [PMID: 39491475 DOI: 10.1002/jobm.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Bacteria have a very well-regulated mechanism for chromosome segregation and cell division. This process requires a large number of complex proteins to participate and mediate their functionality. Among these complex proteins, ParA and ParB play a vital role for the faithful segregation of chromosome. In Rhodococcus erythropolis PR4, besides the essential parAB operon, there are three orphan copies of parA genes. Here, we report that the orphan ParA2 and ParA3 have distinct roles in the cell cycle. The disruption of the orphan parA2 or parA3 gene resulted in elongated cells. Multiple septal rings and mislocalised septa were observed in ΔparA3 and ΔparA2 mutants, respectively. The subcellular localization of ParA2 revealed a distinct ring- and ribbon-like structure. On the other hand, orphan ParA3 was localized slightly away from the poles. The orphan ParA proteins were found to interact with ParB, the strongest interaction was observed with ParA2. Further, asynchronous replication initiation was observed in ΔparA3 mutants suggesting its role in replication. This is the first report demonstrating the distinct roles of orphan parA genes from Rhodococcus.
Collapse
Affiliation(s)
- Shabnam Parwin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Brown HJ, Duggin IG. MinD proteins regulate CetZ1 localization in Haloferax volcanii. Front Microbiol 2024; 15:1474697. [PMID: 39651350 PMCID: PMC11621097 DOI: 10.3389/fmicb.2024.1474697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
CetZ proteins are archaea-specific homologs of the cytoskeletal proteins FtsZ and tubulin. In the pleomorphic archaeon Haloferax volcanii, CetZ1 contributes to the development of rod shape and motility, and has been implicated in the proper assembly and positioning of the archaellum and chemotaxis motility proteins. CetZ1 shows complex subcellular localization, including irregular midcell structures and filaments along the long axis of developing rods and patches at the cell poles of the motile rod cell type. The polar localizations of archaellum and chemotaxis proteins are also influenced by MinD4, the only previously characterized archaeal member of the MinD family of ATPases, which are better known for their roles in the positioning of the division ring in bacteria. Using minD mutant strains and CetZ1 subcellular localization studies, we show here that a second minD homolog, minD2, has a strong influence on motility and the localization of CetZ1. Knockout of the minD2 gene altered the distribution of a fluorescent CetZ1-mTq2 fusion protein in a broad midcell zone and along the edges of rod cells, and inhibited the localization of CetZ1-mTq2 at the cell poles. MinD4 had a similar but weaker influence on motility and CetZ1-mTq2 localization. The minD2/4 mutant strains formed rod cell shapes like the wildtype at an early log stage of growth. Our results are consistent with distinct roles for CetZ1 in rod shape formation and at the poles of mature rods, that are positioned through the action of the MinD proteins and contribute to the development of swimming motility in multiple ways. They represent the first report of MinD proteins controlling the positioning of tubulin superfamily proteins in archaea.
Collapse
Affiliation(s)
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
3
|
Pulianmackal LT, Vecchiarelli AG. Positioning of cellular components by the ParA/MinD family of ATPases. Curr Opin Microbiol 2024; 79:102485. [PMID: 38723344 PMCID: PMC11407121 DOI: 10.1016/j.mib.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Armitage JP. Twists and turns: 40 years of investigating how and why bacteria swim. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001432. [PMID: 38363121 PMCID: PMC10924463 DOI: 10.1099/mic.0.001432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Fifty years of research has transformed our understanding of bacterial movement from one of description, based on a limited number of electron micrographs and some low-magnification studies of cells moving towards or away from chemical effectors, to probably the best understood behavioural system in biology. We have a molecular understanding of how bacteria sense and respond to changes in their environment and detailed structural insights into the workings of one of the most complex motor structures we know of. Thanks to advances in genomics we also understand how, through evolution, different species have tuned and adapted a core shared system to optimize behaviour in their specific environment. In this review, I will highlight some of the unexpected findings we made during my over 40-year career, how those findings changed some of our understanding of bacterial behaviour and biochemistry and some of the battles to have those observations accepted.
Collapse
|
5
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
6
|
Pulianmackal LT, Limcaoco JMI, Ravi K, Yang S, Zhang J, Tran MK, Ghalmi M, O'Meara MJ, Vecchiarelli AG. Multiple ParA/MinD ATPases coordinate the positioning of disparate cargos in a bacterial cell. Nat Commun 2023; 14:3255. [PMID: 37277398 DOI: 10.1038/s41467-023-39019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
In eukaryotes, linear motor proteins govern intracellular transport and organization. In bacteria, where linear motors involved in spatial regulation are absent, the ParA/MinD family of ATPases organize an array of genetic- and protein-based cellular cargos. The positioning of these cargos has been independently investigated to varying degrees in several bacterial species. However, it remains unclear how multiple ParA/MinD ATPases can coordinate the positioning of diverse cargos in the same cell. Here, we find that over a third of sequenced bacterial genomes encode multiple ParA/MinD ATPases. We identify an organism (Halothiobacillus neapolitanus) with seven ParA/MinD ATPases, demonstrate that five of these are each dedicated to the spatial regulation of a single cellular cargo, and define potential specificity determinants for each system. Furthermore, we show how these positioning reactions can influence each other, stressing the importance of understanding how organelle trafficking, chromosome segregation, and cell division are coordinated in bacterial cells. Together, our data show how multiple ParA/MinD ATPases coexist and function to position a diverse set of fundamental cargos in the same bacterial cell.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose Miguel I Limcaoco
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keerthikka Ravi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sinyu Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mimi K Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J O'Meara
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Köhler R, Sadhir I, Murray SM. ★Track: Inferred counting and tracking of replicating DNA loci. Biophys J 2023; 122:1577-1585. [PMID: 36966362 PMCID: PMC10183378 DOI: 10.1016/j.bpj.2023.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Fluorescent microscopy is the primary method to study DNA organization within cells. However, the variability and low signal/noise commonly associated with live-cell time-lapse imaging challenges quantitative measurements. In particular, obtaining quantitative or mechanistic insight often depends on the accurate tracking of fluorescent particles. Here, we present ★Track, an inference method that determines the most likely temporal tracking of replicating intracellular particles such DNA loci while accounting for missing, merged, and spurious detections. It allows the accurate prediction of particle copy numbers as well as the timing of replication events. We demonstrate ★Track's abilities and gain new insight into plasmid copy number control and the volume dependence of bacterial chromosome replication initiation. By enabling the accurate tracking of DNA loci, ★Track can help to uncover the mechanistic principles of chromosome organization and dynamics across a range of systems.
Collapse
Affiliation(s)
- Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ismath Sadhir
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
8
|
Kazi TA, Mukhopadhyay BC, Mandal S, Biswas SR. Molecular characterization of five novel plasmids from Enterococcus italicus SD1 isolated from fermented milk: An insight into understanding plasmid incompatibility. Gene 2023; 856:147154. [PMID: 36574936 DOI: 10.1016/j.gene.2022.147154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMβ1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
9
|
Köhler R, Kaganovitch E, Murray SM. High-throughput imaging and quantitative analysis uncovers the nature of plasmid positioning by ParABS. eLife 2022; 11:78743. [PMID: 36374535 PMCID: PMC9662831 DOI: 10.7554/elife.78743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
The faithful segregation and inheritance of bacterial chromosomes and low-copy number plasmids requires dedicated partitioning systems. The most common of these, ParABS, consists of ParA, a DNA-binding ATPase and ParB, a protein that binds to centromeric-like parS sequences on the DNA cargo. The resulting nucleoprotein complexes are believed to move up a self-generated gradient of nucleoid-associated ParA. However, it remains unclear how this leads to the observed cargo positioning and dynamics. In particular, the evaluation of models of plasmid positioning has been hindered by the lack of quantitative measurements of plasmid dynamics. Here, we use high-throughput imaging, analysis and modelling to determine the dynamical nature of these systems. We find that F plasmid is actively brought to specific subcellular home positions within the cell with dynamics akin to an over-damped spring. We develop a unified stochastic model that quantitatively explains this behaviour and predicts that cells with the lowest plasmid concentration transition to oscillatory dynamics. We confirm this prediction for F plasmid as well as a distantly-related ParABS system. Our results indicate that ParABS regularly positions plasmids across the nucleoid but operates just below the threshold of an oscillatory instability, which according to our model, minimises ATP consumption. Our work also clarifies how various plasmid dynamics are achievable in a single unified stochastic model. Overall, this work uncovers the dynamical nature of plasmid positioning by ParABS and provides insights relevant for chromosome-based systems.
Collapse
Affiliation(s)
- Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
10
|
Sugawara T, Kaneko K. Chemophoresis engine: A general mechanism of ATPase-driven cargo transport. PLoS Comput Biol 2022; 18:e1010324. [PMID: 35877681 PMCID: PMC9363008 DOI: 10.1371/journal.pcbi.1010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cell polarity regulates the orientation of the cytoskeleton members that directs intracellular transport for cargo-like organelles, using chemical gradients sustained by ATP or GTP hydrolysis. However, how cargo transports are directly mediated by chemical gradients remains unknown. We previously proposed a physical mechanism that enables directed movement of cargos, referred to as chemophoresis. According to the mechanism, a cargo with reaction sites is subjected to a chemophoresis force in the direction of the increased concentration. Based on this, we introduce an extended model, the chemophoresis engine, as a general mechanism of cargo motion, which transforms chemical free energy into directed motion through the catalytic ATP hydrolysis. We applied the engine to plasmid motion in a ParABS system to demonstrate the self-organization system for directed plasmid movement and pattern dynamics of ParA-ATP concentration, thereby explaining plasmid equi-positioning and pole-to-pole oscillation observed in bacterial cells and in vitro experiments. We mathematically show the existence and stability of the plasmid-surfing pattern, which allows the cargo-directed motion through the symmetry-breaking transition of the ParA-ATP spatiotemporal pattern. We also quantitatively demonstrate that the chemophoresis engine can work even under in vivo conditions. Finally, we discuss the chemophoresis engine as one of the general mechanisms of hydrolysis-driven intracellular transport. The formation of organelle/macromolecule patterns depending on chemical concentration under non-equilibrium conditions, first observed during macroscopic morphogenesis, has recently been observed at the intracellular level as well, and its relevance as intracellular morphogen has been demonstrated in the case of bacterial cell division. These studies have discussed how cargos maintain positional information provided by chemical concentration gradients/localization. However, how cargo transports are directly mediated by chemical gradients remains unknown. Based on the previously proposed mechanism of chemotaxis-like behavior of cargos (referred to as chemophoresis), we introduce a chemophoresis engine as a physicochemical mechanism of cargo motion, which transforms chemical free energy to directed motion. The engine is based on the chemophoresis force to make cargoes move in the direction of the increasing ATPase(-ATP) concentration and an enhanced catalytic ATPase hydrolysis at the positions of the cargoes. Applying the engine to ATPase-driven movement of plasmid-DNAs in bacterial cells, we constructed a mathematical model to demonstrate the self-organization for directed plasmid motion and pattern dynamics of ATPase concentration, as is consistent with in vitro and in vivo experiments. We propose that this chemophoresis engine works as a general mechanism of hydrolysis-driven intracellular transport.
Collapse
Affiliation(s)
- Takeshi Sugawara
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
12
|
Hawkey J, Cottingham H, Tokolyi A, Wick RR, Judd LM, Cerdeira L, de Oliveira Garcia D, Wyres KL, Holt KE. Linear plasmids in Klebsiella and other Enterobacteriaceae. Microb Genom 2022; 8. [PMID: 35416146 PMCID: PMC9453081 DOI: 10.1099/mgen.0.000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linear plasmids are extrachromosomal DNA elements that have been found in a small number of bacterial species. To date, the only linear plasmids described in the family Enterobacteriaceae belong to Salmonella, first found in Salmonella enterica Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. Screening of assembly graphs assembled from public read sets identified linear plasmid structures in a further 13 K. pneumoniae species complex genomes. We used these 25 linear plasmid sequences to query all bacterial genome assemblies in the National Center for Biotechnology Information database, and discovered an additional 61 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function; however, each phylogroup carried its own unique toxin–antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug-resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Alex Tokolyi
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | | | | | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
13
|
Mishra D, Jakhmola A, Srinivasan R. A role for the last C-terminal helix of the F plasmid segregating protein SopA in nucleoid binding and plasmid maintenance. Plasmid 2022; 119-120:102617. [PMID: 35041919 DOI: 10.1016/j.plasmid.2022.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
The rapid emergence and spread of antibiotic resistance is a growing global burden. Antibiotic resistance is often associated with large single or low copy number plasmids, which rely upon cytoskeletal proteins for their stable maintenance. While the mechanism of plasmid partitioning has been well established for the R plasmids, the molecular details by which the F plasmid is maintained is only beginning to emerge. The partitioning function of the F plasmid depends upon a ParA/ MinD family of proteins known as SopA. SopA, by virtue of its ATP-dependent non-specific DNA binding activity and association with the bacterial nucleoid, drives the segregation of the F plasmid into the daughter cells. This function further depends upon the stimulation of the ATPase activity of SopA by the SopBC complex. Here, we report that several residues in the last C-terminal helix in SopA play a crucial but distinct role in SopA function and plasmid maintenance. While the deletion of the last five residues in SopA does not affect its ability to bind the nucleoid or SopB, they severely affect the plasmid partitioning function. Further, we show that while mutations in certain polar residues in the C-terminal helix only mildly affect its localisation to the nucleoid, others cause defects in nsDNA binding and disrupt plasmid maintenance functions.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha 752050, India
| | - Anirudh Jakhmola
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha 752050, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
14
|
Hakim P, Hoang Y, Vecchiarelli AG. Dissection of the ATPase active site of McdA reveals the sequential steps essential for carboxysome distribution. Mol Biol Cell 2021; 32:ar11. [PMID: 34406783 PMCID: PMC8684754 DOI: 10.1091/mbc.e21-03-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos.
Collapse
Affiliation(s)
- Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
15
|
Hanauer C, Bergeler S, Frey E, Broedersz CP. Theory of Active Intracellular Transport by DNA Relaying. PHYSICAL REVIEW LETTERS 2021; 127:138101. [PMID: 34623846 DOI: 10.1103/physrevlett.127.138101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal organization of bacterial cells is crucial for the active segregation of replicating chromosomes. In several species, including Caulobacter crescentus, the ATPase ParA binds to DNA and forms a gradient along the long cell axis. The ParB partition complex on the newly replicated chromosome translocates up this ParA gradient, thereby contributing to chromosome segregation. A DNA-relay mechanism-deriving from the elasticity of the fluctuating chromosome-has been proposed as the driving force for this cargo translocation, but a mechanistic theoretical description remains elusive. Here, we propose a minimal model to describe force generation by the DNA-relay mechanism over a broad range of operational conditions. Conceptually, we identify four distinct force-generation regimes characterized by their dependence on chromosome fluctuations. These relay force regimes arise from an interplay of the imposed ParA gradient, chromosome fluctuations, and an emergent friction force due to chromosome-cargo interactions.
Collapse
Affiliation(s)
- Christian Hanauer
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Silke Bergeler
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
16
|
MacCready JS, Tran L, Basalla JL, Hakim P, Vecchiarelli AG. The McdAB system positions α-carboxysomes in proteobacteria. Mol Microbiol 2021; 116:277-297. [PMID: 33638215 PMCID: PMC8359340 DOI: 10.1111/mmi.14708] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Carboxysomes are protein-based organelles essential for carbon fixation in cyanobacteria and proteobacteria. Previously, we showed that the cyanobacterial nucleoid is used to equally space out β-carboxysomes across cell lengths by a two-component system (McdAB) in the model cyanobacterium Synechococcus elongatus PCC 7942. More recently, we found that McdAB systems are widespread among β-cyanobacteria, which possess β-carboxysomes, but are absent in α-cyanobacteria, which possess structurally and phyletically distinct α-carboxysomes. Cyanobacterial α-carboxysomes are thought to have arisen in proteobacteria and then horizontally transferred into cyanobacteria, which suggests that α-carboxysomes in proteobacteria may also lack the McdAB system. Here, using the model chemoautotrophic proteobacterium Halothiobacillus neapolitanus, we show that a McdAB system distinct from that of β-cyanobacteria operates to position α-carboxysomes across cell lengths. We further show that this system is widespread among α-carboxysome-containing proteobacteria and that cyanobacteria likely inherited an α-carboxysome operon from a proteobacterium lacking the mcdAB locus. These results demonstrate that McdAB is a cross-phylum two-component system necessary for positioning both α- and β-carboxysomes. The findings have further implications for understanding the positioning of other protein-based bacterial organelles involved in diverse metabolic processes. PLAIN LANGUAGE SUMMARY: Cyanobacteria are well known to fix atmospheric CO2 into sugars using the enzyme Rubisco. Less appreciated are the carbon-fixing abilities of proteobacteria with diverse metabolisms. Bacterial Rubisco is housed within organelles called carboxysomes that increase enzymatic efficiency. Here we show that proteobacterial carboxysomes are distributed in the cell by two proteins, McdA and McdB. McdA on the nucleoid interacts with McdB on carboxysomes to equidistantly space carboxysomes from one another, ensuring metabolic homeostasis and a proper inheritance of carboxysomes following cell division. This study illuminates how widespread carboxysome positioning systems are among diverse bacteria. Carboxysomes significantly contribute to global carbon fixation; therefore, understanding the spatial organization mechanism shared across the bacterial world is of great interest.
Collapse
Affiliation(s)
- Joshua S. MacCready
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Lisa Tran
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMIUSA
| | - Joseph L. Basalla
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
17
|
Schumacher D, Harms A, Bergeler S, Frey E, Søgaard-Andersen L. PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus. eLife 2021; 10:66160. [PMID: 33734087 PMCID: PMC7993993 DOI: 10.7554/elife.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| |
Collapse
|
18
|
Arroyo-Pérez EE, Ringgaard S. Interdependent Polar Localization of FlhF and FlhG and Their Importance for Flagellum Formation of Vibrio parahaemolyticus. Front Microbiol 2021; 12:655239. [PMID: 33815347 PMCID: PMC8009987 DOI: 10.3389/fmicb.2021.655239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Failure of the cell to properly regulate the number and intracellular positioning of their flagella, has detrimental effects on the cells’ swimming ability. The flagellation pattern of numerous bacteria is regulated by the NTPases FlhF and FlhG. In general, FlhG controls the number of flagella produced, whereas FlhF coordinates the position of the flagella. In the human pathogen Vibrio parahaemolyticus, its single flagellum is positioned and formed at the old cell pole. Here, we describe the spatiotemporal localization of FlhF and FlhG in V. parahaemolyticus and their effect on swimming motility. Absence of either FlhF or FlhG caused a significant defect in swimming ability, resulting in absence of flagella in a ΔflhF mutant and an aberrant flagellated phenotype in ΔflhG. Both proteins localized to the cell pole in a cell cycle-dependent manner, but displayed different patterns of localization throughout the cell cycle. FlhF transitioned from a uni- to bi-polar localization, as observed in other polarly flagellated bacteria. Localization of FlhG was strictly dependent on the cell pole-determinant HubP, while polar localization of FlhF was HubP independent. Furthermore, localization of FlhF and FlhG was interdependent and required for each other’s proper intracellular localization and recruitment to the cell pole. In the absence of HubP or FlhF, FlhG forms non-polar foci in the cytoplasm of the cell, suggesting the possibility of a secondary localization site within the cell besides its recruitment to the cell poles.
Collapse
Affiliation(s)
- Erick Eligio Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Ringgaard
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
19
|
Singhi D, Parwin S, Srivastava P. Genomic deletions in Rhodococcus based on transformation of linear heterologous DNA. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several genome engineering methods have been developed for
Rhodococcus
. However, they suffer from limitations such as extensive cloning, multiple steps, successful expression of heterologous genes via plasmid etc. Here, we report a rapid method for performing genomic deletions/disruptions in
Rhodococcus
spp. using heterologous linear DNA. The method is cost effective and less labour intensive. The applicability of the method was demonstrated by successful disruption of rodA and orphan parA. None of the disrupted genes were found to be essential for the viability of the cell. Disruption of orphan parA and rodA resulted in elongated cells and short rods, respectively. This is the first report demonstrating disruption of rodA and orphan parA genes by electroporation of heterologous linear DNA in
Rhodococcus
spp.
Collapse
Affiliation(s)
- Divya Singhi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Shabnam Parwin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
20
|
The Azospirillum brasilense Core Chemotaxis Proteins CheA1 and CheA4 Link Chemotaxis Signaling with Nitrogen Metabolism. mSystems 2021; 6:6/1/e01354-20. [PMID: 33594007 PMCID: PMC8561660 DOI: 10.1128/msystems.01354-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense, chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN, which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks. IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.
Collapse
|
21
|
Mishra D, Pahujani S, Mitra N, Srivastava A, Srinivasan R. Identification of a Potential Membrane-Targeting Sequence in the C-Terminus of the F Plasmid Segregation Protein SopA. J Membr Biol 2021; 254:243-257. [PMID: 33427942 DOI: 10.1007/s00232-020-00157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Stable maintenance and partitioning of the 'Fertility' plasmid or the F plasmid in its host Escherichia coli require the function of a ParA superfamily of proteins known as SopA. The mechanism by which SopA mediates plasmid segregation is well studied. SopA is a nucleoid-binding protein and binds DNA in an ATP-dependent but sequence non-specific manner. ATP hydrolysis stimulated by the binding of the SopBC complex mediates the release of SopA from the nucleoid. Cycles of ATP-binding and hydrolysis generate an ATPase gradient that moves the plasmid through a chemophoresis force. Nucleoid binding of SopA thus assumes a central role in its plasmid-partitioning function. However, earlier work also suggests that the F plasmid can be partitioned into anucleate cells, thus implicating nucleoid independent partitioning. Interestingly, SopA is also reported to be associated with the inner membrane of the bacteria. Here, we report the identification of a possible membrane-targeting sequence, a predicted amphipathic helix, at the C-terminus of SopA. Molecular dynamics simulations indicate that the predicted amphipathic helical motif of SopA has weak affinity for membranes. Moreover, we experimentally show that SopA can associate with bacterial membranes, is detectable in the membrane fractions of bacterial lysates, and is sensitive to the membrane potential. Further, unlike the wild-type SopA, a deletion of the C-terminal 29 amino acids results in the loss of F plasmids from bacterial cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India
| | - Sakshi Pahujani
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India.,Molecular Biophysics Unit, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India.
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
22
|
Spatiotemporal Organization of Chemotaxis Pathways in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2020; 87:AEM.02229-20. [PMID: 33067189 DOI: 10.1128/aem.02229-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum gryphiswaldense employs iron-rich nanoparticles for magnetic navigation within environmental redox gradients. This behavior termed magneto-aerotaxis was previously shown to rely on the sensory pathway CheOp1, but the precise localization of CheOp1-related chemoreceptor arrays during the cell cycle and its possible interconnection with three other chemotaxis pathways have remained unstudied. Here, we analyzed the localization of chemoreceptor-associated adaptor protein CheW1 and histidine kinase CheA1 by superresolution microscopy in a spatiotemporal manner. CheW1 localized in dynamic clusters that undergo occasional segregation and fusion events at lateral sites of both cell poles. Newly formed smaller clusters originating at midcell before completion of cytokinesis were found to grow in size during the cell cycle. Bipolar CheA1 localization and formation of aerotactic swim halos were affected depending on the fluorescent protein tag, indicating that CheA1 localization is important for aerotaxis. Furthermore, polar CheW1 localization was independent of cheOp2 to cheOp4 but lost in the absence of cheOp1 or cheA1 Results were corroborated by the detection of a direct protein interaction between CheA1 and CheW1 and by the observation that cheOp2- and cheOp3-encoded CheW paralogs localized in spatially distinct smaller clusters at the cell boundary. Although the findings of a minor aerotaxis-related CheOp4 phenotype and weak protein interactions between CheOp1 and CheOp4 by two-hybrid analysis implied that CheW1 and CheW4 might be part of the same chemoreceptor array, CheW4 was localized in spatially distinct polar-lateral arrays independent of CheOp1, suggesting that CheOp1 and CheOp4 are also not connected at the molecular level.IMPORTANCE Magnetotactic bacteria (MTB) use the geomagnetic field for navigation in aquatic redox gradients. However, the highly complex signal transduction networks in these environmental microbes are poorly understood. Here, we analyzed the localization of selected chemotaxis proteins to spatially and temporally resolve chemotaxis array localization in Magnetospirillum gryphiswaldense Our findings suggest that bipolar localization of chemotaxis arrays related to the key signaling pathway CheOp1 is important for aerotaxis and that CheOp1 signaling units assemble independent of the three other chemotaxis pathways present in M. gryphiswaldense Overall, our results provide deeper insights into the complex organization of signaling pathways in MTB and add to the general understanding of environmental bacteria possessing multiple chemotaxis pathways.
Collapse
|
23
|
Zhang Y, Chen CX, Feng HP, Wang XJ, Roessner U, Walker R, Cheng ZY, An YQ, Du B, Bai JG. Transcriptome Profiling Combined With Activities of Antioxidant and Soil Enzymes Reveals an Ability of Pseudomonas sp. CFA to Mitigate p-Hydroxybenzoic and Ferulic Acid Stresses in Cucumber. Front Microbiol 2020; 11:522986. [PMID: 33193118 PMCID: PMC7652996 DOI: 10.3389/fmicb.2020.522986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Continuous-cropping leads to obstacles in crop productivity by the accumulation of p-hydroxybenzoic acid (PHBA) and ferulic acid (FA). In this study, a strain CFA of Pseudomonas was shown to have a higher PHBA- and FA-degrading ability in media and soil and the mechanisms underlying this were explored. Optimal conditions for PHBA and FA degradation by CFA were 0.2 g/l of PHBA and FA, 37°C, and pH 6.56. Using transcriptome analysis, complete pathways that converted PHBA and FA to acetyl coenzyme A were proposed in CFA. When CFA was provided with PHBA and FA, we observed upregulation of genes in the pathways and detected intermediate metabolites including vanillin, vanillic acid, and protocatechuic acid. Moreover, 4-hydroxybenzoate 3-monooxygenase and vanillate O-demethylase were rate-limiting enzymes by gene overexpression. Knockouts of small non-coding RNA (sRNA) genes, including sRNA 11, sRNA 14, sRNA 20, and sRNA 60, improved the degradation of PHBA and FA. When applied to cucumber-planted soil supplemented with PHBA and FA, CFA decreased PHBA and FA in soil. Furthermore, a reduction of superoxide radical, hydrogen peroxide, and malondialdehyde in cucumber was observed by activating superoxide dismutase, catalase, glutathione peroxidase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase in seedlings, increasing the reduced glutathione and ascorbate in leaves, and inducing catalase, urease, and phosphatase in the rhizosphere. CFA has potential to mitigate PHBA and FA stresses in cucumber and alleviate continuous-cropping obstacles.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chang-Xia Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hui-Ping Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiu-Juan Wang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ute Roessner
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Robert Walker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Zeng-Yan Cheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan-Qiu An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ji-Gang Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
24
|
Nußbaum P, Ithurbide S, Walsh JC, Patro M, Delpech F, Rodriguez-Franco M, Curmi PMG, Duggin IG, Quax TEF, Albers SV. An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea. Curr Biol 2020; 30:4956-4972.e4. [PMID: 33125862 DOI: 10.1016/j.cub.2020.09.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Solenne Ithurbide
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Megha Patro
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Floriane Delpech
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
25
|
Corrales-Guerrero L, He B, Refes Y, Panis G, Bange G, Viollier PH, Steinchen W, Thanbichler M. Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus. Nucleic Acids Res 2020; 48:4769-4779. [PMID: 32232335 PMCID: PMC7229837 DOI: 10.1093/nar/gkaa192] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal regulation of chromosome segregation and cell division in Caulobacter crescentus is mediated by two different P-loop ATPases, ParA and MipZ. Both of these proteins form dynamic concentration gradients that control the positioning of regulatory targets within the cell. Their proper localization depends on their nucleotide-dependent cycling between a monomeric and a dimeric state and on the ability of the dimeric species to associate with the nucleoid. In this study, we use a combination of genetic screening, biochemical analysis and hydrogen/deuterium exchange mass spectrometry to comprehensively map the residues mediating the interactions of MipZ and ParA with DNA. We show that MipZ has non-specific DNA-binding activity that relies on an array of positively charged and hydrophobic residues lining both sides of the dimer interface. Extending our analysis to ParA, we find that the MipZ and ParA DNA-binding sites differ markedly in composition, although their relative positions on the dimer surface and their mode of DNA binding are conserved. In line with previous experimental work, bioinformatic analysis suggests that the same principles may apply to other members of the P-loop ATPase family. P-loop ATPases thus share common mechanistic features, although their functions have diverged considerably during the course of evolution.
Collapse
Affiliation(s)
| | - Binbin He
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Yacine Refes
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Gert Bange
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Wieland Steinchen
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, D-35043 Marburg, Germany.,Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
26
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
27
|
Milner DS, Ray LJ, Saxon EB, Lambert C, Till R, Fenton AK, Sockett RE. DivIVA Controls Progeny Morphology and Diverse ParA Proteins Regulate Cell Division or Gliding Motility in Bdellovibrio bacteriovorus. Front Microbiol 2020; 11:542. [PMID: 32373080 PMCID: PMC7186360 DOI: 10.3389/fmicb.2020.00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 01/12/2023] Open
Abstract
The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. Bdellovibrio replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing B. bacteriovorus cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The B. bacteriovorus genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within.
Collapse
Affiliation(s)
- David S Milner
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Luke J Ray
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emma B Saxon
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carey Lambert
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rob Till
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew K Fenton
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Renee Elizabeth Sockett
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
28
|
Ramm B, Heermann T, Schwille P. The E. coli MinCDE system in the regulation of protein patterns and gradients. Cell Mol Life Sci 2019; 76:4245-4273. [PMID: 31317204 PMCID: PMC6803595 DOI: 10.1007/s00018-019-03218-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Molecular self-organziation, also regarded as pattern formation, is crucial for the correct distribution of cellular content. The processes leading to spatiotemporal patterns often involve a multitude of molecules interacting in complex networks, so that only very few cellular pattern-forming systems can be regarded as well understood. Due to its compositional simplicity, the Escherichia coli MinCDE system has, thus, become a paradigm for protein pattern formation. This biological reaction diffusion system spatiotemporally positions the division machinery in E. coli and is closely related to ParA-type ATPases involved in most aspects of spatiotemporal organization in bacteria. The ATPase MinD and the ATPase-activating protein MinE self-organize on the membrane as a reaction matrix. In vivo, these two proteins typically oscillate from pole-to-pole, while in vitro they can form a variety of distinct patterns. MinC is a passenger protein supposedly operating as a downstream cue of the system, coupling it to the division machinery. The MinCDE system has helped to extract not only the principles underlying intracellular patterns, but also how they are shaped by cellular boundaries. Moreover, it serves as a model to investigate how patterns can confer information through specific and non-specific interactions with other molecules. Here, we review how the three Min proteins self-organize to form patterns, their response to geometric boundaries, and how these patterns can in turn induce patterns of other molecules, focusing primarily on experimental approaches and developments.
Collapse
Affiliation(s)
- Beatrice Ramm
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamara Heermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
29
|
de Beyer JA, Szöllössi A, Byles E, Fischer R, Armitage JP. Mechanism of Signalling and Adaptation through the Rhodobacter sphaeroides Cytoplasmic Chemoreceptor Cluster. Int J Mol Sci 2019; 20:ijms20205095. [PMID: 31615130 PMCID: PMC6829392 DOI: 10.3390/ijms20205095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022] Open
Abstract
Rhodobacter sphaeroides has two chemotaxis clusters, an Escherichia coli-like cluster with membrane-spanning chemoreceptors and a less-understood cytoplasmic cluster. The cytoplasmic CheA is split into CheA4, a kinase, and CheA3, a His-domain phosphorylated by CheA4 and a phosphatase domain, which together phosphorylate and dephosphorylate motor-stopping CheY6. In bacterial two-hybrid analysis, one major cytoplasmic chemoreceptor, TlpT, interacted with CheA4, while the other, TlpC, interacted with CheA3. Both clusters have associated adaptation proteins. Deleting their methyltransferases and methylesterases singly and together removed chemotaxis, but with opposite effects. The cytoplasmic cluster signal overrode the membrane cluster signal. Methylation and demethylation of specific chemoreceptor glutamates controls adaptation. Tandem mass spectroscopy and bioinformatics identified four putative sites on TlpT, three glutamates and a glutamine. Mutating each glutamate to alanine resulted in smooth swimming and loss of chemotaxis, unlike similar mutations in E. coli chemoreceptors. Cells with two mutated glutamates were more stoppy than wild-type and responded and adapted to attractant addition, not removal. Mutating all four sites amplified the effect. Cells were non-motile, began smooth swimming on attractant addition, and rapidly adapted back to non-motile before attractant removal. We propose that TlpT responds and adapts to the cell's metabolic state, generating the steady-state concentration of motor-stopping CheY6~P. Membrane-cluster signalling produces a pulse of CheY3/CheY4~P that displaces CheY6~P and allows flagellar rotation and smooth swimming before both clusters adapt.
Collapse
Affiliation(s)
- Jennifer A. de Beyer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.A.d.B.); (A.S.); (E.B.)
| | - Andrea Szöllössi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.A.d.B.); (A.S.); (E.B.)
| | - Elaine Byles
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.A.d.B.); (A.S.); (E.B.)
| | - Roman Fischer
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| | - Judith P. Armitage
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.A.d.B.); (A.S.); (E.B.)
- Correspondence:
| |
Collapse
|
30
|
Kober M, Bergeler S, Frey E. Can a Flux-Based Mechanism Explain Protein Cluster Positioning in a Three-Dimensional Cell Geometry? Biophys J 2019; 117:420-428. [PMID: 31349992 DOI: 10.1016/j.bpj.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
The plane of bacterial cell division must be precisely positioned. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a large cluster, which is tethered to the nucleoid by the ATPase PomZ and moves in a stochastic but biased manner toward midcell where it initiates cell division. Previously, a positioning mechanism based on the fluxes of PomZ on the nucleoid was proposed. However, the cluster dynamics was analyzed in a reduced, one-dimensional geometry. Here, we introduce a mathematical model that accounts for the three-dimensional shape of the nucleoid, such that nucleoid-bound PomZ dimers can diffuse past the cluster without interacting with it. Using stochastic simulations, we find that the cluster still moves to and localizes at midcell. Redistribution of PomZ by diffusion in the cytosol is essential for this cluster dynamics. Our mechanism also positions two clusters equidistantly on the nucleoid, as observed for low-copy-number plasmid partitioning. We conclude that a flux-based mechanism allows for cluster positioning in a biologically realistic three-dimensional cell geometry.
Collapse
Affiliation(s)
- Matthias Kober
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
31
|
Abstract
Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea. Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.
Collapse
|
32
|
Callaghan MM, Heilers JH, van der Does C, Dillard JP. Secretion of Chromosomal DNA by the Neisseria gonorrhoeae Type IV Secretion System. Curr Top Microbiol Immunol 2019; 413:323-345. [PMID: 29536365 PMCID: PMC5935271 DOI: 10.1007/978-3-319-75241-9_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Approximately 80% of Neisseria gonorrhoeae and 17.5% of Neisseria meningitidis clinical isolates carry a ~59 kb genomic island known as the gonococcal genetic island (GGI). About half of the GGI consists of genes encoding a type IV secretion system (T4SS), and most of these genes are clustered in a ~28 kb region at one end of the GGI. Two additional genes (parA and parB) are found at the other end of the island. The remainder of the GGI consists mostly of hypothetical proteins, with several being identified as DNA-binding or DNA-processing proteins. The T4SS genes show similarity to those of the F-plasmid family of conjugation systems, with similarity in gene order and a low but significant level of sequence identity for the encoded proteins. However, several GGI-encoded proteins are unique from the F-plasmid system, such as AtlA, Yag, and TraA. Interestingly, the gonococcal T4SS does not act as a conjugation system. Instead, this T4SS secretes ssDNA into the extracellular milieu, where it can serve to transform highly competent Neisseria species, thereby increasing the transfer of genetic information. Although many of the T4SS proteins are expressed at low levels, this system has been implicated in several cellular processes. The secreted ssDNA is involved in the initial stages of biofilm formation, and the presence of the T4SS enables TonB-independent intracellular survival of N. gonorrhoeae strains during infection of cervical cells. Other GGI-like T4SSs have been identified in several other α-, β-, and γ-proteobacteria, but the function of these GGI-like T4SSs is unknown. Remarkably, the presence of the GGI is related to resistance to several antibiotics. Here, we describe our current knowledge about the GGI and its unique ssDNA-secreting T4SS.
Collapse
Affiliation(s)
- Melanie M Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
| | - Jan-Hendrik Heilers
- Institut für Biologie II-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Chris van der Does
- Institut für Biologie II-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA.
| |
Collapse
|
33
|
Murray SM, Howard M. Center Finding in E. coli and the Role of Mathematical Modeling: Past, Present and Future. J Mol Biol 2019; 431:928-938. [PMID: 30664868 DOI: 10.1016/j.jmb.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
We review the key role played by mathematical modeling in elucidating two center-finding patterning systems in Escherichia coli: midcell division positioning by the MinCDE system and DNA partitioning by the ParABS system. We focus particularly on how, despite much experimental effort, these systems were simply too complex to unravel by experiments alone, and instead required key injections of quantitative, mathematical thinking. We conclude the review by analyzing the frequency of modeling approaches in microbiology over time. We find that while such methods are increasing in popularity, they are still probably heavily under-utilized for optimal progress on complex biological questions.
Collapse
Affiliation(s)
- Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany.
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
34
|
In Vivo Imaging of the Segregation of the 2 Chromosomes and the Cell Division Proteins of Rhodobacter sphaeroides Reveals an Unexpected Role for MipZ. mBio 2019; 10:mBio.02515-18. [PMID: 30602584 PMCID: PMC6315104 DOI: 10.1128/mbio.02515-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell division has to be coordinated with chromosome segregation to ensure the stable inheritance of genetic information. We investigated this coordination in the multichromosome bacterium Rhodobacter sphaeroides. By examining the origin and terminus regions of the two chromosomes, the ParA-like ATPase MipZ and FtsZ, we showed that chromosome 1 appears to be the “master” chromosome connecting DNA segregation and cell division, with MipZ being critical for coordination. MipZ shows an unexpected localization pattern, with MipZ monomers interacting with ParB of the chromosome 1 at the cell poles whereas MipZ dimers colocalize with FtsZ at midcell during constriction, both forming dynamic rings. These data suggest that MipZ has roles in R. sphaeroides in both controlling septation and coordinating chromosome segregation with cell division. Coordinating chromosome duplication and segregation with cell division is clearly critical for bacterial species with one chromosome. The precise choreography required is even more complex in species with more than one chromosome. The alpha subgroup of bacteria contains not only one of the best-studied bacterial species, Caulobacter crescentus, but also several species with more than one chromosome. Rhodobacter sphaeroides is an alphaproteobacterium with two chromosomes, but, unlike C. crescentus, it divides symmetrically rather than buds and lacks the complex CtrA-dependent control mechanism. By examining the Ori and Ter regions of both chromosomes and associated ParA and ParB proteins relative to cell division proteins FtsZ and MipZ, we have identified a different pattern of chromosome segregation and cell division. The pattern of chromosome duplication and segregation resembles that of Vibrio cholerae, not that of Agrobacterium tumefaciens, with duplication of the origin and terminus regions of chromosome 2 controlled by chromosome 1. Key proteins are localized to different sites compared to C. crescentus. OriC1 and ParB1 are localized to the old pole, while MipZ and FtsZ localize to the new pole. Movement of ParB1 to the new pole following chromosome duplication releases FtsZ, which forms a ring at midcell, but, unlike reports for other species, MipZ monomers do not form a gradient but oscillate between poles, with the nucleotide-bound monomer and the dimer localizing to midcell. MipZ dimers form a single ring (with a smaller diameter) close to the FtsZ ring at midcell and constrict with the FtsZ ring. Overproduction of the dimer form results in filamentation, suggesting that MipZ dimers are regulating FtsZ activity and thus septation. This is an unexpected role for MipZ and provides a new model for the integration of chromosome segregation and cell division.
Collapse
|
35
|
The MinDE system is a generic spatial cue for membrane protein distribution in vitro. Nat Commun 2018; 9:3942. [PMID: 30258191 PMCID: PMC6158289 DOI: 10.1038/s41467-018-06310-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023] Open
Abstract
The E. coli MinCDE system has become a paradigmatic reaction-diffusion system in biology. The membrane-bound ATPase MinD and ATPase-activating protein MinE oscillate between the cell poles followed by MinC, thus positioning the main division protein FtsZ at midcell. Here we report that these energy-consuming MinDE oscillations may play a role beyond constraining MinC/FtsZ localization. Using an in vitro reconstitution assay, we show that MinDE self-organization can spatially regulate a variety of functionally completely unrelated membrane proteins into patterns and gradients. By concentration waves sweeping over the membrane, they induce a direct net transport of tightly membrane-attached molecules. That the MinDE system can spatiotemporally control a much larger set of proteins than previously known, may constitute a MinC-independent pathway to division site selection and chromosome segregation. Moreover, the here described phenomenon of active transport through a traveling diffusion barrier may point to a general mechanism of spatiotemporal regulation in cells.
Collapse
|
36
|
Bergeler S, Frey E. Regulation of Pom cluster dynamics in Myxococcus xanthus. PLoS Comput Biol 2018; 14:e1006358. [PMID: 30102692 PMCID: PMC6107250 DOI: 10.1371/journal.pcbi.1006358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/23/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Precise positioning of the cell division site is essential for the correct segregation of the genetic material into the two daughter cells. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a cluster on the chromosome that performs a biased random walk to midcell and positively regulates cell division there. PomZ, an ATPase, is necessary for tethering of the cluster to the nucleoid and regulates its movement towards midcell. It has remained unclear how the cluster dynamics change when the biochemical parameters, such as the attachment rates of PomZ dimers to the nucleoid and the cluster, the ATP hydrolysis rate of PomZ or the mobility of PomZ interacting with the nucleoid and cluster, are varied. To answer these questions, we investigate a one-dimensional model that includes the nucleoid, the Pom cluster and PomZ proteins. We find that a mechanism based on the diffusive PomZ fluxes on the nucleoid into the cluster can explain the latter's midnucleoid localization for a broad parameter range. Furthermore, there is an ATP hydrolysis rate that minimizes the time the cluster needs to reach midnucleoid. If the dynamics of PomZ on the nucleoid is slow relative to the cluster's velocity, we observe oscillatory cluster movements around midnucleoid. To understand midnucleoid localization, we developed a semi-analytical approach that dissects the net movement of the cluster into its components: the difference in PomZ fluxes into the cluster from either side, the force exerted by a single PomZ dimer on the cluster and the effective friction coefficient of the cluster. Importantly, we predict that the Pom cluster oscillates around midnucleoid if the diffusivity of PomZ on the nucleoid is reduced. A similar approach to that applied here may also prove useful for cargo localization in ParABS systems.
Collapse
Affiliation(s)
- Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
37
|
Ramm B, Glock P, Schwille P. In Vitro Reconstitution of Self-Organizing Protein Patterns on Supported Lipid Bilayers. J Vis Exp 2018. [PMID: 30102292 PMCID: PMC6126581 DOI: 10.3791/58139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many aspects of the fundamental spatiotemporal organization of cells are governed by reaction-diffusion type systems. In vitro reconstitution of such systems allows for detailed studies of their underlying mechanisms which would not be feasible in vivo. Here, we provide a protocol for the in vitro reconstitution of the MinCDE system of Escherichia coli, which positions the cell division septum in the cell middle. The assay is designed to supply only the components necessary for self-organization, namely a membrane, the two proteins MinD and MinE and energy in the form of ATP. We therefore fabricate an open reaction chamber on a coverslip, on which a supported lipid bilayer is formed. The open design of the chamber allows for optimal preparation of the lipid bilayer and controlled manipulation of the bulk content. The two proteins, MinD and MinE, as well as ATP, are then added into the bulk volume above the membrane. Imaging is possible by many optical microscopies, as the design supports confocal, wide-field and TIRF microscopy alike. In a variation of the protocol, the lipid bilayer is formed on a patterned support, on cell-shaped PDMS microstructures, instead of glass. Lowering the bulk solution to the rim of these compartments encloses the reaction in a smaller compartment and provides boundaries that allow mimicking of in vivo oscillatory behavior. Taken together, we describe protocols to reconstitute the MinCDE system both with and without spatial confinement, allowing researchers to precisely control all aspects influencing pattern formation, such as concentration ranges and addition of other factors or proteins, and to systematically increase system complexity in a relatively simple experimental setup.
Collapse
Affiliation(s)
- Beatrice Ramm
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry
| | - Philipp Glock
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry;
| |
Collapse
|
38
|
Miyagi A, Ramm B, Schwille P, Scheuring S. High-Speed Atomic Force Microscopy Reveals the Inner Workings of the MinDE Protein Oscillator. NANO LETTERS 2018; 18:288-296. [PMID: 29210266 DOI: 10.1021/acs.nanolett.7b04128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The MinDE protein system from E. coli has recently been identified as a minimal biological oscillator, based on two proteins only: The ATPase MinD and the ATPase activating protein MinE. In E. coli, the system works as the molecular ruler to place the divisome at midcell for cell division. Despite its compositional simplicity, the molecular mechanism leading to protein patterns and oscillations is still insufficiently understood. Here we used high-speed atomic force microscopy to analyze the mechanism of MinDE membrane association/dissociation dynamics on isolated membrane patches, down to the level of individual point oscillators. This nanoscale analysis shows that MinD association to and dissociation from the membrane are both highly cooperative but mechanistically different processes. We propose that they represent the two directions of a single allosteric switch leading to MinD filament formation and depolymerization. Association/dissociation are separated by rather long apparently silent periods. The membrane-associated period is characterized by MinD filament multivalent binding, avidity, while the dissociated period is defined by seeding of individual MinD. Analyzing association/dissociation kinetics with varying MinD and MinE concentrations and dependent on membrane patch size allowed us to disentangle the essential dynamic variables of the MinDE oscillation cycle.
Collapse
Affiliation(s)
- Atsushi Miyagi
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy , 13009 Marseille, France
| | - Beatrice Ramm
- Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy , 13009 Marseille, France
| |
Collapse
|
39
|
Watanabe S, Noda A, Ohbayashi R, Uchioke K, Kurihara A, Nakatake S, Morioka S, Kanesaki Y, Chibazakura T, Yoshikawa H. ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942. MICROBIOLOGY-SGM 2017; 164:45-56. [PMID: 29165230 DOI: 10.1099/mic.0.000577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While many bacteria, such as Escherichia coli and Bacillus subtilis, harbour a single-copy chromosome, freshwater cyanobacteria have multiple copies of each chromosome per cell. Although it has been reported that multi-copy chromosomes are evenly distributed along the major axis of the cell in cyanobacterium Synechococcus elongatus PCC 7942, the distribution mechanism of these chromosomes remains unclear. In S. elongatus, the carboxysome, a metabolic microcompartment for carbon fixation that is distributed in a similar manner to the multi-copy chromosomes, is regulated by ParA-like protein (hereafter ParA). To elucidate the role of ParA in the distribution of multi-copy chromosomes, we constructed and analysed ParA disruptant and overexpressing strains of S. elongatus. Our fluorescence in situ hybridization assay revealed that the parA disruptants displayed an aberrant distribution of their multi-copy chromosomes. In the parA disruptant the multiple origin and terminus foci, corresponding to the intracellular position of each chromosomal region, were aggregated, which was compensated by the expression of exogenous ParA from other genomic loci. The parA disruptant is sensitive to UV-C compared to the WT strain. Additionally, giant cells appeared under ParA overexpression at the late stage of growth indicating that excess ParA indirectly inhibits cell division. Screening of the ParA-interacting proteins by yeast two-hybrid analysis revealed four candidates that are involved in DNA repair and cell membrane biogenesis. These results suggest that ParA is involved in the pleiotropic cellular functions with these proteins, while parA is dispensable for cell viability in S. elongatus.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Aska Noda
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Japan.,Department of Cell Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kana Uchioke
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ami Kurihara
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shizuka Nakatake
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Sayumi Morioka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
40
|
Alvarado A, Kjær A, Yang W, Mann P, Briegel A, Waldor MK, Ringgaard S. Coupling chemosensory array formation and localization. eLife 2017; 6:31058. [PMID: 29058677 PMCID: PMC5706961 DOI: 10.7554/elife.31058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis proteins organize into large, highly ordered, chemotactic signaling arrays, which in Vibrio species are found at the cell pole. Proper localization of signaling arrays is mediated by ParP, which tethers arrays to a cell pole anchor, ParC. Here we show that ParP’s C-terminus integrates into the core-unit of signaling arrays through interactions with MCP-proteins and CheA. Its intercalation within core-units stimulates array formation, whereas its N-terminal interaction domain enables polar recruitment of arrays and facilitates its own polar localization. Linkage of these domains within ParP couples array formation and localization and results in controlled array positioning at the cell pole. Notably, ParP’s integration into arrays modifies its own and ParC’s subcellular localization dynamics, promoting their polar retention. ParP serves as a critical nexus that regulates the localization dynamics of its network constituents and drives the localized assembly and stability of the chemotactic machinery, resulting in proper cell pole development. Many bacteria live in a liquid environment and explore their surroundings by swimming. When in search of food, bacteria are able to swim toward the highest concentration of food molecules in the environment by a process called chemotaxis. Proteins important for chemotaxis group together in large networks called chemotaxis arrays. In the bacterium Vibrio cholerae chemotaxis arrays are placed at opposite ends (at the “cell poles”) of the bacterium by a protein called ParP. This makes sure that when the bacterium divides, each new cell receives a chemotaxis array and can immediately search for food. In cells that lack ParP, the chemotaxis arrays are no longer placed correctly at the cell poles and the bacteria search for food much less effectively. To understand how ParP is able to direct chemotaxis arrays to the cell poles in V. cholerae Alvarado et al. searched for partner proteins that could help ParP position the arrays. The search revealed that ParP interacts with other proteins in the chemotaxis arrays. This enables ParP to integrate into the arrays and stimulate new arrays to form. Alvarado et al. also discovered that ParP consists of two separate parts that have different roles. One part directs ParP to the cell pole while the other part integrates ParP into the arrays. By performing both of these roles, ParP links the positioning of the arrays at the cell pole to their formation at this site. The findings presented by Alvarado et al. open many further questions. For instance, it is not understood how ParP affects how other chemotaxis proteins within the arrays interact with each other. As well as enabling many species of bacteria to spread through their environment, chemotaxis is also important for the disease-causing properties of many human pathogens – like V. cholerae. As a result, learning how chemotaxis is regulated could potentially identify new ways to stop the spread of infectious bacteria and prevent human infections.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Kjær
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
41
|
Essential Role of the Cytoplasmic Chemoreceptor TlpT in the De Novo Formation of Chemosensory Complexes in Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00366-17. [PMID: 28739674 DOI: 10.1128/jb.00366-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemosensory proteins form large hexagonal arrays. Several key features of chemotactic signaling depend on these large arrays, namely, cooperativity between receptors, sensitivity, integration of different signals, and adaptation. The best-studied arrays are the membrane-associated arrays found in most bacteria. Rhodobacter sphaeroides has two spatially distinct chemosensory arrays, one is transmembrane and the other is cytoplasmic. These two arrays work together to control a single flagellum. Deletion of one of the soluble chemoreceptors, TlpT, results in the loss of the formation of the cytoplasmic array. Here, we show the expression of TlpT in a tlpT deletion background results in the reformation of the cytoplasmic array. The number of arrays formed is dependent on the cell length, indicating spatial limitations on the number of arrays in a cell and stochastic assembly. Deletion of PpfA, a protein required for the positioning and segregation of the cytoplasmic array, results in slower array formation upon TlpT expression and fewer arrays, suggesting it accelerates cluster assembly.IMPORTANCE Bacterial chemosensory arrays are usually membrane associated and consist of thousands of copies of receptors, adaptor proteins, kinases, and adaptation enzymes packed into large hexagonal structures. Rhodobacter sphaeroides also has cytoplasmic arrays, which divide and segregate using a chromosome-associated ATPase, PpfA. The expression of the soluble chemoreceptor TlpT is shown to drive the formation of the arrays, accelerated by PpfA. The positioning of these de novo arrays suggests their position is the result of stochastic assembly rather than active positioning.
Collapse
|
42
|
McLeod BN, Allison-Gamble GE, Barge MT, Tonthat NK, Schumacher MA, Hayes F, Barillà D. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation. Nucleic Acids Res 2017; 45:3158-3171. [PMID: 28034957 PMCID: PMC5389482 DOI: 10.1093/nar/gkw1302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/23/2022] Open
Abstract
Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells.
Collapse
Affiliation(s)
- Brett N. McLeod
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | | | - Madhuri T. Barge
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nam K. Tonthat
- Department of Biochemistry, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | - Finbarr Hayes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Daniela Barillà
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
43
|
Draper W, Liphardt J. Origins of chemoreceptor curvature sorting in Escherichia coli. Nat Commun 2017; 8:14838. [PMID: 28322223 PMCID: PMC5364426 DOI: 10.1038/ncomms14838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems.
Collapse
Affiliation(s)
- Will Draper
- Biophysics Graduate Group and Department of Physics, University of California, Berkeley, California 94720, USA.,Bioengineering, Shriram Center for Bioengineering &Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Jan Liphardt
- Biophysics Graduate Group and Department of Physics, University of California, Berkeley, California 94720, USA.,Bioengineering, Shriram Center for Bioengineering &Chemical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
44
|
Surovtsev IV, Campos M, Jacobs-Wagner C. DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Natl Acad Sci U S A 2016; 113:E7268-E7276. [PMID: 27799522 PMCID: PMC5135302 DOI: 10.1073/pnas.1616118113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial ordering of macromolecular components inside cells is important for cellular physiology and replication. In bacteria, ParA/B systems are known to generate various intracellular patterns that underlie the transport and partitioning of low-copy-number cargos such as plasmids. ParA/B systems consist of ParA, an ATPase that dimerizes and binds DNA upon ATP binding, and ParB, a protein that binds the cargo and stimulates ParA ATPase activity. Inside cells, ParA is asymmetrically distributed, forming a propagating wave that is followed by the ParB-rich cargo. These correlated dynamics lead to cargo oscillation or equidistant spacing over the nucleoid depending on whether the cargo is in single or multiple copies. Currently, there is no model that explains how these different spatial patterns arise and relate to each other. Here, we test a simple DNA-relay model that has no imposed asymmetry and that only considers the ParA/ParB biochemistry and the known fluctuating and elastic dynamics of chromosomal loci. Stochastic simulations with experimentally derived parameters demonstrate that this model is sufficient to reproduce the signature patterns of ParA/B systems: the propagating ParA gradient correlated with the cargo dynamics, the single-cargo oscillatory motion, and the multicargo equidistant patterning. Stochasticity of ATP hydrolysis breaks the initial symmetry in ParA distribution, resulting in imbalance of elastic force acting on the cargo. Our results may apply beyond ParA/B systems as they reveal how a minimal system of two players, one binding to DNA and the other modulating this binding, can transform directionally random DNA fluctuations into directed motion and intracellular patterning.
Collapse
Affiliation(s)
- Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06517;
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
- Department of Microbial Pathogenesis, Yale Medical School, New Haven, CT 06516
| |
Collapse
|
45
|
Grangeasse C. Rewiring the Pneumococcal Cell Cycle with Serine/Threonine- and Tyrosine-kinases. Trends Microbiol 2016; 24:713-724. [DOI: 10.1016/j.tim.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022]
|
46
|
Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM. Proc Natl Acad Sci U S A 2016; 113:10412-7. [PMID: 27573843 DOI: 10.1073/pnas.1604693113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae's cytoplasmic chemoreceptor array and establish that it is formed by proteins from cluster I. We further identify a chemoreceptor with an unusual domain architecture, DosM, which is essential for formation of the cytoplasmic arrays. DosM contains two signaling domains and spans the two-layered cytoplasmic arrays. Finally, we present evidence suggesting that this type of receptor is important for the structural stability of the cytoplasmic array.
Collapse
|
47
|
Gruber CJ, Lang S, Rajendra VKH, Nuk M, Raffl S, Schildbach JF, Zechner EL. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front Mol Biosci 2016; 3:32. [PMID: 27486582 PMCID: PMC4949242 DOI: 10.3389/fmolb.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.
Collapse
Affiliation(s)
- Christian J Gruber
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Silvia Lang
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Vinod K H Rajendra
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Monika Nuk
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | | | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| |
Collapse
|
48
|
Bacterial partition complexes segregate within the volume of the nucleoid. Nat Commun 2016; 7:12107. [PMID: 27377966 PMCID: PMC4935973 DOI: 10.1038/ncomms12107] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 11/08/2022] Open
Abstract
Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. In most bacteria and archaea, a broadly conserved mitotic-like apparatus assures the inheritance of duplicated genetic material before cell division. Here, the authors use super-resolution microscopies to dissect the activities required for proper DNA segregation through the nucleoid interior.
Collapse
|
49
|
Behrens W, Schweinitzer T, McMurry JL, Loewen PC, Buettner FFR, Menz S, Josenhans C. Localisation and protein-protein interactions of the Helicobacter pylori taxis sensor TlpD and their connection to metabolic functions. Sci Rep 2016; 6:23582. [PMID: 27045738 PMCID: PMC4820699 DOI: 10.1038/srep23582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was localised in a bipolar subcellular pattern in media of high energy. We observed a significant change in TlpD localisation towards the cell body in cheAY2-, catalase- or aconitase-deficient bacteria or in bacteria incubated under low energy conditions, including oxidative stress or respiratory inhibition. Inactivation of tlpD resulted in an increased sensitivity to iron limitation and oxidative stress and influenced the H. pylori transcriptome. Oxidative stress, iron limitation and overexpressing the iron-sulfur repair system nifSU altered TlpD-dependent behaviour. We propose that TlpD localisation is instructed by metabolic activity and protein interactions, and its sensory activity is linked to iron-sulfur cluster integrity.
Collapse
Affiliation(s)
- Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tobias Schweinitzer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jonathan L McMurry
- Department of Molecular &Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Falk F R Buettner
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research, partner site Hannover-Braunschweig, Germany
| |
Collapse
|
50
|
Abstract
The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.
Collapse
|